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Abstract—The practice of Continuous Integration (CI) allows
developers to quickly integrate and verify projects modifications.
Thus, CI acceleration products are a boon to developers seeking
rapid feedback. However, if outcomes vary between accelerated
and non-accelerated settings, the trustworthiness of the acceler-
ation is called into question.

In this paper, we study the trustworthiness of two CI accel-
eration products, one based on program analysis (PA) and the
other on machine learning (ML). We re-execute 50 failing builds
from ten open-source projects in non-accelerated (baseline), PA-
accelerated, and ML-accelerated settings. We find that when
applied to known failing builds, PA-accelerated builds more often
(43.83 percentage point difference across ten projects) align with
the non-accelerated build results. We conclude that while there
is still room for improvement for both CI acceleration products,
the selected PA-product currently provides a more trustworthy
signal of build outcomes than the ML-product.

I. INTRODUCTION

Continuous Integration (CI) is a popular practice in modern
software development. Accordingly, substantial effort has been
invested in improving the performance of each phase of the
CI process [1]. Several strategies exist to accelerate the CI
process [2], by, e.g., caching build environments, inferring
dependencies, skipping CI phases, skipping CI altogether, and
accelerating the CI testing phase. Invariably, CI acceleration
achieves speed-up by omitting steps (or jobs) during the CI
process by either determining that (a) artifacts can be shared
between CI jobs; or (b) the outcome and output of the step is
unlikely to change based on the modified code. The techniques
have led to the recent emergence of CI acceleration products.1

There are families of CI acceleration products. Program
Analysis (PA) acceleration products rely on rule-based analysis
conducted before the build process to determine safe ways to
accelerate subsequent builds. For example, those products may
build dependency graphs to record and store information from
preceding builds and then use this information to accelerate
subsequent builds by, e.g., skipping irrelevant test cases [3]. CI
acceleration products based on Machine Learning (ML) rely
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1https://www.msystechnologies.com/test-automation-accelerator/

on historical tendencies to determine when steps can be safely
skipped. For example, those products may feed historical data
into an ML algorithm to train a model whose predictions could
minimize the test suite [4]. Aiming at different optimization
targets, the ML-product can provide recommended subsets
of tests of varying levels of aggressiveness to accelerate
builds. Each CI acceleration family, and product, has costs
and benefits.

Even if a product performs well in the trade-off between
time costs and benefits, if it mislabels change sets (e.g., a
faulty build passes) [5], then it may result in more work
for developers [6]. Therefore, we systematically evaluate the
trustworthiness of two products with respect to non-accelerated
builds. There are two types of errors that an acceleration
approach can make: (a) builds where expected CI outcomes
pass, but actual CI outcomes fail; and (b) builds where
expected outcomes fail, but actual outcomes pass. Previous
research has shown that the CI outcomes of CI acceleration are
consistent [7]. However, builds can have failing outcomes for
multiple reasons, and these may not be consistent when using
CI acceleration. This can allow some bugs to slip through CI
when acceleration is in use.

Therefore, in this paper, we focus on the effect of CI
acceleration on failing builds. Aimed at testing phases in the
build, we use the full range of parameter settings for the
PA2 and ML3 products, and replay the builds of 50 failing
commits from ten large and active open-source projects in
PA-accelerated, ML-accelerated, and non-accelerated settings.
The studied PA product infers dependencies and constructs
a graph during preceding builds, which is in turn leveraged
to accelerate subsequent builds. The studied ML product
provides recommended subsets of tests based on the outcomes
from classifiers to accelerate builds. The PA and ML based
techniques provide an average acceleration of 80.98% and
75.96% in our studied projects, respectively. This results in
a total of 100,000 builds. This benchmark allows us to answer
the following research question:

2https://yourbase.io
3https://www.launchableinc.com/predictive-test-selection/



RQ: How does the trustworthiness of CI acceleration
products compare?
Outcome: While the performance of neither product
shows a clear trend across our studied projects, the PA-
product is more trustworthy, producing rates of agreement
with non-accelerated counterparts that are 4–76 percent-
age points higher than the ML-product. Furthermore, the
most trustworthy ML parameter settings vary so broadly
that the best (top 10) settings are only consistent for at
most 11–25 commits out of 50 within the studied projects,
and 14–18 commits out of 50 across the studied projects.

We conclude that while there is still room for improvement
for both products, future work is needed to combat the
tendency of ML-based acceleration to produce unstable and
untrustworthy results.

II. STUDY DESIGN

A. Data Filtering

We first retrieve a dataset of GitHub repositories from
Google BigQuery.4 The dataset contains the activity and
property information for the repositories on GitHub.
Select Python projects (DF1): To mitigate the influence of
different programming languages on our experimental results,
we select projects that use a single programming language.
We focus on Python because it is the only language that
is supported by both of our selected acceleration products.
We query projects that have ‘Python’ as a field within the
‘language’ table in the BigQuery dataset. The query returns
the projects that predominantly use the Python programming
language (i.e., Python makes up the majority of the source
code). After applying our first filter, 549,098 projects survive.
Select pytest projects (DF2): After removing all non-Python
projects, we use a second filter to select projects that use the
pytest framework. We select the pytest framework because
previous research demonstrated that it has a more stable
performance profile than other testing frameworks [8]. After
applying our second filter, 29,849 projects survive.

The lack of variegation with respect to community, pro-
gramming language and test framework might be considered
an external threat to the validity of this study. We provide the
details in our online appendix.5

B. Project Ranking

Although our experimental procedures are largely auto-
mated, repeating the experiment on thousands of systems
is untenable. We therefore apply a ranking procedure to
systematically select a set of studied projects.
Compute projects relevance measures (PR1): We inspect the
number of commits, files and test cases, which respectively
correspond to the repositories’ activity, scale of production
code, and scale of testing code. Repositories with a large
number of commits and files contain more code changes,
and are more likely to offer an adequate volume of data for
validation. The number of test files is likely associated with

4https://cloud.google.com/bigquery/public-data

the speed at which a build completes. We expect the time
consumed by the build of a studied project to be large enough
to perform a meaningful analysis of trustworthiness.
Transform measures to ranking (PR2): To obtain the impact
of metrics during project selection, we sum the above indica-
tors, and rank the surviving projects in descending order.
Select diversified projects (DF3): To obtain a diverse set of
projects from which reliable conclusions can be drawn, we
exclude projects from previously sampled domains, selecting
the next highest-ranked project from another domain as a
replacement. We also manually excluded extreme cases with
less than 10 test cases but with a lot of source code (i.e.,
over 20,000 files). Finally, we obtain 10 studied projects, from
different domains, shown in Table I.

C. Data Extraction

After selecting the studied projects, we extract their data
using the Data Extraction (DE) procedure shown in Figure 1.
We describe each step below.
Extract changesets (DE1): CI acceleration operates on
changesets. Thus, we extract changesets from the Git repos-
itories of our studied projects. We separately select 50 con-
secutive commits that pass the build and 50 non-consecutive
commits that fail for each studied project by walking the
commit history in reverse chronological order. The initial
commit is the failed commit in the extracted commit sets of
each studied project. The number of studied changesets is an
internal threat to validity. The exact listing of studied commits
and the discussion about this threat to validity are available in
our online appendix.5

Label commits with CI outcomes (DE2): We manually
label each of the selected commits according to CI outcomes
(e.g., pass or fail). We conduct this manual labelling because
of the inconsistency in CI checks for different commits.
The CI checks6 in this paper refer to GitHub’s CI feedback
for a repository, which contains the passed/failed outcomes
from CI services like GitHub Actions, CircleCI and Codecov.
We obtain relevant information by checking the label listed
after the commit date. Each commit has a different number
of checks, which varies with commit branches and build
environments. A CI system will label commits as failed if at
least one check fails. For example, we found an inconsistency
in commit f3719bf in the project cloud-custodian/cloud-
custodian. In that instance, GitHub’s automatic system labels
the commit as failed; however, the build passes when we
reproduce it locally. In contrast, commit 43bd11a passed in the
CI checks but failed in the local build. We choose to exclude
any of these inconsistent commits from our trustworthiness
assessment. Commit 657af5f in the project explosion/spaCy
requires flake8>=3.8.0,<3.10.0, while the plugins for our ML
product only support flake8 <=3.7.7. Similar incompatibility
of the respective dependencies is also a reason for local build
failure.

5https://doi.org/10.5281/zenodo.7641214
6https://docs.github.com/en/developers/apps/guides/creating-ci-tests-with-

the-checks-api



TABLE I
THE PROJECTS’ DETAILS AND THEIR TRUSTWORTHINESS PERFORMANCE

Project name # Commits # Files # Test Cases Description
Domain

% of build results that fully
align with original build results
PA build ML build

psf/requests 6,107 126 554 HTTP library
Network 72% 0.26%

apache/airflow 15,629 14,062 9,890 Workflow management platform
Workflow management 50% 0.03%

ansible/ansible 52,514 5,693 3,626 IT automation platform
IT automation 52% 0.84%

asciinema/asciinema 821 91 26 Terminal session recorder
Productivity 66% 23.79%

numpy/numpy 30,262 1,963 23,644 Scientific computing Python package
Statistics 40% 35.72%

bokeh/bokeh 19,609 4,409 9,784 Interactive data visualization tool
Visualization 46% 1.24%

dask/dask 7,280 447 593 Binary analysis platform
Task scheduling 70% 23.23%

scikit-learn/scikit-learn 28,198 5,338 9,753 Machine learning library
Machine learning 44% 36.02%

cloud-custodian/cloud-custodian 3,786 705 8,270 Cloud security and governance tool
Cloud management 76% 0.34%

explosion/spaCy 15,546 1,216 4,400 Natural Language Processing tool
NLP 46% 2.22%

D. Data Analysis

Figure 1 provides an overview of our data analysis proce-
dure. We describe each step below.
Execute accelerated builds (DA1): We consider builds that
undergo build acceleration to be warm builds. For the PA-
product, the dependency graph’s construction is completed
during the execution of the cold build, i.e., the initial, complete
build in which no steps are skipped. During a warm build,
the product uses the graph generated during the cold build
to locate changed lines of code and their dependencies. By
traversing this graph, the product can skip cases that are
irrelevant to a code change.

For the ML-product, the source of the training set is the
historical test results (i.e., names and locations of test cases,
test status and duration of each test case) and code changes
(i.e., names and locations of changed files, number of changed
lines, commit hashes and authors of changes). In this paper, the
complete training set we applied comes from the 50 passing-
build commits we selected in DE1, since the training of ML-
model requires complete build data. Specifically, we apply
build acceleration on N passing-build commits, where we use
the previous commits (i.e., from the 1st to (N − 1)th selected
passing-build commit) for training. The acceleration of the
first failing-build commit is guided by the untrained machine
learning classifier. The classifier uses the previous commits for
training starting with the second commit. During a warm build,
the product creates a subset of the test suites using different
optimization targets.
Acceleration outcome validation (DA2): To validate the
trustworthiness of our studied build acceleration products, we
conduct a comparison of failed builds between accelerated and
non-accelerated environments. We therefore separately explore
the pytest summary for the original build, the PA accelerated
build, and the ML accelerated build.

We analyze the differences between the sources of failures
and the number of failed cases for all three outcomes.

We judge the trustworthiness of accelerated builds by
comparing the test outputs of the two acceleration products
against the original build. To do so, we determine whether
the acceleration products’ build outcomes are identical to the
original build outcomes, and label them as either consistent
(i.e., identical) or inconsistent. Through automated scripts
and manual spot-checks, we inspect the consistency of two
acceleration products within the 50 studied failing commits
for each studied project.

III. STUDY RESULTS

RQ: How does the trustworthiness of CI acceleration products
compare?

Approach. To compare the trustworthiness of our selected
CI acceleration products, we compare the failed build results
for 50 builds accelerated by both the PA and ML-products
for each subject project. We select 50 failing builds for
each project because we seek to determine whether the CI
acceleration products will yield the same failing test results as
non-accelerated builds. After identifying 50 failing builds for
each project (Section 2, DE2), we extract the number of errors
and failures according to the test reports generated by the
pytest module. To compare the two products, we use Equation
(1), where EFA represents the sum of predicted and observed
errors and failures (i.e., true positives) for accelerated builds
and EFU represents the sum of errors and failures for non-
accelerated builds, to represent the trustworthiness for each
commit.

trustworthiness =
EFA

EFU
(1)
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Since the studied acceleration products results in fewer tests
run by the build, the resulting acceleration cannot identify
more errors and failures than the non-accelerated build. Thus,
this fraction cannot exceed 1.

To further analyze the optimal parameter setting for the ML-
product, we explore how often specific parameter settings offer
highly trustworthy results. We do this for the full range of
confidence settings (i.e., how high does the model-estimated
likelihood need to be before it decides to skip a task) and
target settings (i.e., how small of a subset of tasks should
the acceleration aim to produce). Thus, we identify for which
settings and how often the ML-product’s trustworthiness ranks
in the top 10 commits in terms of trustworthiness within the
50 commits studied for each project. This exploration aims to
uncover the most trustworthy settings for ML acceleration.
Results. Below, we present three observations with respect to
the trustworthiness of studied acceleration products.

Observation 1 – The PA-product more often aligns with
non-accelerated build results. Figure 2 shows that the overall
trustworthiness (i.e., mean of multiple trustworthiness from PA
or ML builds calculated by Equation (1)) of a PA accelerated
build is higher than the trustworthiness of a ML accelerated
build. As shown in Table I, a PA accelerated build can fully
align with non-accelerated build results for up to 76% of builds
(i.e., the number of errors and failures for the accelerated
product are equal to the number of errors and failures in the
non-accelerated build). We also observe that this alignment
fluctuates between 40% and 76% for the PA-product. We
believe that this fluctuation is caused by greedy test skipping.

While the ML test acceleration product can sometimes
present a trustworthiness that matches or even surpasses the
PA-product in specific commits, this is generally not the case.
Indeed, the median value for the ML-product in Figure 2 is less
than 80% trustworthy. While we only present results for the
Requests project, the situation is similar for other projects. The
PA-product outperforms the ML-product in terms of overall
trustworthiness for all of our studied projects. A complete
comparison of the trustworthiness for the two products for
all studied projects is available in our online appendix.5

Observation 2 – The trustworthiness of both acceleration
products is project dependent. Neither product presents a
unified trustworthiness trend in our studied projects.

For PA-accelerated builds, we observed that the fluctuating
ranges for each projects are different. For example, the PA
trustworthiness for Requests shows a slight fluctuation around
100%. However, the trustworthiness of the product alternates
irregularly between 0 and 100% in the NumPy and asciinema
projects. This could be explained by the small number of
original errors and failures in these projects. Indeed, the non-
accelerated build contains at most two failures in NumPy and
three failures in asciinema. When the PA-product skipped test
cases, the accelerated build failed to run any erroneous or
failing test cases, leading to a trustworthiness value of 0%.

A small number of original errors and failures also affects
the trustworthiness of ML accelerated builds. The distribution
of trustworthiness values hovers around 0% trustworthiness
in projects with few original errors and failures (e.g. NumPy
and asciinema). Meanwhile, in the projects with more original
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Fig. 2. Trustworthiness of both CI acceleration products and Top 10 trustworthiness occurrence frequency of ML-product in full-range parameter settings for
50 failing Requests builds

errors and failures, the distribution of ML trustworthiness is
located in different trustworthiness intervals (e.g., 20% - 60%
in Requests).

Overall, PA-product performs differently for projects with
different test cases and scales. According to the result of the
Scott-Knott Effect Size Difference test,7 the trustworthiness
of ten projects can be summarized in six different ranks,
which confirms the trustworthiness is project dependent from
a statistical perspective.

Observation 3 – The ML-product does not present any
optimal parameter setting for trustworthiness. To uncover
the most trustworthy configuration for ML acceleration within
198 different settings (i.e., 1-99% of target and 1-99% of
confidence), we explore ‘top 10 trustworthiness occurrence’
across ten studied projects. As shown in Figure 2, when ac-
celerating the build of Requests project, the parameter setting
with the highest trustworthiness (i.e., 81% confidence) is only
the best setting 25% of the time. This trend holds for all of
our projects. The parameter setting with the highest incidence
of trustworthiness is the 67% target setting in the scikit-learn
project, and even in that case, the setting was only the best
50% of the time. We provide the figures for all studied projects
in our online appendix.5

In Figure 2, we also observe that the top five trustworthi-
ness incidences belong to the confidence setting. Thus, the
confidence setting generally yields build results that more
closely align with non-accelerated builds in the Requests
project. However, this trend does not hold for the remaining
projects. The confidence setting presents the highest trust-
worthiness in only three of nine studied projects, while the
target setting presents highest trustworthiness in five of nine
projects. Both settings present the same maximum occurrence
of trustworthiness in the airflow project. Overall, the highest
trustworthiness occurs in the range of 14 to 18 commits
out of 50. The indicates that there are no ideal target and
confidence settings in ML-accelerated builds. The top ten

7https://github.com/klainfo/ScottKnottESD

most frequent trustworthiness settings, both within projects
and across projects, are shown in our online appendix.5

Outcome: While the performance of neither product
shows a clear trend across our studied projects, the PA-
product provides more trustworthy results (4.28–75.66
percentage points). Furthermore, the optimal ML pa-
rameter settings vary broadly, with the best (top 10)
settings consistent for at most 50% of commits within
projects, and at most 36% across projects.

IV. CONCLUSION

CI users expect to obtain rapid software development feed-
back, allowing them to verify if their source code changes
integrate cleanly with their existing systems. CI acceleration
promises to further accelerate the CI process while maintaining
its benefits. However, using CI acceleration is not without
costs. To evaluate the practical implications of CI acceleration
technology, we conduct an empirical study of 100,000 builds
that span 10 projects to compare the trustworthiness of two
kinds of commercial-grade CI acceleration techniques. We
make three observations from which we conclude the results
of builds accelerated by the PA-product more often aligns with
non-accelerated build results.

We summarize the following takeaways for practitioners
based on the outcomes of this empirical study.
Balancing Speed and Trustworthiness: CI acceleration does
speed up build but may come at the cost of trustworthiness.
Practitioners should carefully consider the trade-off between
speed and correctness in their CI processes.
Practical Value of Program Analysis: Our study suggests
that the PA approach exhibits higher practical value compared
to ML for CI acceleration. Practitioners may find greater
reliability in PA-based acceleration techniques.
Improvement Opportunities: While both acceleration ap-
proaches show potential, there is room for improvement to
achieve more robust acceleration. Practitioners are encouraged



to explore enhancements in CI acceleration technologies to
strike a better balance between speed and reliability.
User Preferences: Developers often prioritize a correct build
over a fast one. CI acceleration solutions should align with
user preferences to ensure broader acceptance and satisfaction
within development teams.

Adams [9] showed that developers (at least those within the
Linux kernel development context) prefer a correct build to a
fast one, so CI acceleration that sacrifices correctness may not
be appealing to stakeholders. We therefore encourage future
work to explore how the trustworthiness gap can be bridged.
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