
An Exploratory Study of Design
Discussions that Occur During Peer Code

Review

Farida El Zanaty

Master of Engineering

Department of Electrical and Computer Engineering

McGill University

Montreal,Quebec

October, 2019

A thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Master of Engineering

Copyright Farida El Zanaty, 2019

TO MY ANGEL MOTHER,
whose wish was to become a software engineer, and then gave birth to two.

ii

ACKNOWLEDGEMENTS

First and foremost, I want to thank Dr. Shane McIntosh. Thank you, wholeheart-
edly and genuinely, for your mentorship, and for always leading by example. Thank
you for teaching me about work ethics, integrity and discipline, as much as you have
taught me about software engineering research. I am honestly grateful.
Thank you, Dr. Jin L.C. Guo, for taking the time to examine this thesis. I am
inspired by you for being a successful female professor in a male-dominated software
community.
I extend my gratitude to Al Ghurair Foundation, for believing in me. Your scholar-
ship has provided me with a degree, and life experience. It is my stepping stone to
make a difference in the world, and fulfill your vision.
Thank you, Toshiki Hirao, for your hard work in the foundational work of this the-
sis, and your friendship. Thank you to Kehilya Gallaba, Shivashree Vysali, Noam
Rabbani, Christophe Rezk and Ray Wen, my Software Rebels family.
Mille merci, Farid Namek, mon ami et mon cousin, pour ton effort de traduire mon
abstract.
This thesis would not have been possible without all of you.

To my Family.
Thank you, Dawdy, whom without, my homesickness would have gotten the best of
me. You are my home, and this degree is yours as much as it is mine.
Thank you, papa, for being my best friend, and for living with me some of our tough-
est days.
Thank you, Moustafa, my little brother, for teaching me strength, and love. Thank
you for being the kindest person I know.
And most importantly, thank you, mama, for investing in me your lifetime, and
doing everything in your capacity to give me the best possible education, since day
one. I hope I pay back a fraction of the constant love and support you surround me
with, by making you proud. I hope you feel like all the time, money and effort you
invested in me, did not go in vain.

Zero thanks to Canadian winters, which have certainly made this degree unnec-
essarily harder to achieve. As a result, I have died a little on the inside.

iii

ABSTRACT

Code review is a well-established software quality practice where developers cri-

tique each others’ changes. A shift towards automated detection of low-level issues

(e.g., integration with linters) has, hypothetically, freed reviewers up to focus on

higher level issues, such as software design. Yet in practice, little is known about

the extent to which design is discussed during code review. To bridge this gap, in

this thesis, we set out to study the frequency and type of design discussions in code

reviews. We first perform an empirical study on the code reviews of the Open-

Stack Nova (provisioning management) and Neutron (networking abstraction)

projects. We manually classify 2,817 review comments from a randomly selected

sample of 220 code reviews. We then train and evaluate classifiers to automatically

label review comments as design-related or not. Finally, we apply the classifiers to

a larger sample of 2,506,308 review comments to study the characteristics of reviews

that include design discussions. Our manual analysis indicates that (1) design dis-

cussions are still quite rare, with only 9% and 14% of Nova and Neutron review

comments being related to software design, respectively; and (2) design feedback is

often constructive, with 73% of the design-related comments also providing sugges-

tions to address the concerns. Furthermore, code changes that have design-related

feedback have a statistically significantly increased rate of abandonment (Pearson χ2

test, DF=1, p < 0.001). To further explore the phenomenon, we survey 94 software

developers and triangulate the responses with respect to our quantitative and qual-

itative results. The results indicate that 1) discussing design is indeed perceived to

iv

be an important topic in code review, which benefits the author/reviewer (peer men-

torship), the development team (collaborative problem solving, change awareness),

and the end-product (improved code quality); and that 2) software developers in an

industry setting prioritize the performance of the system over other design concerns.

Given the relative sparseness of design discussions during code review and its role

as a primary motivation for conducting code review, more may need to be done to

foster such discussions among contributors.

v

RÉSUMÉ

L’audit de code est une pratique de qualité de logiciel bien établie où les développeurs

critiquent leurs propre modifications. Un changement vers une detection automatisée

des problémes de niveau faible (ex: integration avec lint) a, en théorie, permis aux

développeurs de se concentrer sur les problémes de plus haut niveau, tel que le désign

du logiciel. Cependant, en pratique, peu est connu quant à létendue de la discussion

au sujet du désign lors de l’audit du code. Pour combler ce fossé, dans la dissertation,

nous nous sommes lancés dans létude de la fréquence et le type de l’audit du désign

dans le cadre de l’audit du code. Nous effectuons une étude empirique sur les audits

de code des projets OpenStack Nova (gestion de l’approvisionnement) et Neu-

tron (abstraction de réseau). Nous classifions manuellement 2,817 commentaires

d’audit d’un échantillon aléatoire de 220 audits de code. Nous procédons alors à

entrainer et évaluer les classificateurs à automatiquement étiqueter les commentaires

d’audit comme étant relatif au désign ou non. Finalement, nous appliquons les clas-

sificateurs à un échantillon plus large de 2,508,308 commentaires d’audit pour étudier

les caractéristiques des audits qui incluent une discussion du désign. Notre analyse

manuelle indique que (1) les discussions du désign sont encore assez rares, avec seule-

ment 9% et 14% des commentaire d’audit de Nova et Neutron respectivement,

qui sont en rapport avec le désign du logiciel; et (2) les commentaires du désign sont

souvent constructifs, avec 73% des commentaires en rapport avec le désign qui four-

nissent des propositions pour addresser les préoccupations. De plus, les changement

de code qui contiennent des commentaires relatifs au désign ont, statistiquement,

vi

un taux d’abandon plus élevé. Afin de trianguler nos résultats, nous avons effectués

un sondage sur 94 développeurs de logiciels pour nous aider à renforcer nos obser-

vations que 1) discuter du désign est en effet important, puisque c’est avantageux à

l’individu, l’équipe de développement, et le produit final, et que 2) les développeurs

de logiciels, dans le cadre professionnel, priorisent la performance du système, par

dessus toutes autres inquiétudes quant au désign. Puisque la discussion du désign

est la motivation principale pour la conduite de l’audit de code, il faudrait en faire

plus pour encourager telles discutions entre les contributeurs.

vii

Related Publications

Earlier version of the work in this thesis was published as listed below:

• An Empirical Study of Design Discussions in Code Review. Farida El Zanaty,

Toshiki Hirao, Akinori Ihara, Kenichi Matsumoto, and Shane McIntosh. To

appear in Proceedings of the 12th ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement, p. 11:1–11:10 ACM (ESEM

2018)

The following work is not directly related to the content of this thesis, but was

produced in parallel to the research performed for this thesis.

• Automatic Recovery of Missing Issue Type Labels. Farida El Zanaty, Christophe

Rezk, Sander Lijbrink, Willem van Bergen, Mark Cote, and Shane McIntosh.

Submitted to IEEE Software (status: under review).

viii

TABLE OF CONTENTS

ABSTRACT . iv

RÉSUMÉ . vi

LIST OF TABLES . xii

LIST OF FIGURES . xiii

1 Introduction . 1

1.1 Problem Statement . 2
1.2 Thesis Overview . 2
1.3 Thesis Contributions . 4
1.4 Thesis Organization . 5

2 Background . 6

2.1 What is software design? . 6
2.2 What is code review? . 7
2.3 Motivational Example . 8

3 Related Work . 10

3.1 Code Review Practice . 10
3.2 Design Quality Assurance . 11
3.3 Code Review Characteristics . 12

4 Quantifying and Characterizing Design Discussions 14

4.1 Introduction . 14
4.2 Study Design . 15

4.2.1 Subject Projects . 15
4.2.2 Code Review Process . 16
4.2.3 Data Preparation and Processing 17

4.3 Results . 20

ix

4.4 Chapter Summary . 29

5 Large-Scale Analysis of Design Discussions 30

5.1 Introduction . 30
5.2 Study Design . 31

5.2.1 Quantitative Data Preparation 31
5.3 Results . 33
5.4 Chapter Summary . 39

6 Triangulation through Surveying Software Practitioners 40

6.1 Survey Design . 40
6.2 Demographic Information . 41
6.3 Importance and Frequency of Design 41
6.4 Design Concerns . 44
6.5 Design Discussions . 49
6.6 Experience . 51
6.7 Chapter Summary . 53

7 Threats To Validity . 54

7.1 External Validity . 54
7.2 Internal Validity . 55
7.3 Construct Validity . 55

8 Conclusion . 56

8.1 Contributions and Findings . 56
8.2 Practical Implications . 57

8.2.1 Software Organizations . 58
8.2.2 Tool Developers . 58
8.2.3 Authors of Code Changes 59

8.3 Opportunities for Future Research 59
8.3.1 Can we improve our automatic classification? 59
8.3.2 How do design discussions differ between open-source and

proprietary settings? . 59
8.3.3 Is design discussion associated with design or software

quality? . 60
8.4 Replication Package . 60

x

Appendix A . 61

Appendix B . 65

References . 68

xi

LIST OF TABLES
Table page

4–1 An overview of the subject systems. 15

4–2 Design Categories . 22

4–3 The frequencies of different design categories found in code reviews, in
Nova and Neutron projects, during manual classification. 27

5–1 Binary Classification 10-fold Cross-Validation Results with balanced
datasets . 35

5–2 Summary statistics of accepted and abandoned reviews 38

8–1 Open Coding for the Importance of Design. 61

8–2 Open Coding for the Importance of discussing design during code review. 65

xii

LIST OF FIGURES
Figure page

1–1 An overview of the scope of this thesis. 3

2–1 The workflow of a typical code review 8

4–1 An example of a review discussion on Gerrit 16

4–2 An overview of our data preparation and processing approach for
Chapter 4 . 18

4–3 The rate of each design category across design-related comments . . . 27

5–1 An overview of our data preparation approach for Chapter 5 32

5–2 Difference in author experience in design-related and design-unrelated
code reviews . 38

6–1 Importance of Design . 42

6–2 Usefulness of design concerns according to the survey participants . . 44

6–3 The frequencies of different design concerns found in code reviews,
compared to the perceived frequencies of them according to survey
participants . 46

6–4 Importance of Design Discussion . 49

6–5 How quickly our respondents think new contributors are able to
provide valid design feedback. 52

6–6 The type of contributor that tends to provide the mosts design
feedback, according to our respondents. 52

xiii

CHAPTER 1
Introduction

Code reviewing is a broadly adopted practice where one developer (the author)

makes a change to the code, and other developers (the reviewers) critique the premise,

content, and structure of the change [17]. Code review practices are realized in a

variety of ways, such as formal code inspections [43], informal walkthroughs [57],

lightweight tool-based reviews [3], or checklist-based reviews [45].

Since code review is expensive in terms of human effort [5], recent code review

systems are shifting towards automated detection of low-level issues. For example,

the Review Board project1 incorporates linting and static code analysis results di-

rectly in the code review interface [5]. This trend towards automation of menial

tasks, has, hypothetically, freed reviewers up to focus on higher-level issues, such as

design.

Software design plays a central role in the success of the produced software [53].

As a result, design decisions are essential during development, since design decisions

are linked to the maintainability and extensibility of a codebase [19, 27, 11]. From

an internal perspective, better design has been linked to lower rates of restructuring,

better understandability, reduced coding effort and faster reworks of the system

1 https://www.reviewboard.org

1

[19, 18, 53]. Moreover, from an external perspective, design quality has been linked

to the quality of the end-product, both quantitatively and qualitatively [53, 15].

1.1 Problem Statement

Although better design is associated with better software quality, little is known

about the type and frequency of design discussions during code review.

Thesis statement: Hypothetically, the broader role that automation has

taken in the code review processes has freed up human review participants to

focus on higher-level concepts, such as design. Archives of code review data

can be leveraged to better understand the prevalence and characteristics of

design discussions that occur during the code review process.

More specifically, it is unclear how design discussions take place and what type

of design issues are developers concerned about. Hence, in this thesis, we set out

to study the frequency, type and characteristics of the design discussions that take

place during code review.

1.2 Thesis Overview

Figure 1.1 provides an overview of the scope of this thesis. We first provide the

necessary background material (yellow boxes):

Chapter 2: Before delving into the study of design discussions that occur during

code review, we first provide the reader with background information, and

define key terms and processes that we will use throughout the thesis.

2

Figure 1–1: An overview of the scope of this thesis.

Chapter 3: In order to situate this thesis with respect to prior research, we present

a survey of research on code review and software design.

Next, we shift our focus to the main body of the thesis. In this thesis, we analyze

design discussions using three research methodologies (blue boxes), motivated by

their potential outcomes (orange clouds).

Chapter 4: In order to better understand the prevalence and type of design discus-

sions, we manually analyze 2,817 code review comments from two open source

software repositories. We answer the following two research questions:

(RQ1)How often is design discussed during code review?

(RQ2)Which design issues are discussed most often?

Chapter 5: While we could derive rich insights from our manual analysis, it does

not scale well to larger samples of data. Thus, we explore the applicability

of automated approaches to the labeling of code review comments as design-

related or not. We first train and evaluate models using supervised learning

3

approaches, and then apply them to 2,506,308 review comments. This larger

sample allows us to explore the relationship (or lack thereof) between design

discussions and other characteristics of code review. We answer the following

two research questions:

(RQ3)How accurately can our classifiers identify design-related com-

ments?

(RQ4)Is design-related discussion correlated with the characteristics

of code changes?

Chapter 6: We evaluate the observations of prior chapters by surveying 94 soft-

ware developers who regularly participate in code reviews in industrial settings.

The survey responses yield further insight into the perceptions of developers

about design discussions that occur during code reviews.

1.3 Thesis Contributions

This thesis demonstrates that:

• Design discussions rarely occur during code review, with only 9%–14% sampled

reviews containing some form of design feedback (Chapter 4).

• When design discussions do occur, they are typically uni-directional, with feed-

back flowing from reviewers to authors; however, the feedback is often construc-

tive, including suggestions to address the identified design flaws (Chapter 4).

• Design issues most often arise due to a lack of global context of the codebase

(Chapter 4).

• The rate at which reviewers provide design feedback correlates with the re-

viewer’s (project-specific) experience (Chapter 5).

4

• Most survey participants perceive that design is an important topic to be dis-

cussed during code reviews, highlighting benefits to the author (e.g., peer men-

torship), the team (e.g., change awareness), and the product (e.g., improve-

ments to the code quality) (Chapter 6).

• Survey participants tended to prioritize properties that impact end-user expe-

rience with the system (e.g., performance) over the other design issues (Chap-

ter 6).

1.4 Thesis Organization

The remainder of this paper is organized as follows: Chapter 2 provides back-

ground information, while Chapter 3 surveys previous research related to software

design and code reviews. Chapter 4 describes our qualitative study that quantifies

and characterizes design feedback, while Chapter 5 discusses the large-scale analysis

that followed. Chapter 6 triangulates our observations from prior chapters with re-

spect to the perceptions of software practitioners. Chapter 7 discloses the threats to

the validity of our study. Lastly, Chapter 8 draws conclusions and discusses promis-

ing directions for future research.

5

CHAPTER 2
Background

2.1 What is software design?

Software design is a term that as been re-defined numerous times. Since a crisp

definition is needed to our work, we need to select an appropriate definition. We

chose to adopt Brunet et al.’s [11] definition, which states that:

“As an artifact, design is a representation of how a portion of the code

should be organized. As an activity, design is the process of discussing the

structure of the code to organize abstractions and their relationships.”

Design is an important aspect of the software development process, especially in

large systems. However, software systems are constantly evolving, and are rewritten

several times during their lifetime [42]. This makes evaluating a software system’s

design a challenging issue. Previous work shows that, in practice, design is mostly

based on subjective opinions, rather than objective metrics and/or systematic as-

sessment [28]. Fowler and Beck [7] even claim that when detecting bad smells in

code, “no set of metrics rivals informed human intuition.”

Prior work has shown that software design is linked to the quality of the soft-

ware [15, 35]. Moreover, design debt, i.e., compromises to best design practices taken

for practical reasons, negatively affects the quality of the software and wastes devel-

opment time and effort [58].

6

Indeed, software design is subjective to some degree. We conjecture that the

subjectivity of software design needs to be resolved in an equitable manner to achieve

a cohesive software team dynamic. Moreover, compromises to design are generally

perceived to negatively impact software quality (e.g., technical debt). Hence, we

expect that code review would be an ideal place to discuss design implications of

evolving software systems.

2.2 What is code review?

‘Code review’ is a pillar of modern software quality assurance practices. It

typically occurs before a code change is integrated to the codebase. Participants

in the review process take an author, reviewer, and verifier roles. The author is

the party responsible for creating the code changes under review and typically have

a stake in seeing the code changes through to integration with the central code

repository. Verifiers assess whether code changes meet concrete quality criteria.

While in theory, verifiers may be human participants, in practice, the role is typically

filled by automatic bots. Reviewers are responsible for critiquing the premise, form,

and content of the code changes under review.

Since appearing in the 1970’s [16], code reviews have taken on several formats.

Early variants [16] empathized process rigour, including checklists for reviewers, and

a structured meeting process with additional participants in administrative roles,

such as moderators, scribes, and readers. Recently, a more lightweight variant as

well as the more lightweight, tool-supported, asynchronous variant [44] has become

almost ubiquitous, in part due to the rise of globally distributed software development

teams.

7

Figure 2–1: The workflow of a typical code review

2.3 Motivational Example

In this section, we present a motivational example to highlight how the auto-

matic bots freed time for human reviewers to discuss code organization and design.

Figure 2–1 provides a concrete example of a code review, an author first submits

their code change (Step 1), which then enters the ‘code review’ phase. It is then

simultaneously reviewed by a human author, and analyzed by automated bots (Step

2). For example, Figure 2-4 shows a software developer, Mo, who submits a new code

change to the system. Mary, a more experienced software developer, gets a notifica-

tion to review Mo’s code change. When Mary checks the code change to review it,

she realizes that the automatic bots of the system have already started running all

8

test suite against it. They have also checked code conventions and compliance with

their project’s coding standards using linters. She figures that the automatic bots

are more accurate and conclusive at checking for functional errors by their exhaustive

and systematic test cases, so she checks the design of the code change with respect

to the whole system. Mary, as a reviewer, leaves inline comments to Mo, asking him

to move method convertData to the class DataHandling, to promote cohesion, and

reduce unnecessary coupling. She also points out that the retrieveData method is

redundant, as another method by the name getData already exists. This initiates a

discussion between the author and reviewer (Step 3), which allows the author to ad-

dress the received feedback and resubmit code changes with incorporated suggested

changes (i.e., Steps 1–3 can be repeated until code change passes review). Mo, as the

author of the code change, first and foremost wants his change to be accepted and

successfully integrated to the codebase. He replies back to the inline comments, and

resubmits another version of the code change with all of Mary’s feedback addressed.

Mary then approves the code change, which has also passed all the tests and evalu-

ations run by the automatic bots. The code change is then successfully integrated

into the codebase.

9

CHAPTER 3
Related Work

In this chapter, we present the related work with respect to code review practice,

design quality assurance, and code review characteristics dimensions.

3.1 Code Review Practice

Code review is a common practice that is introduced to improve the code quality

[4]. Code reviews add value to a software organization by detecting bugs early,

increase productivity, and can even improve project documentation [20]. Several

studies set out to explore the factors of code reviews that affect software quality. For

instance, reviewer involvement has been linked with incidence rates of post-release

defects [30, 31, 49], defect proneness [25], design anti-patterns [35], and security

vulnerabilities [32]. Moreover, the documentation level of code reviews has been

linked with the level of maintainability of the produced code [37, 8].

Code reviews have a much broader scope [2, 6] than only improving software

quality. Czerwonka et al. [14] found that code reviews often do not find functionality

issues that should block a code submission. Bacchelli and Bird [3] found that code

reviews at Microsoft aim to not only fix bugs, but also transfer knowledge among

team members. Mäntylä and Lassenius [29] found that there are three evolvability

issues raised for every functionality issue during code reviews. Beller et al. [8] found

a similar ratio of evolvability and functional issues are fixed during code reviews.

These findings motivated the search for design discussions in code reviews, which

10

are also considered non-functional issues. This thesis strives to delve into software

design—a non-functional aspect of review discussion.

Better design has been linked to lower rates of restructuring, better understand-

ability, reduced coding effort, and faster reworks of the system [18, 19, 53]. While

prior work has analyzed aspects of code review related to code quality [25, 30, 31,

35, 49], little is known about the prevalence and type of design discussion in code

reviews. To bridge this gap, this thesis focuses on feedback content by analyzing how

often reviews discuss design issues and what kinds of design issues are raised.

3.2 Design Quality Assurance

Software design is essential to ensure the quality of the software product [11,

19, 27]. For instance, Kemerer and Paulk [24] showed that adding design reviews

to projects at the SEI led to software products that were of higher quality. Brunet

et al. [11] found that only 25% of discussions are design-related in commits, issues,

and pull requests. Our findings in Chapter 4 complements the prior work, indicating

a minority (i.e., only 9% and 14% of comments) are design-related in OpenStack

Nova and Neutron projects.

Design-related discussions may broach various subjects. Tao et al. [56] found

that code changes that comprise design issues like suboptimal solutions and incom-

plete fixes (e.g., “Shallow Fix”) are often linked with the rejection of the code

changes in the Eclipse and Mozilla projects. Our findings in Chapter 5 also suggest

that, in general, design issues present in code reviews, including “Shallow Fix”, are

associated with the abandonment of code changes in the OpenStack Nova and

Neutron.

11

Sedano et al. [47] found that duplicated work like “Redundant Code” and

“Unnecessary Complexity” is a frequently occurring type of software development

waste. Our results in Chapter 5 show that design-related comments are raised due

to not only “Redundant Code” and “Unnecessary Complexity”, but also “Module

Coupling”, “Performance”, “Side Effect”, “Shallow Fix”, and “Code Misplace-

ment”. Yamashita and Moonen [55] found that 32% of developers are not aware of

the code smells in their own code. Paixao et al. [39] found that 62% of the time,

developers do not discuss the architectural impact of their changes on the system,

suggesting a lack of awareness of them. Our findings in Chapter 5 also suggest that

a lack of awareness of the global context of the codebase is linked to incidence rates

of design comments.

3.3 Code Review Characteristics

Code review characteristics have been analyzed to understand their relationship

with integration decisions. Tsay et al. [52] showed that code changes that attract

many comments are less likely to be accepted. Indeed, McIntosh et al. [30, 31]

and Thongtanunam et al. [49] have argued that the amount of discussion that was

generated during review should be considered when making integration decisions.

Gousios et al. [21] found that only 13% of pull requests are rejected due to technical

reasons. Our findings in Chapter 5 suggest that design-related reviews are likely to

struggle with integration.

Prior work showed the importance of author expertise in code reviews. Bosu et

al. [10] found that module-based expertise shares a link with the perceived usefulness

of a code review (as expressed by authors of the code changes). Meneely et al. [33]

12

examined the association between the number of commits of developers and security

problems in the Red Hat Enterprise Linux 4 kernel. Bosu and Carver [9] found that

code changes written by inexperienced authors tend to receive little review partici-

pation. Our findings in Chapter 5 suggest that authors of code changes that receive

design-related code review feedback tend to have less project-specific expertise than

the authors of code changes that do not receive design-related feedback. However,

in those design-related reviews, reviewers often provide constructive feedback, which

includes suggestions to help inexperienced authors to resolve the design problems.

13

CHAPTER 4
Quantifying and Characterizing Design Discussions

In this chapter, we present our qualitative study design and results. The goal

of the study in this chapter is to understand the type and prevalence of design

discussions that occur during code review.

4.1 Introduction

Hypothetically, the modern trend of partially-automated code reviews has freed

up human review participants to discuss the high-level concepts like design of the

codebase, since the correctness and functionality of code changes are automatically

assessed. Despite the importance of design and its positive effect on the software

quality, little is known about the extent to which design is discussed during code

reviews. We, therefore, set out to study the frequency and type of design discussions

in code reviews. To achieve our goal, we perform an empirical study on the code

reviews of the Nova and Neutron projects from the OpenStack community.

In this chapter, we take an exploratory qualitative approach, where we manually

classify 2,817 review comments from a randomly selected sample of 220 code review

discussions to address the following two research questions:

(RQ1) How often is design discussed during code review?

Motivation: A common motivation for code review is to improve code qual-

ity [3]. Since design is an important aspect of code quality [19, 27, 11], we set

out to study how often design issues are discussed during code review.

14

Table 4–1: An overview of the subject systems.

Product Scope Studied Period #Code Changes #Devs
Nova Provisioning 09/2011 to 01/2018 30,972 1,852

management
Neutron Networking 07/2013 to 01/2018 16,894 1,177

abstraction

(RQ2) Which design issues are discussed most often?

Motivation: Since design is a multi-faceted concept, to deepen our results

from RQ1, we would like to know which aspects of design are being discussed

during code review when design issues have been raised.

4.2 Study Design

In this section, we present our rationale for selecting the subject projects, as

well as our manual analysis of the code review discussions.

4.2.1 Subject Projects

To address our research questions, we aim to perform an empirical study on

large and actively maintained software projects that regularly perform code reviews.

Our qualitative analysis requires a considerable investment of manual effort, which

makes large-scale analysis of data from several software projects impractical. There-

fore, we select for analysis the OpenStack community—a software community that

has heavily invested in (a) its code review process (e.g., all changes must be approved

for integration by two core reviewers)1 and (b) the integration of automation into its

1 https://docs.openstack.org/infra/manual/developers.html\

#project-gating

15

code review process (e.g., before integration, all changes are scanned by and must

pass code-style and static analysis verification bots). The OpenStack community

develops a set of software tools that provision and manage virtual and physical re-

sources that comprise a cloud computing environment.2 The code reviewing process

of OpenStack projects is managed by the Gerrit Code Review tool,3 and its data

can be accessed via a REST API.4 We select the two most active OpenStack

projects for analysis. Nova is responsible for provisioning management, while Neu-

tron manages networking abstraction. Table 4.2.1 provides an overview of the

studied projects.

4.2.2 Code Review Process

Figure 4–1: An example of a review discussion on Gerrit

2 https://www.openstack.org

3 https://www.gerritcodereview.com/

4 https://gerrit-review.googlesource.com/Documentation/rest-api.html

16

Gerrit is a web-based tool that facilitates code review and integration manage-

ment. The Gerrit workflow of OpenStack begins with an author uploading an

initial revision of their code changes for review. These changes are then scanned by

verification bots that check for code style issues using linters, common mistakes using

static analysis, and functional issues using automated tests. After these checks are

complete, other developers can review the changes, writing comments for the author

to consider, providing general comments about the whole change or inline comments

about specific parts of the change. Authors of other reviewers may reply to review

comments, creating genera; or inline discussion threads.

Authors may address the feedback of verification bots and reviewers by up-

loading new revisions of their changes. This process is repeated until either (1)

verification bots and reviewers are satisfied, and the code changes are approved for

integration into project repositories; or (2) the author abandons the changes. Fi-

nally, for changes that have been approved for integration, a final set of integration

tests are executed to ensure that other concurrently developed changes do not cause

problems when they are integrated with the proposed changes.

4.2.3 Data Preparation and Processing

Figure 4–2 provides an overview of our data preparation and processing ap-

proach, which is comprised of a sample selection, design review identification and

taxonomy generation steps. We describe each step below.

Representative Sample Selection (DP1). Using the REST API provided by

Gerrit, we download 527,287 reviews within the studied time frame, which begins

17

Figure 4–2: An overview of our data preparation and processing approach for Chapter
4

with community adoption of Gerrit (July 2011) and ends at the time of data collection

(January 2018).

Since manual classification of a dataset of this size is impractical, we randomly

sample reviews in each subject project. We randomly select Nova and Neutron

reviews for analysis. To cover as broad of a set of design issues as possible, similar

to prior work [40], we aim to achieve saturation [34] with our sample. To do so, we

continue to classify randomly selected review comments until we find no new types

of design issues for 50 reviews. We achieved saturation after classifying 100 Nova

reviews with 1,357 comments and 120 Neutron reviews with 1,460 comments.

Manual Design Discussion Clarification (DP2). We identify design-related

review comments by manually classifying review comments as design-related or not.

Design-related review comments are identified according to the definition of design

introduced by Brunet et al. [11]: “As an artifact, design is a representation of how

18

a portion of the code should be organized. As an activity, design is the process of

discussing the structure of the code to organize abstractions and their relationships.”

Together with a collaborator, the author of this thesis participated in the man-

ual classification process. The process involved classifying each comment in the

discussion of the sampled review as design-related or not. When necessary, the code

changes themselves were analyzed for context. When the author of this thesis and

collaborator disagree, the case was discussed until a consensus was reached.

Each comment may be tagged with multiple design issues; however, we find that

multiple design concerns are rarely raised within one comment (only 18 instances in

our sample of 2,817 comments). The whole discussion is then tagged with all of

the unique labels of its comments. For example, Figure 4–1 shows that the com-

ment surrounded by the yellow square is tagged as design-related due to a “Code

Misplacement” issue.

In addition to labeling every code review discussion with one or more raised

design issues, we also record if alternative solutions have been provided. For instance,

a comment in a discussion can be labelled as “code misplacement” without a solution

(e.g., “This method should not be in this class”), or with a solution (e.g., “This

method should be in Class X, not Class Y”).

To ensure that the labels that appeared later in the sample were not overlooked

in the earlier comments, we perform a second pass over all of the labels after the

initial classification pass. This classification process took seven days of full-time work

of the two researchers who participated in the process. We use this classified sample

to address RQ1 and RQ2.

19

Taxonomy Generation (DP3). After our manual classification (DP2), we apply

open card sorting to construct a taxonomy from our tag data [46]. This taxonomy

helps us to extrapolate general themes from our detailed tag data. During the card

sorting process, the tagged comments are merged into cohesive groups.

4.3 Results

In this section, we present the results of our qualitative analysis with respect

to RQ1 and RQ2. For each question, we describe our approach for addressing it

followed by the results that we observe.

(RQ1) How often is design discussed during code review?

Approach. To address RQ1, we examine how often reviewers discuss design issues

in the Nova and Neutron projects. To do so, we manually tag comments that are

related to design issues (See DP2). The tags focus on the design concerns of authors

and reviewers. We also differentiate between authors and reviewers to capture the

difference in participation behaviour for both roles.

Similar to prior studies [3, 38, 48], we apply open card sorting to construct

a taxonomy from our tag data. This taxonomy helps us to extrapolate general

themes from our detailed tag data. The card sorting process is comprised of three

steps. First, the author of this thesis and a collaborator perform the classification

of review comments as per DP2. Second, we recursively group related labels by

topic to produce a hierarchy of design issues. Finally, we count the occurrences of

design-related comments in each studied project.

20

To estimate the degree to which the researchers agree about the design issues,

we performed a pilot study of 50 review comments. The thesis author and collabo-

rator independently labeled the 50 review comments. We then compute the Cohen’s

Kappa inter-rater agreement measurement, which was observed to be 0.72, indicating

‘Substantial Agreement’ [26].

Results. Observation 1—Design issues are not commonly discussed. Fig-

ure 4–3 shows a distribution of design issues that emerged during manual classifica-

tion and the percentage of alternative solutions that were provided for each of the

identified issues. We find that 33% and 35% of reviews have at least one design-

related comment in Nova and Neutron, respectively. However, we find that only

9% and 14% of Nova and Neutron review comments are related to design, which

implies that even in design-related code reviews, design discussions are short and

scarce.

Observation 2—Authors rarely engage in design-related discussions.

Most of the design-related comments are initiated by reviewers, whereas 11% and 21%

of those comments elicit authors’ responses in Nova and Neutron, respectively.

This is alarming as low review participation has been associated with poor software

quality [30, 51, 36, 12, 25].

We suspect that this tendency may have to do with the power that (core) re-

viewers hold over authors. Indeed, authors need reviewers to approve their changes

in order for them to be integrated into the project. Thus, authors may feel compelled

to simply do what the reviewer asks. A more rigorous analysis is needed to confirm

(or reject) this suspicion.

21

Design concerns are not commonly discussed in code reviews. Moreover,

authors rarely engage in design-related discussions with reviewers.

(RQ2) Which design issues are discussed most often?

Approach. To address RQ2, we examine the types of design issues in the studied

projects. To do so, we examine the properties of the taxonomy that our open card

sorting produced (See DP2 and DP3).

Results. Table 4–2 shows our resulting hierarchy-less taxonomy of mutually exclu-

sive design issues that have been encountered and identified during manual classifi-

cation [41]. Furthermore, we include some non-design labels, namely “Readability”

and “Documentation”, both of which can easily be confused with design. Despite

being unrelated to the functionality of the code, these categories are concerned with

the code cosmetics and understandability, respectively, rather than design.

Table 4–2: Design Categories

Design

Label

Definition Example

22

Module

Coupling

Comments that point out un-

necessary dependencies between

software artifacts.

“so my proposal was to have

the resource tracker create the

ResourceProvider object (sepa-

rately from the ComputeNode

object). That way the Com-

puteNode and ResourceProvider

objects don’t have any interac-

tion needed between them.”

Redundant

Code

Comments that identify dupli-

cated or unnecessary code that

needs to be eliminated. Usually

due to not reusing existing func-

tionality or, simply, the addition

of unwanted code.

“nit: This is the default, and

already set by the superclass. It

would be cleaner to omit it.”

Performance Comments that point out exe-

cution issues in terms of time

and memory usage, which can

be optimized using alternative

approaches, while still maintain-

ing correct functionality.

“[This alternative] uses a much

more efficient exponential dou-

bling algorithm. It runs in

0.03 seconds versus a very long

time for your implementation (I

stopped waiting after a couple of

minutes).’”

23

Shallow Fix Comments that point out limi-

tations in the breadth of a fix

in terms of the design of the

code. This could be a fix that

has a ripple effect on the code,

or a fix that could potentially be

generalized to fix other areas in

the code suffering from the same

problem.

“The VIP port is not too differ-

ent from any other port, so why

checking only VIP’s ip then?

I think such check needs to be

added to create port method of

db base plugin v2, and not to

LBaaS plugin only.”

Side Effect Comments pointing at code

changes that might potentially

break other parts of the code

due to its design

“Hardcoding this breaks non-

qemu libvirt hypervisors. [..]”

24

Unnecessary

Complexity

Avoidable complications in the

code that can and should be fur-

ther simplified without affecting

the correct functionality of it.

“The code here is going to

query subnets table and fetch

subnets objects, but those subnet

objects are only used to check

whether their enable dhcp at-

tribute is True or not. So, why

not directly query Subnets table

[..], and check whether at least

one record exists.”

Code Mis-

placement

Unsuitable or wrong code place-

ment of software artifacts. Bet-

ter placement might render the

artifacts reachable and reusable

by other modules or artifacts.

“[..] We should mode that

map from neutron.agent.firewall

to some security group common

module and re-use it. ”

Non-

Design

Labels

These labels can be confused for design, but are not. They are

shown as way to better understand the difference between what

is considered as Design-related, according to our taxonomy.

25

Readability Not considered design. Related

to the cosmetics of the code.

It includes but is not limited

to: indentation, naming conven-

tions and spacing.

“I think this should be renamed

to SimpleTenantUsage”

“recommend just overriding the

numaTopology variable instead

of the awkward “fittedTopology”

variable name :)”

Document-

ation

Intuitiveness, understandability

and writing style of commit

messages, code comments and

code documentation.

“So I think this might be

change that doesn’t require an

API version bump, but we need

a lot more context in the com-

mit message to make that clear.”

“you removed this function [..]

if it’s your desired action, at

least should be mentioned in

commit message”

26

Figure 4–3: The rate of each design category across design-related comments

Table 4–3: The frequencies of different design categories found in code reviews, in
Nova and Neutron projects, during manual classification.

Design Category Frequencies %
Nova Neutron

Unnecessary Complexity 23 28
Redundant Code 26 22
Shallow Fix 19 21
Code Misplacement 11 17
Performance 11 8
Side Effect 3 7
Module Coupling 7 2

27

Observation 3–Design issues are often raised due to lack of awareness

of the global context of the codebase. Figure 4–3 shows the type of design issues

that emerge during the sampled code reviews. We observe that all of the design issues

except for “Performance” and “Unnecessary Complexity” (blue shapes in Figure

4–3) are linked to an incomplete understanding of the codebase. Altogether, a lack

of global context awareness accounts for 67% and 65% of the sampled design issues

in Nova and Neutron, respectively (red shapes in Figure 4–3, and Table 4–3).

For instance, duplication may occur because the author is not aware of the existing

functionality, while shallow fixes, code misplacement, side effects, and coupling con-

cerns may occur because the author is not aware of the hierarchy and relationships

between modules in the codebase. However, their emergence in code reviews is a

positive indication that these types of issues are being noticed and corrected during

the reviewing process.

Observation 4—Most of the design-related discussions are construc-

tive, offering alternative solutions that mitigate the raised design issues.

Collectively, 73% of the analyzed design comments provide an alternative solution to

help authors to address the raised design issues. We believe that this is an indication

of a healthy reviewing community, since such feedback is likely more constructive

than simply pointing out flaws.

As Figure 4–3 shows, reviewers are less likely to provide alternative solutions

for design issues like “Code Misplacement”, “Performance”, “Module Coupling”,

and “Side Effect” than the other design issues. Indeed, 93% of the time, reviewers

provide alternative solutions to address “Redundant Code”.

28

For example, in review #319327,5 the reviewer pointed out that the function-

ality already exists: “We actually have a method to do that in [..]”. The author

fixed the issue and was eventually able to merge the code change.

Most design issues are raised due to a lack of awareness of the global con-

text of the codebase. Moreover, most of those comments are constructive,

providing alternative solutions.

4.4 Chapter Summary

In this chapter, we qualitatively explore the frequency and type of design dis-

cussions that occur during code reviews. While we make some general observations,

it is difficult to scale the analysis up, due to the considerable investment of manual

effort that is required. Thus, in the next chapter, we explore the applicability of

automated approaches that would remove this barrier.

5 https://review.openstack.org/\#/c/319327/

29

CHAPTER 5
Large-Scale Analysis of Design Discussions

In this chapter, we present the study design and the results of our quantitative

analysis with respect to RQ3 and RQ4. For each question, we describe our approach

for addressing it followed by the results that we observe.

5.1 Introduction

The manual effort required to perform the analysis of Chapter 4 presents bar-

riers to large-scale analysis of design discussions. For example, manually classifying

2,817 code review comments took ten days of full-time work, by two classifiers. The

entire dataset of code review comments available is 2,506,308, which is practically

impossible to manually-classify. In this chapter, we aim to remove that barrier by

proposing automated techniques capable of performing the high-level labeling task

(design-related or not). To do so, we use the manually classified sample to train and

evaluate classifiers to automatically label code review comments as design-related or

not. Those classifiers are applied to a large sample of 2,506,308 review comments,

and the results are used to address the following two research questions:

(RQ3) How accurately can our classifiers identify design-related comments?

Motivation: Classifiers that can automatically identify design-related com-

ments would be helpful to study the characteristics of code changes that elicit

design-related feedback. Since the usefulness of classifiers depends on their

accuracy, we first set out to train and evaluate classifier performance.

30

(RQ4) Is design-related discussion correlated with the characteristics of

code changes?

Motivation: Design-related discussion may be more likely to appear under

certain conditions. For example, since novices may not understand the global

context of the codebase (see RQ2), design discussions during their reviews may

occur more frequently. Moreover, design-related discussion may be associated

with the outcome of code changes. For example, design-related discussion

may be associated with higher rates of abandonment, since design issues may

require a rewrite of the code change. We set out to test such hypotheses using

the automatically classified review data.

5.2 Study Design

In this section, we present our data preprocessing steps required to build a

prediction model that detects design discussions in code reviews.

5.2.1 Quantitative Data Preparation

Figure 5–1 provides an overview of our preparation processes (DP4 and DP5)

for addressing RQ3 and RQ4 of our quantitative analysis.

Automatic Design Review Classification (DP4). To address RQ3, we train

classifiers that can automatically identify design-related comments by applying ma-

chine learning techniques to our original review data. We select five popular tech-

niques for our study: Multinomial Näıve Bayes (MNB), Support Vector Machines

(SVM), Decision Tree, k-Nearest Neighbours, and Random Forest.

31

Figure 5–1: An overview of our data preparation approach for Chapter 5

We begin the automatic classification by pre-processing the raw comment text.

First, we remove stop words, i.e., words that add little semantic meaning to a docu-

ment, using the stopword list of the Python NLTK module.1 Next, to mitigate the

impact of conjugation, we apply the Porter stemmer to each surviving word.2 Finally,

we convert each comment to a vector that is composed of the Term Frequency-Inverse

Document Frequency (TF-IDF) weights of its words. In a nutshell, terms that rarely

appear in comments, and often appear within a comment are of higher weight for a

comment.

To estimate the performance of our models on unseen data, we perform ten-fold

cross-validation, where the sample data is split into ten folds of equal size, nine folds

are used to train the model, and the remaining fold is used to test the model. The

1 https://www.nltk.org/api/nltk.corpus.html/module-nltk.corpus

2 http://www.nltk.org/howto/stem.html

32

process is repeated ten times (where each fold is treated as the testing fold once),

and the mean performance results are reported.

Characteristic Analysis (DP5). To address RQ4, we study the relationship be-

tween incidences of design-related discussion and pre-/post-integration code change

characteristics. In terms of pre-integration properties, we analyze author experience

because we conjecture that authors with low experience may be more susceptible to

making design mistakes. We estimate the author’s expertise using heuristics that

we derive from prior work [50]. Since the primary focus of our study is on review-

ing, similar to Thongtanunam et al. [51], our author’s expertise heuristic counts the

number of prior reviews that the author has written or reviewed.

In terms of post-integration properties, we analyze the rate of review abandon-

ment, since it is the primary post-integration property. We identify reviews that are

abandoned (i.e., not integrated). To do so, we classify the design-related/unrelated

comments that DP4 generates into accepted or abandoned categories. We exclude

ongoing reviews (i.e., those with the “OPEN” status) from this analysis because it

is not clear if they will be accepted or abandoned yet.

5.3 Results

(RQ3) How accurately can our classifiers identify design-related com-
ments?

Approach. To address RQ3, we train classifiers models that can automatically

identify design-related comments. Our models learn a word vector of a comment

where words are weighted by TF-IDF scores. For this analysis, we use the comments

that were not included in the sample that was analyzed in Chapter 4.

33

Handling Data Imbalance: Our dataset is imbalanced—only 9% and 14% of

Nova and Neutron comments are design related. To reduce bias towards the

majority class (non-design), the training data must be re-sampled. Our re-sampling

process is implemented using a combination of oversampling of the minority class

and undersampling of the majority class. We do so because prior work has shown

that such a combination performs better than either oversampling or undersampling

in isolation [13, 1].

Choosing Performance Metrics: We use the common classifier performance mea-

sures of recall, precision, and F1-score. Recall is the ratio of actual design-related

comments that a classifier can detect (Recall = TP
TP+FN

), and precision is the ratio of

correctly predicted design-related comments to the total number of reviews that were

predicted to be design-related (Precision = TP
TP+FP

). There is a tradeoff between

recall and precision. To account for this, we use the F1-score, which is the harmonic

mean of recall and precision: F1 = 2×Precision×Recall
Precision+Recall

The above-mentioned performance metrics (i.e., recall, precision, and F1-score)

depend on the threshold that is selected to classify instances as design-related or

not (typically set to 0.5). Choosing different thresholds may yield different results.

To get an overall idea of the performance across thresholds, we additionally use the

Area Under the receiver operating characteristics Curve (AUC). AUC ranges from 0

to 1, and larger AUC values indicate better prediction performance. The advantage

of AUC is its robustness toward imbalanced data, since the curve is obtained by

varying the classification threshold over all possible values.

34

Table 5–1: Binary Classification 10-fold Cross-Validation Results with balanced
datasets
Algorithm Neutron Nova

Prec. Recall F1 AUC Prec. Recall F1 AUC
MNB 0.66 0.76 0.68 0.85 0.59 0.69 0.60 0.79
SVM 0.70 0.71 0.70 0.84 0.63 0.62 0.62 0.76
Decision Tree 0.65 0.66 0.65 0.66 0.59 0.61 0.59 0.61
KNN 0.59 0.60 0.36 0.70 0.63 0.55 0.56 0.55
Random Forests 0.69 0.64 0.65 0.80 0.66 0.55 0.56 0.75

Evaluating the Prediction Model: We compare the performance of our classifiers

to that of traditional baselines like random guessing and zeroR. By construction, a

random guessing approach would achieve an AUC of 0.5. Hence, AUC values above

0.5 indicate performance that suggests the classifier contains some information. In

addition, a zeroR classifier is a classifier that always reports the class of interest.

Hence, in our scenario, a zeroR classifier achieves a perfect 1.0 recall and a precision

equal to the rate of design-related comments. Since these values are unreasonably

high (recall) and low (precision), we compare our classifiers to the F1-score of the

zeroR classifier to counteract the extreme values.

Results. Observation 5—Multinomial Näıve Bayes achieves the best recall

values. Table 5–1 shows that MNB achieves recall values of 0.69 and 0.76 in Nova

and Neutron, respectively. As for the general performance of all classifiers, the

precision ranges from 0.59 to 0.70, whereas the recall ranges from 0.55 to 0.76.

Overall, we observe that Neutron has better performance values than Nova. We

suspect that this is due to Neutron having more design comments in its training

data (14%) compared to Nova (9%).

35

Observation 6—Our classifiers outperform zeroR by 43 percentage

points in terms of F1-score. Since zeroR achieves 9% (Nova) and 14% (Neutron)

of precision, the best classifier (MNB) outperforms zeroR by 50 (Nova) and 52

(Neutron) percentage points in terms of precision. Moreover, the AUC ranges

from 0.55 to 0.85, indicating that our models outperform random guessing by five to

35 percentage points.

Observation 7—Our classifiers strengthen the finding that design dis-

cussions are scarce. Following Observation 1, our classifiers suggest that 43% and

44% of all code reviews contain at least one design comment in Nova and Neutron,

respectively. However, when calculating the percentage of design-related comments

with respect to all review comments, they only amount to 4% and 6% in Nova and

Neutron, respectively.

Multinomial Näıve Bayes achieves the best recall values among our classi-

fiers, outperforming a zeroR classifier by 43 percentage points in F1-score.

Moreover, our automatic classification complements our manual classifica-

tion finding, suggesting that design discussions are indeed rare.

(RQ4) Is design-related discussion correlated with the characteristics of
code changes?

Approach. To address RQ4, we first apply our top-performing classifier from RQ3

to the entire set of review comments from Nova and Neutron to classify them

as design-related or not. Then, we compare the author’s experience scores and

rates of the abandonment of code changes in the reviews that contain design-related

comments and those that do not. Note that the top-performing classifier has plenty

36

of room for improvement. A more accurate model may improve the robustness of

these results.

The author’s experience score is the number of times that an author has par-

ticipated in the reviews of a given project prior to the review at hand. We then

compare the author’s expertise values using bean plots. Bean plots are boxplots in

which the vertical curves summarize and compare the distributions of different data

sets [23], which in our case correspond to the author’s expertise of design-related

reviews and reviews without design comments. The horizontal black lines indicate

the mean of the author’s expertise for design-related reviews (orange) and non-design

reviews (blue), shown in Figure 5–2.

We estimate the statistical significance of the difference using two-sided, un-

paired Mann-Whitney U tests (α = 0.05) and the practical significance of the differ-

ence using Cliff’s delta (δ). The effect is considered negligible when 0 ≤ |δ|< 0.147,

small when 0.147 ≤ |δ| <, medium when 0.33 ≤ |δ| < 0.474, and large otherwise.

We use Mann-Whitney U tests and Cliff’s delta since these are non-parametric tests

and our data is not normally distributed. We check the statistical significance of the

change in the rate of abandonment using a Pearson χ2 test (one degree of freedom,

α = 0.05).

Results. Observation 8—Authors of design-related reviews tend to have

lower expertise. Figure 5–2 shows that design-related reviews tend to have lower

author expertise than reviews without design comments in both studied projects.

Mann-Whitney U tests show that there is a statistically significant difference in

37

Figure 5–2: Difference in author experience in design-related and design-unrelated
code reviews

expertise between design-related and non-design-related reviews in Nova and Neu-

tron (p < 2.2× 10−16 in both cases). However, Cliff’s delta values suggest that the

practical difference is negligible (-0.09 in Neutron and -0.06 in Nova). Although

the difference is practically negligible, the direction generally agrees with Observa-

tion 3, i.e., the authors of design-related reviews are less likely to be aware of the

global context of the codebase.

Table 5–2: Summary statistics of accepted and abandoned reviews

Neutron Nova
Design Not Design Not

Merged Reviews 5100 7387 9344 13303
Abandoned Reviews 2340 2067 3835 4490
% of Abandonment 31% 22% 29% 25%
p-value < 2.2× 10−16 3.67× 10−14

Observation 9—Design-related reviews are more likely to be aban-

doned. Table 5–2 shows that 29% and 31% of design-related reviews are abandoned

38

in Nova and Neutron, respectively. When compared with reviews without design

comments, we find that design-related reviews account for an increase of four and

nine percentage points in Nova and Neutron, respectively. A Pearson χ2 test

shows that there is a statistically significant difference between design-related and

reviews without design comments in terms of the rate of abandonment in both stud-

ied projects. These results complement those of Tao et al. [56], who observed that

design-related reviews were less likely to be accepted in Mozilla.

Authors of design-related reviews tend to have less expertise than reviews

without design comments. Moreover, design-related reviews are more likely

to be abandoned in our subject projects.

5.4 Chapter Summary

In this chapter, we demonstrate that coarse-grained classifiers show promise

for identifying design-related review comments. Using those classifiers, we scale

our analysis up to our entire dataset of code reviews to navigate the relationship

between properties of a code review and the incidence of design-related feedback.

While the observation of Chapters 4 and 5 shed light on the phenomenon of design

discussions that occur during code review, we are missing the pragmatic perspectives

of developers who regularly participate in the code review process. Thus, the next

chapter sets out to gather practitioner perspectives and triangulate them with respect

to our qualitative and quantitative observations.

39

CHAPTER 6
Triangulation through Surveying Software Practitioners

In this chapter, we present the design and results of the survey that we conducted

to triangulate our observations. Triangulation is a mixed-methods research tool that

connects different quantitative and qualitative observations by inquiring within the

evaluation community [22]. In our case, our evaluation community is comprised of

software practitioners who regularly participate in code reviews. The goal of this

chapter is to better understand how software developers define design, and the role

that it plays in their code reviewing behaviour.

6.1 Survey Design

Broadly speaking, our survey consists of five main sections, each of which focuses

on one aspect of design discussion in the peer code review process. The first section

explores the definition and importance of design in the context of code review, while

the second section explores design concerns. The third and fourth sections investigate

the prevalence and importance of the different types of design discussions that occur

during code reviews, while the fifth section examines the strength of the relationship

between design discussions and software experience.

Multiple choice and Likert scale questions are quantified easily, while free-form

questions are intentionally formulated to solicit open-ended responses to allow de-

velopers to express their opinions and perspectives in complete thoughts. Using the

40

same open coding approach as Chapter 4, responses are coded by the author of this

thesis, and a collaborator to extrapolate trends for further analysis [41].

6.2 Demographic Information

The survey was posted on the developer mailing lists of the studied OpenStack

community and the Gerrit Community. It was also circulated via social media plat-

forms such as Linkedin, Twitter, and Facebook, to maximize exposure and engage-

ment. To encourage participation in the survey, respondents were entered into a

raffle for a $50 gift card. The survey yielded 94 respondents with varying expertise

levels, backgrounds, geographical locations, and work domains. All respondents are

software professionals who self-report that they participate regularly in code reviews.

Our respondents have a median of five years of experience, with a mean of eight

years, and values range from as much as 27 years to as little as one year. In addition,

15% of our respondents have contributed to OpenStack which is the community

that we focused on in Chapters 4 and 5. Respondents work in a broad variety

of sectors of the software market, including (but not limited to) cloud operations,

telecommunications, e-commerce, finance, aerospace and web, mobile and video game

development. Lastly, the respondents are geographically dispersed, with respondents

having affiliations in Africa, Asia, Europe, and North America.

6.3 Importance and Frequency of Design

Participants were shown our adopted definition of design, originally introduced

by Brunet et al. “As an artifact, design is a representation of how a portion of

the code should be organized. As an activity, design is the process of discussing the

structure of the code to organize abstractions and their relationships” [11].

41

Figure 6–1: Importance of Design

Question #1: With the definition in mind, in your opinion, how important is

design during code review? Why?

Observation 10—The majority of respondents agree that design dis-

cussion is important and shares a link with software quality. Figure 6–1

show that 89% of respondents believe that discussing design during code review is

‘important’ (39%) or ‘very important’ (50%).

Respondents were given the opportunity to elaborate upon the rationale behind

their choice with a free-form answer box. 82% of respondents provided responses.

Table 8.4 (Appendix A) shows the coded results, which indicate that the majority

of the respondents perceive that there is a strong link between software design with

software quality aspects. For example, one respondent speculates that “One of the

crucial aspects of any new code written is how it fits into the current [design] or what

kind of [design] it forms itself. A lack of design for any code eventually lends itself

to become unmaintainable and difficult to extend.” Broadly speaking, the software

quality responses fit under ‘Code Cleanliness’ and ‘Performance’ categories, which

are further decomposed into sub-categories. We find that 71% of the responses are

associated with ‘Code Cleanliness’, while 12% of the responses are associated with

“Software Performance”. ‘Code Cleanliness’ includes reusability, maintainability,

42

extensibility, sustainability, and code organization, while ‘Software Performance’

encompasses scalability, efficiency, as well as time and memory resources.

Observation 11— The majority of respondents agree that design dis-

cussion should take place during code review. We find that 88% of the re-

spondents agree that design is an integral part of a proper code review. Several

responses especially touch upon the difficulty to automate design checks. For exam-

ple, one respondent speculated that: “Design is something that [is] hard to check

automatically, so humans must check that during code-review.” Along the same

line of thought, another respondent remarked: “[Design Concerns] are the hardest

to detect with an automated tool, and their side effects can appear too late in the

development process which makes [them] more expensive to fix.”

On the other hand, a considerable minority expressed opposing views. Indeed,

15% of the participants believe that design should be discussed prior to code reviews,

not during them. For instance, a respondent shared that “Design discussions should

take place in design discussion/grooming sessions. While writing maintainable and

reusable code is crucial in software design, code reviews tend to get bulky and boring,

with multiple parallel threads of debates when design decisions are discussed there.”

The majority of survey participants agree that design is important, and

should be discussed during code reviews, as it is associated with better

software quality. If left unchecked, however, design discussions may bloat

the code review process.

43

Figure 6–2: Usefulness of design concerns according to the survey participants

6.4 Design Concerns

Participants were shown the definition of the seven design concerns that we

discovered in Chapter 4.

Question #2: In your opinion, which design concerns are the most useful?

Observation 12—‘Performance’ is the design concern that is most fre-

quently perceived to be important. Figure 6–2 shows the number of respon-

dents who selected each design concern. 65% of respondents selected ‘Performance’.

The value of performance feedback is highlighted by the free-form feedback from

one respondent: “Performance is always important, without it, nothing is useful

commercially.” On the other hand, ‘Code Misplacement’ ranks as the least useful,

since only 36% of developers selected it. Indeed, a respondent clarifies why they did

44

not select ‘Code Misplacement’: “Code misplacement is also less important than

the other topics, and can be easily addressed [in follow-up code changes].”

Observation 13—The potential for end-user impact is a key criterion

for evaluating the importance of design concerns. Software design is rarely

a characteristic that is associated with an impact on end-user experience. Yet, in-

terestingly, 7% of the free-form answers to Question #2 argue that their selection

of important design concerns are based on whether said concern affects the end-user

of the software. While 7% is not an especially large percentage, we do believe it is

worth noting because it emerged naturally without respondents being prompted to

select it as an option. For example, respondents pointed out:

• Product: “Redundant code and module coupling while nice [minimize, they

do] not necessarily [break] or []affect] the end product too much. [...]”

• End-Users: “These concerns/issues will directly impact the users of the soft-

ware. It will likely flow to them as errors, slow performance etc.”

• User Experience: “I selected these ones since they can affect the end user’s

experience like (Performance, Side Effects, Shallow Fix)[...]”

• User Experience: “Performance because slow performance affects UX and

[...]”

Observation 14—Respondents also notice the importance of awareness

of the global context of the codebase (Observation 3). Respondents also

point out the importance of recognizing the global context of the codebase during

code review. For example, one respondent speculates that: “Redundant code is a

symptom of [a developer] who doesn’t understand code design as a whole”, while

45

Figure 6–3: The frequencies of different design concerns found in code reviews, com-
pared to the perceived frequencies of them according to survey participants

another speculates that: “Because sometimes, especially when fixing bugs, we miss

the whole picture [...]”. These responses complement Observation 3, where we noted

that most design concerns arise due to a lack of awareness of the global context of

the codebase.

Question #3: In your experience, which design concerns are raised most fre-

quently on code changes that you have authored/reviewed?

Figure 6–3 shows the rates at which respondents perceive that different design con-

cerns are raised. The differences between the perceptions of respondents and our

46

observations from Chapter 4 are highlighted. In addition, the difference in percep-

tions when respondents are in the author and reviewer roles are shown.

Observation 15—Respondents perceive ‘Unnecessary Complexity’

and ‘Redundant Code’ as the most frequent design concerns across all

the different settings, which agrees with our findings. Interestingly, the two

most frequent design concerns that we have found in the OpenStack community,

are the same two design concerns that respondents perceive as the most frequent, as

shown in Figure 6–3.

On the other hand, respondents perceive that ‘Performance’ and ‘Side Ef-

fect’ occur relatively frequently, while we find that they were rarely raised in the

OpenStack community. More specifically, design concerns that are related to ‘Per-

formance’ seem to be of great significance to practicing software developers, which

might suggest that in propriety development settings, performance may be a bigger

pain point that in the studied OpenStack context.

These reinforce the importance of Observation 12, which states that ‘Performance’

is the design concern that resonates with the largest proportion of respondents.

Question #4: Can you think of other design concerns that you believe are

important?

28 respondents shared their input to this question. After coding the responses, we

found five respondents (29%) named readability-related concerns such as ‘naming

conventions’ and ‘redundant comments’ as other design concerns. However, we have

chosen to exclude ‘Readability’ (recall Table 4–2). We did so to conform to a defi-

nition of design which focuses on higher-level issues, such as codebase organization

47

and class structure, rather than more cosmetics issues, such as the readability of the

code. Moreover, nowadays, readability concerns can be improved by automatic ap-

proaches (e.g., Linters, IDE configuration). This confusion emphasizes the difficulty

of clearly carving the boundary of design in practice.

Another three of the respondents (10%) mentioned (violations of) the ‘Single

Responsibility Principal’ as an important design issue that is missing in our tax-

onomy of design concerns. We revisited our data from Chapter 4, and found that

such violations are labelled under the ‘Module Coupling’ and ‘Code Misplacement’

categories of our taxonomy. This is because violations of the single responsibility

principle manifest as functionality appearing within a module where it does not be-

long, i.e., misplacing the code, which results in undesirable coupling between modules

that should not (directly) interact.

Additionally, 7% of the answers mention ‘Testability’, i.e., the degree to which

the code as written lends itself to being (automatically) tested. After revisiting our

data from Chapter 4, we confirmed that Testability did not explicitly arise in our

sample; however, we did observe examples of ‘Code Misplacement’ and ‘Module

Coupling’ that imply an underlying concern of testability.

Finally, one respondent mentioned ‘Backwards Compatibility’ as a missing design

concern. After revisiting data from Chapter 4, we note that these issues map to our

‘Side Effect’ category.

48

Figure 6–4: Importance of Design Discussion

Respondents tend to prioritize design concerns by their potential impact on

end-users. This helps to explain why ‘Performance’ is the design concern

that resonated with the largest proportion of our respondents.

6.5 Design Discussions

Question #5: When a design concern is raised, in your opinion, how important

is it that the authors and reviewers engage in a discussion about it? and Why?

Observation 16—Respondents believe that design discussion benefits the

individual, the development team, and the end-product. As Figure 6–4

shows that most respondents perceive that discussing design is beneficial, as 94%

of the answers fall under ‘important’ and ‘very important’. Table 8–2 (Appendix

B) shows the coded results of the free-form answers, which provides further insight

into the rationale for this. The responses fit into four high-level categories: ‘Team

Gains’ (74%), ‘Personal Gains’ (52%), ‘Product Gains’ (48%), and ‘No Discussion

Needed’ (16%).

As the names suggest, the first three categories encompass positive benefits for

the individual, the development team, and the end-product, respectively, while the

49

last category is comprised of responses that are opposed to design discussions during

code reviews.

‘Team Gains’ were mentioned in 74% of the responses—the highest-ranking

justification for the importance of design discussion according to our respondents.

The majority of the answers were further decomposed into: ‘Reaching Consensus’,

‘Opportunities for Growth’, ‘Group Problem-Solving’, ‘Team Sync-Up’, ‘Under-

standing Trade-Offs’, ‘Information-Sharing’ and the ‘Understandability of Design’

sub-categories. For example, one respondent remarked that: “[it is important that]

software engineers know what are the constraints, limitations, and performance of

the code they develop.”, while another respondent claimed that: “Both parties

should understand the concern that is raised and the various tradeoffs each solution

will [present].”

‘Personal Gains’ were mentioned in 52% of the responses, which were further

decomposed into: ‘Understanding Other Perspectives’, ‘Receiving Feedback for

Author’, ‘Avoiding Repetition of Mistakes’, ‘Explaining the Rationale’ behind the

code change, and ‘Suffering/Overcoming Power Dynamic between Authors and Re-

viewers’ sub-categories. This agrees with our earlier suspicion that a power dynamic

is present between authors and reviewers. Indeed, in Observation 2, we conjectured

that authors rarely engage in design discussions because of the power dynamic be-

tween authors and reviewers.

For example, one respondent remarked that: “[authors should] make sure that [they]

answer reviewers for reasons of politeness. It would be rude to ignore the time and

effort someone put in to give that feedback”, while another encouraged engagement

50

in the discussions because “Two sided discussions are very important, if people have

egos about their software and reject improvements, the product will suffer.”

‘Product Gains’ was mentioned in 48% of the responses, which were fur-

ther decomposed into: ‘Enhancing Product Quality’, ‘Preventing Design Erosion’,

‘Maintainability’ and ‘Reusability’ sub-categories. For example, one respondent

remarked that: “because everyone needs to understand the issue and why it is

important to [address, for example] for code reading [or] reusability”

‘No Discussion Needed’ was mentioned in 16% of the responses, which were

further decomposed into two sub-categories: ‘Design Concerns Should be Resolved

Later’, and ‘Trivial Solutions to Design Concerns’ should not be discussed as it

wastes time. For example, one respondent remarked that: “In a review, you do not

discuss. You highlight the issue and move on. Resolution is done after the review”,

while another stated that: “the importance [of design discussion depends] on the

complexity of the review, if the review is trivial, a discussion can be a bad allocation

of time.”

The majority of the respondents believe discussing design is beneficial for the

individual, the development team, and the end-product. Other respondents

raised concerns that design discussion should not slow development progress,

and if raised, could be addressed in follow-up work.

6.6 Experience

Question #6: In your experience, how quickly are new contributors able to

provide valid design feedback?

51

Figure 6–5: How quickly our respondents think new contributors are able to provide
valid design feedback.

Figure 6–6: The type of contributor that tends to provide the mosts design feedback,
according to our respondents.

Observation 17—Respondents perceive that software experience is associ-

ated with providing design feedback, and engaging in design discussions.

Figure 6–5 shows that the responses are skewed to the ‘Expert’ side of the scale,

where 52% chose ‘Intermediate’-experience as the starting level that is able to pro-

vide valid design feedback, while 34% of the responses opted for even higher ex-

perience (i.e. ‘Advanced’ and ‘Expert’). Additionally, Figure 6–6 compliments

this finding, as it shows that 84% of respondents chose ‘Advanced’- and ‘Expert’-

level developers as the type of contributers that are more likely to provide useful

design feedback during code review. This compliments our Observation 8, where

we observed that experience levels of reviewers who provide design feedback are

statistically-significantly higher than others.

52

Developers’ perceptions agree with our quantitative observations that

project-specific experience is related to the likelihood of providing design

feedback.

6.7 Chapter Summary

In this chapter, we triangulate our prior observations from Chapters 4 and 5 with

respect to the perceptions of 94 software practitioners who regularly participate in

code reviews. In the next chapter, we discuss the threats to the validity of the studies

in this thesis.

53

CHAPTER 7
Threats To Validity

Being comprised of empirical studies, this thesis is subject to threats to its

validity. In this chapter, we describe those threats with respect to external, internal

and construct validity types.

7.1 External Validity

External validity concerns have to do with the generalizability of our studies.

Due to the manually intensive nature of our qualitative study (Chapter 4), we chose to

focus our analysis on two open-source projects from one community (OpenStack).

Due to our small sample size, it is difficult to draw general conclusions about soft-

ware projects. However, the goal of this thesis is not to provide a theory of design

discussions in code reviews that applies to all systems. Instead, we believe that our

study could serve as a baseline for design classification and design involvement in

code reviews. Future replication studies will help to broaden our insights into more

general trends.

Moreover, the insights that we glean from our survey of 94 software practitioners

(Chapter 6) are likely incomplete as well. On the other hand, the survey respondents

work in different sectors of the software industry and are geographically dispersed.

Furthermore, our respondents cover a broad range of experience levels ranging from

one to 27 years of professional experience in the software industry.

54

7.2 Internal Validity

Internal validity concerns may be raised if other plausible hypotheses may ex-

plain our observations. Since we select a sample of review comments in our qualitative

analysis (Chapter 4), sampling bias might have an impact on our conclusions. For

example, the studied projects may have dedicated explicit effort to design improve-

ment at particular time periods. If those periods were over or undersampled, our

results may be skewed. To mitigate this threat, we randomly selected reviews for

manual classification, so that our findings are not bound to a certain period in the

project history.

7.3 Construct Validity

Construct validity concerns may creep into our study if our measurements are

misaligned with the phenomena we set out to study. Our detection of design-related

comments (Chapter 4) is a manual process that may be subjective. However, we mit-

igated this threat by having two coders agree about each classified result. The coders

are both graduate students with industrial experience in code reviewing practices.

Moreover, an individually classified sample yielded a Cohen’s Kappa of 0.72 (sub-

stantial agreement). To facilitate further refinement of our classification, we provide

our definition and shared understanding of each design category, as well as examples

in Table 4–2. To further strengthen our observations, as suggested by Ralph [41], we

conduct a developer survey (Chapter 6) to see if our observations resonate with the

community under analysis.

55

CHAPTER 8
Conclusion

In this chapter, we conclude this thesis by summarizing its contributions, dis-

cussing the broader implications of our observations for stakeholders in the code

review process, and proposing promising directions for future research.

8.1 Contributions and Findings

Code review is a common software quality assurance practice. A shift towards

automated detection of low-level issues has, hypothetically, freed reviewers up to

focus on higher-level issues, such as software design. Yet in practice, little is known

about the extent to which design is discussed during code review.

In this thesis, we set out to better understand the frequency and type of design-

related discussions in code reviews. To achieve our goal, we qualitatively and quanti-

tatively analyze design-related comments in the OpenStack Nova and Neutron

projects, and then we triangulate our findings by surveying 94 software practitioners.

We make the following observations:

• Design concerns are not commonly discussed in code reviews. Moreover, au-

thors rarely engage in design-related discussions with reviewers.

• Most design issues are raised due to a lack of awareness of the global context

of the codebase. However, most design-related comments are constructive,

providing suggestions to mitigate the issue.

56

• Authors of design-related reviews tend to have lower expertise than those re-

views without design-related comments, and providing valid design feedback is

believed to be linked with higher software expertise.

• Design-related reviews are more likely to be abandoned than reviews without

design-related comments.

• The majority of survey respondents perceive design discussions that occur

during code review as an important aspect, which positively affects the au-

thor/reviewer (e.g., peer mentorship), the development team (e.g., collabora-

tive problem-solving) and the end-product (e.g., improvements to the code

quality). Others caution against it by justifying that design discussions bloat

code review, and slow the development process.

• Design concerns that are associated with end-user experience (e.g., perfor-

mance) resonated with the largest proportion of survey respondents.

8.2 Practical Implications

Our results suggest that: (a) the modern shift code review automation is not

enough to ensure that design is discussed during code reviews; (b) design classi-

fiers could be integrated into the reviewing interface to increase the transparency

of the reviewing process; and (c) authors should not be intimidated to engage in

design-related discussions, since reviewers usually offer constructive suggestions for

improvement, and this will widen their codebase knowledge and result in a better

end-product. Below, we describe the practical implications of our results for software

organizations, tool developers, and authors of code changes in more detail.

57

8.2.1 Software Organizations

Software organizations should encourage reviewers to take design as-

pects into account. Only 9% and 14% of code review comments are design-related

in Nova and Neutron, respectively (Observation 1). Moreover, 11% and 21% of

those comments elicit authors’ responses in Nova and Neutron (Observation 2).

Despite increasing rates of automation of reviewing tasks in the OpenStack com-

munity, these observations suggest that design-level discussions are still rare. Indeed,

automation of menial tasks is not enough to achieve high rates of high-level review

discussion.

Design-related reviews are likely to struggle with their integration.We

find that 67% and 65% of the design issues observed are due to a lack of awareness

of the global context of the codebase in Nova and Neutron, respectively (Obser-

vation 3). This may explain why we observe that those design-related reviews are

significantly more likely to be abandoned (Observation 9).

8.2.2 Tool Developers

Integration of design classifiers into the reviewing interface would

increase the transparency of the reviewing process. Our design classifiers

can detect design discussions in past code reviews. If these classifiers are integrated

into the code review user interface, integration decisions could be based on a clearer

understanding of the review process. This could be combined with risk estimates

(e.g. the impact of system deliverables [54]) to help determine whether the rigour

of the code reviewing process is too low to integrate the corresponding code changes

into the codebase.

58

8.2.3 Authors of Code Changes

Authors should not be intimidated to engage in design-related dis-

cussions. Authors rarely engage in design-related discussion (Observation 2). We

conjecture that author-reviewer power dynamics may be at play, since reviewers have

authority over the acceptance of code changes. However, in design-related reviews,

reviewers mostly offer constructive feedback to help authors handle their design is-

sues (Observation 4), which in return will broaden their global knowledge of the

codebase (Observations 3, 15).

8.3 Opportunities for Future Research

Below, we outline several promising directions for future research.

8.3.1 Can we improve our automatic classification?

In chapter 5, we automatically label design-related comments to perform a large-

scale analysis of design discussions during code reviews. Other code review charac-

teristics and metrics can be used to improve the classifiers’ performance, such as the

author, the reviewer, their project-specific expertise level, the component of the code

being discussed, the number of files, and file names, etc. More accurate and precise

classifiers will result in more solid findings.

8.3.2 How do design discussions differ between open-source and propri-
etary settings?

In Chapters 4 and 5, we study the OpenStack Nova and Neutron projects

qualitatively and qualitatively. This can be replicated in a proprietary setting, where

developers are often under direct pressure by customer demands, as well as financial

and time constraints. Our initial conjecture is that proprietary software organizations

59

may prioritize other concerns such as user-experience, performance, and functional

aspects, and thus, discuss design during code reviews even more than open-source

projects.

8.3.3 Is design discussion associated with design or software quality?

In Chapter 5, design classifiers are used to scale up our qualitative study, since

manually classifying the entire dataset of code reviews is practically infeasible. How-

ever, the development of a tool that comprises a project- and team-specific design

classifier can also be used to determine the level of rigour in the code reviewing pro-

cess. Using these values, we may be able to study how design discussions associate

with concepts like design quality (e.g., incidence rates of design anti-patterns) or

software quality (e.g., incidences of post-release defects). This is inspired by prior

work, which demonstrated how different aspect of the code reviews are associated

with the quality of the software [25, 30, 31, 35, 49], as well as our Observations 10

and 16 that discussing design is beneficial to the development team, and is linked to

the quality of the software produced.

8.4 Replication Package

To enable future work, we have made the manually classified reviews and the

scripts that we used to analyze them available online.1

1 https://github.com/software-rebels/DesignInCodeReviews-ESEM2018

60

Appendix A

Table 8–1: Open Coding for the Importance of Design.

Category % Survey Response Example

Code Cleanli-

ness

71%

Reusability 5% “When you organize the code and design it well , the team will

be able to reuse some of it . That will help us have an easy

maintainable product .”

Maintainability 36% “I am a strong believer in clean code. Structure and relation-

ships are important when it comes to maintenance and code

that’s clean.”

Extensibility 14% “Design is also heavily impacted by the purpose of the software.

If the purpose were to be extended, the design would need to

allow for this.”

Code Organiza-

tion

5% “Because design must be well understood when reviewing code.

It helps in better understanding and may result in review com-

ments that would change the code structure to a better one.”

Understandability 11% “Understanding how the system is meant to work is impor-

tant in reviewing someone’s attempt to change how it actually

works.”

61

Performance 12%

Scalability 2% “Proper design allows the code to be easily modified and scaled

later on”

Efficiency 10% “Design of code is important for maintenance, memory and fea-

ture extension in big projects.”

Execution Tracing 11%

Traceability 6% “If the implementation is not following the design, this will

cause integration problems, as well as untraceable issues as the

code is not following the design, hence not following the sw

requirements.”

Debugability 1% “The design of the code has effects beyond just the functionality

delivered. It affects [...] how easy it would be to debug the

code.”

Testability 4% “I often find a more-structured design results in clearer unit and

functional tests for the code, also the code coverage of these

designs tend to be higher.”

Source of De-

fects

5% “Code Chaos is the main source of bugs”

Timing of Design 27%

In code review 4% “Design is very important in multi-tiered applications so it

comes naturally in a code review.”

62

Before code re-

view

15% “Design should be agreed on before code review”

Revisited in code

review

8% “Sometimes, design and architecture decisions should be made

prior to starting the coding process. The review should then

validate the adherence to those.”

Definition of Design 26%

Important 21% “Design determines everything from variable names right up to

the entire architecture of the solution itself.”

Not top priority 4% “I chose not to mark it as a 5 because that would place as at

the top of the importance list. Although I do think it is an

important factor to look for, I would say there are a few other

things to look for in a review which are more beneficial.”

Can’t be au-

tomatically

checked

1% “Design is something that is hard to check automatically, so

humans must check that during code-review”

Cost of Design 21%

Cost of good de-

sign

11% “Design is very important for the long term health of the project

and the proper functioning of code. But - to quote an old

aphorism - we must not ”let the perfect become the enemy of

the good”.”

Cost of bad de-

sign

5% “Without design, people can fall to suboptimal solutions more

easily.”

63

Technical Debt 3% “Bad design can affect app performance and also cause future

code debt”

Discussion !=

good design

1% “Discussion is likely necessary but is not a requirement of ”de-

sign process”. Surprisingly good design can come even from

individuals without discussion. Also bad designs could be re-

sults of many discussions”

Design is im-

practical

1% “most of pre-designed projects [..] have less issues after deploy-

ment but to be honest designing takes time, that sometimes it

could be impractical in some proof-of-concept projects”

Design Knowledge 11%

Clear Communi-

cation

5% “Code review is the best opportunity to build a shared under-

standing and consensus on the design.”

Power Dynamic 1% “people tend towards leniency in the reviews, people, especially

developers are not amazing communicators, so they are afraid

of being 100% open and honest.”

Easier Onboard-

ing

2% “A good, consistent design helps newer project participants to

become contributors more quickly, in my experience.”

Shared Code

Ownership

3% “Discussing it during code reivew help the verification of the

understandability of the design (which is important in corpo-

rate since it is rarely the case that only one person write and

maintain the code).”

64

Appendix B

Table 8–2: Open Coding for the Importance of discussing

design during code review.

Category % Survey Response Example

Team Gains 74%

Consensus 22 “Given both reviewer and author have strong opinions about

their ideas or design decisions, [code review] could be benefi-

cial.”

Opportunity for

growth

19 “Design decisions must be discussed. It is a learning opportu-

nity for both the reviewer and the reviewee”

Sync up 9 “Discussion will put all parties on the same page.”

Group problem

solving

9 “To have a fruitful discussion about how to fix this.”

Information

sharing

7 “[so that] software engineers know what are the constraints,

limitations, and performance of the code they develop.”

Understanding

trade-offs

4 “Both parties should understand the concern that is raised and

the various tradeoffs each solution will give.”

Understandability

of design

4 “Code review is very important for the development team to

understand design.”

Personal Gains 52%

65

Rationale 15 “We have to know the reason behind this implementation.”

Other Perspec-

tives

13 “Because it’s very important for the reviewer to understand the

author’s point of view and vice versa. As that would reach an

ultimate solution.”

Feedback for au-

thor

9 “As an author, I gain experience by discussing with my code

reviewer. It’s like supervision, and it highlights the mistakes

that I was unaware of.”

Avoid repetition

of mistakes

8 “All parties need to get an understanding of why the design was

selected and what the resolution is in order to prevent the same

issues occuring again.”

Power dynamic 7 “Two sided discussions are very important, if people have egos

about their software and reject improvements, the product will

suffer.”

Product Gains 48%

Product Quality 22 “Two reasons: to enhance the overall quality of the end product,

and [...]”

Maintainability 14 “Its important to get a high quality usable maintainable code.”

Prevent Design

Erosion

6 “Design should be maintained through all code merges.”

Reusability 6 “because everyone needs to understand the issue and why it is

important to avoid such thing for code reading and reusability”

Against Discussion 16%

66

Trivial 9% “Sometimes the concern and resolution are both obvious, and

no discussion is needed.”, “the importance depend on the com-

plexity of the review, if the review is trivial, a discussion can be

a bad allocation of time.”

Resolve Later 3% “In a review, you do not discuss. You highlight the issue and

move on. Resolution is done after the review.”

Deadlines 2% “Sometime, there is a tight deadline, so we pass the design in the

review.”, “It is important but sometimes developers don’t have

time for that and only care for a working code for immediate

submission.”

Intended design

!= correct func-

tionality

2% “Because following intended design is not necessary for working

software in most cases.”

67

References

[1] Rana Alkadhi, Manuel Nonnenmacher, Emitza Guzman, and Bernd Bruegge.
How do developers discuss rationale? In 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER), pages
357–369. IEEE, 2018.

[2] Guzzi Anja, Bacchelli Alberto, Lanza Michele, Pinzger Martin, and van Deursen
Arie. Communication in open source software development mailing lists. In 2013
10th Working Conference on Mining Software Repositories (MSR), pages 277–
286, May 2013.

[3] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges
of modern code review. In Proceedings of the 2013 international conference on
software engineering, pages 712–721. IEEE Press, 2013.

[4] Richard A Baker Jr. Code reviews enhance software quality. In Proceedings
of the 19th international conference on Software engineering, pages 570–571.
ACM, 1997.

[5] Vipin Balachandran. Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation. In
Software Engineering (ICSE), 2013 35th International Conference on, pages
931–940. IEEE, 2013.

[6] Tobias Baum, Olga Liskin, Kai Niklas, and Kurt Schneider. Factors influencing
code review processes in industry. In Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, FSE
2016, pages 85–96, New York, NY, USA, 2016. ACM.

[7] Kent Beck, Martin Fowler, and Grandma Beck. Bad smells in code. Refactoring:
Improving the design of existing code, pages 75–88, 1999.

68

69

[8] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. Modern
code reviews in open-source projects: Which problems do they fix? In Pro-
ceedings of the 11th working conference on mining software repositories, pages
202–211. ACM, 2014.

[9] A. Bosu and J. C. Carver. Impact of peer code review on peer impression forma-
tion: A survey. In 2013 ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 133–142, Oct 2013.

[10] Amiangshu Bosu, Michaela Greiler, and Christian Bird. Characteristics of use-
ful code reviews: An empirical study at microsoft. In Proceedings of the 12th
Working Conference on Mining Software Repositories, MSR ’15, pages 146–156,
Piscataway, NJ, USA, 2015. IEEE Press.

[11] João Brunet, Gail C Murphy, Ricardo Terra, Jorge Figueiredo, and Dalton Serey.
Do developers discuss design? In Proceedings of the 11th Working Conference
on Mining Software Repositories, pages 340–343. ACM, 2014.

[12] Felivel Camilo, Andrew Meneely, and Meiyappan Nagappan. Do bugs fore-
shadow vulnerabilities?: A study of the chromium project. In Proceedings of
the 12th Working Conference on Mining Software Repositories, pages 269–279.
IEEE Press, 2015.

[13] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intel-
ligence research, 16:321–357, 2002.

[14] Jacek Czerwonka, Michaela Greiler, and Jack Tilford. Code reviews do not find
bugs: how the current code review best practice slows us down. In Proceedings
of the 37th International Conference on Software Engineering-Volume 2, pages
27–28. IEEE Press, 2015.

[15] Fernando Brito e Abreu and Walcelio Melo. Evaluating the impact of object-
oriented design on software quality. In Software Metrics Symposium, 1996.,
Proceedings of the 3rd International, pages 90–99. IEEE, 1996.

[16] Michael Fagan. Design and code inspections to reduce errors in program devel-
opment. In Software pioneers, pages 575–607. Springer, 2002.

[17] Michael E Fagan. Design and code inspections to reduce errors in program
development. IBM Systems Journal, 38(2/3):258, 1999.

70

[18] Martin Fowler and Kent Beck. Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[19] Erich Gamma. Design patterns: elements of reusable object-oriented software.
Pearson Education India, 1995.

[20] Tom Gilb, Dorothy Graham, and Susannah Finzi. Software inspection, volume
253. Addison-Wesley Reading, 1993.

[21] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study
of the pull-based software development model. In Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014, pages 345–355, New
York, NY, USA, 2014. ACM.

[22] Jennifer Greene and Charles McClintock. Triangulation in evaluation: Design
and analysis issues. Evaluation review, 9(5):523–545, 1985.

[23] Peter Kampstra. Beanplot: A boxplot alternative for visual comparison of
distributions. Journal of Statistical Software, Code Snippets, 28(1):1–9, October
2008.

[24] Chris F Kemerer and Mark C Paulk. The impact of design and code reviews on
software quality: An empirical study based on psp data. IEEE transactions on
software engineering, 35(4):534–550, 2009.

[25] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W
Godfrey. Investigating code review quality: Do people and participation mat-
ter? In Software Maintenance and Evolution (ICSME), 2015 IEEE Interna-
tional Conference on, pages 111–120. IEEE, 2015.

[26] J Richard Landis and Gary G Koch. The measurement of observer agreement
for categorical data. biometrics, pages 159–174, 1977.

[27] Craig Larman. Applying UML and Patterns: An Introduction to Object Oriented
Analysis and Design and Interative Development. Pearson Education India,
2012.

[28] Mika V Mantyla. Developing new approaches for software design quality im-
provement based on subjective evaluations. In Proceedings. 26th International
Conference on Software Engineering, pages 48–50. IEEE, 2004.

71

[29] Mika V. Mäntylä and Casper Lassenius. What types of defects are really discov-
ered in code reviews? IEEE Transactions on Software Engineering, 35(3):430–
448, 2009.

[30] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. The
impact of code review coverage and code review participation on software qual-
ity: A case study of the qt, vtk, and itk projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories, pages 192–201. ACM,
2014.

[31] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. An em-
pirical study of the impact of modern code review practices on software quality.
Empirical Software Engineering, 21(5):2146–2189, 2016.

[32] Andrew Meneely, Alberto C. Rodriguez Tejeda, Brian Spates, Shannon Trudeau,
Danielle Neuberger, Katherine Whitlock, Christopher Ketant, and Kayla Davis.
An empirical investigation of socio-technical code review metrics and security
vulnerabilities. In Proceedings of the 6th International Workshop on Social Soft-
ware Engineering, SSE 2014, pages 37–44, New York, NY, USA, 2014. ACM.

[33] Andrew Meneely and Laurie Williams. Secure open source collaboration: An
empirical study of linus’ law. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS ’09, pages 453–462, New York,
NY, USA, 2009. ACM.

[34] Matthew B Miles, A Michael Huberman, Michael A Huberman, and Michael
Huberman. Qualitative data analysis: An expanded sourcebook. sage, 1994.

[35] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. Do code review prac-
tices impact design quality? a case study of the qt, vtk, and itk projects. In
Software Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd
International Conference on, pages 171–180. IEEE, 2015.

[36] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. Do code review prac-
tices impact design quality? a case study of the qt, vtk, and itk projects. In
2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), pages 171–180. IEEE, 2015.

[37] Stacy Nelson and Johann Schumann. What makes a code review trustworthy?
In System Sciences, 2004. Proceedings of the 37th Annual Hawaii International
Conference on, pages 10–pp. IEEE, 2004.

72

[38] Kerzazi Noureddine, Khomh Foutse, and Adams Bram. Why do automated
builds break? an empirical study. In 2014 IEEE International Conference on
Software Maintenance and Evolution, pages 41–50, Sept 2014.

[39] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul,
and Mark Harman. Are developers aware of the architectural impact of their
changes? In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, pages 95–105. IEEE Press, 2017.

[40] Rigby Peter C. and Storey Margaret-Anne. Understanding broadcast based peer
review on open source software projects. In 2011 33rd International Conference
on Software Engineering (ICSE), pages 541–550, May 2011.

[41] Paul Ralph. Toward methodological guidelines for process theories and tax-
onomies in software engineering. IEEE Transactions on Software Engineering,
2018.

[42] Jack W Reeves. What is software design. C++ Journal, 2(2):14–12, 1992.

[43] Jason Remillard. Source code review systems. IEEE software, 22(1):74–77,
2005.

[44] Peter C Rigby, Daniel M German, and Margaret-Anne Storey. Open source
software peer review practices: a case study of the apache server. In Proceedings
of the 30th international conference on Software engineering, pages 541–550.
ACM, 2008.

[45] Guoping Rong, Jingyi Li, Mingjuan Xie, and Tao Zheng. The effect of checklist
in code review for inexperienced students: An empirical study. In Software
Engineering Education and Training (CSEE&T), 2012 IEEE 25th Conference
on, pages 120–124. IEEE, 2012.

[46] Louis Rosenfeld, Peter Morville, and Jakob Nielsen. Information architecture
for the world wide web. ” O’Reilly Media, Inc.”, 2002.

[47] Todd Sedano, Paul Ralph, and Cécile Péraire. Software development waste.
In Proceedings of the 39th International Conference on Software Engineering,
ICSE ’17, pages 130–140, Piscataway, NJ, USA, 2017. IEEE Press.

[48] Mini Shridhar, Bram Adams, and Foutse Khomh. A qualitative analysis of
software build system changes and build ownership styles. In Proceedings of the
8th ACM/IEEE International Symposium on Empirical Software Engineering

73

and Measurement, ESEM ’14, pages 29:1–29:10, New York, NY, USA, 2014.
ACM.

[49] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu
Iida. Investigating code review practices in defective files: An empirical study
of the qt system. In Proceedings of the 12th Working Conference on Mining
Software Repositories, MSR ’15, pages 168–179, Piscataway, NJ, USA, 2015.
IEEE Press.

[50] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu
Iida. Review participation in modern code review. Empirical Software Engi-
neering, 22(2):768–817, Apr 2017.

[51] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina
Kula, Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. Who should
review my code? a file location-based code-reviewer recommendation approach
for modern code review. In 2015 IEEE 22nd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), pages 141–150. IEEE,
2015.

[52] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and tech-
nical factors for evaluating contribution in github. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages 356–366,
New York, NY, USA, 2014. ACM.

[53] John Vlissides, Richard Helm, Ralph Johnson, and Erich Gamma. Design pat-
terns: Elements of reusable object-oriented software. Reading: Addison-Wesley,
49(120):11, 1995.

[54] Ruiyin Wen, David Gilbert, Michael G. Roche, and Shane McIntosh. BLIMP
Tracer: Integrating Build Impact Analysis with Code Review. In Proc. of the In-
ternational Conference on Software Maintenance and Evolution (ICSME), page
To appear, 2018.

[55] Aiko Yamashita and Leon Moonen. Do developers care about code smells?
an exploratory survey. In Reverse Engineering (WCRE), 2013 20th Working
Conference on, pages 242–251. IEEE, 2013.

[56] Tao Yida, Han Donggyun, and Kim Sunghun. Writing acceptable patches: An
empirical study of open source project patches. In 2014 IEEE International
Conference on Software Maintenance and Evolution, pages 271–280, Sept 2014.

74

[57] Edward Yourdon. Structured walkthroughs. Yourdon Press, 1989.

[58] Nico Zazworka, Michele A Shaw, Forrest Shull, and Carolyn Seaman. Investi-
gating the impact of design debt on software quality. In Proceedings of the 2nd
Workshop on Managing Technical Debt, pages 17–23. ACM, 2011.

