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Modern software systems are increasingly dependent upon code from external packages (i.e., dependencies).
Building upon external packages allows software reuse to span across projects seamlessly. Package maintainers
regularly release updated versions to provide new features, fix defects, and address security vulnerabilities.
Due to the potential for regression, managing dependencies is not just a trivial matter of selecting the latest
versions. Since it is perceived to be less risky to retain a dependency than remove it, as projects evolve, they
tend to accrue dependencies, exacerbating the difficulty of dependency management. It is not uncommon for
a considerable proportion of external packages to be unused by the projects that list them as a dependency.
Although such unused dependencies are not required to build and run the project, updates to their dependency
specifications will still trigger Continuous Integration (CI) builds. The CI builds that are initiated by updates
to unused dependencies are fundamentally wasteful. Considering that CI build time is a finite resource that is
directly associated with project development and service operational costs, understanding the consequences
of unused dependencies within this CI context is of practical importance.

In this paper, we study the CI waste that is generated by updates to unused dependencies. We collect a
dataset of 20,743 commits that are solely updating dependency specifications (i.e., the package. json file),
spanning 1,487 projects that adopt npm for managing their dependencies. Our findings illustrate that 55.88%
of the CI build time that is associated with dependency updates is only triggered by unused dependencies.
At the project level, the median project spends 56.09% of its dependency-related CI build time on updates
to unused dependencies. For projects that exceed the budget of free build minutes, we find that the median
percentage of billable CI build time that is wasted due to unused-dependency commits is 85.50%. Moreover,
we find that automated bots are the primary producers of dependency-induced CI waste, contributing 92.93%
of the CI build time that is spent on unused dependencies. The popular Dependabot is responsible for updates
to unused dependencies that account for 74.52% of that waste. To mitigate the impact of unused dependencies
on CI resources, we introduce DEp-sCIMITAR \w, an approach to cut down wasted CI time by identifying and
skipping CI builds that are triggered due to unused-dependency commits. A retrospective evaluation of the
20,743 studied commits shows that DEp-sCIMiTaR\. reduces wasted CI build time by 68.34% by skipping
wasteful builds with a precision of 94%.
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1 INTRODUCTION

Modern software systems are highly dependent upon ecosystems of reusable code [16, 62]. This
reusable code takes the form of packages that are indexed by online package repositories, and
are often orchestrated by package management systems, such as npm (JavaScript), PyPI (Python),
and Maven (Java). While developing solutions that leverage software packages provides benefits,
such as encouraging cross-project software reuse [8] and improving developer productivity [46],
package-oriented reuse also introduces challenges for application developers [18, 46]. Indeed,
prior work has shown that package-oriented reuse can create compatibility issues [10, 50, 74] and
transitively propagate security vulnerabilities [4, 5, 74].

To mitigate such issues, maintainers actively update their packages, releasing new versions
that fix bugs [15, 50, 74], enhance security [57, 58], improve performance [73], and introduce new
features or other improvements [49, 73]. In fact, a median of 25% of npm packages are updated daily,
while another 25% are updated every 5-22 days [18]. Given this rapid cadence of development,
it is critical for developers who leverage these packages to actively maintain their dependency
specifications to benefit from the latest updates.

As projects evolve, the management of dependencies tends to become more complex due to
the continual incorporation of new dependencies and the obsolescence of existing ones. As such,
projects have a tendency to accrue dependencies. This accrual frequently results in a considerable
number of external packages remaining unused, despite being listed as dependencies [50, 63].
Identifying and removing such unused dependencies can be challenging for developers. Removing
unused dependencies requires a careful round of time-consuming integration testing.' Given their
largely benign perceived impact and the risky implications of erroneous removal [14], it is not
surprising that prior work has found that it is not uncommon for rates of unused dependencies to
reach 59% [50].

The accrual of unused dependencies is also associated with detrimental effects on Continuous
Integration (CI) pipelines, i.e., the automatic build and test routines that are applied to the change sets
that development teams produce [25]. In fact, unused dependencies bloat the CI build time of every
build by spending additional time downloading and installing dependencies that are not strictly
necessary. For example, in the discussion of the pull request #385 of the E3SM-Project/e3sm_diags
project,? developers mention that the removal of unused dependencies would reduce the duration
of CI builds for the project. Other discussions in GitHub projects also raised similar concerns about
the accrual of unused dependencies and their negative impact on CL*>*>:° To address such issues,
prior work had suggested caching dependencies in the CI environment [28]. Also, CI providers,
such as GitHub Actions (GHA),” allow dependency caching to improve the overall CI build time.®

In addition to generating costs, updates to unused dependency versions cannot impact the build
outcome as they do not affect build or runtime behaviour. Hence, all CI build time that is spent on
change sets that solely update unused dependencies is wasted by consuming CI resources without
providing value to development teams. This problem can be exacerbated by automated bots that
update dependencies, potentially increasing the frequency of unnecessary updates [37]. Given that
project budgets for CI are finite, such unnecessary resource consumption contributes to increased

Thttps://github.com/spacelabdev/spacelab-react/issues/335
Zhttps://github.com/E3SM-Project/e3sm_diags/pull/385

Shttps://github.com/Jonbodoe/Wildfire/pull/2

4https://github.com/ethereum/fe/pull/833
Shttps://github.com/rkorytkowski/openmrs-owa-conceptdictionary/pull/76
Shttps://github.com/ChristianCornelis/PersonalSite/pull/7

"https://docs.github.com/en/actions
8https://docs.github.com/en/actions/using-workflows/caching-dependencies-to-speed-up-workflows
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project costs. This overuse of resources has been shown to frustrate developers, illustrating the
critical balance between resource allocation and effective project development [29, 51].

Therefore, the overarching goal of this paper is to quantify, characterize, and mitigate the CI
waste that is generated by builds that are invoked due to updates to unused dependencies. As a
concrete instance of this problem, we focus on npm dependencies in JavaScript projects that adopt
GHA. To date, npm hosts more than four million packages and has the highest rate of growth in
terms of packages among the most popular programming languages.” We perform an empirical
study on 20,743 commits and their corresponding CI builds that were triggered by updates to
npm dependency specifications spanning 1,487 JavaScript projects. Our results are presented with
respect to the following three dimensions:

Prevalence (Section 4). Understanding the degree to which waste of CI resources is generated
by updates is crucial for CI consumers and providers. For consumers, such as developers and
project maintainers, identifying substantial sources of waste can highlight the need for more
efficient resource allocation or alternative optimization strategies. For CI service providers
(e.g., GHA), recognizing this waste highlights opportunities for improving operational effi-
ciency, whether through better resource allocation or optimizing CI processes. Our findings
reveal that unused dependencies are a substantial source of waste in CI processes. From the
perspective of the CI provider, we find that 55.88% (3,427 build hours) of the overall CI build
time that is consumed by updates to npm dependency specifications in the studied projects is
attributed to unused dependencies. At the project level, a median of 56.09% of CI build time is
spent on updates to unused dependencies. To provide an operational cost perspective on this
quantity of CI waste, we compare the waste of the most wasteful projects with the monthly
budget of free build minutes that is provided to projects by GHA.!* Among those projects,
we find that the CI build time that is spent on unused-dependency updates in 14 of the 54
studied months already exceeds their monthly allocation of free build minutes. A follow-up
analysis (Section 7) shows that projects exceeding the budget of free build minutes waste a
median of 85.50% of the total billable CI build time due to unused-dependency commits.

Source (Section 5). To tailor effective waste reduction strategies, we must better understand
who is generating unused-dependency commits (i.e., bots or developers), and which types of
dependencies tend to be affected (i.e., development or runtime). For example, if bots emerge
as the primary contributors of unused-dependency commits, an effective waste mitigation
strategy would need to include scrutinizing and refining the functionalities and configurations
of these bots. Conversely, if developers are identified as the primary contributors of unused-
dependency commits, an effective waste mitigation strategy would need to raise awareness
about the importance of dependency management. Our analysis of the waste source reveals
that a large proportion (92.93%) of the CI build time that is spent on unused dependencies is
wasted due to bot-generated updates, with Dependabot!! accounting for 74.52% of that wasted
CI build time. With respect to the type of dependencies, the majority of the wasted CI build
time (92.63%) occurs due to unused development dependencies, which are at lower risk of
introducing field failures due to erroneous removal [19]. This suggests that development teams
who are willing to invest in removing unused dependencies can focus on these development
dependencies to reduce CI waste without exposing projects to elevated risk levels.

Mitigation (Section 6). Existing CI service providers are not inherently structured to mitigate
the CI build time that is being consumed by unused-dependency commits, and developers are

%https://libraries.io/NPM
Ohttps://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions
https://github.com/dependabot
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hesitant to remove unused dependencies in projects [49]. Thus, to cut down on this waste of
CI resources, we introduce DEP-sCIMITAR\,—an approach that identifies commits that solely
update unused npm dependencies and skip their associated builds. A retrospective analysis of
the application of DEP-sCIMITAR\. to past commits in the studied projects shows that 68.34%
of wasted CI build time can be saved with a precision of 94%.

Contributions. In summary, this paper makes the following key contributions:

e We perform an empirical analysis of the phenomenon of dependency-induced waste in CI and
its prevalence. Our study provides evidence of CI waste stemming from updates to unused
dependencies, encompassing both the CI provider and consumer perspectives.

e We propose DEP-sCIMITARN\. —an approach to automatically detect and label unused-dependency
commits that can be CI skipped.

e We develop a prototype implementation of DEP-sCIMITARN,..!%1

e We release a replication package that includes the dataset that we collected and the scripts
that we implemented to conduct our analyses that span the three study dimensions.*

2 RELATED WORK

In this section, we situate our work with respect to the literature on dependency management
(Section 2.1) and CI (Section 2.2).

2.1 Dependency Management

A plethora of prior work on dependency management has explored the impact of external depen-
dencies on software development [7, 10, 12, 21]. For example, Basili et al. [7] studied the impact of
dependency reuse on software quality and productivity. They concluded that the incorporation of
external dependencies substantially benefits developers by mitigating defect density and reducing
rework, ultimately enhancing productivity levels. Decan et al. [21] analyzed the growth of depen-
dency networks over time. They observed a trend of consistent growth within these dependency
networks in terms of size and the frequency of dependency updates.

Another popular line of work studied the consequences of relying on external dependencies.
Several studies have discussed the increased exposure to security vulnerabilities that adopting
dependencies incurs [3, 4, 11, 19, 23, 27, 53]. For example, Decan et al. [19] performed an empirical
study of 399 security reports over a six-year period in the npm ecosystem. They found that the
number of new vulnerabilities being identified and the number of affected dependencies grew
over time. Bogart et al. [11] showed that ecosystems use different practices and policies to manage
security vulnerabilities. Ferreira et al. [27] proposed an approach to mitigate supply chain attacks
by enforcing a permission system for packages. The permission system only grants a package the
minimal required permissions that it needs to function.

Other work studied the inefficiencies of dependencies that are not fully used [42, 54, 69]. For
example, Wang et al. [69] performed a case study on the Chromium project,'> and found examples
of dependencies that have low usage, e.g., at most 20% of the functionality that is provided by
dependencies have been used by the studied projects. Jendele et al. [42] proposed a tool to decompose
underused dependencies into a set of smaller components, which enables a finer granularity of
reuse.

Zhttps://www.npmjs.com/package/dep-scimitar
Bhttps://github.com/NimmiW/dep- scimitar
4https://zenodo.org/records/11192753
Bhttps://www.chromium.org/chromium-projects
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Another line of research focused on bloated dependencies, i.e., dependencies that are bundled
with additional source code that is never used to build or run the applications that depend on
them [33, 59, 63, 64]. For example, Soto et al. [64] analyzed 9,639 Java artifacts that include 723,444
dependency relationships. This analysis revealed that 2.7% of the directly declared dependencies
were bloated, 15.4% of the dependencies inherited from other sources were bloated, and 57% of
the transitive dependencies in the studied artifacts were bloated. In another study, Soto et al. [63]
analyzed dependencies of 435 Java projects, and found that bloated dependencies steadily increase
over time, and 89.2% of the direct dependencies that are bloated remain bloated in all subsequent
versions of the studied projects.

Recent studies quantify and characterize unused dependencies in projects [37, 41, 48, 50]. For
example, Jafari et al. [41] analyzed 1,146 JavaScript projects to understand dependency smells. Their
results revealed that some runtime dependencies that linger in dependency specifications of projects
are not used by the source code—a phenomenon that the authors described as a dependency smell.
Furthermore, Latendresse et al. [50] performed an empirical study on 100 JavaScript projects that use
npm packages. Their results show that 59% of the runtime dependencies were never used in projects.
Hejderup and Gousios [37] inspected 22 pull requests that were produced by the DEPENDABOT tool.
They found that three of those pull requests provided upgrades to unused dependencies.

While previous studies have delved into the implications of the accrual of (unused) external
dependencies, to the best of our knowledge, the wasted CI resources that are generated by their
(unnecessary) maintenance have yet to be explored. Inspired by these prior studies, we set out to
bridge that gap by empirically studying the quantity of waste in a sample of projects from the npm
ecosystem.

2.2 Continuous Integration: Challenges and Solutions

CI offers numerous advantages to the software teams that adopt it [9, 40, 67]. For example, Hilton et
al. [40] explored the adoption and implications of CI across 34,544 open-source projects, revealing
that 40% of these projects adopt CI. Surveys of developers within these projects indicated that early
bug detection capabilities and protection against build breakages are key incentives for CI adoption.
Additionally, Vasilescu et al. [67] studied a dataset of 246 open-source projects that use CI and
found that CI elevates developer productivity, especially within projects that adopt the Travis CI
service.

On the other hand, adopting CI is not without its challenges. Several studies have discussed
the hurdles that developers face, including troubleshooting woes and a preference for simpler CI
configurations [32, 38, 39, 71]. For example, Hilton et al. [38] surveyed 523 developers to discover
the barriers that they face. The survey results showed that 50% of the respondents reported having
problems troubleshooting CI builds, and 52% of them prefer simplified configuration options for CI
tools. Furthermore, CI build durations, which tend to grow as projects age, have been identified
as a source of inefficiency [28, 29, 31, 70]. For example, Ghaleb et al. [31] used logistic regression
to model long build durations using a dataset of 104,442 builds across 67 open-source projects.
They observed that builds that are retried multiple times are most likely to be associated with long
build durations. They also found that CI timeouts are one of the consequences of having long build
durations, which is also supported by several other studies [29, 32]. Gallaba et al. [29] analyzed a
dataset of 23.2 million CI builds spanning 7,795 open-source projects. They discovered a total of
17,917 timeouts, and suggested that heuristics, such as the frequency of timeout builds in the recent
past, could be used to predict such builds. Weeraddana et al. [70] extended the work by Gallaba et
al. [29] to characterize timeout builds. They found that timeout builds are strongly associated with
the project build-history features and timeout-tendency features.
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The need to restart builds has also been highlighted as a substantial drain on CI build time
[24, 51, 61]. For example, Maipradit et al. [51] analyzed 66,932 code reviews from the OpenStack
community. They found that 55% of code reviews invoke the recheck command after a failing build,
and the build outcomes changed in only 42% of those cases. Durieux et al. [24] analyzed a dataset
of 3,286,773 builds, and found that 56,522 of those builds were restarted due to timeouts and flaky
tests, concluding that the restarted builds have an impact on the development workflow by slowing
down the process of merging pull requests. Shi et al. [61] proposed a tool (IFIXFLAKIES) to mitigate
the inefficiency of build rerunning, specifically in the context of flaky tests. This tool automatically
fixes order-dependent tests to mitigate flakiness.

Efforts have also been made to reduce CI build time by skipping unnecessary builds or steps
within builds [1, 2, 28, 44, 45]. For example, Gallaba et al. [28] proposed a language-agnostic
approach (KoTinos) to infer data from which build acceleration decisions can be made. They
found that at least 87.9% of the 14,364 studied CI build records contained at least one Kotinos
acceleration in their production setting. Abdalkareem et al. [2] examined 1,813 commits where
developers requested for CI builds to be skipped. This analysis revealed reasons for skipping CI
builds (e.g., when change sets only modify non-compilable files, such as documentation). Based on
those reasons, the study proposed a rule-based method (CI-Sk1pPER) that automatically identifies
commits that could be CI skipped. In another study, Abdalkareem et al. [1] trained a decision tree
classifier to detect CI-skippable commits, i.e., commits in which the updates made do not affect the
source code or the functionality of the project, rendering these updates unnecessary for inclusion
in the project’s build execution [2]. Jin and Servant [44] proposed PRECISEBUILDSKIP—an enhanced
CI-Skipper that considers additional rules to maximize the rate of build failure observation while
minimizing the cost of CI.

Other studies proposed methods to predict build outcomes not only to provide an option to skip
the predicted-to-pass builds, but also to provide early feedback for developers on build failures
before the actual build fails [13, 35, 43, 60, 72]. For example, Chen et al. [13] proposed an approach
to predict CI build outcomes by using history-aware and change set features, such as the status of
the previous build and the total number of previously failed builds. Their predictor outperformed
the state-of-the-art approaches by 47.5% in the F1-score for failed builds. Jin and Servant [43] also
proposed a technique (SMARTBUILDSKIP) that detects CI build failures by separating the first failure
from the remaining sequence of failures. Hassan and Wang [35] leveraged the build history data in
order to predict CI build failures in Ant, Maven, and Gradle build systems.

Our study complements prior work that focused on approaches to speed up the CI build process.
We specifically focus on CI builds that are triggered by dependencies, highlighting the problem of
wasted CI build time due to unused dependencies, and characterizing the sources of such CI waste.
Our empirical analysis provides insights to improve the omission of unnecessary builds that are
triggered by unused dependencies. We leverage these insights to propose DEp-sCIMITARN, to cut
down on wasted CI resources from both the CI provider and CI consumer perspectives.

3 STUDY DESIGN

In this section, we describe our study design. Specifically, we present our approaches to Project
Selection (PS) and Data Curation (DC). Figure 1 provides an overview of the steps involved in these
approaches, which we describe below.

3.1 Project Selection
Our study aims to analyze the waste in the CI process that is generated by version updates to

unused dependencies. Therefore, we need to collect a dataset of projects that have accrued a rich
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Project Selection (PS) Data Curation (DC)
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Fig. 1. An overview of our study design showing Project Selection (PS) and Data Curation (DC) steps.

history of dependency changes and build logs, as well as having a transparent CI configuration.
Below, we describe the steps that we follow to select our sample of projects for analysis.

(PS1) Select JavaScript projects. We use the SEART GitHub search engine [17] to query for GitHub
projects that meet our basic inclusion criteria. We select JavaScript projects due to JavaScript’s
popularity and importance. In fact, JavaScript is currently the most popular programming language
in the world, with a vibrant and fast-growing ecosystem.'®!” This rich ecosystem is a boon for
developers, and our query returns 261,739 JavaScript projects.

(PS2) Select projects with recent activity. Since GitHub hosts toy and immature projects [17,
47, 55], we remove projects with fewer than ten commits. Inspired by prior work (e.g., [52]), we
purposely do not restrict our project dataset only to the most active projects (i.e., projects with a
large commit history) because many projects may not be updated frequently, but still play a critical
role in the build process of other projects. Nonetheless, to ensure that the projects that we study
have been active recently, we select projects that have received commits within the January 2020
to December 2022 timeframe. This filtering criterion improves the validity and modern relevance
of the conclusions that we draw. After applying these filters, 100,811 projects survive.

(PS3) Select projects that adopt CI. To analyze CI waste, we need to select projects that actively
apply CL To do so, we choose to select projects that adopt the GHA CI service,” which has
quickly become the predominant CI service among npm projects on GitHub [34]. Furthermore, as of
December 2022, GHA had accumulated a catalog of over 16,000 reusable Actions [20]. To identify
projects that are configured for GHA, we use the GitHub API'® to check for the availability of the
corresponding CI configuration files in each project. In particular, we check for the presence of
.yml files within the .github/workflows directories of the candidate projects.” We find that GHA
is configured for 16,226 projects in our dataset.

(PS4) Select projects that adopt a software package manager. npm is the de facto package
manager used by JavaScript projects to manage their dependencies [68]. Therefore, we select
projects that adopt npm. JavaScript projects that adopt npm must specify their dependencies in
a package. json file, which lists the packages upon which this project depends, as well as their
versioning constraints. A project with npm dependencies must contain at least one package. json
file located in its root folder. To identify projects that use npm, we first clone a local copy of each of
the 16,226 candidate projects that have been selected so far. Then, we search the root directory of
the HEAD commiit of each cloned repository for a package. json file. If a match is found, we store
the repository for further analysis.

8 https://www.npmjs.com/
7https://libraries.io/NPM
Bhttps://docs.github.com/en/rest/repos/contents?apiVersion=2022-11-28
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At the end of this filtering process, 13,991 projects survive. These projects have a median of 181
commits and seven contributors. Our corpus of candidate projects comprises popular and large
projects from organizations of influence, such as Meta,'’ Google,ZO and Microsoft.?!

3.2 Data Curation

After obtaining our set of projects, we process each project further to calculate the time that was
spent on builds that were invoked due to updates to unused dependencies. Below, we describe the
steps of this process in detail.

(DC1) Extract commits with dependency-version updates. We need to extract the dependency
changes to identify updates to dependency versions. As explained above, JavaScript projects specify
their dependencies in the package. json file, which contains the list of packages upon which the
project depends. Hence, we extract all changes (i.e., commits) that modify the package. json file.
Specifically, for each project, we mine through its commits, extracting the list of modified files, and
the content of the modified lines using the git-log command. Note that to ensure the modern
relevance of our analysis, we only select commits that occurred between 2020 and 2022 (inclusive).
Then, we categorize these commits into those pertaining to dependency-version updates and those
unrelated to dependency versions. Specifically, we consider a commit as a dependency commit if it
exclusively modifies the package . json file?? and the only updates in that file are version specifiers
of dependencies. Commits that do not meet both criteria are considered outside the scope of our
investigation and are not considered in our analysis of dependency-induced CI waste. We detect
121,453 dependency commits spanning 1,854 projects.

Note that our approach may lead to the exclusion of commits that update unused dependencies
in the package. json file while simultaneously making changes to other files that do not impact the
source code functionality. For instance, commits that merely add comments in source files or modify
the README . md file ([2]), in addition to updating unused dependencies in the package. json file,
fall outside the scope of our analysis. As a result, the waste that we report represents a conservative
lower bound, underestimating the actual quantity of dependency-induced CI waste.

(DC2) Identify unused dependencies. Following prior studies [41, 46, 56], we apply DEPCHECK??
to identify unused dependencies that are listed in the package. json file. First, we run DEPCHECK
on each dependency commit and store a list of all unused dependencies. Subsequently, we cross-
reference this list of unused dependencies with those that are modified in the commit to identify
relevant commits. When a match occurs, we classify the commit as a dependency commit responsible
for modifying the version of an unused dependency, a.k.a., an unused-dependency commit. Of the
121,453 dependency commits that we extract in DC1, 49,731 are unused-dependency commits,
which are of particular interest to us due to their potential to contribute to CI waste by triggering

CI builds.

(DC3) Extract CI data. To analyze the amount of CI waste that is generated by unused-dependency
commits, we retrieve the CI data that is associated with them using the GitHub APL** Note that not
all of these commits are directly associated with CI builds. Some of them fail to trigger CI builds
altogether, while in other cases, gathering CI data from the API is no longer possible, often because

https://github.com/facebookincubator/rapid
https://github.com/googlechromelabs/tooling.report
Zhttps://github.com/microsoft/react-native-macos

22Note that we consider both the package . json file and the package-1lock. json file
Bhttps://github.com/depcheck/depcheck

2 https://docs.github.com/en/rest/checks/runs?apiVersion=2022-11-28
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the data is no longer available.?> Consequently, we could retrieve CI data for only 20.9% of the
unused-dependency commits.

We acknowledge that CI data is noisy [26, 30, 32]. This noise stems from various sources, such as
experimental builds that fail, passing builds with ignored failing steps, and timeouts without proper
signals. However, within the scope of our research, this noise does not pose a substantial concern
because our study takes a holistic view of CI resources. In particular, we provide an estimation of
CI waste from both the CI consumer and provider perspectives, which is a lower-bound estimate
of the actual amount of CI waste. Indeed, since these noisy builds still consume CI resources, we
consider them valid data entries for our study, and do not make attempts to filter them out.

Also, prior work [34] revealed that a number of GHA workflows are not entirely Cl-related. For
example, GitHub Actions are used for various purposes, such as manually triggering workflows (e.g.,
workflow_dispatch, accounting for 8.3%) and scheduled workflows (e.g., schedule, accounting
for 8.1%). Our dataset does not contain such GitHub Actions that are not Cl-related because we
only collect the CI builds that are associated with dependency-update commits.

4 PREVALENCE OF CI WASTE DUE TO UPDATES TO UNUSED DEPENDENCIES

Measuring the time spent on CI builds is crucial for better resource management. By analyzing
the effect of unused-dependency commits on CI resources, we strive to provide insights for the
following two primary stakeholders of CI:

CI Consumers (i.e., project maintainers and developers). Understanding whether a consider-
able amount of CI build time is spent on unused-dependency commits will help CI consumers direct
their future efforts. For example, if a large amount of CI build time is spent on unused-dependency
commits, it may impose a financial burden on project maintainers. While some CI build time is
provided for free on a monthly basis,'’ CI build time that is spent on unused-dependency commits
wastes this limited resource and may push projects over the free limit into billable time. If only a
small amount of CI build time is spent on unused-dependency commits, it may suggest that effort
would be better spent on other resource-saving options (e.g., build-oriented refactoring [65]).

CI Providers (e.g., GHA). If the CI build time that is spent on unused-dependency commits is
not billable, the CI provider must absorb the cost of that CI build time. Such wasted resources that
are spent across a large number of projects will quickly accrue. Even if the wasted CI build time is
billable and the cost is borne by consumers, these wasted resources still indicate inefficiencies in
resource allocation and present an opportunity for the optimization of CI operations.

4.1 Approach

Our quantification of CI waste resulting from version updates to unused dependencies offers
insights that are tailored to the distinct perspectives of each CI stakeholder.

CI Consumer. In this perspective, we stratify our analysis based on individual projects. For
each project in our dataset, we count the commits and compute the CI build time that is associated
with builds that were triggered due to unused dependencies. This approach sheds light on the
concern from the perspective of project maintainers, offering insights into how this problem impacts
different projects within the open-source community. For example, it provides insights regarding
the unnecessary maintenance activity that is generated by unused dependencies.

CI Provider. From this perspective, our investigation focuses on quantifying the combined
influence of unused-dependency commits on CI build time. In other words, we count the commits
and compute the CI build time that is associated with builds that were triggered due to unused
dependencies. This viewpoint emphasizes the cost incurred by the CI provider.

ZGitHub API allows us to query data of CI builds for a limited number of the most recent days.
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Table 1. The prevalence of Cl waste from unused dependencies. The table presents the total and wasted
number of commits and builds. The table further presents figures for both ClI providers and consumers.

CI Provider CI Consumer

Commits Build Hours Commits Build Minutes

(median) (median)

Total Quantity () 20,743 6,133 7 42.13
Wasted Quantity (#) 10,412 3,427 3 23.63
Wasted Quantity (%) 50.19% 55.88% 42.85% 56.09%

4.2 Results

Table 1 shows the proportion of commits and build hours that are generated by version updates to
unused dependencies from the CI provider and consumer perspectives.

Observation 1: More than half (55.88%) of the CI build time for dependencies is spent on CI builds
that are triggered by unused-dependency commits. This equates to a substantial waste of 3,427 build
hours, originating from 50.19% (10,412 commits) of all dependency commits. A closer inspection
reveals that 30% (3,123) of these unused-dependency commits consume more than ten minutes of
CI build time for each commit, and 7% (728) consume more than half an hour for each commit.
For CI providers, the fact that unused-dependency commits make up over half of all dependency
commits presents an opportunity to reduce waste.

Dependency update commits account for a median of 2.30% of the total number of commits
during the studied period, whereas unused-dependency commits account for a median of 1.09%.
Across all projects in our dataset, the overall percentage of dependency-update commits is 3.21%,
and the percentage of unused-dependency commits is 1.60%. Despite these modest percentages, the
impact on CI build time is non-negligible and should not be ignored.

Observation 2: At the project level, a median of 56.09% of the CI build time that is spent on
dependency commits is generated by unused-dependency commits. The median CI build time that
is consumed by unused-dependency commits in a project is 23.63 minutes. In fact, 30% of the
projects in our dataset exceed an hour of wasted CI time. For example, the dekkerglen/cubecobra
project consumed an hour of CI build time on unused-dependency commits, making up 31% of
its total CI build time for all of its dependency commits. In more extreme cases, such as the
bus-stop/x-terminal project, an alarming 127 build hours are wasted, with over 70% of its
dependency-related CI build time being wasted on unused dependencies.

To provide an operational cost perspective on this quantity of CI waste, we compare the project-
level waste with the budget of 2,000 build minutes per month that is provided to projects by the
free plan of GHA.!® We conduct a focused analysis of the top six projects that accrue the largest
amounts of CI waste. For this analysis, we use GHA’s billing criteria. In fact, GHA calculates build
minute usage for billing based on factors, such as the platform that was used (Linux, Windows,
or MacOS) for the execution of the build. Thus, for each build (triggered by unused-dependency
commits), we identify the platform on which the build was executed from the CI data that we
retrieve from the GitHub API during the DC3 step in Section 3.

Figure 2 shows the number of build minutes that are consumed by unused-dependency commits
per month. The figure shows instances where this wasted CI build time alone already exceeds the
entire monthly budget of free CI build time for these projects. Indeed, 14 of the 54 studied monthly
periods exceed the free monthly budget. In the most extreme case, the bus-stop/x-terminal
project wasted 9,756 build minutes in April 2022, exceeding the entire monthly budget of free build
minutes by almost fivefold. In other months, the wasted CI build time of this project still constitutes
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Fig. 2. Cl build time consumption of top six projects (wip/app, probot/settings, bus-stop/x-terminal,
testing-library/eslint-plugin-jest-dom, aws-observability/aws-otel-js, and xmldom/xmldom)
per month due to unused-dependency commits. The graphs corresponding to other projects are provided in
our online appendix.'*

a substantial portion, comprising at least 8.4% (168 build minutes) of the available free CI build time
for the project.

Although both successful and failed builds triggered by updates to unused dependencies are
considered wasteful due to their resource consumption, one may argue that failed builds are not
actually wasteful because they usually raise concerns that developers should address. To address
this viewpoint, we conduct a follow-up analysis to examine the percentage of successful and failing
builds in our dataset. We find that 87.61% of the builds that are associated with unused-dependency
updates are successful, while 12.39% failed. To explore the impact of considering only successful
builds as wasteful, we conduct a revised prevalence analysis. This analysis reveals that wasted
builds from unused-dependency commits account for 43.98% of the dependency-update commits in
our dataset, with wasted CI build time comprising 38.19%.

Unused dependencies are a substantial source of inefficiency in CI processes. For CI
providers, more than half (55.88%) of the CI build time of dependency-update commits is
taken up by unused-dependency commits in the studied projects, generating a considerable
amount of waste (3,427 build hours). At the project level, the median project spends 56.09%
of its dependency-related CI build time on updates to unused dependencies. Among the six
most wasteful projects, more than their entire monthly budget of 2,000 free build minutes
is entirely spent on building unused-dependency commits in 14 of the 54 studied months.
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5 SOURCE OF CI WASTE DUE TO UPDATES TO UNUSED DEPENDENCIES

In Section 4, we observe that a considerable amount of CI waste is generated by unused-dependency
commiits. Understanding the origin of such commits is essential for crafting targeted solutions. In this
section, we characterize CI waste according to the type of (1) commit author and (2) dependencies
being updated.

Commit Authorship. Unused-dependency commits might be created by people maintaining
the project or an automated software bot. Prior research [6, 36, 53] suggests that projects often
use automated bots, such as Dependabot, to keep their dependencies up to date. If bots emerge as
the primary contributors of unused-dependency commits, an effective waste mitigation strategy
would need to include scrutinizing and refining the functionalities and configurations of these bots.
Conversely, if developers are identified as the primary contributors of unused-dependency commits,
an effective waste mitigation strategy would need to raise awareness about the importance of
dependency management. The time that developers are spending on this unnecessary maintenance
of unused dependencies could be better spent on more productive and impactful development
activities.

Dependency Type. According to official guidelines,”® npm dependencies may be development
and runtime. Development dependencies are used during development and testing, and are listed in
the devDependencies section of the dependency specification file (package. json). For instance,
webpack?’ is a development dependency in JavaScript projects, bundling modules for delivery
on the web. Runtime dependencies are necessary for production deployment environments. An
example would be lodash,?® which provides implementations of data structures like arrays and
strings.

We strive to understand the type of dependencies that generate most of the waste to formulate
effective mitigation strategies. For example, if most unused-dependency commits update develop-
ment dependencies, they would present less risk-prone opportunities for optimization, as they are
used solely during the development phase and are not installed in production environments.

5.1 Approach

Our approach to understanding the sources of unused-dependency commits focuses on (1) identify-
ing who made the commit and (2) categorizing the type of dependency.

Commit Authorship. To distinguish between bot-generated and developer-generated waste,
we identify who authored each unused-dependency commit. Following prior work [22], we apply
a regular expression to detect authors having the term “bot” in their name, classifying them as
bots. All other authors are labeled as developers. Our analysis reveals four bot candidates, and
these are indeed automated bots: Dependabot,'! Renovate bot,?’ Snyk bot,*’ and Depfu bot.>!
For the remaining authors, we estimate the accuracy by inspecting a sample of 400 randomly
selected commits, which provides a 95% confidence level that our observed proportions are within
a confidence interval of +5%. We inspect each sampled commit to determine if its author is a bot.
If inspection of the author’s name is inconclusive, we then cross-reference the name with the
corresponding GitHub profile to arrive at a decision. This analysis yields no instances of incorrect
labeling. To account for potential name variations or aliases, we employ heuristics to consolidate

https://docs.npmjs.com/specifying-dependencies-and-devdependencies-in-a-package-json-file
2Thttps://webpack js.org/concepts/

Bhttps://lodash.com/

Phttps://www.mend.io/renovate/

3Ohttps://snyk.io

31https://depfu.com
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Table 2. Distribution of unused-dependency commits and corresponding build hours over bots and developers.

Bot Developer

Commits 9,280 (89.12%) 1,132 (10.88%)
Build hours 3,184 (92.93%) 242 (07.07%)

Table 3. Build hours attributed to unused-dependency commits authored by bots.

Bot Commits Build Hours
Dependabot 6,541 2,373
Renovate bot 2,514 741
Snyk bot 174 60
Depfu bot 51 10
Total consumption 9,280 3,184

identities [66]. After establishing commit author categories, we compute both the number of
unused-dependency commits and the total CI build time that is consumed by these commits.

Dependency Type. To understand how dependency-induced waste is associated with the
different dependency types, we examine the nature of dependencies that cause CI waste. We group
unused dependencies into development and runtime categories according to whether they appear in
the devDependencies or dependencies section of the package . json file, respectively. We analyze
each unused-dependency commit by extracting both development and runtime dependencies from
the package. json file as of the commit’s timestamp. After obtaining the list of dependencies, we
cross-reference it with the unused dependencies that we identify for each commit in Section 3
(DC2) to determine whether an unused dependency is a development or runtime dependency. Then,
we calculate the CI waste for each dependency type by counting the number of wasteful builds and
their associated wasted build hours.

5.2 Results

Tables 2 and 3 present the number of commits and build hours that are associated with unused-
dependency commits, respectively.

Observation 3: Bots are the primary contributors to the wasted build hours. Table 2 shows that
bots are responsible for a substantial proportion of the CI waste being generated by updates to
unused dependencies. This consumes 3,184 build hours (92.93%) spanning 9,280 bot-generated
unused-dependency commits (89.12%). In contrast, developers account for only 7.07% of this wasted
CI build time. The 1,132 developer-generated unused-dependency commits are produced by 265
developers. Even though this percentage is much lower than that of bots, it is important to highlight
that a small number of developers are responsible for a substantial proportion of the generated
waste. For example, the two developers who produced the most unused-dependency commits
contributed 48% of the wasted CI build time. This suggests that misinformed developers can quickly
accumulate waste due to unnecessary maintenance.

Table 3 breaks down how each of the four detected bots contributes to CI waste. Dependabot
emerges as the top contributor, representing roughly three-quarters of the wasted build hours
(74.52%). Renovate bot is next, accounting for 741 hours (23.27%). The remaining Snyk bot and
Depfu bot contribute 60 hours (1.88%) and ten hours (0.31%), respectively. This distribution closely
follows the quantiles of unused-dependency commits that are associated with each bot.

Observation 4: Unused development dependencies lead to most of the wasted build hours. In Table 4,
we see a clear distinction between the impact of unused development and runtime dependencies.
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Table 4. Comparison of the total number of commits and build hours stemming from unused-dependency
commits between development and runtime dependencies across all the projects in our dataset.

Unused development dependencies Unused runtime dependencies

Commits 8,762 (84.15%) 1,650 (15.85%)
Build hours 3,174 (92.63%) 253 (07.37%)

Table 5. Build hours resulting from unused-dependency commits in development dependencies.

Unused development dependency Build Hours
@vercel/node 797
eslint 325
prettier 245
jest 209
mocha 112
Other development dependencies (937 dependencies) 1,485
Total consumption 3,174

Unused development dependencies contribute 92.63% of the total wasted time, amounting to 3,174
build hours. In contrast, unused runtime dependencies contribute only 7.37% (253) of the build
hours. This suggests that development teams that are inclined to allocate resources to the mitigation
of CI waste that is generated by unused dependencies would benefit most from focusing on these
development dependencies. By doing so, they can mitigate CI waste efficiently while maintaining a
minimal risk level of field failures, since these development dependencies are unlikely to affect the
production environments [19].

Upon analyzing individual projects, we find that version updates to unused development de-
pendencies consume a median of roughly five minutes of CI build time, while unused runtime
dependencies consume a median of roughly three minutes; however, the distribution is skewed.
Indeed, 19% of projects consume more than an hour and 40 minutes of wasted CI build time from
unused development dependencies. Comparatively, only 4% of projects waste that much CI build
time for runtime dependencies.

Furthermore, Table 5 shows that while a total of 942 development dependencies are associated
with unused-dependency commits, only five of them collectively contribute to 53.21% of the overall
CI build time for unused development dependencies, which highlights the critical role being played
by specific development dependencies that are implicated in unused-dependency commits.

Bots contribute the vast majority (92.93%) of the CI build time that is wasted on unused
dependencies. Moreover, unused development dependencies represent 92.63% of the wasted
CI build time that is associated with unused dependencies in the studied projects. Thus,
we recommend that waste mitigation strategies (1) target the most wasteful bots (i.e.,
Dependabot and Renovate bot) for improvements and (2) focus waste reduction efforts on
development rather than runtime dependencies.

6 MITIGATION OF C1 WASTE DUE TO UPDATES TO UNUSED DEPENDENCIES

Our results show that a substantial quantity of CI waste is generated by unused-dependency com-
mits. Existing CI service providers do not have measures in place to minimize this waste. Consumers
of CI services might not realize that unused dependencies linger in their projects [50]. Removing un-
used dependencies can be an onerous task. For example, a discussion on the GoogleCloudPlatform/
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Fig. 3. An overview of the DEP-sCIMITAR . workflow.

nodejs-docs-samples project suggests that refactoring code to remove such dependencies re-
quires substantial effort.> Moreover, Kula et al. [49] found that developers are hesitant to make
dependency-related changes in general due to the substantial efforts needed to avoid introducing
erTorSs.

Given the hesitancy among developers to introduce changes into a stable codebase due to the
perceived risks, opting to skip unnecessary builds when they are triggered by unused-dependency
commits—which are skippable because they do not impact the project’s functionalities—emerges
as a practical strategy. We perform an analysis of 272 GitHub issue reports related to removing
unused dependencies (which is sufficient to provide a 95% confidence level with a 5% margin of
error when making inferences about the entire population), and find that, in 40.44% of the cases,
developers decide to remove the unused dependencies, while in 37.13% of the cases, developers
decide not to remove unused dependencies; the other 22.43% of cases are not related to developer
decisions. A more detailed description of this analysis is discussed in our online appendix.'*

With these challenges in mind, we set out to develop an approach to mitigate CI waste by
skipping builds when they are triggered by unused-dependency commits. This approach avoids the
removal of such dependencies from the dependency specification files.

6.1 Approach

We propose DEP-sCIMITARN, —an approach to cut down on dependency-induced CI waste. Our
approach is agnostic of the CI service provider, and is freely available as an npm package to foster
its adoption.'? Figure 3 provides an overview of the design of DEp-sCIMITAR\., emphasizing its
automated reasoning process to skip CI builds for unused-dependency commits. Since unused-
dependency commits are generated by humans as well as bots, DEp-sCIMITARN. can process
commits that are produced by both types of authors.

DEP-sCIMITARN. begins when a commit generates a build request by analyzing the commit to
check for updates to versions of dependencies in the package. json file. When such updates are
detected, DEP-SCIMITAR\. uses the DEPCHECK tool to detect whether the changed dependency has
an unused status. Although tempting, simply skipping such commits without considering their
recent history may inadvertently permit a failing build to pass. For example, commit #fa843b6 of
the aws-observability/aws-otel-js project is an unused-dependency commit and it is linked
to a failing build. A closer inspection revealed that its parent commit is also linked to a failing
build, and the builds of both the current and parent commits failed due to the same cause, i.e., a
failure in the build step for testing a certain application feature. This implies that the error was
carried forward without being fixed. To avoid such situations, whenever DEP-sCIMITARN. detects
an unused-dependency commit, it also retrieves the build status of the parent commit using GitHub
APL?* the tool skips the current build only if the build of the parent commit was successful. Note
that our tool supports only public GitHub repositories due to its dependency on GitHub API calls

32https://github.com/GoogleCloudPlatform/nodejs-docs-samples/pull/3168
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for fetching build statuses without authentication tokens. For private projects, a project-specific
authentication token is required.

6.2 Configuration

The Dep-sCIMITARN. prototype can seamlessly integrate into the CI process of consumers that
adopt CI services, such as GHA,” Travis CI,>* and CircleCL.>* Listing 1 shows a fragment from a GHA
configuration file that uses DEp-sCImITARN.. The full version of this file is available in our online
appendix.’ This file needs to contain steps to both install our tool (npm install dep-scimitar)
and run it (npx dep-scimitar runremote), as shown on lines 3 and 4 of Listing 1. Running the
command classifies commits as unused-dependency commits or otherwise. This classification is
stored as an environment variable (in line 5) and subsequently guides execution processes in the
project, illustrated in line 8 (i.e., project-specific execution decisions).

DEp-sCIMITARN. offers another enhancement configuration to boost developer awareness. It
can automatically add the [CI skip] tag to commit messages. This tag indicates to the CI service
provider that the commit should not trigger a CI build. Commits with the [CI skip] tag skip
builds on widely-used CI platforms, such as GHA, Travis CI, and CircleCL Users can leverage this
feature by installing DEP-SCIMITARN. locally and enabling it for their project using the command:
npx dep-scimitar on.

- name: Check For Unused-Dependency Commits
run: |
npm install dep-scimitar # Install the tool
unusedDepChange=$ (npx dep-scimitar runremote) # Run the tool
echo "UnusedDepCommit=$unusedDepCommit" >> $GITHUB_ENV # Env variable

- name: Project-specific Steps
if: ${{ env.UnusedDepCommit == 0 }} # Check the env variable
run: |
# project-specific steps

Listing 1. Example of a configuration file required for Dep-sCIMITAR\...

6.3 Evaluation

To evaluate our approach, we create a prototype implementation that is compatible with npm-based
GitHub projects. We conduct a retrospective analysis of past commits to the projects in our dataset,
focusing on (1) the precision of the tool and (2) the reduction of wasted CI build time.

We find that the precision of DEP-SCIMITARN. is 94%. Having such high precision shows that the
tool makes only a few mistakes where it falsely skipped builds that should not have been skipped.
In particular, if the previous commit of an unused-dependency commit is linked to a passing build,
DEP-sCIMITARN, skips the current commit because it updates an unused dependency and the
commit does not have a failing history; yet, the current commit may fail if we do not skip it, and
those cases are the false positives detected by our tool. A closer inspection reveals three scenarios
that contribute to false positives, where the actual outcome of the build remains unknown. First,
CI builds can fail due to external network issues, such as in the mdn/bob project, where a commit
updating an unused dependency failed because it exceeded the API rate limit.>> Second, CI build
timeouts occur when the build process exceeds the allocated upper limit of build minutes, leading to

3Bhttps://www.travis-ci.com/
34https://circleci.com/
3Shttps://github.com/mdn/bob/commit/013ff
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Fig. 4. Distribution of the wasted Cl build time of the top six projects (wip/app, probot/settings,
bus-stop/x-terminal, testing-library/eslint-plugin-jest-dom, aws-observability/aws-otel-js,
and xmldom/xmldom) before and after applying our tool.

automatic cancellation; for instance, a commit® in the btargac/excel-parser-processor project

that updated an unused dependency caused the build to time out and be marked as a failure. Third,
premature cancellations of CI builds will also result in a “Failed” status. For example, a commit®” in
the optimistiksas/oibus project is associated with a failing build due to three canceled steps,
despite its parent commit being linked to a successful build.

Note that calculating the recall is challenging. Below, we discuss two potential scenarios where
DEep-sCIMITARN. may produce false negatives. First, we only choose to skip a build that is triggered
by an unused-dependency commit if its preceding build succeeds. Upon closer examination, we
discover instances of unused-dependency commits where the previous build fails. Such preceding
failures occur due to premature termination by the CI provider, e.g., when a higher-priority build is
waiting in the queue. If the CI provider had not interrupted this build, it might have been successful.
Such false-negative cases occur when our tool does not skip commits with a recent history of build
failures and/or when commits include both an unused dependency version update and other minor
changes, such as edits to documentation or comments in source files [2].

At the project level, we find the median number of commits that are skippable is three, with a
waste of 23 minutes; however, we find that 25% of the studied projects can save at least an hour
and 23 minutes of CI build time. Projects like probot/settings skip as many as 43 commits while
saving 246.85 build hours. For a more detailed analysis of how such extreme projects generate waste
in the context of the monthly budget of free build minutes that are provided by GHA, in Figure 4,
we plot the amount of wasted CI build time before and after applying DEP-sCIMITARN, for the six
projects that accrue the most dependency-induced CI waste. Focusing on these projects allows our
analysis to effectively showcase the substantial savings and efficiency gains that are achievable with

36https://github.com/btargac/excel-parser-processor/commit/5bal
3Thttps://github.com/iobroker/iobroker.pushover/commit/905a
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the Dep-sCIMITARN. approach. This selection also acts as a proof of concept, indicating that similar
benefits, if not proportionally scaled, could be achieved for other projects. For interested readers,
the graphs that correspond to other projects are provided in our online appendix.!* Time (in terms
of months) is shown on the x-axis, and the number of build minutes that are spent is shown on the
y-axis. The solid line shows the CI build time that was spent for all unused-dependency commits
before applying the tool, and the dashed line shows the CI build time that would be spent after
applying the tool. The gap between the two lines demonstrates the CI build time that is safely
skippable by the tool.

Figure 4 shows that for the probot/settings, xmldom/xmldom, and testing-library/eslint-
plugin-jest-domprojects, the CI waste is cut down to almost zero. For the wip/app and bus-stop/
x-terminal projects, we observe that there are months when DEpP-sCIMITARN. cannot skip many
builds. This tends to occur when builds are linked to unused-dependency commits that were
preceded by build failures. Nonetheless, we observe that a substantial amount of CI build time could
still be saved for those projects in other months. Note that the aws-observability/aws-otel-js
project has only two builds that are triggered by unused-dependency commits, and their parent
commiits are linked to failing builds, which DEP-sCIMITARN, conservatively chooses to run. On the
other hand, from the CI provider perspective, our tool detects 83% of wasteful CI builds, and could
have saved 2,342 (68.34%) build hours.

Our Dep-sCIMITARN. approach can effectively identify and skip CI builds that are associated
with unused-dependency commits with a precision of 94%. A retrospective evaluation shows
that integrating DEP-sCIMITAR\. in the studied projects would have saved 2,342 build hours,
which amounts to 68.34% of the overall dependency-induced CI waste.

7 EVALUATION OF C1 WASTE UNDER BILLING CONSTRAINTS

To analyze the sensitivity of our results for projects that pay for builds, we conduct a new analysis
focusing on monthly periods during which projects exceed the free minute quota of 2,000 minutes.'*

7.1 Approach

We calculate the billable CI build time for unused-dependency commits by summing up the build
minutes that were spent on unused dependency updates. We select projects that exceed the 2,000-
minute free quota due to these updates for further analysis for each monthly period of each studied
project. By solely considering the build minutes that were spent on dependency updates, we
establish a strict lower limit on instances where projects exceed this threshold, underestimating
both the total number of projects exceeding the monthly limit and the overall billable CI build time
that was wasted.

To illustrate our approach, we provide a set of examples. In April 2022, the bus-stop/x-terminal
project spent 13,510 build minutes on all dependency-update commits, with 9,756 of those minutes
being allocated to updates for unused dependencies. Consequently, 11,510 billable build minutes
accrued (i.e., 13,510 — 2,000 free minutes). Of those billable minutes, 9,756 were spent (wasted) on
updating unused dependencies. Similarly, in the wip/app project (in April 2022), 7,727 build minutes
were spent on all dependency-update commits, with 6,689 minutes being associated with updates to
unused dependencies. Hence, 5,727 billable build minutes accrued. In this case, the number of build
minutes that were spent on updating unused dependencies (6,689 minutes) exceeded the number of
billable build minutes (5,727 minutes), suggesting that the entire billable CI build time could have
been saved if the build activity that was induced by unused dependencies had been avoided.
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Similarly, we calculate the wasted billable minutes on unused dependency updates for all projects
with billable minutes. Then, we aggregate these figures across the projects. Lastly, we compute how
many billable minutes DEp-sCIMITARN. could have saved per project through a replay analysis,
identifying skippable build minutes that were induced by unused-dependency commits.

7.2 Prevalence of Cl Waste

This analysis reveals that the median project incurs 1,831 billable minutes per month, with 1,446
of these minutes being wasted due to unused-dependency commits. For the studied dependency-
update commits, 91,541 of the 107,067 total billable minutes (85.50%) were wasted due to unused-
dependency commits. This rate of wasted billable build minutes is substantially higher than the
overall percentage of wasted build minutes that we report in Section 4 (regardless of whether it is
billable or not), i.e., 56.09% across all projects in Table 1.

7.3 Mitigation of Cl Waste

The replay analysis reveals that DEp-sCIMITARN. can safely skip 71,409 billable build minutes—a

reduction of 66.69% (i.e., 17017’400697 % 100%). This aligns with our earlier finding in Section 6 where we

report that DEp-sCIMITARN, yields a 68.34% reduction in the total number of wasted build minutes
due to unused-dependency commits regardless of being billed or not.

8 THREATS TO VALIDITY

Threats to Internal Validity. Inspired by prior work [22], we apply a regular expression to
distinguish between commit authors who are bots and developers. Through this process, we
identify four bots that are responsible for 9,280 unused-dependency commits. To mitigate false
positives in our classification, we inspect the profiles and commit activity of these four bots and
a sample of 400 commits; however, it is unlikely that our set of bots is complete. Thus, our bot-
produced unused-dependency commit rates are best seen as minimum estimates rather than exact
figures. In a similar vein, since GitHub allows the same commit author to use different names
and/or different email addresses when committing changes,*® there is likely noise in our authorship
analyses (Section 5). To reduce the impact of aliases, we apply heuristics to consolidate them [66];
nonetheless, our findings should be viewed as estimates rather than precise figures.

Threats to Construct Validity. We use the DepCheck?® tool to detect unused dependencies. Hence,
we are limited by the accuracy of this tool. Validating unused dependencies can be challenging since
npm packages can be loaded dynamically (e.g., using reflection mechanisms) that can go undetected
by a purely static analysis. Despite the potential for false positives, DepCheck is, to the best of our
knowledge, the de facto standard tool for detecting unused JavaScript dependencies, being relied
upon by several prior work [41, 46, 56]. Furthermore, the tool actively addresses false positives,*’
making it a practical choice for both developers and researchers.

Threats to External Validity. Our study is based on JavaScript projects that use npm and adopt
GHA from 2020 to 2022 (inclusive). Hence, our findings might not directly apply to projects
developed in other programming languages, those that use other CI providers, or commits made
outside the specified timeframe. Also, our study’s reliance on the free build minutes quota as of
August 2023 introduces the possibility that our findings may become outdated if there are changes
to GitHub’s billing structure.'® Despite these specifics, the key concept and the design of our study
can still be applied to other settings to expand the investigation of dependency-induced CI waste.

3Bhttps://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-

email-preferences/setting-your-commit-email-address
3https://github.com/depcheck/depcheck/releases
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9 CONCLUSION AND LESSONS LEARNED

In this paper, we study dependency-induced CI waste. We collect and analyze a dataset of 20,743
dependency commits from 1,487 JavaScript projects that use npm dependencies. We find that 55.88%
of the CI build time that is associated with dependency updates is wasted on unused dependencies.
The median project allocates 56.09% of its dependency-related CI build time to updates of unused
dependencies. Below, we distill lessons for CI stakeholders, bot developers, and researchers.

CI stakeholders (i.e., project maintainers and CI providers) should detect and omit
unnecessary builds that are triggered by unused-dependency commits. Observations 1 and
2 show that the projects that are most prone to CI waste spend a substantial amount of their quota
of free build minutes on unused-dependency commits. Section 7 also shows that this generates a
financial burden for CI consumers who can even exceed the quota of free build minutes when we
only consider the CI builds of unused-dependency commits. This waste also contributes to financial
costs for the CI provider, as well as increased development and maintenance costs. Our research
calls for the attention of CI stakeholders to recognize which dependencies disproportionately
generate CI waste and devise strategies to mitigate it. To put our results into action, we propose
DEeP-sCIMITARN, to automatically recommend skippable builds to mitigate this waste without
requiring a change to dependency specifications. A prototype implementation of DEp-sCIMITAR\.
for JavaScript projects is publicly available.'” Through a simulation of the use of DEp-sCIMITARN.,
we demonstrate that it yields substantial benefits, detecting 83% of the wasteful commits, and
avoiding 2,342 (68.34%) hours of CI build time that would have otherwise been needlessly expended.

Bot developers should effectively manage CI waste due to unused-dependency commits.
Observation 3 shows that bots contribute the vast majority (92.93%) of the CI build time that is
wasted on unused dependencies. Our findings shed light on the negative impact that bot-generated
updates can have on project maintenance and their over-consumption of CI build resources. We
recommend that bot developers incorporate tags, such as [CI skip], into commit messages or pull
requests that update unused dependencies. Employing this tagging mechanism can enhance the
recognition and screening of such updates, allowing projects to allocate their CI resources to more
pressing build requests. Additionally, we recommend that bot developers focus first on cutting
down waste when they update development dependencies, since these development dependencies
are unlikely to affect production environments [19]. Observation 4 provides further support for this,
indicating that a considerable amount of CI waste is linked to specific categories of development
dependencies.

Researchers should broaden the scope of the impact of unused dependencies beyond
CI build time. Although our study offers perspectives on the impact of unused dependencies
on CI, future research should consider other implications that unused dependencies may have
on development workflows and project maintenance. For example, our study reveals that unused
dependencies are often maintained, e.g., by updating to more recent versions when they become
available. This may be because organizations are sensitive to the security risks of using outdated
dependencies [50], irrespective of whether the dependency is used. This practice also adds to
development overhead, suggesting that exploring this area further could yield beneficial insights.

10 DATA AVAILABILITY

We make our dataset, replication package, and DEp-sCIMITAR\, tool publicly available.!21%13
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