
Studying Practical Challenges of
Automated Code Review Suggestions

by

Farshad Kazemi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Farshad Kazemi 2024

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Dr. Christian Bird
Principal Researcher
Microsoft Research

Supervisor: Dr. Shane McIntosh
Associate Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal Member: Dr. Michael W. Godfrey
Professor
David R. Cheriton School of Computer Science
University of Waterloo

Dr. Meiyappan Nagappan
Associate Professor
David R. Cheriton School of Computer Science
University of Waterloo

Internal-External Member: Dr. Weiyi Shang
Associate Professor
Electrical and Computer Engineering
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Code review is a critical step in software development, focusing on systematic source
code inspection. It identifies potential defects and enhances code quality, maintainability,
and knowledge sharing among developers. Despite its benefits, it is time-consuming and
error-prone. Therefore, approaches such as Code Reviewer Recommendation (CRR) have
been proposed to streamline the process. However, when deployed in real-world scenar-
ios, they often fail to account for various complexities, making them impractical or even
harmful. This thesis aims to identify and address challenges at various stages of the code
review process: validity of recommendations, quality of the recommended reviewers, and
the necessity and usefulness of CRR approaches considering emerging alternative automa-
tion. We approach these challenges in three empirical studies presented in three chapters
of this thesis.

First, we empirically explore the validity of the recommended reviewers by measuring
the rate of stale reviewers, i.e., those who no longer contribute to the project. We observe
that stale recommendations account for a considerable portion of the suggestions provided
by CRR approaches, accounting for up to 33.33% of the recommendations with a median
share of 8.30% of all the recommendations. Based on our analysis, we suggest separating the
reviewer contribution recency from the other factors used by the CRR objective function.
The proposed filter reduces the staleness of recommendations, i.e., the Staleness Reduction
Ratio (SRR) improves between 21.44%–92.39%.

While the first study assesses the validity of the recommendations, it does not measure
their quality or potential unintended impacts. Therefore, we next probe the potential
unintended consequences of assigning recommended reviewers. To this end, we study the
impact of assigning recommended reviewers without considering the safety of the submitted
changeset. We observe existing approaches tend to improve one or two quantities of interest
while degrading others. We devise an enhanced approach, Risk Aware Recommender
(RAR), which increases the project safety by predicting changeset bug proneness.

Given the evolving landscape of automation in code review, our final study exam-
ines whether human reviewers and, hence, recommendation tools are still beneficial to
the review process. To this end, we focus on the behaviour of Review Comment Gen-
erators (RCGs), models trained to automate code review tasks, as a potential way to
replace humans in the code review process. Our quantitative and qualitative study of the
ACR-generated interrogative comments shows that ACR-generated and human-submitted
comments differ in mood, i.e., whether the comment is declarative or interrogative. Our
qualitative analysis of sampled comments demonstrates that ACR-generated interrogative

iv

comments suffer from limitations in the ACR capacity to communicate. Our observations
show that neither task-specific ACRs nor LLM-based ones can fully replace humans in
asking questions. Therefore, practitioners can still benefit from using code review tools.

In conclusion, our findings highlight the need for further support of human participants
in the code review process. Thus, we advocate for the improvement of code review tools
and approaches, particularly code review recommendation approaches. Furthermore, tool
builders can use our observations and proposed methods to address two critical aspects of
existing CRR approaches.

v

Related Publications

Earlier versions of the work in this thesis have been published as follows:

• Characterizing the Prevalence, Distribution, and Duration of Stale Re-
viewer Recommendations (Chapter 4). Farshad Kazemi, Maxime Lamothe, Shane
McIntosh. IEEE Transactions on Software Engineering (TSE), In Print, 14 pages.

• Exploring the Notion of Risk in Code Reviewer Recommendation (Chapter
5). Farshad Kazemi, Maxime Lamothe, Shane McIntosh. In Proceedings of the
International Conference on Software Maintenance and Evolution (ICSME 2022),
pp. 139–150.

• Interrogative Comments Posed by Automatic Code Reviewers (Chapter
6). Farshad Kazemi, Maxime Lamothe, Shane McIntosh. IEEE Transactions on
Software Engineering (TSE), Under Submission, 13 pages.

The following publication, while not directly related to the material in this thesis, was
produced concurrently with the research conducted for this thesis.

• Reevaluating the Defect Proneness of Atoms of Confusion in Java Systems
Guoshuai Shi, Farshad Kazemi, Michael W. Godfrey, Shane McIntosh. To appear in
the Proceedings of the International Symposium on Empirical Software Engineering
and Measurement (ESEM 2024), 12 pages.

vi

Acknowledgements

It has been four years since I began my PhD journey at the University of Waterloo,
and looking back, I am filled with gratitude, happiness, and joy for the amazing people
who have been part of it or crossed paths with me along the way.

First and foremost, my deepest thanks go to my supervisor, Dr. Shane McIntosh. Your
constant guidance, support, and belief in me have meant the world. I have learned so
much under your supervision, and I truly appreciate everything you have done to help me
succeed on this journey.

Then, I would like to thank Dr. Maxime Lamothe, who was like a co-supervisor to me;
I cannot thank you enough for your insights and collaboration. Even though we were not
always in the same place, you were incredibly generous with your time, and your support
was invaluable throughout my PhD. Working with you has been an incredible learning
experience, and getting to know you as an amazing person has been a bonus.

A special thank you to Albert Shi for trusting me in your academic journey as we co-
authored a paper together. It has been a privilege working alongside you. Collaborating
with Dr. Mike Godfrey, who also graciously joined my committee, was equally priceless.
Mike, your insightful advice and our conversations have guided me through the complexities
of this journey, and I am truly grateful for your support.

I also want to extend my heartfelt thanks to my committee members: Dr. Christian
Bird, who kindly accepted my invitation to join the committee and visited us at the
University of Waterloo, and Dr. Meiyappan Nagappan and Dr. Weiyi Shang, who took
the time to review this thesis and provide invaluable feedback. Your support has been
instrumental in shaping this work.

Next, I want to thank all the members of the Software Repository Excavation and Build
Engineering Labs (REBELs) and the University of Waterloo Software Engineering (SWAG)
Lab, with whom I have shared many conversations over the past years. Some names
that come to mind are Akinbowale Akin-Taylor, Anubhav Gupta, Faizan Khan, Gareema
Ranjan, Gengyi Sun, Keheliya Gallaba, Mahtab Nejati, Dr. Mahmoud Alfadel, Mehran
Meidani, Mingyang Yin, Nimmi Rashinika Weeraddana, Raymond Chang, Dr. Rungroj
Maipradit, Shaquille Pearson, Xiaoyan Xu, Xueyao (Eve) Yu, Yaxin Cheng, Yelizaveta
Brus, Zhenyang Xu, Zhili Zeng. I hope you will forgive me if I have missed anyone’s
name—this journey has been long, and I have been fortunate to meet so many wonderful
people along the way. Working with all of you has made this journey both enjoyable and
fulfilling.

vii

I extend my heartfelt gratitude to Dr. Mahmoud Alfadel for all the help and guidance
he provided throughout my journey as our postdoc. While I was not lucky enough to work
with him during my journey, I still benefited from his advice and experience.

I would also like to give a shoutout to my office roommates during my PhD: Partha
Chakraborty, Noble Saji Mathews, and Aniruddhan Murali, with a special mention to
Yiwen Dong from the room next to us. No one could ask for better roommates—I guess
there is a reason our room was famous for the sound of laughter that constantly echoed
from it.

My deepest thanks go to my parents and older brother. Your unwavering support and
encouragement have been my foundation. I could not have done this without you.

And finally, to my wife—words cannot express how grateful I am to have you by my
side. You have been my rock through the ups and downs, cheering me on through rejections
and celebrating the successes. I am truly blessed to have you in my life.

Thank you all for being part of this journey.

viii

Dedication

This is dedicated to my soon-to-be-born son, who has already brought immense joy into
my life; to the love of my life, whose unwavering trust and support have been my strength;
to my parents, whose encouragement made this thesis possible; and to my older brother,
who has been my guide and mentor since childhood.

ix

Table of Contents

Examining Committee ii

Author’s Declaration iii

Abstract iv

Related Publications vi

Acknowledgements vii

Dedication ix

List of Figures xvi

List of Tables xix

List of Abbreviations xxi

1 Introduction 1

1.1 Problem Statement . 2

1.2 Thesis Overview . 3

1.2.1 Limitations of Code Reviewer Recommendation Systems 3

1.2.2 Relevance of Code Reviewer Recommendation Systems 5

x

1.3 Thesis Contributions . 6

1.4 Thesis Organization . 7

I Preliminaries 8

2 Background and Definitions 9

2.1 Code Review Terms . 9

2.1.1 Code Changeset . 9

2.1.2 Pull Request . 9

2.2 Modern Code Review Process . 10

2.2.1 Overview of Modern Code Review 10

2.3 Code Review Suggestion tools . 13

2.3.1 Code Reviewer Recommendation Systems 13

2.3.2 Overview of the Role of Code Reviewer Recommendation Systems
in the Modern Code Review Process 13

2.3.3 Evaluation Measures of Code Reviewer Recommendation Systems . 13

2.4 Automatic Code Review Process . 14

2.4.1 Code Quality Estimation . 15

2.4.2 Code Revision (Before Review) . 15

2.4.3 Review Comment Generation . 15

2.4.4 Code Revision (After Review) . 15

2.5 Chapter Summary . 16

3 Related Work 17

3.1 Reviewer Recommendation . 17

3.2 Developer Turnover . 19

3.3 Defect Prediction . 19

3.4 Automatic Code Review . 21

3.5 Review Comment Generators . 22

3.6 Chapter Summary . 24

xi

II Limitations of Code Reviewer Recommendation System 25

4 Studying the Staleness of Code Reviewer Recommendation Systems 26

4.1 Introduction . 26

4.2 Study Design . 29

4.2.1 Dataset Preparation . 30

4.2.2 Mining Contributors Lifecycle . 30

4.2.3 Key Terms . 31

4.2.4 Generating Reviewer Recommendations 32

4.2.5 Data Processing . 34

4.3 Preliminary Study . 34

4.3.1 Approach . 35

4.3.2 Results . 35

4.4 RQ1: The Prevalence of Stale Reviewers in Code Reviewer Recommendations 38

4.4.1 Approach . 38

4.4.2 Results . 39

4.5 RQ2: The Distribution of Stale Recommendations Across Reviewers 42

4.5.1 Approach . 43

4.5.2 Results . 43

4.6 RQ3: The Lingering effect of stale reviewer recommendations 44

4.6.1 Approach . 44

4.6.2 Results . 45

4.7 Mitigation Plan . 48

4.7.1 Approach . 48

4.7.2 Results . 49

4.8 Threats to Validity . 50

4.9 Conclusions and Lessons Learned . 51

4.10 Chapter Summary . 53

xii

5 Exploring the Notion of Risk in Code Reviewer Recommendation 54

5.1 Introduction . 54

5.2 Studied Datasets . 57

5.3 Study Design . 58

5.3.1 Identifying and Predicting Fix-Inducing Pull Requests 58

5.3.2 Ranking Potential Reviewers of a Pull Request 61

5.3.3 Recommendation Component . 64

5.4 Evaluation Setup . 64

5.5 Experimental Results . 66

5.5.1 RQ1: How do existing code reviewer recommenders perform with
respect to the risk of inducing future fixes? 68

5.5.2 RQ2: How can the risk of fix-inducing code changes be effectively
balanced with other quantities of interest? 71

5.5.3 RQ3: How can we identify an effective fix-inducing likelihood thresh-
old (PD) interval for a given project? 72

5.6 Practical Implications . 75

5.7 Threats to Validity . 77

5.8 Conclusions . 78

5.9 Chapter Summary . 79

III Relevance of Code Reviewer Recommendation Systems 80

6 Studying the Interrogative Comments Posed by Review Comment Gen-
erators 81

6.1 Introduction . 81

6.2 Dataset Preparation . 83

6.2.1 Data Collection . 83

6.2.2 Data Cleaning . 85

6.2.3 Code Review Comment Generation 86

xiii

6.2.4 Discussion Thread Response Generation 88

6.3 Quantitative Analyses . 88

6.3.1 Approach . 88

6.3.2 Results . 90

6.4 Qualitative Analyses . 97

6.4.1 Approach . 97

6.4.2 Results . 101

6.5 Automatic Code Review Proposed Task: Discussion Thread Response Gen-
eration . 104

6.6 Threats to Validity . 106

6.7 Conclusions and Lessons Learned . 107

6.8 Chapter Summary . 108

IV Final Remarks 109

7 Conclusion and Future Work 110

7.1 Contributions and Findings . 111

7.2 Prospects for Future Research . 112

7.2.1 Assessing the Validity of Our Findings in Different Software Devel-
opment Settings . 112

7.2.2 Comprehensive Code Reviewer Recommendation improvement Toolkit
Development . 113

7.2.3 Assessing the Impact of Employing Improved Predictors for Stale
Reviewers . 113

7.2.4 Surveying the Usefulness of Mitigation Strategies 113

7.2.5 Development of Task-Specific or Large Language Model-based Mod-
els to Follow Up on Discussion Threads 113

7.2.6 Assessing the similarity of Human-submitted and Machine-generated
Comments . 114

7.2.7 Developing an Automatic Code Reviewer Selection Model 114

xiv

References 115

V Supporting Materials and Appendices 136

APPENDICES 137

A Experiment details and Supporting Materials for “Studying the Staleness
of Code Reviewer Recommendation Systems” 138

B Experiment details and Supporting Materials for “Exploring the notion
of risk in Code Reviewer Recommendation Systems” 154

xv

List of Figures

1.1 Scope and overview of this thesis . 3

2.1 The overview of the Modern Code Review (MCR) process (in black) and
the role of Code Reviewer Recommendation (CRR) tools (in blue) in this
process. 11

2.2 The breakdown of the automatic code review process tasks demonstrated in
the expected order in an ideal flow. 14

4.1 The simplified overall architecture of study data analysis. 29

4.2 Quarterly review rates of Rust, Roslyn and Kubernetes projects. 35

4.3 Share of stale recommendations over time for studied projects. Rows indi-
cate variations for reviewer set sizes ranging from 1 to 3. 36

4.4 Prevalence of potentially impacted changesets by stale recommendations for
cHRev (left), Sofia (middle), and WLRRec (right) for each period (percentage). 37

4.5 The proportions of stale to all recommendations (y-axis). The period num-
bers are normalized, with zero representing the oldest period. 39

4.6 Developer expertise turnover rate for the studied periods over time. We
consider the first studied period to be zero in all projects. 40

4.7 The share of top-3 reviewers’ recommendations of all stale recommendations
for cHRev (leftmost bar), Sofia (middle bar), and WLRRec (right bar) for
studied quarterly periods with reviewer set length of one. 42

4.8 Change of top-N reviewers’ share in stale recommendations with value of N
when Sofia is applied to Roslyn (reviewer set lengths 1-3). 43

xvi

4.9 The distribution of the duration of stale recommendations (in days) over
quarterly periods for the studied projects. Only the first nine periods are
drawn. 45

4.10 The distribution of lingering duration for the top-3 reviewers over quarterly
periods. 45

5.1 The simplified overall architecture of the project selection filters and the
defect prediction process. 60

5.2 Relation analysis of Changeset Safety Ratio (CSR) and Files at Risk of
turnover (FaR). 69

5.3 The effect of PD on the performance of CSR for each evaluation metric, on
different projects over different quarters. 69

5.4 Distributions of predicted defect probabilities. 73

5.5 Conover Test results. 73

5.6 The distribution of performance improvement for CSR for different project
over time. 75

6.1 The overview of the data preparation procedure. 84

6.2 similarity scores (median) of responses of Large Language Model (LLM)-
based Review Comment Generators (RCGs) to comment threads. 105

A.1 The proportions of stale to all recommendations (y-axis). The period num-
bers are normalized, with zero representing the oldest period. 143

A.2 Percentage of changesets impacted by stale recommendations. Each set of
bars shows results for cHRev (left) [183], Sofia [109](middle), and WLRRec
[2](right) in each period. 146

A.3 The top-3 most frequently stale recommendations and their share of all
suggested leavers for cHRev (leftmost bar), Sofia (middle bar), and WLRRec
(right bar) for various periods under different conditions 147

A.4 Share of top-N significant leavers for different review set sizes (K) for differ-
ent projects and approaches. The increase of Share, considering more top-N
project leavers, increased the logarithmic trend. 148

A.5 The distribution of lingering time for the top-3 reviewers over quarterly
periods. 149

xvii

A.6 Number of releases per period for per period and per project. The green
shades show the studied period (more than 80% review rate), and the red
shades show the sudden drops in top-3 reviewers’ share in stale recommen-
dations. 150

A.7 The percentage of existing files being modified per period per project. The
orange dashed line is the Linear extrapolation in each graph, showing the
trend. The periods are normalized, and only studied periods are shown. . . 151

A.8 Rate of new developers joining each project per period. The red and black
dashed lines indicate the median and average numbers over these periods,
respectively. The green shades show the studied period (more than 80%
review rate), and the red shades show the sudden drops in top-3 reviewers’
share in stale recommendations. 152

A.9 Contributions of developers who left each project per period. The green
shades show the studied period (more than 80% review rate), and the red
shades show the sudden drops in top-3 reviewers’ share in stale recommen-
dations. 153

B.1 The distribution of predicted defect probability of different projects. 155

xviii

List of Tables

4.1 The details of the dataset used. 31

4.2 Measured Recommender Adaptability Score (RAS) values for each setting. A
higher Recommender Adaptability Score (RAS) indicates better adaptability
to developer turnover. 39

5.1 The detail of dataset used to evaluate the proposed method (based on the
prior work of Mirsaeed et al. [109]). 57

5.2 The risk measures produced by Commit Guru which is used in this chapter
to predict fix-inducing Pull Requests (PRs) (from Kamei et al. study [68]). 58

5.3 Recommender performance vs. reality. Up and down arrows indicate im-
provement and degradation, respectively. 67

5.4 The χ2 and p-value results (two degrees of freedom) of the Friedman test
applied to the RQ3 values. 76

5.5 Effect size and magnitude for Kendall’s W (RQ3). 76

6.1 Rate of generated interrogative comments for studied RCGs. 93

6.2 Odds ratios and Fisher’s exact test p-values for RCGs are shown. A cor-
rected p-value below 0.0018 (*) indicates significance. Ratios > 1 or < 1
imply positive or negative associations, respectively, with significant ones in
bold. 94

6.3 Entropy of the density of interrogative comments for all and discussion-
inducing code changes. 95

6.4 Code review comment types (Ochodek et al. [117]), with the inclusion of
new types identified in our analysis (in gray). 98

xix

6.5 Code review comment intentions (Ebert et al. [35]) 99

6.6 Distribution of generated comment types for interrogative comments. . . . 99

6.7 Distribution of question intentions for generated interrogative comments. . 100

A.1 Precision, Recall, and F-Score for the applied time-based filter as a mitiga-
tion plan for different approaches on different settings. 138

A.3 Reduction of Staleness Reduction Ratio (SRR) in all the recommendations
when time-based filter is applied for different Settings. 143

A.2 The Developers’ Work Load Ratio (DWLR) for top-3 reviewers of each Ap-
proach. This indicate that by limiting the PContibutionGap the top-3 reviewers
are recommended more often. 149

xx

List of Abbreviations

ACR Automatic Code Review 2, 3, 5, 6, 14, 15, 17, 21, 79, 83, 108, 110, 111, 113

API Application Programming Interface 24, 98, 104

AST Abstract Syntax Tree 20

CRR Code Reviewer Recommendation xvi, 1–7, 9, 11, 13, 14, 17–20, 24, 26–29, 32–42,
44–54, 78, 79, 81, 108, 110–114

CSR Changeset Safety Ratio xvii, 55–57, 61, 65–72, 74–79

DF Data Filter 85

DWLR Developers’ Work Load Ratio 49

FaR Files at Risk of turnover xvii, 56, 65, 67–72, 76, 78

JIT Just-In-Time 19–21

LLM Large Language Model xvii, 5, 6, 14, 23, 81–83, 85–92, 96, 97, 100–108, 112, 113

LTC Long Term Contributors 33

MCR Modern Code Review xvi, 10, 11, 13

MR Merge Request 9, 12, 82, 84, 85, 88, 89, 96

PR Pull Request xix, 9, 12–14, 17–19, 21, 31, 35, 46, 49, 54, 56–59, 61–66, 68–72, 74–78,
112

xxi

PRE Present Reviewers Expertise 49, 50

RAS Recommender Adaptability Score xix, 28, 39, 41

RCG Review Comment Generator xvii, xix, 3, 5–7, 21–24, 81–83, 85–108, 112, 114

RQ Research Question 27, 28, 87

SRR Staleness Reduction Ratio xx, 48, 49, 143

SVM Support Vector Machine 17

VCS Version Control System 12, 13, 17, 18, 110

xxii

Chapter 1

Introduction

Code review is a well-accepted practice and a crucial part of software quality assurance [6,
105], even though it is time-consuming and expensive [77]. Unfortunately, it is usually
the reviewers who are pressured into delivering quick reviews to keep up with business
needs [13]. To address this demand, approaches have been proposed to automate parts of
this process [143, 162, 183]. These approaches aim to streamline the review workflow [22],
reduce the time required for each review [90] and maintain high software quality [3].

Despite all the efforts to automate the review process, a human touch is still necessary
to ensure the reliability of reviews [160]. While automation can handle routine checks, the
complexity of code changes often requires human judgment since the review performance
of these models is still sub-optimal [99]. This blend of automated assistance and human
oversight helps to maintain a balance between speed and thoroughness in code reviews [61,
160, 168].

Automation is a pillar of the review process that aims to minimize the submit-to-review
time and efforts of reviewers by reducing the reviewer responsibility [22, 160]. Nowadays,
automation can recommend who should review the changeset [183], suggest where code
changes may need to be revised [90] , and generate review comments [61], thereby allowing
reviewers to focus on other issues. This targeted assistance can lead to more efficient and
effective code reviews [22].

An effective code review automation approach, such as Code Reviewer Recommen-
dation (CRR) or review comment generation, should consider aspects of the changeset
under review and recommend accordingly [69]. Recommending inappropriate reviewers or
generating irrelevant comments could potentially slow down the review process, leading

1

to practitioners abandoning the recommendation tools in the long run [185]. Hence, it is
crucial for these tools to accurately understand and address the context of the changes [80].

1.1 Problem Statement

While code review automation can boost the code review process, inadvertently, it im-
poses additional challenges on software development. We define challenges as the issues
and problems encountered when interacting with automated review suggestion tools, which
have been overlooked or ignored to either simplify the problem or avoid adding complexity
during development. We describe these challenges as practical because they are not typi-
cally considered in standard evaluations of review suggestions, yet they exist in real-world
scenarios and may undermine the effectiveness of these tools:

Thesis Statement

Practical challenges in code review processes diminish the usefulness of code review
automation. A multi-faceted approach to address issues like reviewer staleness and the
bug-proneness of changesets will improve the interplay between human and automation,
thereby enhancing automation outcomes.

In this statement, the enhancements refer to improvements in both the quality aspects
of code review, such as more effective detection of bugs and code smells and a faster
review process, as well as the collaborative aspects, including more constructive discussion
threads with reduced toxicity. Indeed, the extent to which different code review automation
approaches impact projects varies, i.e., some automation approaches are more sensitive to
these challenges. Therefore, in this thesis, we aim to empirically study the influence of some
of these challenges on existing CRR systems as one type of automation approach and their
relevance considering the current state of Automatic Code Review (ACR) process. Our
goal is to enable practitioners to make more data-grounded choices when they decide to use
these automation approaches and help them adjust these tools to minimize the unintended
negative impact depending on the attributes of their projects while giving researchers and
tool developers directions to focus their efforts.

2

1.2 Thesis Overview

We now provide the scope of this thesis. Figure 1.1 highlights the overview of this thesis.
First, we start by providing the necessary background information:

Outcomes

A stakeholder's
guide to the impact
of CRR approaches

on project safety

A CRR system that
enhances project
safety assurance

A stakeholder's
guide to the impact
of CRR approaches

on project safety

A mitigation
strategy to reduce

the staleness of
CRR systems

Merits and
limitations of
 interrogative

comment
generation in RCGs

A guide to
leveraging LLMs
to follow-up on

review discussions

Research
Questions

Chapter 3
How resilient are code reviewer

recommendation systems to the stale
reviewers?

Chapter 4
How do existing code reviewer

recommenders perform with respect to
the risk of inducing future fixes?

Chapter 5
Can automated code review approaches
match human reviewers in generating
interrogative code review comments?

Limitations of Code
Review Suggestion Tools

Recommending inappropriate reviewers
 who are stale

 Recommending reviewers that harm the
safety of projects inadvertently

Relevance of human reviewers and
suggestion systems in the review process

Studying Practical Challenges of Automated Code Review SuggestionsResearch Theme

Figure 1.1: Scope and overview of this thesis

Chapter 2: Background and Definitions
In this section, we provide the reader with some background information.

Chapter 3: Related Work
We review the prior studies related to code review automation approaches,
especially the existing research on CRRs systems, ACR, and Review Com-
ment Generator (RCG)s to position this thesis with respect to prior research.

Then, we focus on the main body of the thesis. Our attention centers around three
potential limitations of code review automation approaches (blue boxes). For each of these
challenges, we seek to answer research questions (green boxes) that lead to promising
prospective outcomes (red boxes). We format our studies in the chapters described below.

1.2.1 Limitations of Code Reviewer Recommendation Systems

Researchers and tool builders often simplify the complex scenarios of the real world to find
a minimum viable solution. While these assumptions are necessary in early steps, when

3

automation tools are developed based on these assumptions, their misalignment could
hinder the usefulness of these systems and render them ineffective [32, 80, 185].

These assumptions can happen in various stages of the process, ranging from as early
as considering the available options to long after the process is finished when practitioners
face the negative unintended impact of accepting these suggestions of these automation
approaches. While most research on CRR systems are focused on positive aspects of these
approaches [9, 22, 183], recent empirical studies brought up some of these misalignments
act as the barrier for developer adaption [80, 185]. Therefore, it is crucial to identify and
mitigate these challenges in automation systems.

In this thesis, we empirically study the extent of two of such challenges in CRR systems
as an examplar of the code review automation approach:

Chapter 4: Recommending inappropriate reviewers who are stale
Recommending reviewers who are no longer contributing to the project, i.e.
stale reviewers, can defeat the purpose of using CRR systems and increase the
review process. Moreover, frequent occurrences and suggesting those who are
long gone could even erode the developers’ trust in the recommendation tool,
rendering them useless [185]. In this chapter, we visit the possible impact of
such recommendations and, using an empirical study, their potential severity
on the review process by simulating the review process of three projects with
more than 5.8K contributors.

Chapter 5: Recommending reviewers that harm project’s safety inadvertently
In this thesis, we refer to safety from the perspective of the users of soft-
ware. Thus, safety is threatened by the presence of defects and is improved
by preventing defects. Proposed code changesets vary drastically concerning
attributes such as complexity and bug-proneness [59]. Recommending appro-
priate reviewers to review code changes without considering this variation can
adversely affect the project in different aspects. For instance, previous stud-
ies have shown that constantly recommending experts could worsen the bus
factor [131] by preventing concentrating the knowledge distribution among
these reviewers [108]. In this chapter, we explore how CRR systems can harm
project safety by empirically studying the performance of seven CRR systems
concerning bug-proneness of the studied projects if they accept CRRs from
these systems.

4

1.2.2 Relevance of Code Reviewer Recommendation Systems

While CRRs aim to help reviewers boost the review process, a recent field of research has
emerged to automate the review process [162]. Indeed, achieving a fully automated code
review process could render the recommendations useless if these models can fully replace
the human reviewers [160].

Researchers proposed that ACR process is comprised of four major tasks which should
be performed to achieve full autonomy in code review: (1) code quality estimation [90],
which would indicate which parts of the code need to be revised, (2) revising the code before
review [94, 154], or (3) after review with review comments [21, 161, 162, 167, 178], to align
it with the code with the expected quality, and (4) code comment generation [89, 90, 162]
which generates comments given the code change.

In this part of this thesis, we focus our effort on investigating whether CRR systems
are still applicable, considering the state-of-the-art RCGs, which could be a crucial part of
the transitioning to ACR process:

Chapter 6: Relevance of human reviewers and suggestion systems in the review process
More often than not, interrogative code review comments lead to review dis-
cussion threads, which not only act as the documentation for the related
information to the change [7] but can also change the direction of a project
or define future tasks [169, 182]. Furthermore, the proposed set of ACR ap-
proaches does not include the interaction of RCGs with code change authors
while they generate interrogative comments. This behaviour potentially sti-
fles such favourable conversations during code review. Thus, in this chapter,
we investigate the interrogative comments generated by six RCGs; three of
them were trained to generate code comments given a change (task-specific
models), and the other three are Large Language Model (LLM)-based models
prompted to review the code (LLM-based). We explore these review com-
ments concerning their comment mood, i.e. whether they are interrogative
or declarative. We mine 172,919 comment instances along with their corre-
sponding code changes from Gerrit project1 and generated ∼1.2M comment
instances using these RCGs. We study these comments quantitatively and
qualitatively to determine whether RCGs pose questions similar to those
asked by humans and to understand the nature of these questions. Further-
more, leveraging the capabilities of LLMs, we propose a new task for ACR:
determining whether a code review comment has been resolved and following

1https://gerrit-review.googlesource.com

5

https://gerrit-review.googlesource.com

up if it has not. This task closes the loop of ACR process and helps improve
the current flow of existing tools.

1.3 Thesis Contributions

This thesis demonstrates that:

1. Although the recency of contribution can diminish the risk of recommending stale
reviewers, the multi-faceted behaviour of CRR systems can overshadow their impact
if it is not separately considered (Chapter 4).

2. CRR systems may risk project safety by recommending less experienced reviewers
due to their multi-faceted behaviour. While this tactic can benefit projects when
code changes are not risky, when dealing with bug-prone changesets, it would reduce
the project safety (Chapter 5).

3. While there is no silver bullet to resolve these practical challenges, enabling practi-
tioners to adjust the provided CRRs with adaptable and yet simple configurations
can help practitioners adopt these tools. Therefore, our mitigation strategies include
a setting to adjust depending on the project state, as well as guidance on the potential
side-effects of changing these configurations (Chapter 4 and Chapter 5).

4. Our proposed techniques for mitigating the issue with stale reviewers and project
safety can combine with existing CRR systems to improve the staleness (Chapter 4)
and safety (Chapter 5) of their recommendations.

5. Neither task-specific nor LLM-based RCGs can replace human reviewers in asking
questions at the current stage of development (Chapter 6).

6. RCGs differ from humans when reviewing a code change, especially when the code
change is discussion-inducing. This difference is in terms of both the quantity and
quality of the questions. For instance, while human reviewers use interrogative ques-
tions to suggest a solution when pointing out a problem, the RCGs do it noticeably
less frequently in the sample dataset. Instead, they asked more often than humans
about the purpose of the code change (Chapter 6).

7. While LLMs’ performance on discussion thread resolution shows promising results
when they are required to follow up on the thread and respond or answer to the
author, they show poor performance on most of the comment types (Chapter 6).

6

1.4 Thesis Organization

The remainder of this thesis is organized as follows. First, in Chapter 2, we will cover the
necessary definition and lay out the ground for the body of this thesis by defining the key
terms. Then, Chapter 3 presents the related research and positions this thesis relative to
them. Chapter 4 is the first part of the main body of this thesis, where we explore the
staleness of the CRRs systems and how to improve it. We then explore another practical
challenge in Chapter 5 by reviewing the negative impact of the reviewer recommendation
on the project safety. Then, we investigate the relevance of using code review suggestion
tools by exploring the comment moods generated by the state-of-the-art RCGs in Chapter
6. Finally, we conclude in Chapter 7 and outline potential future research directions.

7

Part I

Preliminaries

8

Chapter 2

Background and Definitions

In this chapter, we first provide an overview of the code review process in its modern form.
Then, we describe the position of CRRs systems as one form of code review suggestion
tools that we focus on in this thesis.

2.1 Code Review Terms

To lay the ground for the rest of this thesis, we define key terms related to the code review
process in this section.

2.1.1 Code Changeset

Nowadays, one part of the software development process is to develop new features and
fix bugs by modifying project files to meet business demands [133, 158]. We define a code
changeset, a.k.a code change, as a set of project files, such as media and code, changed to
fulfil an objective like a new feature or a bug fix.

2.1.2 Pull Request

Once a code changeset is completed to serve its purpose (such as fixing a bug), one of the
change contributors, known as the submitter, sends a request for the change to be merged
into the target branch [186]. This request is called a Pull Request (PR) or Merge Request
(MR) and should be approved by maintainers with the merge privilege, a.k.a. merger [186].

9

2.2 Modern Code Review Process

The Code Review process has been an integral part of the software development life cycle
for a long time [40]. The main goal of this process is to ensure the quality of the proposed
changesets before they are merged. Despite existing for a long time, the code review
process has gone through considerable changes, transforming from a formal code inspection
practice [40] to a light-weight tool-based process that is informal [6, 7]. The latter form
of code review process is called Modern Code Review (MCR), which we refer to when
discussing code review in this thesis. Normally, the submitter of the code changeset asks
other contributors to check the health of the change before merging it when the proposed
code changeset is submitted. The review process is mainly to assure the mergers that the
code changeset is safe concerning aspects such as quality and following the code styles
by acquiring confirmation from other contributors [51]. This practice of reviewing code
changes, which is asynchronous and happens in an informal setting via tools such as Gerrit1,
GitHub2, and Phabricator3, is known as Code Review [7, 138]. In short, these tools enable
contributors to submit their proposed changes to be reviewed by the project maintainers
and, once approved, become a part of the repository. The developers who check the health
and safety of a changeset are referred to as code reviewers and usually could be authors
and submitters of other code changes in the same project [42].

2.2.1 Overview of Modern Code Review

Figure 2.1 provides an overview of MCR in the available platforms. Below, we describe
each step of this process:

1https://www.gerritcodereview.com/
2http://github.com/
3https://www.phacility.com/

10

https://www.gerritcodereview.com/
http://github.com/
https://www.phacility.com/

(2) Request
for Review

Code Author

Cloning Respository

Project
Repository

Author
 Changeset

Historical data

Replicate Repository

Request
Merging

Code change Attributes

 (1) Propose Changeset

Reviewers

Request Revision

Accept

Reject

(3) Review Pull Request
(4) Merge Approved

 Changeset

Revise

Recommend
Reviewers

Code Reviewer
Recommendation Tools

Figure 2.1: The overview of the Modern Code Review (MCR) process (in black) and the role of CRR tools
(in blue) in this process.

11

1. Code Changeset Preparation: When a contributor decides to propose a change
to the code to fix a bug or implement a feature, they usually start by replicating the
project using a form of Version Control System (VCS). Then, they make a series of
changes to existing code to accomplish the desired task, i.e. code changeset. Once
their changeset is prepared, they propose this changeset with some explanation in
the form of a request, which is usually called with names such as Pull Request (PR)
or Merge Request (MR) in code review tools.

2. Requesting Reviews: In order for the code changeset to be approved, the Au-
thor should find a suitable candidate who has enough time to review the changeset
and is willing to carefully inspect the code for possible issues such as defects [103],
inconsistencies [75], or even the alignment of the proposed feature with the project
goal [169, 182]. Finding an available appropriate reviewer has shown to be effective
in the project quality [6, 106] and due to factors such as having high workload of the
requested reviewers, it is a non-trivial task [78].

3. Reviewing Pull Request: Once the invited developers accept the review invitation,
they examine the code for possible issues [7]. While different projects have different
review processes and tools to perform them, they generally consist of a web-based
UI that reviewers can use to scan the changes. The review platform categorizes the
changes based on their location and groups them into smaller sets called code hunks
for easier inspection. At this stage, reviewers communicate their concerns to the
authors and ask for a revision of the code if necessary [6]. This iterative process is
normally done asynchronously within the review platforms, such as GitHub. Not
only does this process improve the quality of the code change and prevent bugs from
entering the production, but some of the discussion threads that happen in this stage
would act as the documentation for the project in future and may even lead to the
creation of more task in future [169, 182].

4. Review Resolution: Each PR may be subject to multiple iterations of discussions
and will be either rejected or accepted, which means the change will be discarded
or become a part of the future version, respectively. While this decision is based on
review discussions and code revisions, the reviewers are the ones who vote on what
should be the destiny of the submitted PR. Sometimes, contributions are stalled in
the review resolution step for reasons such as having multiple PRs sent simultane-
ously. Researchers previously investigated the effect of this delay [49, 50, 179], the
approaches to prioritize the concurrent PRs [5, 165], as well as factors that contribute
to time and outcome of PRs both in open source [72, 86] and industry [79].

12

2.3 Code Review Suggestion tools

Despite the optimization and heavily using tools to ease the review process [7], code re-
view is still time-consuming [106], which makes it a great candidate for optimization. Code
review suggestion tools, such as review comment recommendation [183] or file review or-
dering [8, 45], have been proposed to boost to help authors and reviewers with this process.
Below, we elaborate more on CRR tools, which are the main focus of this thesis.

2.3.1 Code Reviewer Recommendation Systems

In large projects with hundreds of developers, finding the right reviewer for a PR is hard
[152]. The issue can be exacerbated as some potential reviewers may be busy while the
submitter is oblivious to their schedule. Thus, their review request may get rejected and
elongate the review process of the PR [137]. To alleviate this problem, Code Reviewer
Recommendation, or CRR for short, has been introduced. The main objective of this set
of tools is to suggest the most appropriate reviewers for a PR. The CRR’s merit criteria
vastly vary, including measures such as reviewers’ expertise [152], increase team awareness
[6], balance contributors’ workload [2], and familiarity with the change [149].

2.3.2 Overview of the Role of Code Reviewer Recommendation
Systems in the Modern Code Review Process

Figure 2.1 demonstrates how code reviewer recommendation tools are situated concerning
their role in MCR in blue. These tools use the historical data from VCS, the information
about the change, and suggest a list of recommended reviewers for the change. The authors
either accept these changes and invite the suggested reviewers to review them or discard
these recommendations.

2.3.3 Evaluation Measures of Code Reviewer Recommendation
Systems

Conventionally, past reviews and their actual reviewers were considered the benchmark.
Still, researchers argued this evaluation method is potentially biased and problematic and
brings little value [32, 47, 80]. A simulation evaluation technique has been proposed to

13

determine the merit of the CRR suggestions concerning the measures of interest like re-
viewer expertise and workload. Mirsaeedi and Rigby [109] set forth the following evaluation
measures in their research:

• Core Developers’ Workload: Number of code reviews assigned to top ten contributors
with the highest review.

• Expertise: The expertise and familiarity of a reviewer with the files changed in a PR.

• Files at Risk: Number of files with less than two knowledgeable active contributors.
A contributor is considered knowledgeable if they committed or reviewed the file.

These metrics are measured throughout the time and indicate how one CRR performs.
This evaluation approach enables the CRRs to excel the assigned reviewers in reality and
provide the researchers with a more fair process for assessing the performance of their tools.

2.4 Automatic Code Review Process

Automatic Code Review (ACR) refers to the efforts of tool builders to automate the review
process by breaking down the review into smaller tasks and automating them. Figure 2.2
illustrated the order of these sub-tasks from previous studies.

While fully automating the code review process is the ultimate goal of this decompo-
sition, unfortunately, we are still far from achieving it. Using new technologies such as
LLMs helps tool builders to get closer to this goal, and as researchers, we hope that the
result of this thesis and the new proposed task in Chapter 6 could pave the way toward
this goal. Below, we briefly explain each of these tasks.

(2) Code Revision
(Before Review)

(3) Review Comment
 Generation

Code Changeset (1) Code Quality
Estimation

(4) Revision
(After Review)

Revised Code
(Ready to Merge)

Figure 2.2: The breakdown of the automatic code review process tasks demonstrated in
the expected order in an ideal flow.

14

2.4.1 Code Quality Estimation

Once a code review is submitted, this step would assess the quality of the code changeset
by identifying potential issues and areas needing improvement in the code piece, a.k.a.
code hunk, or code lines. In this step, for each piece of code changeset, the model should
decide whether the code quality is up to the standard [90].

2.4.2 Code Revision (Before Review)

Once the parts of the code with quality issues are marked, this step modifies those parts of
the code to address quality issues identified during the estimation phase. This task ensures
the code meets the required standards before being reviewed and reduces the workload on
reviewers by preemptively fixing common issues and enhancing code quality [21, 162].

2.4.3 Review Comment Generation

Once the new revision of the code is ready for review, this step is responsible for automat-
ically generating comments on code changes, highlighting potential issues, and suggesting
improvements. Usually, these comments are generated for code pieces that have been
marked as low-quality in the first step [90]. This task uses natural language processing
and machine learning to provide relevant, context-aware feedback that assists reviewers in
their evaluation [89, 99].

2.4.4 Code Revision (After Review)

The last task of ACR is revising the code given both the commented code and the related
code change based on the generated review comments to finalize the code for integration.
This revision before the review would lower the cognitive load of the authors and prevent
the tax of switching contexts to fix the comments issues raised by the reviewers. This task
involves refining the code according to the feedback received, ensuring all identified issues
are addressed, and preparing the code for deployment [94, 154].

15

2.5 Chapter Summary

In this chapter, we provided an overview of the modern code review and how code reviewer
recommendations help with the process. We also defined some of the key terms we use in
this thesis. Knowing this background information about the key concepts and terms used
in this thesis, we move on to the next chapter, explaining the related studies to demonstrate
the gap that we are trying to bridge in this thesis.

16

Chapter 3

Related Work

In this thesis, our focus is to study the automatic code suggestion approaches concerning
their staleness and safety of the recommendation, as well as their relevance considering
the emergence of Automatic Code Review (ACR). Therefore, there exist four groups of
related studies that we should review in this chapter: (1) Reviewer Recommendations, (2)
Defect Prediction, (3) Developer Turnover, and (4) Automatic Code Review. We review
the related studies about Code Reviewer Recommendation (CRR) systems to understand
related works better. Then, we review the studies related to these challenges: defect pre-
diction, developer turnover, and diversity and inclusion. Finally, we conclude the chapter
by exploring studies related to automatic code review.

3.1 Reviewer Recommendation

With the spread of Version Control System (VCS), and especially Git, CRR systems started
to become popular [9, 30, 177, 180]. The main duty of a reviewer recommendation is
to suggest the most suitable reviewers for reviewing PR. Reviewer recommenders often
leverage historical data to make recommendations [177, 183]. Other approaches aim to
optimize characteristics, such as workload balance [2, 130] or distributing knowledge [109].

For instance, the CoreDevRec, a CRR, developed by Jiang et al., uses file paths as the
input of the mode and recommends the most familiar reviewers with the Pull Request (PR)
[65]. It uses Support Vector Machine (SVM) at its core to make the optimal suggestions
and mostly suggests core developers as they have the most familiarity with the source
code. These suggestions lead to an unwanted higher workload for these contributors.

17

Similarly, Thongtanunam et al. proposed REVFINDER that leverages prior reviews and
the similarity of file paths to recommend code reviewers [155].

Zanjani et al. proposed cHRev recommender [183], which relies on the VCS data to
make recommendations. When cHRev ranks developers as potential candidates for a code
change, it considers the developer’s expertise and the recency of the contribution from
previous reviews as well as their portion of the contribution.

Chouchen et al. [25] devised a multi-objective search-based recommender named WhoRe-
view. Similar to previous works, the candidates’ expertise and their workload are considered
when recommending a suitable reviewer for a code change. Another multi-objective CRR
system that considers reviewer-author connection and reviewers’ workload is WLRREC [2].

Machine learning techniques have also been tested in this area. Strand et al. [148]
implemented a context-aware machine-learning based CRR, called Carrot, based on the
LightFM1 algorithm [83]. They used Gerrit as the training source and tested the CRR
in an industrial setting. Then, surveyed the reviewers about its performance. The survey
results indicate that more than 50 percent of participants stated that although it helps
assign non-obvious reviewers to the PR, it does not affect the lead time for code review.

Regardless of the optimization method, when a new PR is created, the recommender
ranks potential candidates or a set of candidates based on the score that its objective
function has calculated. Recently, some studies have explored a change in perspective
of the goal of the reviewer recommendation process. Kovalenko et al. [80] observed that
developers are often aware of the top recommendations of CRR approaches, suggesting that
other goals, such as workload balancing, might be more appropriate. Gauthier et al. [47]
found that history-based evaluations of reviewer recommenders are often more pessimistic
than optimistic since the proposed reviewers who did not perform a review (i.e., incorrect
recommendations) often reported high comfort levels with those review tasks. Mirsaeedi
and Rigby [109] proposed Sofia, a multi-objective recommendation system that tries to
maximize reviewer expertise and minimize the risk of turnover-based knowledge loss, as
well as the workload on the core development team.

Researchers also studied different aspects of the code review such as improving datasets
accuracy [151], the notion of security in code review [19, 20], and code review smells [31]. In
this thesis, our focus is the evaluation of the performance CRRs and explore approaches to
mitigate their misalignments with real-world expectations. Despite the existence of various
systems, the mutual impact of their recommendation on real-world phenomena, such as
safety or knowledge turnover, still needs to be studied.

1https://github.com/lyst/lightfm

18

https://github.com/lyst/lightfm

3.2 Developer Turnover

Prior research on developer turnover[12, 44, 63] has investigated its impact on software
projects. For example, Ton and Huckman [156] investigated the impact of knowledge-
intensive employee turnover on operational performance. Mockus [111] studied the effect
of developer turnover on software defects. They observed that the departure of developers
was associated with an increase in software defect rate. Lin et al. [92] explored turnover
from an individual-centric perspective, studying contributors of five projects and their
correlation with activities and retention. Rigby et al. [132] used a Knowledge-at-Risk
(KaR) measure to quantify how susceptible industrial and open-source systems are to
turnover-induced knowledge loss. Nassif and Robillard [115] replicated and extended the
concept to seven other projects and noticed a similar knowledge loss probability distribution
among all projects.

In addition, research has explored the impact of developer turnover, proposing identifi-
cation methods based on behaviour. Avelino et al. [4] examined core developer turnover’s
effect on open-source projects, Miller et al. [107] studied reasons for open-source contrib-
utor disengagement, and Bao et al. [11] created a model to predict long-term GitHub
contributors. Quiet al. [122] looked into projects’ ability to attract new contributors, while
Robillard [134] analyzed how employee leaves impact software companies, highlighting the
significant disruptions caused by sudden and temporary departures.

In this thesis, we aim to explore how developer turnover affects the CRR recommen-
dations quality concerning the stale reviewers and whether we can mitigate this challenge.
Suggesting a contributor who has already left the project may stall the review process,
lead to confusion in large projects, and delay merging the new PR.

3.3 Defect Prediction

Defect prediction models help the stakeholders of a project focus their limited resources
on bug-prone modules [114]. Practitioners have used defect prediction systems to find
bugs in their early stages, reducing technical debt [110, 174] and the effort required to fix
them. These Just-In-Time (JIT) models can also help teams identify buggy changes before
merging into the repository [76].

Researchers proposed various approaches for identifying the defective code changesets;
for instance, Hassan [57] devised a measure for the complexity of a code change called
entropy. Analyzing six well-established projects, he observed a correlation between code

19

change entropy and its faults. In another study, Zimmermann et al. [190] proposed using
a dependency graph to find the most influential units in the code and argued that these
units are more likely to get defective.

Pornprasit and Tantithamthavorn [121] proposed JITLine, which identifies the risky
commits and the lines causing the defect. Their evaluation of OpenStack and QT projects
shows a better performance in terms of accuracy and time compared to previous CRRs.

Recently, with the rise of machine learning approaches, there is a tendency toward
using them for bug prediction. Li et al. [88] proposed a Convolutional Neural Network-
based framework to predict defects using Abstract Syntax Tree (AST) as its input. They
tested their approach in seven projects and observed a 12 percentage point improvement
compared to previous models.

Seml is another defect prediction model proposed by Liang et al. [91]. The authors
argued that system features that were previously used to predict bugs are flawed. There-
fore, they used word embedding and LSTM deep neural network to extract the features
and predict the probability of the bug from a code change. In their evaluation of eight
open-source projects, their framework outperforms three state-of-the-art defect prediction.

Le et al. [85] proposed a deep multi-task learning model, DeepCVA, that identifies
the various code vulnerabilities in the code changeset simultaneously. The evaluation of
the approach showed 38% to 59.8% higher Matthews Correlation Coefficient and 6.3 times
improvement compared to other methods.

Zhu et al. [189] implemented an ensemble approach that leveraged the whale opti-
mization algorithm (WOA) and another simulated annealing (SA) algorithm for feature
selection, and a deep neural network model is trained to predict bugs in the code changes.
They tested their methods over 20 software projects and observed that the feature selection
improves the performance of their approach, aligned with similar studies [127].

These defect prediction models are often trained using historical data, and the model
is then used to assess new code changes by estimating the likelihood that a given code
changeset will induce a future fix (i.e., estimating the fix-inducing likelihood). As some of
the studies have been mentioned above, there have been a plethora of contributions to defect
prediction studies. However, we focus below on two lines of work that are most relevant,
i.e., (1) approaches to more accurately identify fix-inducing changes and (2) proposed
indicators of fix-inducing commits. JIT defect prediction models — like any prediction
model — will only be as good as their training data. Since the true set of fix-inducing
changes is not clearly labelled in historical software data, heuristic approaches are used to
recover that signal.

20

One heuristic that is used to label buggy commits is the SZZ algorithm, which was
proposed by Śliwerskiet al. [145]. The SZZ algorithm first identifies bug-fixing commits
by mining for keywords such as ”fix” or ”bug” in commit messages. Next, potential fix-
inducing commits are associated with these fixes by tracing removed or modified lines to
the commit(s) that introduced them. Finally, filters are applied to remove potential fix-
inducing changes that are unlikely to have caused the bug (e.g., potentially fix-inducing
commits that were recorded after the bug was created in the issue tracker). The SZZ
algorithm has seen several revisions in the literature [29, 116]. Since improving SZZ is
beyond the scope of this thesis, we use the off-the-shelf implementation of SZZ available
in the Commit Guru tool [136].

The SZZ algorithm is being used to label the buggy changes, but the JIT models need
various measures from code to get trained on a project. The set of indicators that are used
to predict fix-inducing changes are derived from the change itself, historical tendencies of
the modified areas of code, and characterization of the personnel involved with the change
[114]. For example, Kamei et al. [68] used measures of the size, purpose, and diffusion of
a change, as well as the historical tendencies of the modified modules and the experience
of change authors to estimate the likelihood of a change to induce future fixes. Hoang et
al. [60] and McIntosh et al. [104] expanded the set of measures to include review metrics
such as iterations, number of reviewers, and comments. Pascarella et al. [118] added more
detailed measures such as owner’s contribution lines and change code scattering. In this
thesis, we use the set of measures provided by Commit Guru to calculate the 13 metrics
similar to Kamei et al. ’s set of measures for various PR based on PR’s Commits.

3.4 Automatic Code Review

Previous studies [90, 161] defined four primary tasks for Automatic Code Review (ACR):
(1) code quality estimation [58, 87, 102]; (2) revising code with reviewer comment [94, 154],
and (3) without the comments [21, 161, 162, 167, 178] the review; and (4) code review
comment generation. Researchers have developed machine learning models tailored to
each of these tasks, including code review comment generation. Indeed, Zhou et al. [188]
compared three instances of Review Comment Generator (RCG) and three general models
adapted for code review. They found that the CodeT5 [125] general model surpassed
the best RCG in code revision by 13.4%–38.9% and the T5-review [162] RCG model was
the best for code review comment generation. They noted the presence of interrogative
comments among the outputs but did not study them in depth.

With the advent of LLMs, Sridhara et al. [146] explored using ChatGPT for vari-

21

ous software engineering tasks, including code review, finding that ChatGPT’s responses
aligned with human reviewers in only 4 out of 10 tested instances. They observed a di-
vergence in ChatGPT responses from human reviewers due to a lack of context and code
comprehension issues. Further, Guo et al. [54] examined ChatGPT’s revision effectiveness
and its strengths and weaknesses in post-review code refinement. Their findings indicate
that despite higher operational costs, ChatGPT underperformed with respect to CodeRe-
viewer [90] in one of two studied datasets; however, ChatGPT excelled in code refactoring.
Rasheed et al. [128] studied the automation of code review using multi-agent LLM-based
RCGs, focusing on code smell detection and optimization of code changes. Due to these
promising observations, we include LLMs in our study for a comprehensive comparison.

3.5 Review Comment Generators

In this thesis, we investigate how RCGs generate interrogative comments, focusing on three
state-of-the-art models (AUGER [89], CodeBert [43], and CodeReviewer [90]), as well as
three llm-based RCGs (DBRX,2 GPT-4,3 and LLaMA2 [159]). Below, we briefly review
the literature on comment generation and the RCGs under study.

Code review comment generation aims to emulate human reviewers and automatically
generate review comments for a given code change. The goal is to minimize the workload
for reviewers and the delay in the authors’ receiving feedback. Review Bot [9], which pro-
duces code review comments derived from the outputs of various static analyzers, received
approval on 93% of its generated comments. DeepCodeReviewer [55] leverages deep learn-
ing to recommend reviews, and CORE [144] uses an attentional Long Short-Term Memory
(LSTM) model for automated reviews. CommentFinder [61] addresses the latency in deep
learning methods using an information retrieval approach.

While traditional comment generation models largely depended on rule- or retrieval-
based approaches, recent advances have shifted focus to task-specific RCG models [167].
This trend typically involves pre-trained models [89, 90, 93, 162] that combine natural
and programming language processes to enhance the code review process. In recent work,
Vijayvergiya et al. [168] developed and evaluated the AI-assisted code review tool Auto-
Commenter to help with code changes written in C++, Java, Python, and Go. Auto-
Commenter, built using the T5X model and fine-tuned, detects best practice violations
and provides URL references for these violations. Their approach generates comments

2https://github.com/databricks/dbrx
3https://bit.ly/open-ai-gpt-4

22

https://github.com/databricks/dbrx
https://bit.ly/open-ai-gpt-4

for 68% of best practices commonly referenced by human reviewers, showing promise for
AI-assisted code review tools.

With the emergence of Large Language Model (LLM), newer studies have also examined
their utility in automating code review tasks. Lu et al. [99] fine-tuned LLaMA 6.7B for
code review tasks. Despite LLaMA-Reviewer’s higher resource demand for inference, it
did not consistently outperform state-of-the-art task-specific RCGs like CodeReviewer [90].
Furthermore, Pornprasit and Tantithamthavorn [120] assessed GPT-3.5’s capabilities for
code review. Their results showed that state-of-the-art task-specific models still tended
to outperform GPT-3.5. Given these findings and the high operational costs of LLMs,
we choose to consider three high-performing [188] task-specific RCG and two types of
LLM-based RCGs for each study.

RCG Models

Researchers have developed various RCGs. In this thesis, we study select six of these models
for our experiments: AUGER, CodeBert, and CodeReviewer have been selected as task-
specific RCGs based on their prior use [188] and strong performance as detailed above.
GPT-4 Turbo3 is chosen as an exemplar of enterprise models, known for its impressive
performance across various tasks, albeit at higher costs. Due to this cost, we select DBRX-
instruct2 and LLaMA2-7B [159] as freely available alternative LLMs for our quantitative
analysis. We describe these models below.

• AUGER is a comment generator that uses the pre-trained CodeTrans T5 model [38,
125], which was further fine-tuned on ∼10K code review instances from 11 Java
projects [89]. AUGER thus can leverage its training data to provide review context.
AUGER was assessed with a survey that revealed that 29% of developers found its
generated comments useful [89].

• CodeBert has a transformer-based architecture [167] and is trained with Masked
Language Modeling and replaced token detection using NL-PL pairs and unimodal
code data [43]. This approach allows CodeBert to excel in tasks like code search and
documentation generation. Like Zhou et al. [188], we use the pre-trained CodeBert
model, fine-tuning it with ∼50K review records. Fine-tuning this model helps with
the generation of the comments instead of code, leading to more understandable
generated comments.

• CodeReviewer employs CodeT5 [167, 170] and further fine-tunes it on data in the
form of <comment, code hunk> to process code diffs as input [90]. Compared to

23

AUGER, CodeReviewer focuses on understanding code changes and their relation-
ship to review comments because its output explicitly highlights line additions and
deletions. Indeed, CodeReviewer has been shown to perform comparatively well in
terms of comment generation among RCGs [99].

• DBRX was introduced in March 2024 and outperforms established models like GPT-
3.5, particularly in code-related tasks.2 It is available in a basic version and an
instruct version. The basic version offers robust performance across a broad range
of applications, while the instruct version is optimized for scenarios requiring precise
control, such as coding assistance. We use the instruct version of the model to achieve
the best possible performance with code.

• GPT-4 Turbo introduced upgraded capabilities, including support for more diverse
inputs such as images.3 As a proprietary model, its architecture details are not
publicly disclosed, and to interact with the model, developers should use OpenAI’s
Application Programming Interface (API).

• LLaMA2 This model comes in 7, 13, and 70 billion parameters [159]. These models,
trained on a dataset spanning 2 trillion tokens from January to July 2023, follow the
standard transformer architecture with an auto-regressive model design.

3.6 Chapter Summary

This chapter reviewed studies on code review recommendation, developer turnover, defect
prediction, and automated code review tasks, which are connected to the body chapters
of this thesis. It also positioned our work within the broader research landscape. In the
next chapter, we begin the main body of the thesis, presenting two empirical studies on
the challenges of CRR systems and their potential impact.

24

Part II

Limitations of Code Reviewer
Recommendation System

25

Chapter 4

Studying the Staleness of Code
Reviewer Recommendation Systems

Note. An earlier version of the work in this chapter appears in the EEE Transactions
on Software Engineering (TSE) Journal [70].

4.1 Introduction

Code Reviewer Recommendation (CRR) approaches have been developed to suggest suit-
able reviewers for a changeset by ranking potential candidates. They evaluate contributors
using their objective functions, taking into account factors such as experience [148], own-
ership [112], and developer interactions [126] and suggest the candidates with the highest
scores to review the changeset. However, they also have unintended impacts on various
aspects of the projects, such as the knowledge distribution[108]. Traditionally, CRR ap-
proaches are evaluated by applying them to historical data, and comparing recommended
reviewer lists to those who performed the review; however, recent studies call this practice
into question. For example, Kovalenko et al. [80] found that the top recommendations
are often known to developers. Thus, when recommendation approaches are considered
correct (i.e., they recommend the reviewer who performed the review), their recommenda-
tions are often obvious choices and of limited value. Moreover, prior work [48] found that
recommended reviewers who did not perform the review would often have been appropriate
assignees. Thus, when CRR approaches are considered incorrect, the implications are often
unclear. This raises a question: when can researchers and tool builders be certain that

26

recommended reviewers are truly incorrect?

In this chapter, we study stale recommendations—a class of recommended reviewers
that are certainly incorrect. We define a stale recommendation as a recommended reviewer
who has stopped contributing to the project under analysis. Since these contributors can-
not perform the review, they add no value to review recommendation lists. Indeed, the
interviewees of Kovalenko et al. [80] point out that it is not uncommon for recommenda-
tion lists to include stale reviewers. Furthermore, Zhang et al. [185] found that 91.03% of
the negative feedback they received from practitioners about the performance of a propri-
etary CRR system was about “irrelevant recommendations,” where stale recommendations
comprise 23.83% of this category. In contrast, other factors, such as a lack of prior par-
ticipation in code review, only accounted for 8.97% of all the negative feedback. Aligned
with prior work [80], the study further revealed that contributors frequently change their
focus area or switch teams, potentially making them stale for their prior focus areas and
development teams. These observations, coupled with the incontrovertible effect that stale
recommendations have on the performance of CRR approaches (unlike other types of incor-
rect recommendations), highlight the considerable risks that stale recommendations pose
to the quality of CRRs and provide an opportunity to better understand stale reviewer
recommendations to mitigate the issue. Prior studies have explored the effect of stale re-
viewers through the lens of turnover-induced knowledge loss [39, 115, 129]; however, to
the best of our knowledge, their characteristics and other potential effects on reviewer
recommendation are yet to have been explored.

Using data from the Kubernetes, Rust, and Roslyn open-source projects, we study the
prevalence of the stale recommendations that are produced by five reviewer recommenda-
tion approaches (LearnRec [109], RetentionRec [109], cHRev [183], Sofia [109], and WLR-
Rec [2]). We find that on average, stale recommendations account for 12.02%, 8.33%, and
16.44% of incorrect recommendations that are produced by the cHRev [183], Sofia [109],
and WLRRec [2] approaches per quarterly period, respectively, with medians of 10.28%,
6.63%, and 14.72%. Furthermore, when the number of recommendations to be produced
is set to one, two, and three, CRR approaches produce at least one stale recommendation
for up to 33.52%, 55.47%, and 69.18% of changesets, respectively, with medians of 6.34%,
15.01%, and 23.36%.

Since stale recommendations (1) represent a notable portion of incorrect recommen-
dations, (2) can influence a considerable proportion of changesets, and (3) have clear
implications (unlike other incorrect recommendations), we aim to characterize them and
propose mitigation strategies. To do so, we address three Research Question (RQ):

27

RQ1 Are code reviewer recommendation approaches resilient to stale recom-
mendations?
Motivation: For a CRR approach, it is desirable to be resilient to developer turnover,
while also suggesting suitable reviewers. However, in reality, CRR approaches are
susceptible to changes in the set of active reviewers. This RQ aims to explore the
extent to which stale reviewers are prevalent in the recommendations produced by
the studied CRR approaches.
Results: CRR approaches that consider the recency of contributions tend to be more
robust to stale recommendations. For instance, RetentionRec suggests no stale rec-
ommendations in the studied periods, while all LearnRec [109] recommendations are
stale in 80.39% of all the studied quarters. We establish the worst and best per-
formers as benchmarks and assess the effectiveness of each approach relative to these
benchmarks. We introduce the Recommender Adaptability Score (RAS) to estimate
an approach’s capacity to handle the volatility of active contributors (larger RAS
values indicate greater resilience). We observe that cHRev, Sofia, and WLRRec have
median RAS values of 91.87%, 94.27%, and 84.66%, respectively, indicating that
WLRRec is the least resilient, whereas Sofia is the most resilient.

RQ2 Distribution: How is staleness distributed among recommendations?
Motivation: If staleness is concentrated among a few reviewers, targeting these spe-
cific individuals would be more effective than strategies identifying many departed
reviewers. Thus, to guide future work, we study how staleness is distributed across
personnel.
Results: Staleness is highly concentrated for all of the studied recommendation ap-
proaches across the studied projects. Indeed, in 15.31% of periods over various eval-
uation settings, the top-3 reviewers account for at least half of the staleness.

RQ3 Duration: How long do stale recommendations linger on suggestion lists?
Motivation: If most stale recommendations linger for a short period, recommendation
approaches need to adapt to a dynamic list of reviewers who left the project. If, on
the other hand, reviewers linger in stale recommendation lists for a long period,
identifying a stable set of impactful candidates will have a larger effect. Thus, to
guide future work, we study the extent to which stale recommendations linger.
Results: Stale recommendations can still be suggested up to 7.7 years after their
departure, with a median time of 7 months and 21 days. While the lingering duration
of top-3 reviewers increases over time, their proportion in stale recommendations
reduces. Approaches that consider the recency of contributions (e.g., cHRev) reduce
the number of stale recommendations, but are ineffective when other factors like

28

Generating Reviewer Recommendations

Mining Contributors LifecycleDataset Preparation

Extract Project
Review Invitations CRR

Approaches

Suggested
Reviewers

Project History

Produce Reviewer
Recommendations

for Each Change Set

......Kazemi et al.
Dataset

Data Processing

 Extract the
Lifecycle of
Contributors

Research
Questions

Preliminary
Study

Project
Dataset

Developer
Lifecycle

Figure 4.1: The simplified overall architecture of study data analysis.

experience dominate.

Our results suggest that a periodic pruning of the top stale reviewers may help existing
approaches with staleness. In industrial settings, such a CRR system could integrate
with personnel management systems to identify who left the company; however, team
reorganization and internal movement of personnel may still present challenges [185]. To
address those challenges, we propose a mitigation strategy to enhance CRR approaches
with a separate time-based contribution recency filter to remove stale reviewers from the
available developer pool, especially the top ones that have been lingering for a long time.
This strategy diminishes stale recommendations by up to 92.16%, 92.39%, and 89.45%
for cHRev, Sofia, and WLRRec, respectively. Future work could further improve this by
improving the identification of the top reviewers and forecasting stale reviewers.

4.2 Study Design

Figure 4.1 gives an overview of our experiment design for this chapter. This section outlines
the dataset preparation (Section 4.2.1), the studied CRR approaches (Section 4.2.4), and
the data processing procedures (Section 4.2.5).

29

4.2.1 Dataset Preparation

We conduct our research using a dataset derived from active open-source projects. The
dataset is sourced from prior work [69]. While the dataset includes the information required
for recommending reviewers, it lacks the reviewers’ invitations for the changesets, which
we require for our study. Therefore, we augment the dataset by extracting the required
reviewer data using the GitHub API.1

Studied Dataset: The dataset includes data from the Roslyn, Rust, and Kubernetes
open-source projects. Rust is a popular high-level programming language with over 4.1K
contributors. Roslyn provides tools for the analysis of C# and Visual Basic with 548
contributors and is backed by Microsoft.2 Initially developed by Google, Kubernetes is now
managed by over 3.5K contributors and aims to automate operational tasks for container
management. The selection criteria for these project were to be active for over 4 years,
have more than 10K changesets with review rate of more than 25 percent overall, and have
more than 10K files. Further details on these projects can be found in Table 4.1.

4.2.2 Mining Contributors Lifecycle

This component is responsible for determining when a contributor joined and left a project.
To this end, we query the contribution logs in the extracted dataset to identify each con-
tributor’s last contribution to the project, signifying when they ceased their involvement.
To ensure accurate developer identification in the logs, after mining the data from GitHub
we implement a cleaning and matching stage. This stage involves preprocessing the ex-
tracted user records, considering their names and emails, and removing special characters
and diacritics. Moreover, we calculate the distance using the Damerau-Levenshtein algo-
rithm [27] for string matching with a tolerance of 1 to accommodate minor user name and
email variations. This helps with user identification and creates comprehensive profiles for
developers. We retain this information for our analysis (see Section 4.2.5).

1https://docs.github.com/en/rest
2https://devblogs.microsoft.com/visualstudio/introducing-the-microsoft-roslyn-ctp/

30

https://docs.github.com/en/rest
https://devblogs.microsoft.com/visualstudio/introducing-the-microsoft-roslyn-ctp/

Table 4.1: The details of the dataset used.

Name Files Reviewed Changesets Developers Review Invitations

Roslyn 12,313 8,646 469 1,546
Rust 12,472 17,499 2,720 128

Kubernetes 12,792 32,400 2,617 26,164

4.2.3 Key Terms

To enhance the clarity of our methodology, we explicitly define the key terms employed
throughout this report. These definitions are used for identifying contributors and estab-
lishing the criteria for determining when a contributor is considered to have departed from
a project.

Contribution: To identify potential reviewers from a project’s developer pool, we consider
those who had previous contributions to the project. Thus, we need to provide a crisp
definition of contribution in this thesis. There are multiple ways in which individuals can
contribute to the advancement of a project, including activities such as reviewing code
and reporting bugs. Since end users can submit bug reports, we elect to concentrate on
the contributions of code reviewers and changeset authors in this chapter. Furthermore,
since the recommendation approaches only consider developers for reviewing changesets,
we only consider those who reviewed or authored a changeset in the past.

Developer: Within the context of this chapter, a developer refers to individuals who have
authored a portion of the code or participated in reviewing a Pull Request (PR). It is
crucial to acknowledge that while they are qualified to review subsequent changes to their
own code, not all are actively involved in the review process. The term contributor is thus
synonymous with developer, as it aligns with the definition of contribution.

Reviewer: This term refers to those reviewing a changeset to ensure that new changes do
not introduce bugs, fulfill the authors’ intent, and adhere to the standards of the repository.
Previous studies have shown that choosing the optimal reviewer impacts the quality of the
review process [101, 138].

Stale Reviewer: The identification of contributors who have left a project has been ex-
plored in various studies using different thresholds from a contributor’s latest contribution
in periods of 30, 60, 180 days, and even a year [64, 92, 141]. A contributor is deemed stale
at a given point in the project’s history one day after they cease authoring or reviewing
PRs and do not make any subsequent contributions in the project contribution history.
We identify when recommendations become stale by first compiling the contributions of

31

developers from the project history and then determining their first and last contribution.
Similar to prior works [44, 92], we classify those who have contributed within the last six
months of the project’s available history as available developers to ensure all stale reviewers
have been inactive for a minimum of six months. Subsequently, we compare the generated
CRRs for the studied approaches against the activity lifecycle of developers to determine
which recommendations are stale.

In summary, we consider all the developers who have made contributions before the
changeset submission as potential reviewers and then apply the CRR approach, using
its objective function to prepare a set of reviewers and recommend that they review the
changeset. Among these recommended reviewers, some of them may not have been actively
engaged in the project development, i.e., stale reviewers.

4.2.4 Generating Reviewer Recommendations

To generate CRRs that align with the state of the project at the time of proposing each
changeset, we conduct a simulation of the project’s development over time. This simu-
lation involved exclusively considering the data points available before the changeset was
proposed. For every changeset, we identify the previous contributors and treat them as
the pool of potential reviewers. Subsequently, we feed this data as the input of the CRR
approach to reproduce the CRRs for the changeset, which are stored for further analysis.

Studied CRR Approaches: To investigate the quality of reviewer recommendations,
we choose five CRR approaches with various recommendation styles. Below, we briefly
describe each approach and its selection criteria. Since it is not feasible for one study
to implement and evaluate all the available CRRs, we chose five approaches that cover
different recommendation styles which are popular among the CRRs approaches [66, 148].

LearnRec [109] solely focuses on mitigating the risk of turnover-induced knowledge loss
by promoting knowledge sharing among team members. It recommends contributors who
are likely to learn the most from participating in the review of a changeset by estimating
the familiarity of the candidate with the modified files. LearnRec ranks candidates in
ascending order based on the complement of a heuristic, which estimates how much the
candidates know about the modified files (i.e., 1−ReviewerKnows). Even though LearnRec
is singular in its optimization focus and would not reasonably be deployed in production,
we include it as a benchmark to which other CRR approaches can be compared. Our
hypothesis is that this approach will exhibit the lowest resilience to stale recommendations
because individuals who are making a one-time contribution to a project are typically
ranked as those who stand to learn the most from a review [69, 109].

32

RetentionRec [109] suggests only Long Term Contributors (LTC). While the former
approach, LearnRec, is an extreme to mitigate the risk of turnover knowledge-loss, the
developers who benefit the most from reviewing code may have little to offer in terms
of feedback to benefit the authors of changesets. Moreover, they are highly likely to
be one-time contributors [69, 109]. As an extreme countermeasure, the RetentionRec
approach ranks candidates in descending order according to their frequency and consistency
of contribution. The contribution ratio measures the proportion of contributions made by
a developer during a period, while the consistency ratio measures the proportion of sub-
periods in which the developer was actively contributing to the project. As developers
become more consistent or active, the RetentionRec approach is more likely to suggest
them as reviewers. Due to the characteristics of the objective function, we expect this
approach to exhibit the highest resilience to stale recommendations; however, this tends
to overburden the core team since they have the highest frequency and consistency of
contributions.

cHRev [183] ranks potential reviewers for a changeset based on their previous reviews
and the recency of their contributions. To evaluate the suitability of developer D for re-
viewing file F, cHRev uses the xFactor measure, which is calculated as the sum of three
terms: (1) the ratio of the number of review comments made by D on file F to the total
number of review comments on F, (2) the ratio of the number of workdays that D com-
mented on reviews of F to the total number of workdays for all reviewers of F, and (3)
the inverse of the difference in days between the most recent day that D worked on F
and the last date that F has changed, plus one. CHRev calculates the xFactor for files in
the changeset for potential reviewers and recommend those with the highest xFactor. In
this chapter, we consider cHRev as an example of a traditional CRR algorithm, which are
approaches that seek to match review suggestions with historical review data [69].

Sofia [109] aims to balance multiple objectives, i.e., the knowledge distribution among
active team members and the expertise of reviewers assigned to tasks. Suppose the number
of knowledgeable developers in the project for any file in the changeset R is N . When N
is greater than a risk tolerance threshold (N = 2 in the original paper [109]), Sofia uses
cHRev to rank recommendations by their expertise. Conversely, when N is below the
risk tolerance threshold (i.e., there are fewer than N developers in the project that have
knowledge of the file) Sofia uses the combination of RetentionRec and LearnRec to rank
LTC candidates who can learn the most by reviewing R.

WLRRec (WorkLoad-aware Reviewer Recommendation) [2] takes into account the
workload of potential reviewers when ranking candidates for a changeset as well their
social interactions. The idea is that if a reviewer is already very busy, they are less likely
to agree to take on another task. When ranking candidates, WLRRec considers their past

33

rate of accepted review invitations (review participation rate), the assigned reviews that
candidates still have pending (remaining reviews), and the expertise and experience that
candidates have with respect to the code under review (ownership and experience). We
study WLRRec because it is a state-of-the-art approach that does not place importance
on the recency of the candidate reviewer contributions. This attribute is desirable to help
us comprehend a broad range of CRR characteristics in this chapter.

4.2.5 Data Processing

In this component, we address the research questions outlined in Section 4.1. Our inves-
tigation begins with a preliminary assessment of the prevalence of stale recommendations
in CRR systems. If noticeable prevalence is observed, we will proceed to conduct a more
in-depth analysis of the data collected in the previous stage.

We rely on historical data from Git repositories to produce CRRs. Further information
on the history of each project can be found in Table 4.1. The historical data from each
studied project is stratified into quarterly (three-month) intervals and CRR performance
is evaluated for each interval. This approach aligns with previous studies on knowledge
turnover [109, 115, 132], which also chose quarterly intervals. The rationale behind this
choice is that it provides a balance: quarterly intervals are long enough to capture trends
and patterns effectively, yet not so long that crucial details are obscured. Additionally,
smaller time-frames have shown to be more susceptible to extreme events when compared
to their respective means [115].

To confirm that code review was consistently carried out, we focus on contiguous pe-
riods where more than 80% of integrated changesets were reviewed. Figure 4.2 shows the
quarterly review rates for each project.

4.3 Preliminary Study

Prior studies have shown that developers complain about stale recommendations [80, 185];
however, the prevalence of and reasons for stale recommendations remain unexplored.
Therefore, we conduct a preliminary study of stale recommendations in CRR systems.

34

0 5 10 15 20 25 30 35
Period

0

20

40

60

80

100
Re

vi
ew

 R
at

e
(%

)

project
Roslyn
Rust
Kubernetes

Figure 4.2: Quarterly review rates of Rust, Roslyn and Kubernetes projects.

4.3.1 Approach

To gauge the potential impact of stale recommendations, we study the rate at which in-
correct recommendations are stale. We apply the studied CRR approaches to produce
reviewer recommendations at several points in time. Then, we identify incorrect recom-
mendations, i.e., recommended reviewers who did not review the code. Next, we measure
the prevalence of stale recommendations in incorrect ones, and the ratio of all change-
sets (i.e., PRs) that have at least one stale recommendation since they can potentially be
impacted by stale recommendations.

4.3.2 Results

Stale recommendations frequently account for a considerable proportion of incorrect rec-
ommendations with an average of 12.59% of incorrect recommendations for non-näıve ap-
proaches [69], i.e., CRR approaches that optimize the recommendation for multiple objec-
tives such as cHRev, Sofia, and WLRRec. Specifically, the average proportion of stale
recommendations to the incorrect ones over reviewer set sizes of one to three for LearnRec,
RetentionRec, cHRev, Sofia, and WLRRec is 97.13%, 0%, 12.03%, 8.33%, and 16.44%,

35

0 1 2 3 4 5 6 7 8

10

20

Sh
ar

e
of

 S
ta

le

 R
ec

om
m

en
da

tio
n(

%
) Reviewer Set Length=1

Roslyn

0 1 2 3 4 5 6 7 8

10

20

Sh
ar

e
of

 S
ta

le

 R
ec

om
m

en
da

tio
n(

%
) Reviewer Set Length=2

0 1 2 3 4 5 6 7 8
Period

10

20

Sh
ar

e
of

 S
ta

le

 R
ec

om
m

en
da

tio
n(

%
) Reviewer Set Length=3

cHRev
Sofia
WLRRec

Figure 4.3: Share of stale recommendations over time for studied projects. Rows indicate
variations for reviewer set sizes ranging from 1 to 3.

respectively, with the median share of 100%, 0%, 10.28%, 6.63%, and 14.73% across all
the studied periods. These proportions indicate that for all studied approaches, except for
RetentionRec, stale recommendations account for a non-negligible proportion of incorrect
recommendations. By exclusively suggesting contributors who exhibit a higher likelihood
of remaining engaged in the project, RetentionRec surpasses other existing CRR meth-
ods in terms of mitigating the issue of stale recommendations. However, RetentionRec’s
superiority in this aspect comes at the cost of imposing a significant workload on core
developers, rendering it impractical [69, 109].

36

0 1 2 3 4 5 6 7 8 9
Period

0

20

40

60

Af
fe

ct
ed

 C
ha

ng
e

Se
ts

 (%
) Roslyn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Period

0

20

40

Rust

0 1 2 3 4 5 6 7 8 9
Period

0

20

40

60

Reviewer Set Length=3

Kubernetes
Three Reviewers
Two Reviewers
One Reviewer

Figure 4.4: Prevalence of potentially impacted changesets by stale recommendations for
cHRev (left), Sofia (middle), and WLRRec (right) for each period (percentage).

The clarity of the impact of stale recommendations compared to other types of incorrect
recommendations warrants a closer inspection. Prior research indicates that the reviewers
of a changeset are not necessarily the optimal choices [95], whereas those who are recom-
mended but have not conducted the review often possess the necessary qualifications to
conduct the review [48]. Hence, it is not straightforward to identify the truly incorrect rec-
ommendations among the produced reviewer recommendations. Stale recommendations,
however, are unequivocally incorrect—they are unavailable to conduct the review. Fur-
thermore, in specific periods (e.g. last periods of Kubernetes project), the proportion of
stale recommendations becomes considerable, likely a factor that contributes to the nega-
tive feedback that was observed in previous studies [80, 185]. Therefore, mitigating stale
recommendations directly enhances the performance of CRR approaches and improves the
experience of teams that use them.

The size of the recommendation set has little influence on the proportion of stale rec-
ommendations, whereas the proportions vary substantially from one project to another.
Figure 4.3 shows the proportion of incorrect recommendations that are stale over time for
the three studied projects for reviewer set sizes from one to three. Each line shows the
proportion of stale recommendations that are not influenced by the recommendation set
size, whereas the project and CRR approach affect their proportion. While initial observa-
tions suggest reviewer set size does not influence the prevalence of stale reviewers, further
analysis of potentially affected changesets indicates otherwise. Reviewer set size impacts
the extent of affected changesets–a more important measure of stale reviewers’ potential
effect. Additionally, the figure indicates that project-specific factors, such as knowledge
turnover rates, have a substantial impact on stale reviewer rates.

A considerable proportion of changesets has at least one stale recommendation. Our
analysis reveals that up to 33.52%, 55.47%, and 69.18% of changesets include at least
one stale recommendation when recommendation sets are of length 1, 2, and 3, respec-
tively, with corresponding medians of 6.34%, 15.01%, and 23.36%. Figure 4.4 shows the

37

proportion of changesets that include stale recommendations (Y-axis) over time (X-axis)
across the studied projects (horizontal grid) with recommendation lists of length 3. This
figure shows that the share of influenced changesets by stale recommendations tends to
grow over time in all settings, except in the Rust project where WLRRec is applied. This
difference is due to Rust’s lack of review invitation records. While this might occur in
real-world projects for various reasons, such as using alternative communication channels
for review requests or allowing reviewers to self-select changesets to review, we consider it
an interesting application of WLRRec to such projects rather than a threat to the validity
of WLRRec results for Rust. Nevertheless, this lack of information causes a divergence
between Rust and other projects when using WLRRec, which takes into account the ac-
cepted review invitation rate. Since the accepted invitation data is not available on Rust’s
GitHub, WLRRec does not perform as well. However, over time, other factors in the
WLRRec algorithm, such as Reviewing Experience and Familiarity, compensate for this
limitation. The results for reviewer set lengths of one to three are shown in Figure A.2.

Stale recommendations represent a considerable and persistent issue within CRR sys-
tems, as evidenced by the median percentage of changesets containing at least one stale
recommendation, which ranges from 6.34%, 15.01%, to 23.36% for reviewer set lengths
of one, two, and three, respectively. This trend not only underscores their prevalence
but also suggests an increasing tendency over time, highlighting the shortcomings of
widely-used CRR systems with this regard. A deeper investigation is warranted to bet-
ter characterize their occurrences to guide the development of mitigation approaches.

4.4 RQ1: The Prevalence of Stale Reviewers in Code

Reviewer Recommendations

In this section, we study the prevalence of stale recommendations that are produced by
our studied approaches.

4.4.1 Approach

We evaluate the recommendations for studied approaches over the quarterly periods with
recommendation lists of lengths one, two, and three. For each period, we compute the share
of stale recommendations over all the incorrect recommendations. To assess the quality

38

of studied approaches, we propose the Recommender Adaptability Score (RAS) measure,
which gauges the approach’s ability to respond to developer turnover and consider only
active contributors:

RAS(CRR) =
AUC(CRRLearnRec) − AUC(CRR)

AUC(CRRLearnRec) − AUC(CRRRetentionRec))
(4.1)

AUC refers to the Area Under the Curve that plots the proportion of stale recommen-
dations against time (i.e., studied periods). We expect LearnRec and RetentionRec to
produce the worst and best performance (i.e., the largest and smallest possible AUC),
respectively. Therefore, the RAS calculates how much closer the CRR is to the optimal
(best) performance than to the worst performance. The RAS ranges between 0–1; higher
values indicate better performance.

0 1 2 3 4 5 6 7 8
Period

0

25

50

75

100

St
al

e
Re

co
m

m
en

da
tio

ns
(%

)

Roslyn

0 2 4 6 8 10 12 14
Period

Rust

0 1 2 3 4 5 6 7 8
Period

Reviewer set Length = 1

Kubernetes
LearnRec RetentionRec cHRev Sofia WLRRec

Figure 4.5: The proportions of stale to all recommendations (y-axis). The period numbers
are normalized, with zero representing the oldest period.

4.4.2 Results

Figure 4.5 shows the proportion of stale recommendations (Y axis) over time (X axis)
across the studied projects (Horizontal grid) for reviewer set length of one. The results

Table 4.2: Measured Recommender Adaptability Score (RAS) values for each setting. A
higher RAS indicates better adaptability to developer turnover.

Project Roslyn Rust Kubernetes

Approach
Reviewer set length

1 2 3 1 2 3 1 2 3

cHRev 0.9521 0.9448 0.9349 0.9356 0.9065 0.8902 0.9188 0.8945 0.8783
Sofia 0.9647 0.9595 0.9540 0.9632 0.9428 0.9313 0.9336 0.9135 0.8996

WLRRec 0.8280 0.8442 0.8466 0.8220 0.8041 0.8588 0.8757 0.8560 0.8676

39

0 2 4 6 8 10 12 14
Period

0

5

10

15

Ex
pe

rti
se

 Tu
rn

ov
er

 R
at

e
(%

)
Roslyn Rust Kubernetes

Figure 4.6: Developer expertise turnover rate for the studied periods over time. We consider
the first studied period to be zero in all projects.

when the length of the recommendation list is set to two and three are shown in Figure A.1
in Appendix A.

Stale recommendations account for up to 33.33% of all suggested reviewers with a me-
dian share of 8.3% of all of the recommendations. Figure 4.5 largely confirms previously
reported developer complaints [80], i.e., that CRR approaches often suggest stale review-
ers. CRR approaches, configuration settings, and periods have a considerable effect since
Figure 4.5 also shows that the proportion of stale recommendations can drop to as low
as 0.33%; however, even a minimal presence of stale recommendations—especially those
involving stale reviewers who have long since departed from the project—can erode de-
velopers’ trust in CRR systems, thereby affecting their usability. Additionally, reducing
the incidences of stale recommendations, even if they constitute a small proportion of the
recommendations at times, would certainly enhance the rate of correct recommendations,
unlike other types of recommendations which may have ambiguous implications [32, 48].

Considering the recency of candidate contributions enhances the quality of CRRs. We
find approaches that consider the recency of contributions outperform WLRRec, a CRR
approach that does not consider recency. Figure 4.5 indicates that RetentionRec is the

40

best CRR approach with no stale recommendations, while LearnRec is the worst, provid-
ing stale recommendations in 80.39% of all the studied periods. The poor performance of
LearnRec in recommending active contributors can be attributed to its prioritization of
contributors with the greatest learning opportunity. This näıve prioritization can lead to
sizable knowledge loss [69, 109]. Meanwhile, RetentionRec prioritizes the most active con-
tributors and is thus least prone to making stale recommendations; however, RetentionRec
tends to overburden core developers (by design).

The performance of Sofia and cHRev—CRR approaches intended for actual deployment—
falls in between these two extremes, with Sofia exhibiting a slight advantage over cHRev.
We suspect that this is due to Sofia’s use of RetentionRec to mitigate the risk of knowledge
loss. Both Sofia and cHRev consider recent contributions of candidates. In contrast, WL-
RRec employs a combination of candidates’ prior interactions, prior accepted review rate,
experience, and workload to rank reviewer candidates without considering the recency of
their contributions.

Table 4.2 shows the RAS scores of the studied approaches. LearnRec and RetentionRec
are not included in the table, as they are the benchmarks used to compare other CRR
approaches (worst and best performers, respectively). The median RAS scores of 0.9187,
0.9427, and 0.8466 for cHRev, Sofia, and WLRRec, respectively, suggest that they perform
more similarly to RetentionRec (optimal) than LearnRec (worst). Moreover, the RAS
obtained from Table 4.2 for cHRev, Sofia, and WLRRec exhibit a standard deviation of
0.0262, 0.0228, and 0.0181, respectively. This suggests that Sofia and cHRev are relatively
more susceptible to variations in the reviewer set size and project, as compared to WLRRec.

Abrupt changes in developer expertise turnover led to a delayed impact on the staleness
rate of CRRs, a trend observed across all projects analyzed. To explore further, Figure 4.6
plots the expertise turnover rate of the studied projects over quarterly periods. The figure
plots the ratio of previous contributions from developers who stopped contributing to the
project during each period against the total prior contributions from all developers who
were active by the end of the period. Period numbers are normalized to begin from zero to
simplify comparisons across projects. For example, in the Roslyn project, there is a decline
in the turnover rate between periods 2 and 3, followed by a steady increase until the end
of the timeframe with small peaks at periods 4 and 6, as depicted in Figure 4.6. In this
case, we observe a comparable trend in the proportion of stale recommendations, with a
gentler slope for both segments in Figure 4.5. The figure also shows two small peaks at
periods 5 and 8 with a delay from the expertise turnover peaks. The fluctuation of the
RAS scores for one CRR approach over different projects also confirms the resiliency of
the CRR approaches against developer expertise turnover. For Kubernetes and Roslyn,
the developer expertise turnover rate in Figure 4.6 shows an upward trend with a similar

41

pattern of peaks occurring with 1 or 2 periods of delay in Figure 4.5. For the Rust project,
however, while the upward slope for the share of stale recommendations is not as steep
as the expertise turnover rate, we can still observe the impact of periods that have peak
turnover ratio, such as periods 9 and 13, in Figure 4.5 with 1–2 periods of delay in periods
11–12 and 14–15. The WLRRec approach exhibits weaker adherence to the trend. We
suspect this is because the Rust project does not keep any record of review invitations
(i.e., developers invited to review changesets). This lack of data profoundly impacts the
quality of recommendations generated by WLRRec since review invitations are part of its
objective function.

Stale recommendations account for a considerable portion of the suggestions provided by
CRR approaches, accounting for up to 33.33% of the recommendations with a median
share of 8.3% of all of the recommendations that were produced. Although considering
the recency of the candidate’s contributions can partially mitigate the negative impact
of stale recommendations, the performance of cHRev concerning stale recommenda-
tions suggests that solely considering this metric cannot eliminate this type of incorrect
recommendation.

4.5 RQ2: The Distribution of Stale Recommenda-

tions Across Reviewers

In this section, we study the distribution of stale recommendations across the reviewers of
the studied projects.

0 1 2 3 4 5 6 7 8 9
Period

0

20

40

60

80

100

Pr
op

or
tio

n
of

 a
ll

st
al

e
re

co
m

m
en

da
tio

ns
 (%

)

Roslyn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Period

0

10

20

30

40

50

60

Rust

0 1 2 3 4 5 6 7 8 9
Period

0

10

20

30

40

50

60
Kubernetes

 Rank of
Stale Reviewers

Rank #3
Rank #2
Rank #1

Figure 4.7: The share of top-3 reviewers’ recommendations of all stale recommendations for
cHRev (leftmost bar), Sofia (middle bar), and WLRRec (right bar) for studied quarterly
periods with reviewer set length of one.

42

0 10 20 30 40 50
Number of reviewers that account for

 the largest number of stale recommendations

20

40

60

80

100
Pr

op
or

tio
n

of
 a

ll
st

al
e

re
co

m
m

en
da

tio
ns

 (%
)

Reviewer set Length
1
2
3

Figure 4.8: Change of top-N reviewers’ share in stale recommendations with value of N
when Sofia is applied to Roslyn (reviewer set lengths 1-3).

4.5.1 Approach

To study the distribution of stale recommendations, we calculate the proportion of stale
recommendations accumulated by each reviewer quarterly. We aim to analyze and justify
our observations to identify the most influential factors contributing to stale recommenda-
tions.

4.5.2 Results

Figure 4.7 shows the proportion of stale recommendations accumulated by the top-3 most
recommended reviewers to all stale recommendations for each quarterly period when the
recommendation list length is set to one. We normalize study period numbers to begin
from zero for easier comparisons. Results for recommendation list lengths two which are
shown in Figure A.3 in Appendix A.

A small number of reviewers account for a substantial proportion of the stale recom-
mendations. Figure 4.7 shows that in periods 2 and 3 of the Roslyn project, 100% of the
stale recommendations are in reference to three reviewers. On the other hand, Figure 4.7
also shows that the proportion of stale recommendations accumulated by the top-3 review-
ers can drop as low as 0.072 (i.e., in normalized period eight of the Kubernetes project).
Moreover, in 15.31% of evaluated quarterly periods, over half of the stale recommendations
are accumulated by the top-3 reviewers.

43

Figure 4.8 shows that a few reviewers constitute most of the stale recommendations in
the periods of the Roslyn project when Sofia is applied. To enhance the quality of CRRs,
these reviewers can be excluded from the candidate list. Similar trends were observed in
other projects. These results are shown in Figure A.4 in Appendix A.

The proportion of stale recommendations that the top reviewers accumulate tends to
decrease as projects age. Figure 4.7 shows that the proportion of stale recommendations
for the top-3 reviewers diminishes over time. For instance, when Sofia is applied, this
proportion decreases from 75.00%, 64.29%, and 40.00% in period 0 to 55.26%, 38.89%,
and 22.91% in the final studied periods of Roslyn, Rust, and Kubernetes, respectively.
Moreover, the periods in between show a decreasing trend.

CRR approaches frequently recommend a small number of reviewers who stopped con-
tributing to the project based on their prior contributions. Although the proportion of
such reviewers decreases over time as experienced contributors leave the project, remov-
ing them has the potential to considerably enhance the perceived quality of the CRRs.

4.6 RQ3: The Lingering effect of stale reviewer rec-

ommendations

In this section, we study how long contributors who left a project linger in suggestion lists.

4.6.1 Approach

To calculate the duration of a lingering stale recommendation, we measure the time be-
tween the last contribution and subsequent recommendations of the reviewer. We conduct
experiments for studied projects, and assess the consistency and impact of each variable on
the duration of lingering stale recommendations. Our findings exclude the LearnRec and
RetentionRec approaches since they are considered baseline approaches and are unlikely
to be adopted in practice.

44

Lingering time (Days)

N
o
rm

a
li
z
e
d
 P

e
ri

o
d

cHRev So�a WLRRec

Figure 4.9: The distribution of the duration of stale recommendations (in days) over quar-
terly periods for the studied projects. Only the first nine periods are drawn.

0 1 2 3 4 5 6 7 8
Period

0

200

400

600

800

Lin
ge

rin
g
Ti
m
e
(d
ay

s)

Roslyn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Period

0

200

400

600

800

1000

1200

1400

Rust

0 1 2 3 4 5 6 7 8
Period

0

200

400

600

800

Kubernetes
cHRev
Sofia
WLRRec

Figure 4.10: The distribution of lingering duration for the top-3 reviewers over quarterly
periods.

4.6.2 Results

There exist reviewers who persist in the recommendation list of CRR approaches for up to
7.7 years, with a median time of 7 months and 21 days. Figure 4.9 shows the distribution
of the elapsed time (in days) between the departure of reviewers and their subsequent stale
recommendations for all the recommendations over specific quarterly periods. Among the
studied projects, the upper bounds of the distributions tend to increase. This suggests that
the evaluated CRR approaches do not effectively prune their candidate pool over time to
eliminate stale recommendations, even though some consider the recency of their contribu-
tions. While some may argue that the responsibility of identifying potential reviewers lies
with those who are familiar with the current team, this task becomes increasingly challeng-
ing as teams grow, particularly in the context of open-source projects or when developers

45

switch teams internally. For instance, we encountered cases in the Roslyn project where
developers moved from Roslyn to Office 365 and other teams within Microsoft. These
complexities and barriers indicate that CRR approaches could be used to effectively prune
the pool of potential reviewers.

Indeed, contributors who have left a project may be recommended by CRR approaches
long after they have left the project. For example, PR #65216 of the Kubernetes project,
both cHRev and Sofia recommend developer M when the reviewing set length is set to
three. Developer M both joined and left the project in 2014. Nevertheless, upon submission
of PR #65216 (more than 3.5 years later), M was recommended as a reviewer due to the
extensive contributions to the file ”pkg/util/iptables/iptables.go”.

In another example (Roslyn PR#33501) cHRev recommends three reviewers, including
developer H, who participated in Roslyn’s code development from June 2014 to September
2018. In determining H ’s score, contributions and workdays each equally account for 30%
of cHRev’s score. The remaining 40% of the score weight is determined by the recency of
the contribution. Meanwhile, Sofia deems this changeset at a high risk of turnover-induced
knowledge loss and recommends candidates who are actively involved in the project’s
development. Thus, Sofia does not make any stale recommendations for this changeset.
The WLRRec’s recommendation for this PR is primarily influenced by previous interactions
with the code’s author and, as such, it only makes one stale recommendation when the
length of the recommendation list is set to three.

The lingering attribute of stale recommendations differs among CRR approaches, influ-
enced by their objective functions. CHRev shows the highest staleness (median staleness
of 245 to 279 days) across the projects under scrutiny, with Sofia performing slightly bet-
ter (median staleness of 201 to 258 days). WLRRec presents the lowest median staleness
in Roslyn and Kubernetes (160 and 203 days), but the highest in Rust (371 days). We
suspect that these differences are explained by the focus of cHRev on maximizing exper-
tise, which can overshadow the recency, leading to stale recommendations. Sofia is similar
to cHRev, but includes an adjustment for knowledge turnover risks, and uses Retention-
Rec to recommend active reviewers in high-risk changes. By considering social dynamics
and reviewer request responsiveness, WLRRec provides a more balanced recommendation
distribution in the Roslyn and Rust project. Rust’s poor performance (371 days median
staleness) likely stems from missing review request responsiveness records, underscoring
this feature’s importance in countering lingering stale recommendations.

As projects age, CRR approaches tend to accrue a larger candidate list without pruning
those who have left the project. This exacerbates the impact of top reviewers who left a
project many periods ago. CRR approaches with high reliance on the expertise of

46

the candidates (e.g., cHRev) are especially prone to this problem. As Figure 4.9 suggests,
some of the reviewers may remain on the candidate list for a long time. These developers
are most likely stuck in the candidate list due to their experience and prior contributions
to important modules, which may degrade the performance of CRR approaches over time.
Figure 4.10 shows this distribution for the top-3 reviewers over quarterly periods when the
reviewer set length is set to one and confirms the increasing tendency of the longevity of
the lingering duration over time. The results for reviewer set lengths two and three also
follow the same trend which can be seen in Figure A.5 in Appendix A.

Sudden declines in the staleness of the top-3 reviewers are linked to increased release
frequencies paired with a surge in new file additions, followed by high developer expertise
turnover. This pattern is evident in periods 15 and 16 for Roslyn and 12 and 13 for
Kubernetes, as shown in Figure 7. Our analysis indicates that these declines in the lingering
days of the top-3 stale reviewers occur after periods marked by heightened release activities,
new file additions, and developer turnover. New releases are often accompanied by a
spike in bugs or feature requests that are related to newly added files, necessitating the
involvement of developers who are familiar with those files. Suppose these developers have
recently left the project. In that case, they are likely to be recommended, thereby reducing
the lingering days of the top-3 stale reviewers by suggesting those who worked on those
releases. For Roslyn, this effect can be observed with an increase in new files in PRs and
a peak in release rates between periods 12 to 15. This is coupled with an increase in
developer turnover that peaks during periods 14 and 16. Consequently, a noticeable drop
for top-3 developer lingering days occurs between periods 15 to 16. In Kubernetes, the
drop occurs between periods 12 and 13, triggered by a spike in developer turnover in period
11 and a high release rate compared to the median rate of all releases from periods 9 to
12, with an increase in new file additions in PRs from periods 8 to 11. The Rust project
does not exhibit such concurrent events; hence, there is no similar decline in lingering days
for its top-3 stale reviewers. Further detail of these rates and analyses are available in
Figures figs. A.6 to A.9 in Appendix A.

Comparing our latest findings with our previous research question shows that while

47

the proportion of top-3 reviewers may decrease over time, their residual effect tends to
increase. This highlights the need to remove the top reviewers who have left the project
from candidate pools to address the lingering effect present in CRR approaches.

CRR approaches make stale recommendations frequently, even years after contributors
have left a project. While the percentage of the top reviewers of all the stale recommen-
dations may decrease over time, their residual effect tends to increase. Regular pruning
of the candidate pool could provide a reliable way to improve the perceived quality of
reviewer recommendations.

4.7 Mitigation Plan

Based on our findings, we propose to incorporate the recency of developer contributions
and filter out stale reviewers as a new stage for CRR approaches. This filter can ensure
that the recency factor is not overshadowed by other variables, and can integrate with
existing CRR approaches.

4.7.1 Approach

We propose a time-based filtering stage that excludes developers from the recommendation
list if they have not contributed within a specified timeframe (PContributionGap). We assess
the effect of different PContributionGap durations—one year, six months, three months, and
one month—on the performance of each approach to reveal the potential impact of applying
the proposed factor and its effectiveness on studied approaches and projects. To this end,
we apply the filter across these intervals and measure the metrics below:

Staleness Reduction Ratio (SRR) quantifies the improvement in recommendation staleness
of a CRR approach upon integrating our time-based filter. SRR is calculated as the relative
increase in the proportion of all the recommendations:

SRR =
SSRNo Filter − SSRTime-based Filter

SSRNo Filter

(4.2)

SSRNo Filter and SSRTime-based Filter represent the original staleness without, and with the
filter applied, respectively.

48

Developers’ Work Load Ratio (DWLR), inspired by prior work [109], evaluates the potential
workload on non-stale recommended reviewers should they accept all recommendations.
Workload is estimated using the reviewer’s share of total review tasks.

F1-Score assesses the performance of the proposed filter in predicting stale recommenda-
tions. In this context, true positives are correctly replaced stale recommendations, false
positives are non-stale recommendations mistakenly replaced, true negatives are non-stale
recommendations accurately left unchanged, and false negatives are stale recommendations
that were not identified and thus remained.

Present Reviewers Expertise (PRE) assesses the impact of the time-based filter on the
expertise level of non-stale recommended reviewers. For each PR, after excluding stale
reviewers, we measure the expertise of remaining recommended reviewers based on their
prior contributions to the files involved in the PR. Expertise is defined following the for-
mulation of Mirsaeedi and Rigby [109], i.e., focusing on the proportion of modified files
which previously contributed to by the reviewer before the submission of the PR.

4.7.2 Results

SRR decreased substantially, with reductions ranging from 21.44% to 92.16% for cHRev,
22.42% to 92.39% for Sofia, and 21.62% to 89.45% for WLRRec. Remarkably, this filter
also enabled LearnRec, a näıve baseline approach, to reduce stale recommendation rates
by 19.93% to 92.48%. Thus, the time-based filter successfully achieves its primary goal of
substantially lowering stale recommendations.

Reducing PContributionGap enhances SRR but restricts the pool of available reviewers,
thereby increasing the workload for active contributors. As anticipated, narrowing the in-
terval for recent contributions can exclude active contributors, potentially increasing the
workload for other developers. The median Developers’ Work Load Ratio (DWLR) for the
top-3 most recommended non-stale reviewers across studied periods increases with shorter
PContributionGap intervals—8.33%–13.33% for 1 year, 9.69%–15% for 6 months, 11.11%–16.67%
for 3 months, and 13.41%–19.14% for 1 month, compared to 6.59%–12.29% without the
filter. This trend highlights the trade-off in setting PContributionGap values for the time-based
filter.

The time-based filter considerably improves CRR approaches that overlook contribution
recency or seek recommendation diversity, with F1-Scores ranging from 0.0254-0.1894 for
cHRev, 0.0196-0.1560 for Sofia, and 0.2611-0.3587 for WLRRec. The time-based filter
excels in contexts with higher stale recommendation rates. For cHRev and Sofia, the
high precision shows that the time-based filter effectively identifies long standing stale

49

reviewers, but struggles with recent stale ones, hindering their recall due to low rates of
stale recommendations. In contrast, WLRRec suffers from a lower precision, but enjoys a
higher recall, due to its higher rate of stale recommendations. LearnRec benefits across
both metrics, indicating the filter’s broad applicability for this baseline approach.

Applying the proposed filter to CRR approaches maintains or improves the expertise
of non-stale recommended reviewers in our studied cases. The median Present Review-
ers Expertise (PRE) by cHRev and Sofia remains unchanged, while their mean expertise
increases slightly, ranging from 0.73%–2.44% for cHRev and 0.70%–2.30% for Sofia. Con-
versely, WLRRec shows a notable median PRE improvement of 16.66%–40%, with mean
expertise rising by 3.32%–10.64%. This enhancement results from the filter’s exclusion
of stale reviewers, thus increasing the likelihood of selecting reviewers with relevant ex-
pertise. Further analysis with the Wilcoxon signed-rank test shows significant changes
in the distribution of PRE across settings, except for WLRRec over a 1-year interval in
Roslyn for reviewer sets one and two, and Kubernetes for set three, highlighting significant
impact of the time-based filter on reviewer selection. WLRRec’s behavior over a 1-year
interval is likely linked to stale recommendations from reviewers unfamiliar with modified
files but who have recent interactions with the author and a high review invitation respon-
siveness. The recency of these interactions means the 1-year filter has little effect on these
recommendations.

Detailed measurements for each experiment are available in Appendix A.

Filtering out inactive developers does not compromise recommendation quality; it ac-
tually enhances the expertise of the available recommended reviewers, with median im-
provements of PRE ranging from 0.73% to 10.64% across studied approaches. However,
it may impose an additional workload on active reviewers. Thus, selecting an optimal
cut-off interval is essential to minimize stale recommendations without overburdening
developers by excluding too many potential reviewers.

4.8 Threats to Validity

Construct Validity. In this chapter, we explore stale recommendations in CRR ap-
proaches, defining staleness as the interval between a developer’s last contribution and
subsequent recommendations. Because exact departure times are not usually documented,
we should estimate the developer departure. We approximate the developer departure as
one day after their last contribution if there has been no activity for at least 180 days.

50

While this method may threaten the construct validity of our study, it is a widely accepted
approximation in prior research [64, 92, 141].

Internal Validity. Contributors labelled as stale reviewers may be only taking a tempo-
rary hiatus. The last two quarterly periods are removed from the analysis to mitigate this
threat, i.e., the shortest period of absence that will cause us to label a reviewer as stale is
six months. We may also mislabel a recommendation as stale if it occurs shortly after the
reviewer’s last contribution, even though they remain active. However, we find that such
instances are rare. In the Roslyn project, stale recommendations for reviewers who de-
parted within one day, one week, and one month of their last contribution comprised only
0.38%, 2.26%, and 7.94% of all stale reviewers, respectively. In Rust, the corresponding
percentages were 0.32%, 2.17%, and 7.7%, and in Kubernetes, 0.37%, 3.13%, and 10.89%,
indicating that these cases represent a small proportion of all stale recommendations.

External Validity. Although we study five different CRR approaches, the outcome of our
analysis may not generalize to all settings. However, our findings highlight the degree to
which current approaches are susceptible to stale recommendations and their characteristics
for three studied projects of varying scales and domains. Including more projects could
enhance the external validity of our results; however, running our simulations takes several
days per project which means extending the dataset would require a large quantity of
computational resources. Nevertheless, replication of the study in other contexts may
prove fruitful.

4.9 Conclusions and Lessons Learned

CRR approaches have been criticized for producing unactionable recommendations [80,
185]. Stale recommendations (i.e., recommended reviewers who no longer contribute to
the project) are a concrete type of incorrect recommendations that hinder CRR perfor-
mance and erode developer trust, especially when the recommended reviewer has long
abandoned the project. Since stale reviewers can no longer effectively contribute to the
project, they are truly incorrect recommendations, providing a unique opportunity for im-
provement. Therefore, in this chapter, we examine three projects using five different CRR
approaches to understand their nature. Our investigation focuses on the prevalence of
these recommendations (Section 4.4), the distribution of stale reviewers (Section 4.5), and
the duration for which stale reviewers continue to appear in recommendations (Section
4.6). From our findings, we derive the following actionable insights for both practitioners
and developers of CRR tools:

51

• We recommend that practitioners configure their CRR systems to gener-
ate a larger number of recommendations than they may need. This method
acknowledges the inherent tendency of CRR systems to suggest stale reviewers to
varying extents (as discussed in RQ1) and mitigates the issue by providing addi-
tional reviewer options, thereby reducing the likelihood of being affected by stale
recommendations. This strategy, however, does not counteract the erosion of trust
that is associated with recommending stale reviewers who have left the project.

• The effect of stale recommendations is particularly substantial when ex-
perienced developers leave, as the proportion of stale recommendations
among all CRRs is directly influenced by the rate of expertise turnover
(as shown in RQ1). Consequently, for projects facing an exodus of experienced
developers, we advise (1) employing CRR approaches that emphasize the recent
contributions of reviewers, such as Sofia; and (2) whenever feasible, tuning the hy-
perparameters of CRR systems to weigh the contribution recency more prominently.

• Our findings suggest that the recency of developer activities should be
incorporated as a stage before recommendations are generated. Doing so
can mitigate the predominance of other factors, such as developer expertise, that may
overshadow the recency of developer contributions. We observe a positive effect in
approaches like cHRev and Sofia, where considering developer recency as a separate
preparatory stage reduces the likelihood of stale recommendations by 19.93%-92.48%,
depending on the cut-off parameter of the filter, and the project and CRR approach
under scrutiny.

• Identifying and replacing frequently recommended stale reviewers are cru-
cial. Throughout our study, we noted instances where pinpointing the top-3 stale
reviewers and substituting them with active developers reduces incidences of stale
recommendations by up to 22.10% overall, with medians over the studied periods
of 37.16%, 32.62%, 17.01% for the cHRev, Sofia, and WLRRec approaches, respec-
tively. Therefore, identifying frequently recommended stale reviewers and removing
them from the pool of available developers can alleviate the general staleness issue.

• Implementing a threshold for the latest reviewer contribution can help
mitigate the issue. Our analysis reveals that CRR approaches like cHRev, Sofia,
WLRRec, and LearnRec allow stale reviewers to persist over extended periods of
time. This trend worsens as projects mature, as evidenced by the increasing distri-
bution of lingering time among recommendations (Figure 4.9). To counteract this,
we propose implementing a maximum threshold for the latest reviewer contribution.

52

Doing so will reduce the effect of recommendations drifting away from the active
pool of developers. Our evaluation of various intervals indicates a trade-off between
the developers’ workload and the staleness of recommendation while having either a
positive or negligible impact on the knowledge of non-stale reviewers. Unfortunately,
it is not possible to recommend one best cut-off interval to mitigate staleness due
to the contribution of various factors, such as knowledge turnover rate. However,
our findings can help orient practitioners to obtain more useful recommendations in
their specific circumstances. Using this mitigation strategy, one can strike a balance
between the potential for sharing task knowledge between stale reviewers and active
developers and their decreasing likelihood of responding as the time since their latest
contribution grows.

4.10 Chapter Summary

In this chapter, we explore the challenge of using CRR systems with stale reviewer rec-
ommendations. We demonstrate that CRR systems are negatively impacted by this issue
and require a pre-filtering stage for mitigation. While staleness can immediately affect
code review velocity, not all challenges faced by CRR systems have such an immediate
impact. In the next chapter, we address a different challenge that gradually degrade the
defect-proneness of project.

53

Chapter 5

Exploring the Notion of Risk in Code
Reviewer Recommendation

Note. An earlier version of the work in this chapter appears in the Proceedings of the
International Conference on Software Maintenance and Evolution (ICSME 2022), [69].

5.1 Introduction

Finding reviewers with the time to review a code change and familiarity with the modified
subsystems has been a challenge in organizations who adopt code review [138, 152]. This
is especially the case for large organizations with hundreds of developers. In such organiza-
tions, the authors of a changeset may not yet have a professional relationship with the team
responsible for overseeing the development of all of the components that they have changed.
Therefore, they may request someone to review the changeset who are either too busy, or
lack the necessary familiarity to review their proposed change. Unfortunately, this mean
that the time-to-merge would increase and the Pull Request (PR) may be abandoned [73].
While Code Reviewer Recommendation (CRR) approaches aim to help stakeholders to find
suitable reviewers [171], it would be hard to assess the performance of the recommendation
concerning their impact on aspects like project safety, i.e. have a lower number of bugs in
the project.. As a result, CRR systems often suggest obvious choices and add little value
to the projects [80].

Conventional reviewer recommendation studies evaluated their proposed approaches
against historical records, i.e., who performed each task in the past [175]. However, more

54

recent work explores how recommendation approaches can be used to balance quantities
of interest [109, 130]. These approaches consider previous interactions of the candidates
with the modified files, the workload of the candidates at the time of the code review, and
previous interactions between the developers in the project. Candidate reviewers are then
ranked based on these metrics, and top-ranked candidates are suggested to decision-makers.

The results from previous studies suggest reviewers who share properties with those
who performed similar reviews in the past and improve evaluation metrics such as files at
risk. While the measures that have been proposed by previous studies align with important
dimensions, the risk of defect proneness has not been explored. The risk of defect proneness
of a code change indicates how probable it is for the change to induce fixes in the future.
As an intervention, changes with a high risk of inducing future fixes may be assigned to
subject matter experts for review. Prior work suggests that subject matter experts may
be more adept at identifying problems during the review process [77, 181]. However, this
intervention is likely to impose a greater burden on key team members.

In this thesis, we take the position that an ideal recommendation approach should
balance the trade-off between the burden on expert reviewers and the risk of defect prone-
ness. Therefore, we set out to incorporate defect proneness in the reviewer recommendation
process. More specifically, we set out to address the following research questions:

RQ1 How do existing code reviewer recommenders perform with respect to
the risk of inducing future fixes?
Motivation: Every code change induces some degree of risk. The degree of risk varies
based on the change and its domain [157]. A key goal of the code review process
is assessing and mitigating the risk of introducing defects during or shortly after
the code integration process [36]. It is crucial to involve subject matter experts in
the review process to achieve that goal. Otherwise, if non-experts review high-risk
tasks, defects may slip through the integration process. Thus, we first set out to
understand how well existing reviewing assignments and CRR-based reassignments
perform in terms of risk mitigation.
Results: We observe an inherent trade-off between our studied quantities of interest.
For instance, the RetentionRec recommender – a reviewer recommendation approach
proposed to minimize the risk of developer turnover-based knowledge loss while
ignoring other quantities of interest – reduces files at risk by up to 23.89% with
respect to the reviewers who have already performed the review. On the other
hand, RetentionRec underperforms in terms of the Changeset Safety Ratio (CSR)
– a measure that we propose to indicate the performance of a recommendation
approach concerning the safety of the code change process – by 4.56% to 37.07%.

55

RQ2 How can the risk of fix-inducing code changes be effectively balanced with
other quantities of interest?
Motivation: Optimizing for other quantities of interests, such as Files at Risk of
turnover (FaR), without considering defect proneness is unlikely to perform well due
to the inherent trade-offs discovered in RQ1. Therefore, an approach is needed to
incorporate defect proneness in recommendation decisions without overly disrupting
other quantities of interest. To that end, we propose CSR – a reviewer recommen-
dation approach that aims to incorporate defect risk into recommendations – and
set out to evaluate how well it performs.
Results: Our experiments indicate that CSR increases the expertise of reviewers as-
signed to reviews by 12.48% and the CSR by 80.00% while reducing FaR by -19.39%
and only increasing the core development team workload by 0.93%. Moreover, we
find that project or team-specific tolerance of risk can be incorporated by adjusting
the threshold PD, which is the threshold of the likelihood of fix-inducing PRs at
which changes are deemed risky enough to require intervention. The effective PD

interval is defined as the change interval for which the performance of the CSR is
impacted. For instance, in Roslyn, the effective interval of PD is 0 - 1; however, the
effective interval of PD is 0 - 0.3 and 0 - 0.1 for the Kubernetes and Rust projects,
respectively. Thus, PD must be calibrated to its effective range for CSR to achieve
optimal results.

RQ3 How can we identify an effective fix-inducing likelihood threshold (PD)
interval for a given project?
Motivation: The performance of CSR depends on the PD setting. PD itself is depen-
dent on a project’s past defect proneness. Moreover, different projects may assign
different weights to the importance of defect proneness. Therefore, we set out to
propose approaches to support stakeholders in tuning PD to an appropriate value
for their development context.
Results: We propose static, normalization, and dynamic approaches to tune the
value of PD. Results that explore PD settings in risk-averse, risk-tolerant, and bal-
anced contexts indicate that the proposed methods affect the performance of CSR
significantly. Moreover, the dynamic method outperforms the others in risk-averse
and balanced contexts to a statistically significant (Conover’s Test, α < 0.05) and
practically significant degree (Kendall’s W = 0.0727 - 0.543, small - large).

56

Table 5.1: The detail of dataset used to evaluate the proposed method (based on the prior
work of Mirsaeed et al. [109]).

Name Files Review PRs Years Developers

Roslyn 12,313 8,646 5 469
Rust 12,472 17,499 9 2,720

Kubernetes 12,792 32,400 5 2,617

5.2 Studied Datasets

In this section, we present the sources of data and the projects used to conduct our study
and the rationale for their selection.

Data Source. To evaluate CSR, we seek to ground our analysis in a comparison to previ-
ous multi-objective reviewer recommenders [109]. Therefore, to obtain a fair comparison,
we begin with the same subject systems that Mirsaeedi and Rigby studied [109]. However,
two of these projects, CoreFx and CoreCLR have been since merged with the .Net Run-
time project. Due to this migration, Commit Guru was unable to obtain the necessary
information for the prediction model and rendered us unable to process the master branch
for possible fix-inducing commits. As a result, we omit CoreFx and CoreCLR, focusing our
analysis on Rust, Kubernetes, and Roslyn. Rust and Kubernetes are community-driven
projects, and Roslyn is an industry project developed openly on GitHub. These projects
are well-established (more than four years old) with more than 10K PRs. Kubernetes has
had a significant impact on cloud computing platforms with more than 3.1K contributors.
Roslyn, with 524 contributors, is an open source .NET compiler platform for languages such
as C# and VB. Finally, Rust, with 3.8K contributors, is a multi-paradigm, general-purpose
programming language. Further details of these projects are listed in Table 5.1.

Data Collection. We begin our data collection process by downloading the relevant
details from the replication package provided by Mirsaeedi and Rigby [108]. The shared
data includes commits, files that have been modified in each commit, developers involved
in a PR, a list of developers and reviewers of each PR, and developers’ interaction with the
PR. To perform defect analysis, our approach requires a list of the commits that comprise
each of the PRs. Moreover, we need to compute the measures listed in Table 5.2 to train
our defect prediction model. We use the GitHub API to gather the additional data for
each PR in the data set. We did not use the commits of a PR to calculate additions
and deletions since they might have cancelled each other out (e.g., one line added in one
commit could be removed in the next commit of the same PR). Instead, we calculate the

57

net number of additions and deletions extracted directly for each of the PRs.

Table 5.2: The risk measures produced by Commit Guru which is used in this chapter to
predict fix-inducing PRs (from Kamei et al. study [68]).

Dim. Name Definition PR Calculation Approach

D
iff

u
si

on

NS Number of modified subsystems Calculated from the changed files’ paths

ND Number of modified directories Calculated from the changed files’ paths

NF Number of modified files Calculated from the changed files’ paths

Entropy Distribution of modified code across each file Averaged over commits’ entropy

S
iz

e

LA Lines of code added Extracted from the GitHub API

LD Lines of code deleted Extracted from the GitHub API

LT Lines of code in a file before the change Averaged over commits’ LT

H
is

to
ry NDEV Number of developers that changed the modified files Averaged over commits’ NDEV

AGE Average elapsed time since the last change of files Averaged over commits’ AGE

NUC Number of unique changes to the modified files Averaged over commits’ NUC

E
x
p

er
ie

n
ce EXP Developer experience Averaged over commits’ EXP

REXP Recent developer experience Averaged over commits’ REXP

SEXP Developer experience on a subsystem Averaged over commits’ SEXP

5.3 Study Design

This chapter is comprised of two parts: (1) identifying fix-inducing PRs and (2) evaluating
reviewer recommendation approaches. This section describes each part of our study and
explains the rationale behind our design decisions.

5.3.1 Identifying and Predicting Fix-Inducing Pull Requests

Because our approach aims to incorporate the notion of risk in the recommendation process,
identifying fix-inducing PRs with which to evaluate our approach is an important part of
the study. In this chapter, we operationalize risk by mining the repositories of the studied

58

projects for defect-fixing, and fix-inducing commits using Commit Guru [136]. Figure 5.1
provides an overview of our discovery process for risky PRs.

Step1: Extract defect prediction data

We first apply Commit Guru [136] to the studied repositories in order to produce data sets
of fix-inducing commits, as well as a popular set of measures for their prediction. Commit
Guru clones each repository, computes commit-level measures that share a relationship
with risk (e.g. patch size, diffusion), and applies the SZZ algorithm [145] to identify which
historical commits have induced future fixes. Finally, a logistic regression model is fit to
estimate the riskiness of code changes. Table 5.2 shows the set of used risk measures.

Although studies by Quach et al. showed some of the limitations of SZZ ([123, 124]),
its output is still an indicator of bug-inducing probability. Moreover, we decided not to
use manually verified bug datasets such as the one by Rodriguez-Perez et al. [135] as we
wanted to view the effects of the recommendation approaches in their natural habitat,
which would normally be automated and include tools such as SZZ.

Step2: Train and test PR-level risk model

We use the risk measures extracted by Commit Guru to train defect prediction models.
A logistic regression method is used to train the model for each quarter (three months).
The three-month time interval is based on similar studies, like Mirsaeedi and Rigby [109],
and retraining this period length setting allows us to extend reviewer recommendation
approaches to incorporate risk and more directly compare results. Moreover, updating the
prediction model in short (three months) intervals has been recommended to counteract
concept drift [37]. This step is decomposed into the following tasks:

59

Step 1: Identify the buggy commits and their metrics

Commit data from
previous periods

Create a logistic
regression model

Commit data from
current period

Evaluate the model
performance

Step 2: Train defect prediction model and test it

Normalize
Omit highly
 correlated

metrics

Preprocessing

Commit Guru
Analyzes

the Commits

Determine commit
metrics and fix-
inducing commits Commit

Guru
Analyzed

result

Prediction Model

Is change fix-
inducing?

Historical data

Selected
Projects

Have more
than 10K

Pull-
Request

Have review
rate more
than 0.25

Have a life
more than 4

years

Have more
than 10K

files.

Project Filters

GitHub
Projects

Figure 5.1: The simplified overall architecture of the project selection filters and the defect prediction
process.

60

1. Data preprocessing. Before training the models, data must be preprocessed to
counteract biases. First, we standardize the risk measures since their magnitudes
vary broadly. We use Scikit StandardScaler1 to transpose all risk measures’ values
to have zero mean and unit variance. Then, we identify highly correlated measures,
as they affect the model’s performance. To this end, we calculate pairwise Pearson
correlation (ρ) between each pair of risk measures. As suggested by Tay [150], any
pair of risk measures with |ρ| > 0.6 is considered to have too much similarity to
include in the same model fit. In such cases, we remove all the measures but one
(Based on their order of appearance as listed in Table 5.2).

2. Fit defect prediction model. Once the data has been preprocessed, we use the
data to fit a logistic regression model for every quarter using the previous quarters’
data. The model then estimates the likelihood that each code change will be fix-
inducing in the following quarters.

3. Aggregate risk estimates to the level of PRs. Using the trained models, we
estimate the riskiness of each PR by aggregating the risk measures across all of the
PR changes. We use the PR’s commits risk measures to calculate the risk measures
for a PR. Table 5.2 has a brief explanation of how each of these risk measures is
calculated from the set of commits belonging to a PR. Using the PR risk measures,
the model estimates the PR’s likelihood of inducing a future fix. We use the balanced
accuracy performance measure to evaluate the performance of our models since our
datasets are inherently imbalanced, i.e. there are more non-fix-inducing PRs than
fix-inducing PRs. The median balanced accuracy over different periods for Roslyn,
Rust, and Kubernetes projects are 75.9%, 50%, and 97.5%, respectively.

5.3.2 Ranking Potential Reviewers of a Pull Request

As the next step, we use the fix-inducing likelihood of the PR and its risk measures to
suggest reviewers for each PR. We evaluate seven baseline approaches (RQ1) as well as our
proposed method, CSR (RQ2). We describe the baseline approaches below, and describe
CSR in Section 5.5.2.

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing
.StandardScaler.html

61

AuthorshipRec

Suggested by Mockus and Herbsleb [112], the authorship of a file is an important factor
when assigning software experts to (reviewing) tasks. Bird et al. [16] formulated the
AuthorshipRec in their paper based on the proportion of the files that a developer modified
prior to the PR.

RevOwnRec

Thongtanunam et al. [153] suggested a new reviewer recommender based on the develop-
ers’ previous review history. The rationale was that the project code reviewers for each
project subsystem are constant most of the time. Similarly to AuthorshipRec, RevOwn-
Rec considers the proportion of a developer’s reviews or modifications relative to all of the
reviews and modifications in a PR.

cHRev Recommender

The cHRev recommender [183] is a popular conventional reviewer recommender. When
ranking developers as potential candidates of a code change, cHRev considers the devel-
oper’s expertise from previous reviews as well as the recency of the contributions. To rate
the fit of a developer D for reviewing a file F, the xFactor was used:

xFactor(D,F) =
Cf

C ′
f

+
Wf

W ′
f

+
1

|Tf − T ′
f | + 1

(5.1)

Where Cf , Wf , and Tf represent the number of review comments, the number of workdays
that D commented on the file’s reviews, and the most recent day that D worked on F,
respectively. The prime versions of the variables in the denominator represent the total
number used to normalize the output. Then, the fit for each developer is estimated using
the summation of the xFactor for all the files in the code change.

LearnRec

The LearnRec recommender is designed to distribute knowledge among team members.
LearnRec suggests developers who are poised to learn the most from reviewing a PR.
ReviewerKnows has been suggested as a way to measure how knowledgeable a potential
reviewer is about a review request [109]. The ReviewerKnows estimates how familiar a

62

developer would be with the modified files of a review request. It is usually favourable to
distribute the knowledge among developers in repositories to mitigate any loss of knowledge
if any developer leaves the project. To this end, LearnRec is formulated by subtracting
ReviewerKnows from one, which estimates how much a developer can learn by reviewing
a PR. This metric can be used to create a reviewer recommender that distributes the
knowledge among the project developers by assigning the review to the developer with the
largest LearnRec.

RetentionRec

Although LearnRec seems like a reasonable choice to prevent knowledge loss, in reality,
many developers do not contribute to a project over a long time [187]. Those who stand to
learn the most may leave the project before that knowledge can be put to use. To mitigate
this issue, contribution ratio and consistency ratio have been proposed. The contribution
ratio for a developer is the proportion of contributions during the previous particular period
of time (e.g., one year) for which the contributor is responsible. The consistency ratio is
the proportion of sub-periods (e.g., months) that the developer was actively contributing to
the project throughout a study period (e.g., year). As developers become more consistent
or more (proportionally) active, the RetentionRec increases, suggesting that it is less likely
that they will leave the project.

TurnoverRec

Mirsaeedi and Rigby [109] multiplied RetentionRec and LearnRec and created TurnoverRec.
This recommender helps with distributing knowledge among the more active members of
the development team. Recommending reviewers based on this measure minimizes the
risk of turnover-induced knowledge loss caused by developers leaving the company by
distributing knowledge among active members.

Sofia

Sofia [109] is a combination of TurnoverRec and cHRev whose objective is to distribute
knowledge among the more active team members whenever files with a large risk of knowl-
edge loss are present in a PR. The scoring function used for the developer (D) and the

63

code change R is:{
cHRev(D,R), if |knowledgeable(f)| ≤ d, anyf |f ∈ R

TurnoverRec(D,R), otherwise
(5.2)

We consider d=2 in this equation, similar to the original work by Mirsaeedi and Rigby
[109], to prevent any knowledge loss by leaving one developer from the team.

5.3.3 Recommendation Component

We apply these reviewer recommender to our datasets and calculate the recommenders’
scores for all the candidate reviewers. We then rank potential candidates based on the
scores. Configurable parameters include the number of reviewers per PR and the maximum
number of files per PR for the reviewer’s knowledge. For the purposes of this study, we
choose only the top suggested candidate per PR and randomly replace it with one of the
actual reviewers (to match prior work [109]). We only consider PRs with less than 100 files
and do not associate the PR with developers’ knowledge otherwise regarding maximum
files per PR. It is because one developer cannot perceive large code changes as argued by
Bird et al. [132].

5.4 Evaluation Setup

In this section, we describe the evaluation metrics used to assess the performance of re-
viewer recommenders and our rationale for selecting those metrics. As explained in Sec-
tion 2, conventional recommendation approaches aim to recommend the reviewers who
performed the task [9, 56, 126, 183]. However, Kovalenko et al. [80], suggest that recom-
mending the reviewer who reviewed a PR provides little value to the project. Furthermore,
there exist many qualified developers who may not have reviewed PR but would have been
comfortable doing so [47]. Conventional evaluation methods consider these recommenda-
tions incorrect and penalize the recommenders for making such suggestions.

To assess the effect of a recommendation approach on the mitigation of the risk of fix-
inducing PRs, we leverage the simulation approach presented by Mirsaeedi and Rigby [109].
These measures quantify previously discussed aspects of the reviewer recommendation
process and estimate the performance of a reviewer recommender through history-based
simulation. We run simulations for the selected projects and compare the outcome of the

64

recommenders with one another with respect to the evaluation measures. We expand the
set of evaluation measures proposed by Mirsaeedi and Rigby [109] to incorporate the CSR
— a cumulative measure of the risk of fix-inducing changes in a given period of time. These
measures originated from the challenges and expectations of the researchers who studied
the code review process and recommendation approaches prior to this study [6].

In the remainder of this section, we explain each of the recommendation evaluation
measures we employ in this chapter.

Expertise. Expertise of the reviewers assesses the recommended reviewers by the expertise
that they have in the PRs they have been tasked to review. It is the primary evaluation
criterion used in past studies [25, 74]. Past work has indicated the important role that
involving subject matter experts has on the review process [18, 77]. To quantify this
measure, Mirsaeedi and Rigby [109] proposed the following measure:

Expertise(Q) =

Reviews(Q)∑
R

FileReviewersKnow(R)

FileUnderReview(R)
(5.3)

Where Q is the quarter in which this metric is calculated. A developer is assumed to know
a file if they have modified or reviewed the file prior to the PR reviewing task.

CoreWorkload. Having all PRs reviewed by experts is ideal, but there is an inherent
trade-off between the time that experts invest in reviewing PRs and the amount of time
they have for other development tasks [77]. The problem amplifies as projects grow if the
core developer teams do not grow as well. Mirsaeedi and Rigby [109] proposed a static core
team size of the top 10 reviewers and using the following equation, estimate the reviewing
workload that the core team is coping with:

CoreWorkload(Q) =

Top10Reviewers(Q)∑
D

NumReviews(D) (5.4)

Files at Risk of turnover (FaR). The loss of knowledge caused by knowledgeable
developers leaving a project may consume resources and even stall its progress. The FaR
measures the number of files known by zero or one developer in a period of one quarter.
The formula [132] to calculate this measure is:

FaR(Q) =
{
f |f ∈ Files, |ActiveDevs(Q,F)| ≤ 1

}
(5.5)

Where ActiveDevs represent the developers who are familiar with the set of files F and are

65

still actively contributing to the project by the end of quarter Q.

Changeset Safety Ratio (CSR). The replacement of reviewers does not affect the in-
cidences of bugs in our simulation. Instead, to assess the impact of replacing reviewers on
risk, we assume that having an expert, preferably one who has recently interacted with
files in the code change, will reduce the likelihood of merging fix-inducing code changes
[16]. To this end, we formulate the Changeset Safety Ratio (CSR) as a measure of how
well the review assignments have mitigated the fix-inducing likelihood of a set of PRs:

CSR(Q) =

Reviews(Q)∑
R

(1 − DefectProb(R)) ×MaxXFactor(R) (5.6)

The DefectProb is the risk estimate of a PR being fix-inducing, and the MaxXFactor is
the maximum score of the xFactor (equation 5.1) among all the suggested reviewers of a
PR. The xFactor incorporates both the recency and quantity of contributions in assessing
reviewer expertise and is at the core of the cHRev recommender [183]. If the risk of
inducing a future fix that a PR presents is small, we may assign developers with less
expertise to that code change without impacting the CSR disproportionately. Increases in
CSR indicate that the code change is less likely to be fix-inducing or that the developer’s
maximum expertise has increased. In either case, increases to CSR suggest that the review
process is performing well in terms of risk mitigation.

5.5 Experimental Results

In this section, we describe our experiments, the results and the analysis of the results. We
use the percentage of change to evaluate different reviewer recommenders’ performance:

∆MeasureChange(Q) = (
SimulatedMeasure(Q)

ActualMeasure(Q)
− 1) × 100 (5.7)

The ActualMeasure and SimulatedMeasure refer to the calculated evaluation metric for
the historical data and a simulation run, respectively.

66

Table 5.3: Recommender performance vs. reality. Up and down arrows indicate improve-
ment and degradation, respectively.

CRR Project Expertise Workload FaR CSR

A
u
th
o
rs
h
ip
R
ec

Roslyn 15.52% ↑ -7.045% ↑ 34.91% ↓ 17.50% ↑

Rust 10.64% ↑ 4.09% ↓ 42.58% ↓ 16.66% ↑

Kubernetes 12.87% ↑ -2.07% ↑ 18.60% ↓ 18.36% ↑

R
ev
O
w
n
R
ec Roslyn 21.82% ↑ 1.83% ↓ 17.5% ↓ 2.76% ↑

Rust 12.72% ↑ 8.16% ↓ 98.62% ↓ -9.57% ↓

Kubernetes 18.56% ↑ 3.89% ↓ -4.05% ↑ 1.08% ↑

cH
R
ev

Roslyn 12.35% ↑ -1.52% ↑ 0% − 75.06% ↑

Rust 7.72% ↑ -2.11% ↑ 11.84% ↓ 92.09% ↑

Kubernetes 13.97% ↑ -3.06% ↑ -11.27% ↑ 104.31% ↑

L
ea
rn
R
ec Roslyn -23.85% ↓ -34.77% ↑ 138.84% ↓ -36.20% ↓

Rust -50.27% ↓ -50.26% ↑ 122.63% ↓ -61.44% ↓

Kubernetes -34.98% ↓ -34.55% ↑ 49.1% ↓ -46.38% ↓

R
et
en
ti
on

R
ec

Roslyn 22.92% ↑ 20.36% ↓ -23.89% ↑ -27.22% ↓

Rust 13.38% ↑ 15.70% ↓ -16.86% ↑ -4.56% ↓

Kubernetes 19.75% ↑ 47.78% ↓ -20.94% ↑ -37.07% ↓

T
u
rn
ov
er
R
ec Roslyn -14.66% ↓ 0.67% ↓ -38.33% ↑ -33.51% ↓

Rust -34.21% ↓ -4.38% ↑ -23.66% ↑ -53.43% ↓

Kubernetes -25.72% ↓ -0.09% ↑ -30.32% ↑ -44.49% ↓

S
ofi

a

Roslyn 7.38% ↑ 4.03% ↓ -34.9% ↑ 55.22% ↑

Rust 4.97% ↑ 0% - -25.42% ↑ 73.09% ↑

Kubernetes 9.42% ↑ 1.70% ↓ -28.67% ↑ 96.74% ↑

67

5.5.1 RQ1: How do existing code reviewer recommenders per-
form with respect to the risk of inducing future fixes?

In this experiment, we seek to determine whether reviewer recommenders mitigate the risk
of inducing future fixes by introducing an evaluation measure (CSR).

Approach

For each studied system, we analyze the historical data and fit one model per quarter to
estimate the likelihood that a PR is fix-inducing. Then, starting from the second quarter,
we use a model fit of the previous quarter to estimate the fix-inducing likelihood of each
PR. We use PR metrics listed in Table 5.2 as the model’s input. We then rank potential
reviewers for each PR using the seven baseline recommendation approaches. For every PR
in each studied system, we swap one of the actual reviewers with our top candidate and
evaluate the performance of this change by calculating the MeasureChange according to
Equation 5.7.

Results

Table 5.3 presents the results of this experiment. The up and down arrows next to the
numbers indicate performance improvement and degradation, respectively.

Analysis

For AuthorshipRec, code owners are predominantly assigned to reviews. Thus, increases
to CSR are not unexpected, since coders owners are among the most knowledgeable con-
tributors to whom reviewing tasks may be assigned. However, this assignment prevents
others from learning about files they have not developed, which causes the FaR measure
to degrade. For RevOwnRec, each studied system has a trusted developer circle for the
reviews; hence this recommender fails to optimally distribute knowledge and improve FaR.
Since these reviewers may not be the file owners, the CSR also tends to decrease or not to
change considerably.

For cHRev, the score function is based on xFactor. Hence, the CSR is consistently
improved, notably at the cost of limiting the improvement of workload for the core devel-
opment team in comparison to other recommendation approaches.

68

Figure 5.2: Relation analysis of CSR and FaR.

For LearnRec, there is no consideration for the retention of recommended candidates,
so the FaR measure tends to increase because many reviewers leave the project. The
suggested reviewers by this recommendation system are not experts, but seek to learn by
reviewing the PR, so the CSR measure tends to decrease.

For RetentionRec, the recommender suggests candidates with the most knowledge about
the project, not a specific PR. As a result, undesirably, the core developers’ workload
increases because they are mostly permanent developers of a project. However, their
knowledge causes CSR and expertise to improve.

(a) Roslyn (b) Rust (c) Kubernetes

Figure 5.3: The effect of PD on the performance of CSR for each evaluation metric, on
different projects over different quarters.

69

For TurnoverRec, the recommender favours the most permanent candidates, regardless
of the degree of knowledge that they have about the code being modified by a PR. This bias
leads to knowledge retention, thus improving FaR. However, since distributing knowledge
among developers is an important risk mitigation measure, the choice of less knowledgeable
candidates causes the CSR to decrease.

For Sofia, when none of the changed files are at risk of turnover, cHRev is used. This
compensates for expertise and CSR measures that are lost due to knowledge distribution
caused by TurnoverRec. However, most of the time, this is at the cost of increasing the
workload for the core development team. Sofia uses TurnoverRec for changesets with files
at risk of knowledge loss, which has a favourable effect and causes the FaR measure to
improve.

Figure 5.2 shows the relation between CSR and FaR in our experiments. The bottom-
left quadrant shows evidence of a trade-off between CSR and Files at Risk for approaches
that optimize only one characteristic. Meanwhile, cHRev and Sofia mostly present results
in the top-left quadrant. This indicates that they are generally robust to the trade-off
between CSR and FaR, and can broadly optimize both the risk of knowledge turnover and
CSR. Finally, the bottom-right quadrant shows that optimizing for learning opportunities
(e.g., using LearnRec) negatively impacts both FaR and CSR.

These observations indicate that if there is no deliberate effort to distribute knowledge,
as the FaR improves, unless the necessary restrictions are put in place, such as a limitation
on the most knowledgeable reviewers, the CSR degrade. This decrease, in turn, increases
the chance of merging a fix-inducing PR into the project. This suggests that there is an
inherent trade-off between the FaR and CSR evaluation measures. This does not hold in
all cases. For example, in LearnRec, both FaR and CSR decreases which is likely because
the recommended candidates leave the project as retention is not considered in the score
function. Since leavers may leave a gap in the team understanding of an area of the
codebase, the FaR and CSR measures tend to degrade. For Sofia, the recommender’s
candidate scoring function maximizes the expertise of the reviewers unless there is a file
with few knowledgeable developers in the changeset. In these cases Sofia tries to distribute
knowledge which lessens the core workload and improves the FaR. This active effort cancels
out the native trade-off and improves both FaR and CSR.Sofia works better in terms of
fix-inducing code changes, but like other approaches, it does not have any parameter to
control the sensitivity to these changes. The inflexibility may become a barrier to adoption
for this recommender as it cannot be tuned to suit the needs of users.

70

The evaluation results indicate that unless active effort is put into knowledge distribu-
tion while keeping the expertise high, the CSR and FaR have an innate trade-off. In
cases where both CSR and FaR are maximized, other measures such as core developer
workload suffer. Hence, one cannot simultaneously optimize suggested reviewers with
respect to the risks of knowledge loss and fix-inducing changes.

5.5.2 RQ2: How can the risk of fix-inducing code changes be
effectively balanced with other quantities of interest?

To balance the innate trade-off between FaR and CSR, we suggest using a hybrid reviewer
recommendation approach to optimize the recommendation process based on the PR fix-
inducing likelihood. We propose a recommender to improve the CSR when a PR has a
high risk of being fix-inducing. The objective function for the proposed Changeset Safety
Ratio (CSR) is formulated as:

RAR(D,R) =

{
Sofia(D,R), DefectProb(R) ≤ PD

cHRev(D,R), otherwise
(5.8)

In this formula, the PD represents the threshold for the likelihood of PRs to be fix-inducing.
If the PD threshold is exceeded, cHRev is used to suggest experts. Otherwise, Sofia will
suggest reviewers for the PR. The cHRev ranks candidate reviewers based on their famil-
iarity with the changed files while Sofia opportunistically distributes knowledge when the
modified files are not at risk of turnover.

Approach

We study the performance of CSR in terms of the coreWorkload, FaR, expertise, and CSR
measures. We also study the impact that varying the PD threshold from 0.1 to 0.9 has on
CSR performance.

Results

Figure 5.3 shows the evaluation measures as the PD changes for the studied systems.

71

Analysis

Figure 5.3 shows that as the value of PD increases, the tolerance of CSR for fix-inducing PR
grows. As a result, we expect more knowledge distribution leading to a decrease in CSR.
As fewer experts are assigned to the tasks, the overall expertise also diminishes, which is
not an unexpected outcome.

However, there are project-specific trends that are worth noting. For example, Figure
5.3a shows that the evaluation measures for the Roslyn project are steadily declining as PD

increases, whereas Figure 5.3c shows that the majority of the impact of varying PD in the
Kubernetes project takes place between PD = 0.1 and PD = 0.3. Moreover, Figure 5.3b
shows that for Rust, the impact of varying PD is relatively small. Overall, the Changeset
Safety Ratio (CSR) yields an average change of 12.48%, 0.93%, -19.39% and 80.00% over
different quarters for evaluation measures of Expertise, Core workload, FaR and CSR,
respectively.

A closer look at the model estimates of the likelihood of fix-inducing changes helps to
explain these project-specific trends. Figure 5.4 shows the distributions of the estimated
likelihood of changes being fix inducing stratified by project and quarter for four quarters.
The complete distribution can be found in Figure B.1 in Appendix B. We observe that,
unsurprisingly, larger performance fluctuations in Figure 5.3 are associated with the PD

values where the majority of the estimated likelihoods lie in Figure 5.4. Moreover, despite
an overall decreasing trend in terms of the likelihood of fix-inducing changes over time,
the trend of each quarter is similar to its adjacent quarters. This local similarity may help
stakeholders to effectively tune PD values (see RQ3 for a more detailed analysis).

The CSR settings can be tuned to balance the risks of knowledge loss and fix-inducing
changes. Indeed, as the threshold for indicating tolerance of the risk of fix-inducing
changes increases, the risk of knowledge loss impacts fewer files. However, identifying
the optimal threshold setting requires an awareness of project-specific trends in the
model estimates of the likelihood of fix-inducing changes.

5.5.3 RQ3: How can we identify an effective fix-inducing likeli-
hood threshold (PD) interval for a given project?

Our analysis from RQ2 indicates that the performance of the CSR is sensitive to the PD

setting. The effective range of PD is dependent on the past likelihood of fix-inducing

72

Figure 5.4: Distributions of predicted defect
probabilities.

R
isk−

averse
R

isk−
balanced

R
isk−

tolerant

dynamic
vs norm

dynamic
vs static

norm
vs static

0.00
0.05
0.10
0.15
0.20

0.00
0.05
0.10
0.15
0.20

0.00
0.05
0.10
0.15
0.20

Method Pairs
P

−
V

al
ue

s

Roslyn Rust Kubernetes

Figure 5.5: Conover Test results.

changes. In this question, we seek to propose an approach to help project stakeholders in
the selection of effective PD settings based on their tolerance for the risk of fix-inducing
changes.

Approach

We explore the following three approaches to identify effective periods:

• Static method : This baseline considers the effective period spans the entire range
between 0 and 1.

• Normalization method : The effective range spans between upper and lower extremes
of the distribution of likelihoods from the prior periods. To match common outlier
definitions, we set out lower and upper extremes to Q1−1.5×IQR and Q3+1.5×IQR,
respectively, where Qi is the ith Quartile, and IQR is the Interquartile range between
Q1 and Q3. All examples within the range are normalized by the maximum value.

• Dynamic method : A selective variant of the normalization method. Instead of con-
sidering all previous periods, we only consider the last six months. This allows the
model to focus on the current part of the project life cycle.

73

For each of these three methods, we simulate three different thresholds: 25% (risk-averse
recommendation), 50% (balanced recommendation), and 75% (risk-tolerant recommenda-
tion) of the effective period for our three projects in the dataset.

Results

Figure 5.6 shows distributions of relative improvement in CSR that are achieved for differ-
ent time periods (points) of the studied systems (plot columns) of our approaches (y-axes)
in different configurations (plot rows).

Analysis

We use the Friedman test (two-tailed, paired, α = 0.05) [46] and apply it to the CSR
performance data (Table 5.4). We observe significant differences between the investigated
methods in all configurations except for Roslyn in the risk tolerant setting. Next, we use
Kendall’s W to determine the magnitude of this effect [71] (Table 5.5). Large and small
effects are observed in 55% and 22% of the cases, respectively.

We apply the Conover test to discern which pairs cause this significant difference [26].
Figure 5.5 shows p-values for different thresholds with red lines indicating the 0.05 confi-
dence interval. The results imply that the dynamic method significantly affects risk-averse
(PD = 25%) and risk-balanced (PD = 50%) recommendations in all studied systems. For
the normalization method, the effect on the results is inconsistent. The dynamic method
considers the pivot of the project in various periods, which affects the CSR. In contrast,
the normalization method considers the entire history and may not be sensitive enough to
react to risk fluctuations as projects age [104].

On the other hand, for risk-tolerant recommendations (PD = 75%), none of the methods
have a consistent effect on the results due to the difference in the distribution of defect
proneness for various periods. Roslyn has a high rate of fix-inducing PRs (PD > 0.5) in
all the periods, so the approach does not affect the results. However, Kubernetes, which
has more fix-inducing PRs in the earlier periods than more recent ones, is affected mainly
through a dynamic method.

For risk-averse (PD = 25%) and risk-balanced (PD = 50%) recommendations, the
dynamic method tends to provide the most value by recommending an effective period
while for risk-tolerant recommendation (PD = 75%), none of the methods outperform
others significantly.

74

Kubernetes Roslyn Rust

R
isk−

averse
R

isk−
balanced

R
isk−

tolerant

50 100 0 50 100 150 0 200 400

dynamic

norm

static

dynamic

norm

static

dynamic

norm

static

Performance Improvement (%)

M
et

ho
ds

Figure 5.6: The distribution of performance improvement for CSR for different project
over time.

5.6 Practical Implications

Below, we summarize what we believe are the practical implications of greatest value for
practitioners and researchers.

RQ1) Practitioners can use code review to balance files at risk of abandon-
ment with the risk of fix-inducing changes. Our observations in RQ1 show that if
the likelihood of a PR inducing a fix is not considered explicitly as a parameter in the
recommenders’ objective function, the recommended reviewers may lack the subject mat-
ter expertise to prevent future fixes, and in turn, increase the risk of merging fix-inducing
PRs. The results also show an inherent trade-off between some of the evaluation measures,

75

Table 5.4: The χ2 and p-value results (two degrees of freedom) of the Friedman test applied
to the RQ3 values.

Project
Threshold 25% 50% 75%

Chi-Square p-value Chi-Square p-value Chi-Square p-value

Roslyn 10.7 0.00473 12.8 0.00164 2.47 0.291
Rust 41.7 < 0.001 38.6 < 0.001 15.8 < 0.001

Kubernetes 23.1 < 0.001 16.5 < 0.001 20.6 < 0.001

Table 5.5: Effect size and magnitude for Kendall’s W (RQ3).

Project
Threshold 25% 50% 75%

Effsize magnitude Effsize magnitude Effsize magnitude

Roslyn 0.315 moderate 0.377 moderate 0.0727 small
Rust 0.695 large 0.643 large 0.264 small

Kubernetes 0.607 large 0.435 moderate 0.543 large

such as FaR, and the risk of merging fix-inducing PRs. We propose CSR as a heuristic
to assess the degree to which a (recommended) reviewer assignment mitigates the risk of
fix-inducing changes.

RQ2,RQ3) CSR can be tuned according to the tolerance of the risk of fix-
inducing changes without drastically impacting other properties of interest of
the recommended reviewing assignment. Our observations in the first research ques-
tion indicate that active effort should be made to mitigate the inherent trade-off between
CSR and FaR. To this end, CSR is proposed, which uses the PD setting, as the threshold
for the likelihood of a PR being fix inducing, to influence the suggested set of reviewers.
The results of the second research question illustrate that CSR prevents other evaluation
measures from being drastically impacted. The PD setting can be tuned using a com-
bination of our proposed dynamic method (see RQ3) and input from stakeholders about
their tolerance of risk for fix-inducing changes. While project-specific characteristics (e.g.,
the incidence rate of fix-inducing changes) impact the sensitivity of the approach to the
PD setting, our dynamic approach can be scaled to apply well in different risk tolerance
settings.

76

5.7 Threats to Validity

Below, we discuss the threats to the validity of our study.

Construct Validity. Our implementations may contain errors. To mitigate this risk, we
augment an existing data set and vetted code from prior work [109] rather than producing
our own from scratch. We share our implementation openly to enable the community to
audit and build upon our code 2.

It is also possible that CSR does not truly reflect how well fix-inducing code changes
are mitigated when assigning reviewers in reality. Because we cannot go back in time
and change existing assignments to observe how well CSR truly performs, we evaluate its
performance using historical data. We mitigate the chances of CSR being a poor refection
of reality by basing it on proven measurements such as the fix-inducing likelihood and the
xFactor [183]. Furthermore, the main idea behind CSR, that experts that have recently
interacted with files in a code change reduce the likelihood of merging fix-inducing code
changes, has been shown to reflect reality in prior studies [16].

To obtain data at a scale required for this study we must use automated tools. How-
ever, such approaches are not perfect and may induce errors in our results. To prevent
any implementation errors, we use an existing tool (Commit Guru). We sampled the
tool’s output and manually verified the results. The resulting precision (i.e., 43.9% with
confidence=95% and margin=±5%), aligns with prior works [123, 124]. While SZZ may
introduce errors into our dataset, our results show that reviewer recommendations can still
suggest the most relevant reviewer to reduce fix inducing changes, even when trained on
noisy data. Future tools could be used to improve the performance of the approach.

Internal Validity. In this chapter, we consider the effect of assigning experts to review
PRs that are potentially fix-inducing using measures, such as CSR. While assigning experts
rather than novices to review PRs may change such measures, it does not guarantee that
they will actually spot more defects. It is possible that other factors, that do not reflect
a reduction in defects, are influencing the changes in CSR. However, prior studies have
shown that experts increase the possibility of detecting fix-inducing PRs before merging,
we therefore believe that similar outcomes should hold for our study. Further studies
might help to clearly identify the impact of reviewers’ experience and CSR on catching
bugs during the PR process.

The defect prediction in Rust presents a low balanced accuracy. However, the other two
projects yield similar results in different experiments, which we believe voids the possibility
of the effect of this low accuracy in our experiments.

2https://github.com/software-rebels/RAR_Recommender

77

https://github.com/software-rebels/RAR_Recommender

External Validity. While we apply eight different approaches to three systems, it is
possible that our results might not generalize to other approaches or systems. We mitigate
this threat by using a large number of approaches and systems with many files and a
high volume of PRs. We target such systems because reviewer recommenders are most
beneficial in big repositories with many developers. Through this selection we aim to make
our findings applicable to the most pertinent systems.

5.8 Conclusions

In this chapter, we set out to explore how using a code reviewer recommender to suggest
reviewers can affect the risk of defect proneness. To this end, we introduce a new evaluation
measure, CSR, and assess seven existing reviewer recommenders against this new measure.
Three other measures previously used in the literature are also compared. The results show
an inherent trade-off between FaR and CSR – improvements to one measure often degrade
the performance of the other. To balance this trade-off, an adjustable multi-objective
code reviewer recommender, CSR is proposed. We analyze how CSR can be used to tune
the recommendations with respect to the tolerance of the risks of fix-inducing PRs and
files at risk of knowledge loss. While assigning reviews to project experts can maintain a
high CSR, this approach can lead to an increased concentration of knowledge, as indicated
by FaR, and elevate the workload on the core team. This represents a potential pitfall
that practitioners should be aware of. Although our adjustable CRR approach assists
project maintainers in finding an optimal balance based on their risk tolerance, completely
mitigating this issue is challenging, as improving one aspect will adversely affect the other.
Our findings suggest that:

• There is a trade-off between knowledge distribution and the likelihood of merged
PRs being fix-inducing. However, this trade-off may be resolved by simultaneously
optimizing recommendation strategies for both measures. This optimization, in turn,
may lead to a decrease of other evaluation measures like core developers’ workload.

• CSR can be tuned to balance the risk of knowledge loss and fix-inducing changes by
tuning the PD setting. However, identifying the optimal threshold setting requires
an awareness of project-specific trends in the model estimates of the likelihood of fix-
inducing changes. The results yield the average change of 12.48%, 0.93%, -19.39%
and 80.00% over different quarters for evaluation measures Expertise, Core workload,
FaR and CSR, respectively. For the proposed measure, CSR, the average change is
73.80%-102.04% for various PD settings.

78

• Project stakeholders can use CSR with a dynamic method for identifying effective
range for the PD setting. The dynamic method provides better performance for risk-
averse and risk-balanced reviewer recommendation strategies while not hurting the
risk-tolerant strategy’s performance.

5.9 Chapter Summary

In this chapter, we discuss another challenge in using CRR systems: the quality of recom-
mended reviewers. Our study demonstrates that accepting CRR system suggestions can
increase defect proneness, potentially compromising project safety. We then present an
adjustable mitigation strategy that works well with existing approaches and two dynamic
methods for configuring settings based on the project’s state. In the next chapter, we ex-
plore Automatic Code Review (ACR) systems and assess the relevance of human reviewers
and these tools in the current ACR process.

79

Part III

Relevance of Code Reviewer
Recommendation Systems

80

Chapter 6

Studying the Interrogative
Comments Posed by Review
Comment Generators

Note. An earlier version of the work in this chapter is under submission in the IEEE
Transactions on Software Engineering (TSE) Journal.

6.1 Introduction

Despite many benefits, code review is a time-consuming [17, 77] and error-prone [113]
process. With the emergence new AI techniques, some tool builders aim to automate
the code review process, potentially excluding human involvement. Consequently, certain
tools like Code Reviewer Recommendation (CRR) systems may become obsolete. These
efforts led to the creation of automation tools such as Review Comment Generator (RCG),
which can automatically generate code review comments [61, 147]. The goal of RCGs is to
provide more timely, consistent, and objective feedback than human reviewers [161].

Although RCGs aim to emulate human reviewers in comment generation, they are not
without limitations. Indeed, a common type of comment is interrogative, i.e., asking ques-
tions of other review participants [188]. While state-of-the-art task-specific RCGs [89, 90,
162] may pose questions, they cannot comprehend the author responses, and hence, can-
not follow up like human reviewers. While, Large Language Model (LLM) can potentially

81

follow-up the review discussion threads and mitigate this limitation, incorrectly answer-
ing author responses can hinder useful discussions [169], leading to less productive code
reviews.

Prior work has shown that RCGs do generate interrogative comments [188], but despite
their importance, a comprehensive study is still lacking [35]. Our study aims to fill this
gap by conducting quantitative and qualitative analyses of RCG-generated interrogative
comments. More specifically, we quantify the prevalence and regularity of RCG-generated
interrogative comments, and characterize their similarity to those of humans. For this
chapter, we use code review records from October 2018 to August 2023 to build a dataset
from the Gerrit project,1 which maintains a high standard for code review, resulting in
172,919 code review comments.

• Quantitative Analyses (Section 6.3). We find that a median of 15.61% of com-
ments generated by task-specific RCGs are interrogative, whereas 65.26% and 47.67%
of DBRX and LLaMA2 comments (i.e., LLM-based RCGs) are interrogative, re-
spectively. Comparatively, 39.91% of human-submitted comments in our corpus are
interrogative, suggesting that task-specific RCGs do not pose questions frequently
enough, and that LLM-based RCGs may be overcorrecting. We also study whether
RCGs and humans ask questions about same code changes using Fisher’s exact test.
The result reveals that, indeed, there is an association among RCG-generated and
human-submitted comments in their mood, i.e., whether the comment is declara-
tive or interrogative. Finally, despite the critical nature of discussion-inducing code
changes, i.e., code changes with discussion threads that start with interrogative com-
ments, we find that RCG behaviour in these scenarios is irregular and erratic, i.e.,
the rate of RCG-generated interrogative comments varies more across the studied
Merge Request (MR) instances.

• Qualitative Analysis (Section 6.4). We observe that a considerably larger share
of questions (13.86%–22.11%) focus on the rationale for code changes when RCGs
generate comments rather than humans (1.94%). Humans discuss logical code flow
more often (54.37% vs. RCGs 38.64% to 42.17%) and predominantly use questions
for suggestions (63.11%), whereas RCGs tend to request additional context (56.84%–
84.09%). Furthermore, humans often employ rhetorical questions (8.74%) and hy-
potheticals (4.85%), whereas task-specific RCGs do not. Our LLM-based RCG ex-
periments show that LLMs outperform task-specific RCGs in hypothetical inquiries
(12.65% for GPT-4), but lag in rhetorical questioning (2.27% for LLaMA2). Also, we

1https://gerrit-review.googlesource.com/

82

https://gerrit-review.googlesource.com/

propose a discussion thread response generation as a new ACRs task, and evaluated
the performance of LLM-based RCGs on this task. Our results shows that LLM-
based RCGs can be helpful in identifying whether the discussion is resolve. However,
if they need to follow up with the author, their performance is sub-optimal.

We conclude that while state-of-the-art RCGs could aid the review process by improving
tasks like exception handling, they cannot replace humans in generating interrogative re-
view comments. Specifically, they exhibit a disparity with respect to human behaviour in
generating interrogative comments, their limited linguistic ability impacts comment quality,
and they have a tendency to request information without offering as many recommenda-
tions as humans. Although LLM-based RCGs show promise in addressing some of the
linguistic limitations of RCGs, they do not consistently improve performance across differ-
ent types of interrogative comments. We recommend using RCGs as complementary tools
rather than as replacements for human reviewers. Thus, their benefits can be harnessed
while mitigating their shortcomings.

6.2 Dataset Preparation

In this section, we describe how we create dataset for our analysis. Figure 6.1 shows the
steps which consists of: (1) Data Collection, (2) Data Cleaning, and (3) Review Generation
components. Below, we describe each component.

6.2.1 Data Collection

We begin by selecting a subject community on which to focus our efforts. Our study aims
to use RCGs trained on human code reviews to generate code review comments, allowing
us to analyze the prevalence and patterns of questions that are generated. To that end, we
must first select a development community that produces a large number of high-quality
human-submitted code reviews. Human-submitted code reviews are necessary both to fine-
tune RCGs and to compare their results against a baseline. While multiple communities
may satisfy our criteria, we choose the Gerrit community for our study because it provides
us with the opportunity to analyze how RCGs perform in a near-ideal case. Indeed, the
Gerrit community contains a large amount of review data (1,852 code reviews and 15,000
code review comments in 2022), has contributors representing organizations of influence
(e.g., Google, Cisco, and Spotify), and tends to provide review records that are well linked

83

Data Collection

Fetch Pull Requests
(MR-Loader)

Code Reviews

172,919 records

Merge Requests

18,720 records

Gerrit

Fetch Code
Changes

Fetch Code
Reviews

Data Cleaning

DF1: Keep Java Reviews

DF2: Discard Comment
Responses

DF3: Discard Reviews
Without File Content

Review Dataset

19,446 records

DF4: Discard File Level
Reviews

DF5: Apply Tufano et.al.
Filters

Review Generation

Identify questions in Real and
Generated Reviews

Review Code Changes with
Automatic Code Reviewer Models

Automatic Code
Reviews

DBRX

35.68K

LlaMa2

35.68K

CodeBert

380.60K

AUGER

388.92K

Code-
Reviewer

378.09K

Figure 6.1: The overview of the data preparation procedure.

to the commits on which they were performed. Focusing on the Gerrit community does
pose clear risks to external validity but allows control over internal validity threats, such as
understanding of data linkage properties, highlighting a subjective trade-off between these
validity types among researchers as studied previously [142]. Furthermore, the Gerrit
community has been the subject of previous studies [24] as the its maintainers exhibit a
stringent commitment to practicing code review, and comments consistently display both
quality and quantity.

To start our data collection, we use MR-Loader2 to obtain the Gerrit community’s raw
MR data. As the primary quality gate through which all code changes of the community
flow, MRs are a prime source of data for our study. Indeed, all the details related to
a change, including the code review comments, can be accessed through MRs. We also
collect metadata, such as the author and committer of each code change, to use in our
data analysis.

We collect this data from the Gerrit community from the first available MR (2018-10-
21) until the date when we performed the data collection (2023-08-22). Using this data,
we filter out MRs from projects unrelated to the development of the Gerrit system itself.

2https://github.com/JetBrains-Research/MR-loader

84

https://github.com/JetBrains-Research/MR-loader

This results in a dataset containing 172,919 code review comments. To complement the
MR data, we leverage the Gerrit API3 to download the content of the files under discussion
before a change and the code diff on which the reviewers commented.

6.2.2 Data Cleaning

After we collect our data, we apply five Data Filters (DFs) to mitigate noise that is
irrelevant to our study (e.g., comments like “lgtm”). We present our five DFs below.

• DF1: We filter out comments left on files other than Java files by identifying files
with the .java extension. We concentrate on Java files because two of the three
studied RCGs are trained on Java code review data and provide feedback only on
Java code changes. 77,529 code review comments survive this filter.

• DF2: We filter out response comments, i.e. comments posted in reply to another
comment, using a Gerrit API flag that indicates whether a comment is in reply to an-
other comment. We remove response comments because non LLM-based RCGs only
review code changes and do not engage in follow-up discussions. Similar filters are
common in previous studies [89, 162] to prepare the data for training and inference.
After DF2, our dataset contains 37,656 code review comments that survive.

• DF3: We filter out records that do not have retrievable file content before the code
change. For each code review comment, we issue a Gerrit API request to retrieve
related file content. We remove the small subset of cases where the API request is
unsuccessful because the data cannot be processed by the studied RCGs. After DF3,
our dataset contains 37,625 code review comments.

• DF4: We filter out file-level reviews, i.e. comments that are not connected to any
line of code but are instead about a higher-level concept in that file.4 We do this
by identifying the comments that have a non-null file name yet no comment lines
specified. We remove these code review records because existing RCGs perform the
review on functions, sub-functions blocks, or lines of code. Therefore, these high-level
comments on the files cannot be produced by the studied RCGs. 37,133 code review
comments survive this filter.

3https://gerrit-review.googlesource.com/Documentation/
4Sample comment: https://gerrit-review.googlesource.com/c/gerrit/+/351075/comment/

2408abef_e5ea576c/

85

https://gerrit-review.googlesource.com/Documentation/
https://gerrit-review.googlesource.com/c/gerrit/+/351075/comment/2408abef_e5ea576c/
https://gerrit-review.googlesource.com/c/gerrit/+/351075/comment/2408abef_e5ea576c/

• DF5: Our final filter preprocesses the comments using the replication packages from
Tufano et al. [162]. Specifically, we use their code/Analyzer.py and code/Cleaner.py

files.5 This filters out non-English comments and comments on code portions that
are not part of a function, such as comments on imports. This filter also removes
empty comments after the removal of emojis and links. In the end, 19,446 code
review comment records survive this filter.

We do not apply restrictions on comment length since (1) any comment may contain
important information, and (2) the main objective of this dataset is to study generated
code review comments, not training RCGs. Our dataset and the resulting 19,446 code
review records are available online in our replication package.6

6.2.3 Code Review Comment Generation

Using the dataset collected in our data preparation steps, we use the selected task-specific
and LLMs-based RCGs to generate code review comments based on the given code changes.
Task-specific RCGs are trained to excel in comment generation with a specific input for-
mat and have not undergone Reinforcement Learning from Human Feedback (RLHF), a
technique used to align intelligent agents with human preferences. On the other hand,
LLMs are more generalist models that interact through natural language interfaces but, as
their name suggests, typically require more resources. Below, we elaborate on each type
in more detail.

Task-specific RCGs

The selected task-specific RCGs differ in their input format. While both AUGER and
CodeReviewer adopted the Text-To-Text-Transfer Transformer (T5) model [125], each
chooses one of its many existing variations [98], which require different inputs. AUGER’s
input requires a function that contains commented code, allowing it to use this context
to comment on issues at the function level [89]. CodeReviewer, on the other hand, uses
inputs in the form of code diffs. Thus, while we use off-the-shelf versions of AUGER [89]
and CodeReviewer [90], we tailor the inputs to each model. Unlike CodeReviewer and
AUGER, CodeBert, as a general-purpose model, can ingest a code change as-is; however,
it should be further fine-tuned [162]. Thus, we use the pre-trained CodeBert model and

5https://github.com/RosaliaTufano/code_review_automation
6https://doi.org/10.5281/zenodo.13301078

86

https://github.com/RosaliaTufano/code_review_automation
https://doi.org/10.5281/zenodo.13301078

train it for another 50,000 epochs on the Tufano et al. dataset [162] to perform code re-
views. To prevent data leakage from fine-tuning to testing phase, we remove the duplicate
common entries when evaluating our results for this model. Furthermore, to minimize
implementation errors, we use the code provided by Zhou et al. [188] and only modify it
to add top-k sampling [41].

Our diverse selection of RCGs allows us to generate a wide range of code review com-
ments. Similar to prior work [89, 90], we run experiments for all of our studied RCGs on
our dataset for top-k results. We use k values of 1, 3, 6, and 10, similar to prior work [89].

Next, we use a rule-based heuristic to identify whether the comment mood is interrog-
ative, building upon the rules introduced by Zhou et al. [188] and add NLTK7 to improve
the accuracy by separating sentences in a review comment. The source code of the heuristic
used in this chapter is publicly accessible as part of our replication package.6 To verify the
performance of this heuristic, we draw a random sample of 377 comments and inspect the
output of the heuristic for each one manually. We find that the heuristic yields an AUC
of 0.96 for human review comments (95% confidence level, 5% error margin). Using this
heuristic, we individually classify both the actual comments and each of the top-k gener-
ated code review comments of each of the studied RCGs. After collecting and classifying
the model outputs as interrogative or declarative, we analyze them to address our RQs.

Large Language Model

For code review comment, each LLM is run with the k = 1 setting, prompted to adopt the
persona of a code reviewer [172], and leverages two-shot prompting [28, 120] to enhance
model efficacy. We provide two examples, an interrogative and a declarative comment, to
prevent model bias and pose questions only when necessary. These examples are selected
from a randomly chosen set of code reviews and inspected to ensure that the issues raised
in the comments are confined to the code change and do not reference materials outside
the scope of the change. We choose not to fine-tune our chosen LLMs since they have
already been trained on extensive code review data. The input comprises a code hunk,
similar to CodeReviewer [90], which is known for its superior performance in comment
generation among RCGs [99]. To ensure an unbiased comparison, no additional context is
provided. After presenting the prompt and code change, we record the LLM’s output for
further analysis.

7https://www.nltk.org/

87

https://www.nltk.org/

6.2.4 Discussion Thread Response Generation

While RCGs in current form cannot follow up on discussion threads, LLMs are well suited
to the task. Therefore, we introduce a new task for automatic code review, discussion
thread response generation, which refers to responding to the discussion thread after a
new comment is placed if needed, or marking the thread as resolved. As this experiment
required the interactive behaviour, which is an attribute of LLMs, we employ only our
studied LLM-based RCGs. For this task, we select code changes accompanied by review
threads initiated with interrogative comments. We provide each model with the code
change hunk, commented code, reviewer’s comment, and author’s response, instructing
the LLM to determine whether the initial concern is resolved and, if needed, to continue
the discussion and generate a response. Then, we record the LLM-generated response and
compare it to the actual progression of the thread, where the two first authors assess the
similarity of the comment using a five-point Likert scale.

6.3 Quantitative Analyses

In this section, we quantitatively study interrogative comments generated by RCGs during
code reviews. Below, we describe our approach and then present the results.

6.3.1 Approach

We first evaluate the prevalence of RCG-generated interrogative comments by measuring
their frequency. Then, to measure the similarity of interrogative comments generated by
RCGs and humans, we calculate the density of interrogative comments per MR for both
RCGs and human reviewers, i.e., the rate at which interrogative comments are posed in each
MR. We report the results of our analysis using top-k values (k ∈ 1, 3, 6, 10 for task-specific
and k=1 for LLM-based models) for each of our studied task-specific RCGs to explore the
impact of k on their behaviour. We test various k settings because higher k settings improve
the quality of comments by providing a more lax guess budget and increasing the diversity
of suggestions [41]. Experimenting with different k settings [89, 162] is common in prior
work, with larger k settings typically yielding better performance.

We explore whether RCGs imitate human behaviour when posing interrogative com-
ments. To evaluate the association between comments generated by RCG and those posed

88

by humans, Fisher’s exact test [164] is employed. Additionally, to compare the density of in-
terrogative comments generated by RCGs and humans across the MRs, the Mann-Whitney
U test [100] is used. Also, Shannon’s entropy [140] is used to measure the regularity of
RCG behaviour.

When we evaluate the prevalence of LLM-generated interrogative comments, we focus
on the k=1 setting because larger k settings incur greater hardware costs. To provide
a rough estimate, running all dataset records with the k=1 setting of the GPT-4 Turbo
LLM would cost approximately $2.3K USD, assuming that only a single run was necessary.
For these practical reasons, we limit our LLM experiment to only one value of k and use
DBRX as a freely available alternative for GPT-4. Similar to the evaluation of task-specific
RCGs, we study the association between the mood of comments produced by humans and
LLMs. We use Fisher’s exact test with alpha set to 0.0036, adjusted using the Bonferroni
correction [33].

We also conduct an analysis of code review comments with discussion threads that
have at least one response because these discussions are (1) closely linked to questions
during the code review process [35], and (2) play an essential role in knowledge sharing
and design conversations within the code review process [6, 169, 182]. Discussion-inducing
code changes in the context of RCG-generated interrogative comments are of interest be-
cause RCGs have the potential to disrupt valuable code review discussions. Two scenarios
may arise in such cases: (1) RCGs ask questions similar to humans, sparking productive
discussions that require active RCG engagement after the authors respond, or (2) RCGs
ask the different (perhaps even incorrect) questions, potentially stifling informative discus-
sions. While the former scenario necessitates RCGs with a deep understanding of the code,
strong reasoning, and comprehension capabilities, which are currently lacking, the latter is
more detrimental, as it can hinder valuable project documentation [6]. We study whether
LLMs can address this shortcoming by applying them to such cases and qualitatively ana-
lyzing their responses. Furthermore, we compare the behaviour of RCGs when face these
code changes and inspect to see if RCGs also treat them differently, similar to humans.
This comparison is crucial since these code changes have led to beneficial discussions, and
treating them similarly to other changes may indicate oppressing useful discussions that
could have started otherwise.

89

Identify Discussion Inducing Changes

To identify these code changes, we first extract comment threads, specifically those with
more than one reply from the code review records. During this process, we filter out single-
word responses to focus on informative discussions related to code changes, excluding
minimal responses like “Acknowledged.”8 We then flag the corresponding code and the
initial comment that initiated the changes as discussion-inducing.

6.3.2 Results

Tables 6.1 and 6.3 show the prevalence of interrogative comments and the regularity of
RCG behaviour in generating them across k settings for the studied RCGs. Below, we
present our observations.

How often do Review Comment Generators generate interrogative comments?

15.61% of comments generated by the task-specific RCGs are interrogative. Interrogative
review comments account for 0.91% to 27.54% of all generated comments, with medians of
15.78%, 19.50%, and 10.15% for AUGER, CodeReviewer, and CodeBert, respectively. The
overall median across all values of k is 15.61%. Regarding the LLM-based RCGs, 65.26%
and 47.67% of the DBRX and LLaMA2-generated review comments are interrogative, re-
spectively. To provide a benchmark, our mined dataset of human review comments from
the Gerrit project contains interrogative comments at a median rate of 39.91%. Among
the studied task-specific RCGs, AUGER has the highest interrogative comment frequency
at 15.30% for k=1, with CodeReviewer and CodeBert at 4.11% and 0.91%, respectively.
The range of these rates increase to between 6.07%–15.62% for k=3, 14.18%–23.38% for
k=6, and 15.60%–27.54% for k=10. CodeBert’s relative rate of interrogative comments,
especially for k=1, can be attributed to its base model, which is primarily trained for
generating code rather than natural language. Although pre-training CodeBert for 50K
epochs enhances comment quality for larger k settings, when focusing only on the most
likely solution (k=1), the generated comments mainly consist of code fragments with lim-
ited natural language text. Consequently, only a few would have questions within the
CodeBert-generated comments.

8https://gerrit-review.googlesource.com/c/gerrit/+/430619/comments/c74c5adb_ebc49a32

90

https://gerrit-review.googlesource.com/c/gerrit/+/430619/comments/c74c5adb_ebc49a32

LLM-based RCGs pose questions more frequently than task-specific models, especially
in the case of DBRX. We suspect that this is due to their limited contextual knowledge
about the given change hunks, which lead to confusion. We explore the intentions and
types of questions that LLMs pose in more detail in Section 6.4.

We repeat the previous analysis focusing exclusively on discussion-inducing code changes.
We find that the rate of interrogative comments ranges from 0.91% to 28.02%, with a me-
dian of 15.60% for all comments generated by task-specific RCGs. This indicates a slight
increase in rates compared to our assessment of all comments. As for LLM-based RCGs,
DBRX and LLaMA2 generate interrogative comments 67.62% and 46.64% of the time, indi-
cating a +2.36 and -1.03 percentage point difference. As a benchmark, human-submitted
comments in discussion-inducing code changes increased by 18.25 percentage points to
reach 58.16% when all comments are considered. This result remarks that RCGs do not
treat discussion-inducing changes, similar to humans.

Table 6.1 shows that larger k settings tend to produce higher rates of interrogative
comments for CodeBert and CodeReviewer, whereas this rate remains relatively consistent
with a variance of 13.95% for AUGER. This stable or increasing rate for RCGs highlights
the prevalence of these comments, since the studied RCGs either always ask questions
under all k settings at considerable rates (AUGER) or ask questions when one relaxes
the constraints on the number of guesses (CodeBert and CoreReviewer). Thus, while
interrogative comments posed by human reviewers typically invite authors to engage with
reviewers, share knowledge, and defend decisions that were made during development [169],
current RCGs are not poised to follow up on the response to interrogative comments.
Therefore, having a high rate of interrogative comments may hinder the usefulness of
RCGs in the code review process.

RCGs generate interrogative comments a median of 15.61% of the time for task-specific
and 65.26% and 47.67% for DBRX and LLaMA2-based RCGs, respectively. Since
current RCGs do not actively participate in discussions, the rates at which they pose
interrogative comments may limit their capacity to generate productive conversations
in the code review process.

Do Review Comment Generators and Human Reviewers Raise Interrogative
Comments for Similar Code Changes?

To shed light on RCG behaviour, we examine whether RCGs behave similarly to humans
by correlating their interrogative comments with those of humans. Fisher’s exact test [164]

91

is used to assess the comment mood, checking for nonrandom associations between RCG-
generated and human comments’ mood. We repeat this for each top-k setting and apply
the Bonferroni method [33] to correct for multiple comparisons.

Table 6.2 presents p-values and odds ratios from this test, revealing that two of the three
studied task-specific RCGs exhibit an association between generated and human comments
in terms of sentence mood for different k settings. Specifically, for k settings of 3, 6, and
10, CodeReviewer and for k settings 6 and 10 CodeBert show significant associations with
human rates of interrogative comments, whereas AUGER shows no association for any
k setting. While in all but one case the significant associations have odds ratios greater
than one, they are all small numbers. This indicates that even when RCG-generated and
human-submitted comment moods are correlated, the relationship is weak.

Regarding the LLM-based RCGs, our observations show that DBRX-generated com-
ments significantly co-occur with human comments, unlike LLaMA2. We suspect that
while enterprise LLM-based RCGs may ask questions in the same cases as humans, the
problem of hindering beneficial discussions remains a concern unless they can also effec-
tively follow up on discussion points. Furthermore, one should question the similarity
between questions asked by the models and humans. We explore these aspects further in
Section 6.4.

The association of comment mood between human-submitted and RCG-generated com-
ments diminishes when only considering discussion-inducing changes. Table 6.2 shows that,
compared to the same setting for all comments, either the significant association is lost
or the odds ratio decreases. It means that comment moods differ more among discussion-
inducing comments than among other review comments.

To complement our analysis,RCG interrogative comment density versus human review-
ers. A Mann-Whitney U test shows significant differences in distributions between studied
RCG- and human-submitted interrogative comments in all experiments. Contrasting this
observation with the results on the association of the comment moods, it appears that
RCGs, indeed, behave differently than humans when generating interrogative comments.

92

Table 6.1: Rate of generated interrogative comments for studied RCGs.

RCG
Type

All Discussion-inducing top k

AUGER

15.30% 15.52% 1
16.14% 16.31% 3
15.96% 15.89% 6
15.60% 15.64% 10

CodeBert

0.91% 0.91% 1
6.08% 6.22% 3

14.21% 14.85% 6
19.61% 20.57% 10

CodeReviewer

4.12% 4.18% 1
15.62% 15.57% 3
23.38% 24.00% 6
27.54% 28.02% 10

DBRX 65.26% 67.62% 1

LLaMA2 47.67% 46.64% 1

93

Table 6.2: Odds ratios and Fisher’s exact test p-values for RCGs are shown. A corrected p-value below
0.0018 (*) indicates significance. Ratios > 1 or < 1 imply positive or negative associations, respectively,
with significant ones in bold.

odds ratios p-values

All comments Discussion-Inducing comments All comments Discussion-Inducing comments

top-1 top-3 top-6 top-10 top-1 top-3 top-6 top-10 top-1 top-3 top-6 top-10 top-1 top-3 top-6 top-10

AUGER 1.0178 1.0001 1.0020 1.0038 1.0762 1.0153 1.0367 1.0378 6.6931e-01 1.0000e+00 9.0257e-01 7.6428e-01 2.7679e-01 6.9533e-01 1.7836e-01 7.5635e-02
CodeBert 1.1597 1.0564 1.1150 1.0716 1.1979 1.1031 1.0973 1.0550 5.4031e-02 1.9305e-03 3.5884e-37* 1.9010e-32* 1.8091e-01 7.7971-04* 3.2262e-11* 1.7494e-08*
CodeReviewer 1.0061 0.9613 1.0546 1.0270 1.0122 0.9296 1.0165 1.0187 8.6718e-01 8.5961e-04* 1.1110e-13* 3.9885e-07* 8.5674e-01 1.5052e-04* 1.5752e-01 3.0259e-02
DBRX-Based 1.1366 - - - 1.1249 - - - 2.26e-08* - - - 0.0024 - - -
LLaMA2-Based 0.9653 - - - 0.9873 - - - 0.1074 - - - 0.7305 - - -

94

Table 6.3: Entropy of the density of interrogative comments for all and discussion-inducing
code changes.

RCG
Type All Discussion-inducing

top k

entropy p-value entropy p-value

AUGER

0.297 0.00 0.337 < .001 1.0
0.431 < .001 0.456 < .001 3.0
0.520 < .001 0.546 < .001 6.0
0.578 < .001 0.593 < .001 10.0

CodeBert

0.068 0.00 0.073 0.00 1.0
0.353 0.00 0.389 0.00 3.0
0.553 < .001 0.576 < .001 6.0
0.641 < .001 0.671 < .001 10.0

CodeReviewer

0.169 0.00 0.154 0.00 1.0
0.470 < .001 0.497 < .001 3.0
0.613 < .001 0.641 < .001 6.0
0.673 < .001 0.707 < .001 10.0

DBRX 0.555 < .001 0.567 < .001 1.0

LLaMA2 0.402 < .001 0.399 < .001 1.0

We repeated this test for discussion-inducing code changes. Notably, the distribution of
RCG-generated interrogative comments remains largely unchanged by filtering out the non-
discussion-inducing code changes. To verify that RCGs, unlike humans, treat discussion-
inducing code changes similar to the rest of the changes, we perform a Mann-Whitney U
test over RCG-generated comments for task-specific changes and all the changes to explore
whether the density of interrogative comments differs. The test yielded p-value=0.8852,
indicating that the null hypothesis (i.e., both samples are drawn from the same distribution)
cannot be rejected. Based on this observation, when faced with a discussion-inducing code
change, RCGs treat them with no difference, leading to potentially missing out on useful
discussion in code review.

95

Neither task-specific nor LLMs-based RCGs generate interrogative comments like hu-
mans. RCG-generated and human-submitted interrogative comments differ in terms of
frequency of interrogative comment and their density per MR. Moreover, RCGs treat
discussion-inducing changes similar to other changes, potentially diminishing the depth
of review discussions.

When do Review Comment Generators generate interrogative comments?

Given that RCG-generated interrogative comments differ from the humans’, we compute
the entropy of normalized interrogative comments per MR, i.e., count of interrogative
comments over the top-k, as a measure of regularity for task-specific RCGs. A higher
entropy indicates that the number of RCG-generated interrogative comments varies more
from one MR to another, making their overall behaviour more irregular. Table 6.3 presents
the normalized entropy of interrogative comment density using Equation 6.1:

Normalized Entropy =
−
∑n

i=1 ratei × log2 ratei
log2(number of MRs)

(6.1)

Furthermore, this table presents the p-values yielded from the Mann-Whitney U test to ex-
plore statistically whether the distribution of the generation rate of interrogative comments
is different for RCGs and humans in each setting.

In Table 6.3, we observe that the p-value is less than the corrected alpha=0.0018 all
the time, indicating that human-submitted and RCG-generated interrogative comments
have different regularity in their rate per MR. Also, we notice an increase in k results in
higher entropy for RCG-generated interrogative comments. While prior studies suggest
that larger k settings lead to better performance [89, 162], predicting RCGs’ behaviour in
generating interrogative comments may be challenging due to this irregularity.

We separately investigate the regularity of RCGs for discussion-inducing changes. Higher
entropy in interrogative comments, as shown in Table 6.3, suggests less regularity in gen-
erating them, thus having more challenge predicting the RCG behaviour.

96

While considering larger top-k suggestions leads to higher quality RCG-generated com-
ments, it also increases the entropy of interrogative comments in task-specific RCGs,
making it increasingly harder to speculate about the RCG behaviour. Thus, RCGs not
only pose questions with which authors might not be able to interact, but they also
pose them with patterns that differ from humans. Additionally, while predicting the
behaviour of task-specific RCGs in generating interrogative comments for discussion-
inducing code changes is more important than normal code changes, the higher entropy
shows that it is, in fact, more challenging.

6.4 Qualitative Analyses

In this section, we study the types and intentions of the RCG-generated interrogative
comments for both RCGs and LLMs by comparing them with human-submitted comments.
We analyze the content of interrogative comments and categorize them to shed light on
the questions-posing behaviour of RCGs and LLMs. Below, we describe our approach,
followed by our results.

6.4.1 Approach

We adopt a catalogue of comment categories from prior work [35, 117] to compare the types
and intentions of interrogative code review comments generated by RCGs with those of
human reviewers. The catalogue is derived from two sources—one for comment types [117]
and one for interrogative comment intentions [35]. The white rows of Table 6.4 present the
twelve comment categories proposed by Ochodek et al. [117] to describe different types
of code review comments, whereas the grey rows show the three new comment categories
that emerged from our dataset but did not exist in the categories proposed by Ochodek et
al. [117]. Similarly, Table 6.5 presents the five primary intents behind review queries that
were identified by Ebert et al. [35]. We leverage the types of questions posed by RCGs to
further uncover how RCG can aid in code review.

Since inspecting all of the interrogative comments is impractical, we draw a random
sample containing both task-specific RCG- and human-submitted code review comments.
We then apply blended coding [52] to the sample, initially using established categories for
comment types [117] and intentions [35], while also integrating new categories to capture
emergent trends. The following sections will detail our sampling method and the blended
coding approach that we use.

97

Table 6.4: Code review comment types (Ochodek et al. [117]), with the inclusion of new
types identified in our analysis (in gray).

Comment Type Description

code design Code review comments related to the structural organization of the
code (e.g., class design).

code style Code review comments pertaining to the code’s layout and readabil-
ity.

code naming Code review comments focusing on the conventions used for naming
variables, functions, classes, etc.

code logic Code review comments that discuss the logic and operations within
the code, such as algorithms.

code data Code review comments that address the handling and usage of data
(e.g., variables) within the code.

code api Code review comments on the use and evolution of APIs within the
codebase.

code doc Code review comments that concern documentation and commen-
tary in the source code.

compatibility Comments related to compatibility with operating systems, tools,
and various versions.

config/.../review Code review comments about the process of submitting and review-
ing patches and commits.

code purpose Code review comments about the necessity for changes, typically to
clarify the intention behind code segments.

code exception Code review comments related to exception handling within the
code.

code testing Code review comments related to existing tests or the need for new
tests.

Sampling

Similar to prior studies [89, 162], our analyses focus on initial review comments and exclude
subsequent responses in the review threads. Given our goal of identifying the types and
intentions of interrogative comments, our attention is narrowed to questions posed by either
human reviewers or RCGs. In our dataset, the code review comments are categorized into
three groups based on who produced the comment: (1) human reviewers only, (2) task-
specific RCGs only, or (3) both human reviewers and task-specific RCGs. We randomly

98

Table 6.5: Code review comment intentions (Ebert et al. [35])

Intention Description

Suggestions Inquiries that subtly propose a course of action.

Requests Questions seeking details such as explanation related to the
code under review.

Hypothetical Scenarios Questions that construct a potential situation which may not
have been previously considered.

Rhetorical Questions Questions paired immediately with their answers, serving to
emphasize a point.

Table 6.6: Distribution of generated comment types for interrogative comments.

Comment Type Human RCGs GPT-4 LLaMA2

code logic 54.37% 40.00% 42.17% 38.64%
code design 14.56% 7.37% 7.23% 6.82%
code naming 9.71% 8.42% 3.01% 2.27%
code data 3.88% 5.26% 4.82% 6.82%
code testing 3.88% 1.05% 3.61% 0.00%
code api 2.91% 2.11% 3.61% 0.00%
code exceptions 2.91% 7.37% 14.46% 20.45%
config/../review 1.94% 3.16% 0.60% 0.00%
code purpose 1.94% 22.11% 13.86% 15.91%
code style 1.94% 3.16% 3.61% 4.55%
code doc 0.97% 0.00% 2.41% 4.55%
compatibility 0.97% 0.00% 0.60% 0.00%

99

Table 6.7: Distribution of question intentions for generated interrogative comments.

Comment Intention Human RCGs GPT-4 LLaMA2

Suggestions 63.11% 40.00% 14.46% 13.64%
Requests 23.30% 56.84% 72.89% 84.09%
Rhetorical questions 8.74% 3.16% 0.00% 2.27%
Hypothetical scenario 4.85% 0.00% 12.65% 0.00%

select samples from each category and merge these into a composite sample set to ensure
representation from all types of review comments. We then use GPT-4- and LlAMA2-
based RCGs to generate LLM-based responses for the sampled set. Moreover, to ensure
that LLMs have not been exposed to the code changes during their training, we augment
this set with 30 additional changes for LLM-based RCGs, balanced between interrogative
and declarative comments, that were introduced after the cutoff date for the LLM training
period at the time they are used.

Blended Coding

We employ a blended coding approach [52] to label the sampled set of interrogative com-
ments. This strategy allows us to leverage categories from prior studies while we still have
the flexibility to create new categories.

Two coders with related expertise inspect each entry in the sample, focusing on in-
terrogative review comments by both reviewers and RCGs. The coders also label false
positives (i.e., non-interrogative comments) as a separate class. Furthermore, for consis-
tency, in multi-question comments, the coders only label the first question. As a first
step, in a preliminary collaborative session, for the task-specific RCGs, the coders label
100 interrogative comments, separate from the sampled set, to lay the common ground
for the initial categories. For LLM-based RCGs, coders label only 50 samples to refine
guidelines, as these comments are more structured due to the superior language skills of
LLMs. Subsequently, each coder independently labels the remaining comments in batches
of 50, alternating between human reviewers and RCG-generated comments. In addition to
the content of interrogative comments, the coders use the comment context, such as the
referenced changes to the code, the type of RCG, and the responses to human reviewer
comments. After each batch of 50 comments, the coders meet to resolve discrepancies
and refine the emerging categories. For disagreements, coders explain their rationales and
jointly decide. The first author arbitrates unresolved disputes. This iterative process con-

100

tinues until our saturation [15, 53] criterion is satisfied, i.e., no new codes are identified
across two consecutive batches. This criterion is met after labelling 150 samples of entries.

To assess the reliability of the coding task, we measure the inter-rater reliability using
Cohen’s Kappa score across the two coders. We repeat the measurement for both dis-
tinct coding tasks for the four sources of comment generation, i.e., categorizing the type
and intention of generated comments by task-specific RCGs, the GPT-based RCG, the
LLaMA2-based RCG, as well as the human reviewers. For task pairs of comment type
and interrogative intention, we obtain Kappa score pairs of (0.49, 0.45), (0.67, 0.66), (0.60,
0.50), and (0.61, 0.43) for task-specific, GPT-4, LLaMA2, and human reviewers, respec-
tively. These scores reflect substantial agreement on comment type and thread response
decisions for both LLMs. The scores for comment type tasks show moderate agreement
for task-specific RCGs, and substantial agreement for the other two RCGs [84]. For the
interrogative comment question, the Kappa score for human-submitted comments is inter-
preted as substantial agreement while the other RCGs have a moderate agreement rate.
Lower Kappa scores in some tasks were attributed to the high diversity of possible labels
and noise from hard-to-parse generated comments.

6.4.2 Results

Tables 6.6 and 6.7 summarize the results of the coding task. We discuss our findings with
respect to comment type and intention below.

Comment Type: What types of comments can be observed within the scope of
generated interrogative comments?

Table 6.4 highlights three new emergent categories of comment types (cells with a gray
background). Conversely, our analysis does not reveal any examples of types code io,
code doc, compatibility, rule def, and config building/installing in either human or RCG
comments.

LLM-based RCGs pose more documentation-related questions (2.41% and 4.55% of all
generated interrogative comments for GPT-4 and LLaMA2, respectively) than both human
reviewers (0.97% of all human-submitted interrogative comments) and task-specific RCGs,
which do not ask this type of question. This suggests that LLM-based RCGs could serve
as vigilant overseers for code documentation quality.

RCGs pose more questions about exceptions than human reviewers. While task-specific
RCGs are notably adept at generating such interrogative comments (7.37% of all their gen-

101

erated interrogative comments), LLMs ask about exceptions even more frequently (14.46%
and 20.45% for GPT-4 and LLaMA2, respectively). We find that these task-specific and
LLM-based RCGs are especially adept at raising exception-handling concerns for common
APIs, such as file I/O operations, whereas human reviewers excel at pinpointing complex
issues, such as neglected edge cases.

Human reviewers more frequently question the logic behind code changes (54.37%), such
as conditional placement or potential oversights in handling edge cases, compared to RCGs
(38.64%-42.17%). In contrast, RCGs’ (22.11%) and LLMs’ (13.86% and 15.91% for GPT-
4 and LLaMA2, respectively) questions often concentrate on the purpose for the changes,
possibly reflecting their more limited grasp of the code’s broader context. Human reviewers
are often among the core developers of the projects [109] or have past involvement with the
modified files and subsystem in the code change [155]. By using this prior context on the
changed files, they can provide more in-depth interrogative comments on improving the
code logic. RCGs lack this context. As a result, they often question the rationale behind a
code change rather than the logic of the code being changed. Moreover, providing all of the
available code and documentation may not resolve this problem since the additional context
may be misleading, yielding poorer results while imposing higher computation costs [97].
Based on this observed behaviour, our findings suggest that humans are better suited to
review code changes involving complex logic. They often question the logic of the changes,
leading to potentially useful discussions. On the other hand, RCGs, whose questioning
style diverges from human reviewers’, probe the logic underlying a change considerably
less frequently and ask more frequently about the purpose.

While RCGs excel at identifying unhandled exceptions, they fall short in contextual un-
derstanding, frequently using interrogative comments to seek context about code changes
(54.37%).

Intention: What are the perceived intentions behind generated interrogative
comments?

During labeling, we encounter all intent categories [35] except Attitudes and emotions.

Human reviewers primarily (63.11% of sampled comments) use interrogative comments
to provide suggestions, whereas task-specific (56.84%) and LLMs-based (72.89% for GPT-
4 and 84.09% for LLaMA2) RCGs primarily ask questions to gain more information or
justifications for code changes. For example, in a specific code change,9 a reviewer suggests,

9https://gerrit-review.googlesource.com/c/gerrit/+/194420

102

https://gerrit-review.googlesource.com/c/gerrit/+/194420

“Cannot be list.sort(comparing(GpgKeyInfo::id))?”, while CodeBert comments, “This is a
bit confusing. Does this work for a single GpgKeyInfo?[...]”, reflecting confusion possibly
due to limited context. This outcome supports our previous observation concerning the
comment types. Moreover, since current RCGs do not engage in the resulting discussions
and, thus, do not use the information provided by the author, these comments hinder the
productive use of RCGs. While LLMs do not face this limitation, this may still hinder
their usefulness since, if they do not provide a suggestion, the responsibility to devise one
rests solely with the authors.

Indeed, a considerable portion of LLM-based RCG inquiries request more information
about the code change (72.89% for GPT-4 and 84.09% for LLaMA2), prompting authors
to propose solutions rather than offering them like human reviewers. This trend may
be partially attributed to a relative lack of context compared to human reviewers, who
request additional information in 23.30% of interrogative comments. It also exceeds the
rate at which task-specific RCGs seek information (56.84% of times). Although this trait
is beneficial if LLMs continue the discussion or have relevant context at hand, authors
may have to respond to many questions when addressing reviews, potentially prolonging
the code review process. Even when authors provide the requested information in their
responses, LLMs do not always engage with discussion threads, resulting in wasted time
and unresolved comments.

Human reviewers occasionally (4.85%) propose hypothetical scenarios to probe potential
issues—a practice that RCGs do not replicate, with the exception of GPT-4-based RCG
(12.65%). For example, in a specific code change, a reviewer inquires, “Should we reload
plugins in dependency order if the caller gave us more than one and one depends on the
other??”10 This question highlights a scenario potentially missed by the code author. This
illustrates the limited capacity of RCGs to consider the relevant project context to draw
attention to possible defects that authors may have overlooked. While task-specific RCGs
are trained on human-submitted comments, since they lack the context of the project under
scrutiny and the necessary capacity to assess the code for potential hypothetical scenarios,
they cannot ask hypothetical questions that can help draw attention to potential bugs or
future issues. Our qualitative analysis reveals that the LLaMA2-based RCG similarly lacks
the capability for this task. Meanwhile, GPT-4-based RCG is capable of asking such types
of questions, asking them more often than humans. This showcases the need to carefully
select the type of RCGs based on the desired outcomes.

Our intention-based analysis highlights that most of the studied RCGs have a limited
understanding of the code’s context. While LLM-based RCGs could mitigate this issue

10https://gerrit-review.googlesource.com/c/gerrit/+/54428

103

https://gerrit-review.googlesource.com/c/gerrit/+/54428

using transfer learning techniques [62], they still require significant advancements in rea-
soning [184] to effectively simulate the nuanced thought processes of human reviewers,
especially concerning logical reasoning [10, 14, 96]. Thus, human reviewers still provide
unique benefits for code changes that rely heavily on historical context or external infor-
mation, such as bug fixes or integration with private APIs. Reliance on RCGs for such
reviews may lead to an ineffective cycle of rationale-seeking code review comments.

While rhetorical questions are used by humans (8.74%) to draw author attention [166],
strengthen reviewer arguments, and aid in convincing authors [119] to take action, task-
specific (3.16%) and LLM-based (0% for GPT-4 and 2.27% in LLaMA2) RCGs seldom
employ this technique. Even if RCGs could express the same concepts in a declarative
manner, this could potentially hamper the communication of ideas and increase author
resistance to perceiving mistakes.

This finding, though subtle, suggests that task-specific RCGs do not fully leverage the
expressive capacity of natural language. Over time, this limitation could impede devel-
opment velocity by diminishing RCG effectiveness in highlighting the significance of some
comments over others through careful word choice. On the other hand, LLM-based RCGs
may perform better in this regard at the cost of increased latency and resource consump-
tion [67].

Human reviewers predominantly use interrogative comments (63.11%) to offer sug-
gestions, highlighting the subtle differences in review strategies. Their second most
common intention is to request more information about the change (23.30%). Con-
versely, task-specific RCG comments mainly request more information (56.84%), with
recommendations being the next most common purpose (40%). LLM-based RCGs fol-
lows the same pattern with GPT-4 and LLaMA requesting more information 72.89%
and 84.09% of the time and making suggestions 14.46% and 13.64% of the time, re-
spectively.

6.5 Automatic Code Review Proposed Task: Discus-

sion Thread Response Generation

Code Review Discussion Thread Response. We propose this task as a part of the
code review automation and focus our anlysis on discussion threads that were initiated
by a human posing an interrogative comment, and were classified as a discussion thread

104

Code api

Code data

Code design
Code exceptions

Code logic

Code naming

Code purpose

Code style

Code testing
Compatibility

Config/comment/
patch/review

0 1 2 3 4 5

GPT-4 Turbo
LLaMA2-7B

Figure 6.2: similarity scores (median) of responses of LLM-based RCGs to comment
threads.

according to our definition in Section 6.3.1. We inspect the generated comments for their
similarity to human reviewer comments using a five-point Likert scale, where zero indicates
no similarity and five indicates a match. Each coder independently labels responses in
batches of 50 from the sampled dataset if the entry meets these criteria. After each batch,
the coders resolve discrepancies. Overall, 60 of the studied entries meet these criteria.
Figure 6.2 plots the similarity between the generated responses and human comments.

While LLM-based RCGs can effectively address discussions centered on comment types,
such as identifier naming, the alignment with human responses diminishes in threads initi-
ated by other comment types, such as design. To further analyze our results, we calculated
the Area Under Curve (AUC) for the LLM-based RCGs predictions for thread resolution.
The resulting AUCs are 72.34% for GPT-4 and 42.04% for LLaMA2. These observations
reveal that current LLMs are promising in emulating reviewer responses; however, the type
of comment and the intention of the initial reviewer question play a key role. Moreover,
Figure 6.2 shows that the choice of the LLM influences performance, with GPT-4 outper-
forming LLaMA2 by at least one unit on the Likert scale in six of the categories, and only
underperforming in two categories.

105

LLM-based RCGs show promise in following up on interrogative discussion threads
in code review, especially for topics such as naming. Since their performance varies
substantially based on the type of comment and intention of the thread, LLM-based
RCGs should not yet be considered a direct replacement for human reviewers.

6.6 Threats to Validity

Construct Validity threats undermine measurement effectiveness [173]. One construct
threat is imposed by the heuristic that we use to identify interrogative comments. To
assess its accuracy, we manually label 377 review comments and observe that our heuristic
achieves a 0.894 kappa score, indicating almost perfect agreement.

While hallucinations [1, 10] could be a problem for our study, we did not notice any
systematic examples of such errors during our inspection in Section 5. Therefore, this
should not be a concern for our observations in this study. Correctness of the questions
asked by the RCGs is another threat. Unfortunately, due to the high volume of interrog-
ative comments and the lack of domain knowledge for the Gerrit project, coders cannot
verify whether interrogative comments related to a code change are correct. While the
incorrect questions can waste the authors’ time and impose unnecessary workload, in this
study, our focus is primarily on comment mood, whether they are correct or not. However,
hallucinations and the correctness of interrogative comments are interesting future studies.

Internal Validity threats relate to uncontrolled confounding factors [173]. Of concern
is the subjective judgment of coders in qualitative tasks. To mitigate this, we adhered to
best practices [23, 81, 139] for qualitative analysis. Disagreements between coders were
resolved through collaborative discussion until a consensus was reached. Cohen’s Kappa
inter-rater reliability scores indicate moderate to perfect agreement. Given the complexity
of selecting labels from lists of 15 and 5 categories for the type and intent of comments,
respectively, such agreement levels are often deemed acceptable [34, 82, 163]. Also, to
balance coder subjectivity and allow new categories to emerge, we employed a blended
coding approach [52].

External Validity threats impact the generalizability of the findings. One such threat is
our focus on a single community. While we acknowledge that this weakens generalizability,
the Gerrit community is selected due to its long-standing commitment to performing a
rigorous review process. This makes the Gerrit community an exemplar for other com-
munities that consistently practice code reviews over time, thus lending relevance to our
findings.

106

6.7 Conclusions and Lessons Learned

In this chapter, we study interrogative comments generated by RCGs. To that end, we use
three state-of-the-art task-specific RCGs [43, 89, 90] and three LLMs to generate code re-
view comments and quantitatively and qualitatively analyze the interrogative ones. Below,
we distill lessons for both development and research communities.

• On Development. Human reviewers are still necessary for submitting in-
terrogative comments during code review, as neither task-specific RCGs
nor LLM-based ones can fully replace them. Indeed, when RCGs pose ques-
tions, they primarily inquire about the rationale behind changes (56.84%, 72.89%
84.09% for task-specific, GPT-4-, and LLaMA2-based RCGs, respectively), unlike
human reviewers who more often propose solutions (63.11%). We conjecture that
projects can benefit from presenting RCG-generated comments to human reviewers
during the review process. This is supported by our results where RCGs more fre-
quently ask questions related to code exceptions (7.37%, 14.46%, and 20.45% for
task-specific, GPT-4-, and LLaMA2-based RCGs, respectively) and documentation
(2.41% for GPT-4 and 4.55% for LLaMA2) than humans (0.97% and 2.91% for doc-
umentation and exceptions, respectively). This approach can complement human
reviewers, leading to a broader review process. Indeed, similar approaches have been
effective in enhancing the code review process [69, 168]. Furthermore, while early
work suggests that LLMs have limitations in logical reasoning [14, 96], and that
current LLM-based RCGs do not outperform task-specific RCG [99], we find that
LLM-based models mitigate some issues of current RCGs such as interacting with
the authors. Specifically, in cases where human reviewers request information, LLM-
based RCGs can resolve discussion threads similarly to humans (72.34% AUC for
GPT-4). This suggests that using LLMs in review discussions could reduce devel-
oper workload more effectively than task-specific RCGs.

• On Research. Researchers should explore ways to control the generation
of interrogative comments and propose methods to automate the new
proposed task of discussion thread response generation. The median share
of interrogative comments for task-specific RCGs is 15.61%. This noticeable share
highlights the importance of these questions. Additionally, the studied RCGs do
not consistently mimic humans in submitting interrogative comments, making their
behaviour more irregular and erratic. Since task-specific RCGs do not currently
participate in follow-up discussions, the usefulness of this large portion of generated
comments, especially for discussion-inducing changes, is hindered, or worse, these

107

tools may stifle beneficial conversations. Thus, we recommend that research focus
on either reducing the current conversation-impeding interrogative comments from
these models or integrating additional context into the model inputs. This enhance-
ment could enable RCGs to understand and respond to the various facets of a change
more effectively. Also, LLMs such as GPT-4 show promise in the review automation
proposed task for responding to the threads in specific types of comments and deter-
mining resolved threads (72.34% AUC for GPT-4, but only 42.04% AUC for LLaMA2
for the resolution task). Future research should determine how to choose (and fur-
ther improve) RCGs to respond to the review discussions as a task in automatic code
review generation that has not been feasible previously.

6.8 Chapter Summary

In this chapter, we investigate whether ACR tools are advanced enough to render CRR
systems and other human recommendation tools in code review obsolete. We observe
that, despite promising results in specific tasks, such as determining whether a code review
discussion is resolved, ACR processes have not yet replaced human involvement. Therefore,
we conclude that continued investment in improving code review automation approaches
and addressing their challenges would be beneficial in the long run.

108

Part IV

Final Remarks

109

Chapter 7

Conclusion and Future Work

Code review is an important step in improving proposed code changesets. Code review
automation approaches have been proposed to speed up this time-consuming process and
to help developers keep up with the rapid pace of modern software development.

While in theory, these tools promise to boost the software development process, they
can fall short when deployed. In this thesis, we empirically study challenges and explore
the relevance of these approaches with the emergence of Automatic Code Review (ACR)
approaches.

The primary goal of this thesis is to better understand the practical challenges of using
automated code review suggestions. To achieve this goal, we harness the information from
Version Control System (VCS) platforms on historical data and within the review platforms
such as Gerrit1 and GitHub.2 We formulate and evaluate the following thesis statement:

Thesis Statement

Practical challenges in code review processes diminish the usefulness of code review
automation. A multi-faceted approach to address issues like reviewer staleness and the
bug-proneness of changesets will improve the interplay between human and automation,
thereby enhancing automation outcomes.

We empirically study some of the practical challenges that practitioners face when
employing the code review automation approaches and explore whether Code Reviewer
Recommendation (CRR) systems are obsolete considering the current state of Automatic
Code Review (ACR) process. Our studies confirm that CRR approaches face practical
challenges, such as staleness and risks to project safety. These issues can erode the trust of

110

developers and discourage the adoption of these approaches [185]. Furthermore, our last
study demonstrates that code review automation approaches remain relevant despite recent
advancements in ACR, highlighting the importance of continued investment in improving
these systems. Below, we reiterate some of the core findings of these studies:

7.1 Contributions and Findings

1. Part II: Limitations of CRR System

(a) Unintended negative impact of CRR systems: Despite the main goal
of code review suggestion systems to speed up the review process, practitioners
who deploy these systems encounter challenges, such as stale reviewers (Chapter
4) and risky reviewer recommendations (Chapter 5).

(b) Identifying the effect of considering contribution recency on the stale-
ness of CRRs: While considering the recency of contributions can mitigate the
risk of recommending stale reviewers, the complex behaviour of multi-objective
CRR systems can overshadow this impact if not evaluated independently (Chap-
ter 4).

(c) Understanding the impact of ignoring the changeset bug-proneness:
CRR systems may compromise project safety by suggesting less experienced
reviewers for risky changesets due to their multi-faceted behaviour. While this
approach can be beneficial for non-risky code changes, it undermines project
safety when dealing with bug-prone changesets (Chapter 5).

(d) Mitigation strategy adaptability: While there is no silver bullet to resolve
existing challenges, enabling practitioners to adjust the provided CRRs with
flexible and simple configurations can improve the adaptability of these systems.
Therefore, all our mitigation strategies include a setting to adjust depending on
the project state of development, as well as guidance on the potential side effects
of possible configurations (Chapter 4 and Chapter 5).

(e) Enabling the reuse of existing CRR systems: Our proposed mitigation
strategies for addressing stale reviewers and enhancing project safety can be
integrated with existing CRR systems to improve the staleness (Chapter 4) and
safety (Chapter 5) of the recommended reviewers.

2. Part III: Practicality of CRR Systems

111

(a) Relevance of automatic review suggestion systems: Neither state-of-the-
art task-specific nor LLM-based Review Comment Generator (RCG) systems
can replace human reviewers when it comes to asking questions during code
review.

(b) Understanding behaviour of RCGs concerning interrogative comments:
RCGs differ from humans when reviewing a PR, particularly when the code
change induces review discussion. This difference is evident in both the quantity
and quality of questions. For instance, human reviewers often use interrogative
questions to suggest solutions when pointing out problems, whereas RCGs do
this noticeably less often in the sample dataset. Instead, they more often ask
about the purpose of the code change (Chapter 6).

(c) Performance of LLMs on following-up review threads: LLMs’ perfor-
mance on discussion thread resolution shows promising results. However, they
regress when they are required to follow up on the thread and respond to the
author (Chapter 6).

7.2 Prospects for Future Research

This thesis makes a meaningful contribution to understanding the practical challenges that
automatic code review suggestion tools are facing, yet, many other questions remain open
to future research. Below, we outline several promising directions for further work.

7.2.1 Assessing the Validity of Our Findings in Different Soft-
ware Development Settings

Although we explore some of the practical challenges in employing CRR systems in various
stages of their recommendation, we do not investigate the extent to which these challenges
could be generalized to other code review suggestion tools such as code review comment
recommenders [61]. We believe one avenue for future works to explore is to investigate
the applicability and validity of our findings in different code review settings, such as in
large-scale, closed-source environments, to ensure that these challenges stand true in those
settings and that our proposed solutions are robust and generalizable across different types
of projects and organizational settings.

112

7.2.2 Comprehensive Code Reviewer Recommendation improve-
ment Toolkit Development

In this thesis, we identify and address specific challenges faced by CRR systems. Future
work should aim to integrate these solutions, as well as prior challenges [109], into a
comprehensive toolkit that can manage multiple aspects of the code review process, such
as the risk of the proposed changeset and the knowledge turnover rate of the project.

7.2.3 Assessing the Impact of Employing Improved Predictors
for Stale Reviewers

Predicting stale reviewers accurately is crucial for maintaining an efficient review process.
This thesis proposes a simple time-based filtering strategy to mitigate recommendation
staleness. Future research should focus on better predictors for identifying and filtering
the top-recommended stale reviewers while trying to minimize the exclusion of available
developers.

7.2.4 Surveying the Usefulness of Mitigation Strategies

We have validated our proposed mitigation strategies by simulating the review process
throughout the project history. However, we believe a positive affirmation from developers
who use our techniques is a complementary stage to this study. Conducting surveys to
assess their practicality and effectiveness would provide valuable feedback which can be
used in developing a comprehensive CRR toolkit.

7.2.5 Development of Task-Specific or Large Language Model-
based Models to Follow Up on Discussion Threads

While we investigate the performance of three LLMs from two different sizes on the pro-
posed task of following up on the code review discussion for ACR, we believe developing
task-specific models or fine-tuning existing models can lead to better results both for code
review thread resolution and responding to the thread. This research would involve train-
ing models on large datasets of code review discussions to learn how to generate meaningful
follow-up questions and responses. It may also benefit from some levels of human feedback

113

to align the responses with human expectations. In addition, these models should be ca-
pable of understanding the context and subtle differences between the ongoing discussions,
helping to maintain the flow of communication and ensuring that important issues are
addressed.

7.2.6 Assessing the similarity of Human-submitted and Machine-
generated Comments

We study interrogative comments as one type of comment that plays a crucial role in
understanding code review. However, a comprehensive assessment of the RCG-generated
comments against human-submitted comments could yield interesting results. This study
would especially be useful since we can now measure the semantic similarity of comments
using embedding models [176], which allow for a quantitative assessment of the quality and
relevance of these comments.

7.2.7 Developing an Automatic Code Reviewer Selection Model

Another interesting area of exploration is the development of a new family of CRRs that
assesses the submitted code changeset and suggests whether the change can be reviewed
automatically or, due to factors such as being error-prone, a human reviewer is required.
This new family of CRRs can help balance the workload and ensure critical changes receive
adequate human attention.

114

References

[1] Ashish Agarwal, Clara Wong-Fannjiang, David Sussillo, Katherine Lee, and Orhan
Firat. Hallucinations in neural machine translation. In ICLR. 2018.

[2] Wisam Haitham Abbood Al-Zubaidi, Patanamon Thongtanunam, Hoa Khanh Dam,
Chakkrit Tantithamthavorn, and Aditya Ghose. Workload-aware reviewer recom-
mendation using a multi-objective search-based approach. In Proceedings of the 16th
ACM International Conference on Predictive Models and Data Analytics in Software
Engineering, pages 21–30, 2020.

[3] Hamda Hasan AlBreiki and Qusay H Mahmoud. Evaluation of static analysis tools
for software security. In 2014 10th International Conference on Innovations in In-
formation Technology (IIT), pages 93–98. IEEE, 2014.

[4] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander Sere-
brenik. On the abandonment and survival of open source projects: An empirical
investigation. In 2019 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 1–12. IEEE, 2019.

[5] Muhammad Ilyas Azeem, Qiang Peng, and Qing Wang. Pull request prioritization
algorithm based on acceptance and response probability. In 2020 IEEE 20th In-
ternational Conference on Software Quality, Reliability and Security (QRS), pages
231–242. IEEE, 2020.

[6] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of
modern code review. In 2013 35th International Conference on Software Engineering
(ICSE), pages 712–721. IEEE, 2013.

[7] Deepika Badampudi, Michael Unterkalmsteiner, and Ricardo Britto. Modern code
reviews—survey of literature and practice. ACM Transactions on Software Engineer-
ing and Methodology, 32(4):1–61, 2023.

115

[8] Farid Bagirov, Pouria Derakhshanfar, Alexey Kalina, Elena Kartysheva, and
Vladimir Kovalenko. Assessing the impact of file ordering strategies on code re-
view process. In Proceedings of the 27th International Conference on Evaluation and
Assessment in Software Engineering, pages 188–191, 2023.

[9] Vipin Balachandran. Reducing human effort and improving quality in peer code
reviews using automatic static analysis and reviewer recommendation. In 2013 35th
International Conference on Software Engineering (ICSE), pages 931–940. IEEE,
2013.

[10] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie,
Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual,
multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity. arXiv
preprint arXiv:2302.04023, 2023.

[11] Lingfeng Bao, Xin Xia, David Lo, and Gail C Murphy. A large scale study of long-
time contributor prediction for github projects. IEEE Transactions on Software
Engineering, 47(6):1277–1298, 2019.

[12] Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, and Shanping Li. Who will leave
the company?: a large-scale industry study of developer turnover by mining monthly
work report. In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR), pages 170–181. IEEE, 2017.

[13] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W Godfrey. The influ-
ence of non-technical factors on code review. In 2013 20th working conference on
reverse engineering (WCRE), pages 122–131. IEEE, 2013.

[14] Lukas Berglund, Meg Tong, Maximilian Kaufmann, Mikita Balesni, Asa Cooper
Stickland, Tomasz Korbak, and Owain Evans. The reversal curse: LLMs trained on
“a is b” fail to learn “b is a”. In The Twelfth International Conference on Learning
Representations, 2024.

[15] H Russell Bernard, Amber Wutich, and Gery W Ryan. Analyzing qualitative data:
Systematic approaches. SAGE publications, 2016.

[16] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and Premku-
mar Devanbu. Don’t touch my code! examining the effects of ownership on software
quality. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, pages 4–14, 2011.

116

[17] Amiangshu Bosu and Jeffrey C Carver. Impact of peer code review on peer impression
formation: A survey. In 2013 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 133–142. IEEE, 2013.

[18] Amiangshu Bosu, Jeffrey C Carver, Christian Bird, Jonathan Orbeck, and Christo-
pher Chockley. Process aspects and social dynamics of contemporary code review:
Insights from open source development and industrial practice at microsoft. IEEE
Transactions on Software Engineering, pages 56–75, 2016.

[19] Larissa Braz, Christian Aeberhard, Gül Çalikli, and Alberto Bacchelli. Less is more:
supporting developers in vulnerability detection during code review. In Proceedings of
the 44th International Conference on Software Engineering, pages 1317–1329, 2022.

[20] Larissa Braz and Alberto Bacchelli. Software security during modern code review:
the developer’s perspective. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 810–821, 2022.

[21] Zhenzhen Cao, Sijia Lv, Xinlong Zhang, Hui Li, Qian Ma, Tingting Li, Cheng Guo,
and Shikai Guo. Structuring meaningful code review automation in developer com-
munity. Engineering Applications of Artificial Intelligence, 127:106970, 2024.

[22] H Alperen Çetin, Emre Doğan, and Eray Tüzün. A review of code reviewer recom-
mendation studies: Challenges and future directions. Science of Computer Program-
ming, page 102652, 2021.

[23] K Charmaz. Constructing grounded theory, 2014.

[24] Moataz Chouchen, Ali Ouni, Jefferson Olongo, and Mohamed Wiem Mkaouer. Learn-
ing to predict code review completion time in modern code review. Empirical Software
Engineering, 28(4):82, 2023.

[25] Motaz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikovina Kula, and
Katsuro Inoue. Recommending peer reviewers in modern code review: a multi-
objective search-based approach. In Proceedings of the 2020 Genetic and Evolution-
ary Computation Conference Companion, pages 307–308, 2020.

[26] WJf Conover and Ronald L Iman. On some alternative procedures using ranks for the
analysis of experimental designs. Communications in Statistics-Theory and Methods,
pages 1349–1368, 1976.

117

[27] Fred J Damerau. A technique for computer detection and correction of spelling
errors. Communications of the ACM, 7(3):171–176, 1964.

[28] Hai Dang, Lukas Mecke, Florian Lehmann, Sven Goller, and Daniel Buschek.
How to prompt? opportunities and challenges of zero-and few-shot learning for
human-ai interaction in creative applications of generative models. arXiv preprint
arXiv:2209.01390, 2022.

[29] Steven Davies, Marc Roper, and Murray Wood. Comparing text-based and
dependence-based approaches for determining the origins of bugs. Journal of Soft-
ware: Evolution and Process, pages 107–139, 2014.

[30] Manoel Limeira de Lima Júnior, Daricélio Moreira Soares, Alexandre Plastino, and
Leonardo Murta. Developers assignment for analyzing pull requests. In Proceedings
of the 30th annual ACM symposium on applied computing, pages 1567–1572, 2015.

[31] Emre Doğan and Eray Tüzün. Towards a taxonomy of code review smells. Informa-
tion and Software Technology, 142:106737, 2022.

[32] Emre Doğan, Eray Tüzün, K Ayberk Tecimer, and H Altay Güvenir. Investigat-
ing the validity of ground truth in code reviewer recommendation studies. In 2019
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 1–6. IEEE, 2019.

[33] Olive Jean Dunn. Multiple comparisons among means. Journal of the American
statistical association, 56(293):52–64, 1961.

[34] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. Confu-
sion detection in code reviews. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 549–553. IEEE, 2017.

[35] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. Commu-
nicative intention in code review questions. In 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 519–523. IEEE, 2018.

[36] Nasir U Eisty and Jeffrey C Carver. Developers perception of peer code review in
research software development. Empirical Software Engineering, pages 1–26, 2022.

[37] Jayalath Ekanayake, Jonas Tappolet, Harald C Gall, and Abraham Bernstein. Track-
ing concept drift of software projects using defect prediction quality. In International
Working Conference on Mining Software Repositories, pages 51–60. IEEE, 2009.

118

[38] Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph An-
gerer, Silvia Severini, Florian Matthes, and Burkhard Rost. Codetrans: Towards
cracking the language of silicon’s code through self-supervised deep learning and
high performance computing. arXiv preprint arXiv:2104.02443, 2021.

[39] Vahid Etemadi, Omid Bushehrian, and Gregorio Robles. Task assignment to counter
the effect of developer turnover in software maintenance: A knowledge diffusion
model. Information and Software Technology, 143:106786, 2022.

[40] Michael E Fagan. Design and code inspections to reduce errors in program develop-
ment. IBM Systems Journal, 38(2.3):258–287, 1999.

[41] Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation.
In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 889–898, 2018.

[42] Miko laj Fejzer, Piotr Przymus, and Krzysztof Stencel. Profile based recommendation
of code reviewers. Journal of Intelligent Information Systems, 50(3):597–619, 2018.

[43] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model
for programming and natural languages. arXiv preprint arXiv:2002.08155, 2020.

[44] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C Murphy, and Jean-Rémy
Falleri. Impact of developer turnover on quality in open-source software. In Proceed-
ings of the 2015 10th joint meeting on foundations of software engineering, pages
829–841, 2015.

[45] Enrico Fregnan, Larissa Braz, Marco D’Ambros, Gül Çalıklı, and Alberto Bacchelli.
First come first served: the impact of file position on code review. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 483–494, 2022.

[46] Milton Friedman. A comparison of alternative tests of significance for the problem
of m rankings. The Annals of Mathematical Statistics, pages 86–92, 1940.

[47] Ian X. Gauthier, Maxime Lamothe, Gunter Mussbacher, and Shane McIntosh. Is
Historical Data an Appropriate Benchmark for Reviewer Recommendation Systems?
A Case Study of the Gerrit Community. In Proc. of the International Conference on
Automated Software Engineering (ASE), page To appear, 2021.

119

[48] Ian X Gauthier, Maxime Lamothe, Gunter Mussbacher, and Shane McIntosh. Is
historical data an appropriate benchmark for reviewer recommendation systems?: A
case study of the gerrit community. In 2021 36th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), pages 30–41. IEEE, 2021.

[49] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study of
the pull-based software development model. In Proceedings of the 36th international
conference on software engineering, pages 345–355, 2014.

[50] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work practices
and challenges in pull-based development: the contributor’s perspective. In 2016
IEEE/ACM 38th International Conference on Software Engineering (ICSE), pages
285–296. IEEE, 2016.

[51] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.
Work practices and challenges in pull-based development: The integrator’s perspec-
tive. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, volume 1, pages 358–368. IEEE, 2015.

[52] Melissa E Graebner, Jeffrey A Martin, and Philip T Roundy. Qualitative data:
Cooking without a recipe. Strategic Organization, 10(3):276–284, 2012.

[53] Greg Guest, Emily Namey, and Mario Chen. A simple method to assess and report
thematic saturation in qualitative research. PloS one, 15(5):e0232076, 2020.

[54] Qi Guo, Junming Cao, Xiaofei Xie, Shangqing Liu, Xiaohong Li, Bihuan Chen, and
Xin Peng. Exploring the potential of chatgpt in automated code refinement: An
empirical study. In Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering, pages 1–13, 2024.

[55] Anshul Gupta and Neel Sundaresan. Intelligent code reviews using deep learning.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’18) Deep Learning Day, 2018.

[56] Christoph Hannebauer, Michael Patalas, Sebastian Stünkel, and Volker Gruhn. Au-
tomatically recommending code reviewers based on their expertise: An empirical
comparison. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pages 99–110, 2016.

120

[57] Ahmed E Hassan. Predicting faults using the complexity of code changes. In 2009
IEEE 31st international conference on software engineering, pages 78–88. IEEE,
2009.

[58] Vincent J Hellendoorn, Jason Tsay, Manisha Mukherjee, and Martin Hirzel. Towards
automating code review at scale. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 1479–1482, 2021.

[59] Kim Herzig, Sascha Just, and Andreas Zeller. The impact of tangled code changes
on defect prediction models. Empirical Software Engineering, 21:303–336, 2016.

[60] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu Ubayashi.
Deepjit: an end-to-end deep learning framework for just-in-time defect prediction.
In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), pages 34–45. IEEE, 2019.

[61] Yang Hong, Chakkrit Tantithamthavorn, Patanamon Thongtanunam, and Aldeida
Aleti. Commentfinder: a simpler, faster, more accurate code review comments rec-
ommendation. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 507–
519, 2022.

[62] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy
Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue:
Embodied reasoning through planning with language models. In Conference on Robot
Learning, pages 1769–1782. PMLR, 2023.

[63] Mark A Huselid. The impact of human resource management practices on turnover,
productivity, and corporate financial performance. Academy of management journal,
38(3):635–672, 1995.

[64] Daniel Izquierdo-Cortazar, Gregorio Robles, Felipe Ortega, and Jesus M Gonzalez-
Barahona. Using software archaeology to measure knowledge loss in software projects
due to developer turnover. In 2009 42nd Hawaii International Conference on System
Sciences, pages 1–10. IEEE, 2009.

[65] Jing Jiang, Jia-Huan He, and Xue-Yuan Chen. Coredevrec: Automatic core mem-
ber recommendation for contribution evaluation. Journal of Computer Science and
Technology, 30(5):998–1016, 2015.

121

[66] Jing Jiang, Yun Yang, Jiahuan He, Xavier Blanc, and Li Zhang. Who should com-
ment on this pull request? analyzing attributes for more accurate commenter recom-
mendation in pull-based development. Information and Software Technology, 84:48–
62, 2017.

[67] Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu,
and Robert McHardy. Challenges and applications of large language models. arXiv
preprint arXiv:2307.10169, 2023.

[68] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. A large-scale empirical study of just-in-time
quality assurance. IEEE Trans. Softw. Eng., pages 757–773, June 2013.

[69] Farshad Kazemi, Maxime Lamothe, and Shane McIntosh. Exploring the notion of
risk in code reviewer recommendation. In 2022 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 139–150. IEEE, 2022.

[70] Farshad Kazemi, Maxime Lamothe, and Shane McIntosh. Characterizing the preva-
lence distribution and duration of stale reviewer recommendations. IEEE Transac-
tions on Software Engineering, 2024.

[71] Maurice G Kendall et al. The advanced theory of statistics. vols. 1. The advanced
theory of statistics. Vols. 1., 1948.

[72] SayedHassan Khatoonabadi, Diego Elias Costa, Rabe Abdalkareem, and Emad
Shihab. On wasted contributions: Understanding the dynamics of contributor-
abandoned pull requests: A mixed-methods study of 10 large open-source projects.
ACM Transactions on Software Engineering and Methodology, 2021.

[73] SayedHassan Khatoonabadi, Diego Elias Costa, Rabe Abdalkareem, and Emad
Shihab. On wasted contributions: understanding the dynamics of contributor-
abandoned pull requests–a mixed-methods study of 10 large open-source projects.
ACM Transactions on Software Engineering and Methodology, 32(1):1–39, 2023.

[74] Jungil Kim and Eunjoo Lee. Understanding review expertise of developers: A re-
viewer recommendation approach based on latent dirichlet allocation. Symmetry,
page 114, 2018.

[75] Kisub Kim, Xin Zhou, Dongsun Kim, Julia Lawall, Kui Liu, Tegawendé F Bissyandé,
Jacques Klein, Jaekwon Lee, and David Lo. How are we detecting inconsistent

122

method names? an empirical study from code review perspective. arXiv preprint
arXiv:2308.12701, 2023.

[76] Sunghun Kim, E James Whitehead, and Yi Zhang. Classifying software changes:
Clean or buggy? IEEE Transactions on software engineering, 34(2):181–196, 2008.

[77] Oleksii Kononenko, Olga Baysal, and Michael W Godfrey. Code review quality: how
developers see it. In Proceedings of the 38th International Conference on Software
Engineering, pages 1028–1038, 2016.

[78] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W God-
frey. Investigating code review quality: Do people and participation matter? In
2015 IEEE international conference on software maintenance and evolution (IC-
SME), pages 111–120. IEEE, 2015.

[79] Oleksii Kononenko, Tresa Rose, Olga Baysal, Michael Godfrey, Dennis Theisen, and
Bart De Water. Studying pull request merges: a case study of shopify’s active mer-
chant. In Proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice, pages 124–133, 2018.

[80] Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Alberto
Bacchelli. Does reviewer recommendation help developers? IEEE Transactions on
Software Engineering, pages 710–731, 2018.

[81] Klaus Krippendorff. Content analysis: An introduction to its methodology. Sage
publications, 2018.

[82] Andrey Krutauz, Tapajit Dey, Peter C Rigby, and Audris Mockus. Do code review
measures explain the incidence of post-release defects? case study replications and
bayesian networks. Empirical Software Engineering, 25:3323–3356, 2020.

[83] Maciej Kula. Metadata embeddings for user and item cold-start recommendations.
arXiv preprint arXiv:1507.08439, 2015.

[84] J Richard Landis and Gary G Koch. The measurement of observer agreement for
categorical data. biometrics, pages 159–174, 1977.

[85] Triet Huynh Minh Le, David Hin, Roland Croft, and M Ali Babar. Deepcva: Au-
tomated commit-level vulnerability assessment with deep multi-task learning. In
2021 36th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 717–729. IEEE, 2021.

123

[86] Valentina Lenarduzzi, Vili Nikkola, Nyyti Saarimäki, and Davide Taibi. Does code
quality affect pull request acceptance? an empirical study. Journal of Systems and
Software, 171:110806, 2021.

[87] Heng-Yi Li, Shu-Ting Shi, Ferdian Thung, Xuan Huo, Bowen Xu, Ming Li, and
David Lo. Deepreview: automatic code review using deep multi-instance learning. In
Advances in Knowledge Discovery and Data Mining: 23rd Pacific-Asia Conference,
PAKDD 2019, Macau, China, April 14-17, 2019, Proceedings, Part II 23, pages
318–330. Springer, 2019.

[88] Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu. Software defect prediction via
convolutional neural network. In 2017 IEEE international conference on software
quality, reliability and security (QRS), pages 318–328. IEEE, 2017.

[89] Lingwei Li, Li Yang, Huaxi Jiang, Jun Yan, Tiejian Luo, Zihan Hua, Geng Liang, and
Chun Zuo. Auger: automatically generating review comments with pre-training mod-
els. In Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 1009–1021, 2022.

[90] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, et al. Automating code
review activities by large-scale pre-training. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 1035–1047, 2022.

[91] Hongliang Liang, Yue Yu, Lin Jiang, and Zhuosi Xie. Seml: A semantic lstm model
for software defect prediction. IEEE Access, 7:83812–83824, 2019.

[92] Bin Lin, Gregorio Robles, and Alexander Serebrenik. Developer turnover in global,
industrial open source projects: Insights from applying survival analysis. In 2017
IEEE 12th International Conference on Global Software Engineering (ICGSE), pages
66–75. IEEE, 2017.

[93] Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xiaoguang Mao.
Cct5: A code-change-oriented pre-trained model. arXiv preprint arXiv:2305.10785,
2023.

[94] Hong Yi Lin and Patanamon Thongtanunam. Towards automated code reviews:
Does learning code structure help? In 2023 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), pages 703–707. IEEE,
2023.

124

[95] Jakub Lipcak and Bruno Rossi. A large-scale study on source code reviewer rec-
ommendation. In 2018 44th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), pages 378–387. IEEE, 2018.

[96] Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji Zhou, and Yue Zhang.
Evaluating the logical reasoning ability of chatgpt and gpt-4. arXiv preprint
arXiv:2304.03439, 2023.

[97] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio
Petroni, and Percy Liang. Lost in the middle: How language models use long con-
texts. Transactions of the Association for Computational Linguistics, 12:157–173,
2024.

[98] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham
Neubig. Pre-train, prompt, and predict: A systematic survey of prompting methods
in natural language processing. ACM Computing Surveys, 55(9):1–35, 2023.

[99] Junyi Lu, Lei Yu, Xiaojia Li, Li Yang, and Chun Zuo. Llama-reviewer: Advanc-
ing code review automation with large language models through parameter-efficient
fine-tuning. In 2023 IEEE 34th International Symposium on Software Reliability
Engineering (ISSRE), pages 647–658. IEEE, 2023.

[100] Thomas W MacFarland, Jan M Yates, Thomas W MacFarland, and Jan M Yates.
Mann–whitney u test. Introduction to nonparametric statistics for the biological
sciences using R, pages 103–132, 2016.

[101] Laura MacLeod, Michaela Greiler, Margaret-Anne Storey, Christian Bird, and Jacek
Czerwonka. Code reviewing in the trenches: Challenges and best practices. IEEE
Software, pages 34–42, 2017.

[102] Saifullah Mahbub, Md Easin Arafat, Chowdhury Rafeed Rahman, Zannatul Ferdows,
and Masum Hasan. Reviewranker: A semi-supervised learning based approach for
code review quality estimation. arXiv preprint arXiv:2307.03996, 2023.

[103] Mika V Mäntylä and Casper Lassenius. What types of defects are really discovered
in code reviews? IEEE Transactions on Software Engineering, 35(3):430–448, 2008.

[104] Shane McIntosh and Yasutaka Kamei. Are Fix-Inducing Changes a Moving Target?
A Longitudinal Case Study of Just-In-Time Defect Prediction. IEEE Transactions
on Software Engineering, page 412–428, 2018.

125

[105] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. The impact
of code review coverage and code review participation on software quality: A case
study of the qt, vtk, and itk projects. In Proceedings of the 11th Working Conference
on Mining Software Repositories, pages 192–201, 2014.

[106] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. An empirical
study of the impact of modern code review practices on software quality. Empirical
Software Engineering, pages 2146–2189, 2016.

[107] Courtney Miller, David Gray Widder, Christian Kästner, and Bogdan Vasilescu. Why
do people give up flossing? a study of contributor disengagement in open source. In
IFIP International Conference on Open Source Systems, pages 116–129. Springer,
2019.

[108] Ehsan Mirsaeedi and Peter C. Peter, 2020. RelationalGit.

[109] Ehsan Mirsaeedi and Peter C Rigby. Mitigating turnover with code review recommen-
dation: Balancing expertise, workload, and knowledge distribution. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering, pages
1183–1195, 2020.

[110] Md Rakib Hossain Misu, Aleksandar Saša Janjanin, Zhiqiang Bian, Valentin-
Sebastian Burlacu, and Naum Anteski. Ada: a tool for visualizing the architectural
overview of open-source repositories. In Proceedings of the 11th ACM SIGPLAN
International Workshop on the State Of the Art in Program Analysis, pages 30–35,
2022.

[111] Audris Mockus. Organizational volatility and its effects on software defects. In Pro-
ceedings of the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering, pages 117–126, 2010.

[112] Audris Mockus and James D Herbsleb. Expertise browser: a quantitative approach to
identifying expertise. In Proceedings of the 24th international conference on software
engineering. icse 2002, pages 503–512. IEEE, 2002.

[113] Yukasa Murakami, Masateru Tsunoda, and Hidetake Uwano. Wap: Does reviewer
age affect code review performance? In 2017 IEEE 28th International Symposium
on Software Reliability Engineering (ISSRE), pages 164–169. IEEE, 2017.

126

[114] Jaechang Nam. Survey on software defect prediction. Department of Compter Science
and Engineerning, The Hong Kong University of Science and Technology, Tech. Rep,
2014.

[115] Mathieu Nassif and Martin P Robillard. Revisiting turnover-induced knowledge loss
in software projects. In 2017 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pages 261–272. IEEE, 2017.

[116] Edmilson Campos Neto, Daniel Alencar Da Costa, and Uirá Kulesza. The impact
of refactoring changes on the szz algorithm: An empirical study. In 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 380–390. IEEE, 2018.

[117] Miroslaw Ochodek, Miroslaw Staron, Wilhelm Meding, and Ola Söder. Automated
code review comment classification to improve modern code reviews. In International
Conference on Software Quality, pages 23–40. Springer, 2022.

[118] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. Fine-grained just-in-time
defect prediction. Journal of Systems and Software, pages 22–36, 2019.

[119] Richard E Petty, John T Cacioppo, and Martin Heesacker. Effects of rhetorical
questions on persuasion: A cognitive response analysis. Journal of personality and
social psychology, 40(3):432, 1981.

[120] Chanathip Pornprasit and Chakkrit Tantithamthavorn. Gpt-3.5 for code review
automation: How do few-shot learning, prompt design, and model fine-tuning impact
their performance? arXiv preprint arXiv:2402.00905, 2024.

[121] Chanathip Pornprasit and Chakkrit Kla Tantithamthavorn. Jitline: A simpler, bet-
ter, faster, finer-grained just-in-time defect prediction. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR), pages 369–379.
IEEE, 2021.

[122] Huilian Sophie Qiu, Yucen Lily Li, Susmita Padala, Anita Sarma, and Bogdan
Vasilescu. The signals that potential contributors look for when choosing open-source
projects. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW):1–29,
2019.

[123] Sophia Quach, Maxime Lamothe, Bram Adams, Yasutaka Kamei, and Weiyi Shang.
Evaluating the impact of falsely detected performance bug-inducing changes in jit
models. Empirical Software Engineering, pages 1–32, 2021.

127

[124] Sophia Quach, Maxime Lamothe, Yasutaka Kamei, and Weiyi Shang. An empirical
study on the use of szz for identifying inducing changes of non-functional bugs.
Empirical Software Engineering, pages 1–25, 2021.

[125] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. The Journal of Machine Learning
Research, 21(1):5485–5551, 2020.

[126] Mohammad Masudur Rahman, Chanchal K Roy, and Jason A Collins. Correct:
code reviewer recommendation in github based on cross-project and technology ex-
perience. In Proceedings of the 38th international conference on software engineering
companion, pages 222–231, 2016.

[127] Gopi Krishnan Rajbahadur, Shaowei Wang, Gustavo A Oliva, Yasutaka Kamei, and
Ahmed E Hassan. The impact of feature importance methods on the interpretation
of defect classifiers. IEEE Transactions on Software Engineering, 48(7):2245–2261,
2021.

[128] Zeeshan Rasheed, Malik Abdul Sami, Muhammad Waseem, Kai-Kristian Kemell,
Xiaofeng Wang, Anh Nguyen, Kari Systä, and Pekka Abrahamsson. Ai-powered
code review with llms: Early results. arXiv preprint arXiv:2404.18496, 2024.

[129] Mehvish Rashid, Paul M Clarke, and Rory V O’Connor. A systematic examination of
knowledge loss in open source software projects. International Journal of Information
Management, 46:104–123, 2019.

[130] Soumaya Rebai, Abderrahmen Amich, Somayeh Molaei, Marouane Kessentini, and
Rick Kazman. Multi-objective code reviewer recommendations: balancing expertise,
availability and collaborations. Automated Software Engineering, pages 301–328,
2020.

[131] Filippo Ricca, Alessandro Marchetto, and Marco Torchiano. On the difficulty of
computing the truck factor. In International Conference on Product Focused Software
Process Improvement, pages 337–351. Springer, 2011.

[132] Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli, and Audris Mockus. Quantify-
ing and mitigating turnover-induced knowledge loss: case studies of chrome and a
project at avaya. In Proceedings of the 38th International Conference on Software
Engineering, pages 1006–1016, 2016.

128

[133] Linda Rising and Norman S Janoff. The scrum software development process for
small teams. IEEE software, 17(4):26–32, 2000.

[134] Martin P Robillard. Turnover-induced knowledge loss in practice. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 1292–1302, 2021.

[135] Gema Rodŕıguez-Pérez, Gregorio Robles, Alexander Serebrenik, Andy Zaidman,
Daniel M Germán, and Jesus M Gonzalez-Barahona. How bugs are born: a model
to identify how bugs are introduced in software components. Empirical Software
Engineering, pages 1294–1340, 2020.

[136] Christoffer Rosen, Ben Grawi, and Emad Shihab. Commit guru: Analytics and risk
prediction of software commits. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pages 966–969. ACM, 2015.

[137] Shade Ruangwan, Patanamon Thongtanunam, Akinori Ihara, and Kenichi Mat-
sumoto. The impact of human factors on the participation decision of reviewers
in modern code review. Empirical Software Engineering, 24(2):973–1016, 2019.

[138] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bac-
chelli. Modern code review: a case study at google. In Proceedings of the 40th
International Conference on Software Engineering: Software Engineering in Prac-
tice, pages 181–190, 2018.

[139] Aubrey Scheopner Torres, Jessica Brett, Joshua Cox, and Sara Greller. Competency
education implementation: Examining the influence of contextual forces in three new
hampshire secondary schools. AERA Open, 4(2):2332858418782883, 2018.

[140] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMO-
BILE mobile computing and communications review, 5(1):3–55, 2001.

[141] Pratyush N Sharma, John Hulland, and Sherae Daniel. Examining turnover in open
source software projects using logistic hierarchical linear modeling approach. In
Open Source Systems: Long-Term Sustainability: 8th IFIP WG 2.13 International
Conference, OSS 2012, Hammamet, Tunisia, September 10-13, 2012. Proceedings 8,
pages 331–337. Springer, 2012.

[142] Janet Siegmund, Norbert Siegmund, and Sven Apel. Views on internal and external
validity in empirical software engineering. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, volume 1, pages 9–19. IEEE, 2015.

129

[143] Devarshi Singh, Varun Ramachandra Sekar, Kathryn T Stolee, and Brittany Johnson.
Evaluating how static analysis tools can reduce code review effort. In 2017 IEEE
symposium on visual languages and human-centric computing (VL/HCC), pages 101–
105. IEEE, 2017.

[144] Jing Kai Siow, Cuiyun Gao, Lingling Fan, Sen Chen, and Yang Liu. Core: Automat-
ing review recommendation for code changes. In 2020 IEEE 27th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER), pages 284–295.
IEEE, 2020.

[145] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes induce
fixes? ACM sigsoft software engineering notes, pages 1–5, 2005.

[146] Giriprasad Sridhara, Sourav Mazumdar, et al. Chatgpt: A study on its utility for
ubiquitous software engineering tasks. arXiv preprint arXiv:2305.16837, 2023.

[147] Miroslaw Staron, Miros law Ochodek, Wilhelm Meding, and Ola Söder. Using machine
learning to identify code fragments for manual review. In 2020 46th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), pages 513–
516. IEEE, 2020.

[148] Anton Strand, Markus Gunnarson, Ricardo Britto, and Muhmmad Usman. Using
a context-aware approach to recommend code reviewers: findings from an industrial
case study. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Software Engineering in Practice, pages 1–10, 2020.

[149] Emre Sülün, Eray Tüzün, and Uğur Doğrusöz. Rstrace+: Reviewer suggestion
using software artifact traceability graphs. Information and Software Technology,
130:106455, 2021.

[150] Richard TAY. Correlation, variance inflation and multicollinearity in regression
model. Journal of the Eastern Asia Society for Transportation Studies, pages 2006–
2015, 2017.

[151] K Ayberk Tecimer, Eray Tüzün, Hamdi Dibeklioglu, and Hakan Erdogmus. Detec-
tion and elimination of systematic labeling bias in code reviewer recommendation
systems. In Evaluation and Assessment in Software Engineering, pages 181–190.
ACM New York, NY, USA, 2021.

[152] Patanamon Thongtanunam, Raula Gaikovina Kula, Ana Erika Camargo Cruz, Nori-
hiro Yoshida, and Hajimu Iida. Improving code review effectiveness through reviewer

130

recommendations. In Proceedings of the 7th International Workshop on Cooperative
and Human Aspects of Software Engineering, pages 119–122, 2014.

[153] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and Hajimu Iida.
Revisiting code ownership and its relationship with software quality in the scope of
modern code review. In Proceedings of the 38th international conference on software
engineering, pages 1039–1050, 2016.

[154] Patanamon Thongtanunam, Chanathip Pornprasit, and Chakkrit Tantithamthavorn.
Autotransform: Automated code transformation to support modern code review
process. In Proceedings of the 44th International Conference on Software Engineering,
pages 237–248, 2022.

[155] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. Who should review my
code? a file location-based code-reviewer recommendation approach for modern code
review. In 2015 IEEE 22nd International Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER), pages 141–150. IEEE, 2015.

[156] Zeynep Ton and Robert S Huckman. Managing the impact of employee turnover on
performance: The role of process conformance. Organization Science, 19(1):56–68,
2008.

[157] Marco Torchiano, Filippo Ricca, and Alessandro Marchetto. Are web applications
more defect-prone than desktop applications? International journal on software tools
for technology transfer, pages 151–166, 2011.

[158] Adam Tornhill and Markus Borg. Code red: the business impact of code quality-a
quantitative study of 39 proprietary production codebases. In Proceedings of the
International Conference on Technical Debt, pages 11–20, 2022.

[159] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

[160] Rosalia Tufano, Ozren Dabić, Antonio Mastropaolo, Matteo Ciniselli, and Gabriele
Bavota. Code review automation: strengths and weaknesses of the state of the art.
IEEE Transactions on Software Engineering, 2024.

131

[161] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, and Gabriele Bavota. Using pre-trained models to boost code review
automation. In Proceedings of the 44th International Conference on Software Engi-
neering, pages 2291–2302, 2022.

[162] Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and Gabriele
Bavota. Towards automating code review activities. In 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering (ICSE), pages 163–174. IEEE, 2021.

[163] Asif Kamal Turzo and Amiangshu Bosu. What makes a code review useful to opendev
developers? an empirical investigation. Empirical Software Engineering, 29(1):6,
2024.

[164] Graham JG Upton. Fisher’s exact test. Journal of the Royal Statistical Society:
Series A (Statistics in Society), 155(3):395–402, 1992.

[165] Erik Van Der Veen, Georgios Gousios, and Andy Zaidman. Automatically prioritizing
pull requests. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pages 357–361. IEEE, 2015.

[166] Lara Varpio. Using rhetorical appeals to credibility, logic, and emotions to increase
your persuasiveness. Perspectives on medical education, 7:207–210, 2018.

[167] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[168] Manushree Vijayvergiya, Ma lgorzata Salawa, Ivan Budiselić, Dan Zheng, Pascal
Lamblin, Marko Ivanković, Juanjo Carin, Mateusz Lewko, Jovan Andonov, Goran
Petrović, et al. Ai-assisted assessment of coding practices in modern code review.
arXiv preprint arXiv:2405.13565, 2024.

[169] Giovanni Viviani, Calahan Janik-Jones, Michalis Famelis, Xin Xia, and Gail C Mur-
phy. What design topics do developers discuss? In Proceedings of the 26th Conference
on Program Comprehension, pages 328–331, 2018.

[170] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and generation.
In EMNLP, 2021.

132

[171] Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Steinmacher, and Marco A
Gerosa. Effects of adopting code review bots on pull requests to oss projects. In 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 1–11. IEEE, 2020.

[172] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. A prompt
pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382, 2023.

[173] Hyrum K Wright, Miryung Kim, and Dewayne E Perry. Validity concerns in software
engineering research. In Proceedings of the FSE/SDP workshop on Future of software
engineering research, pages 411–414, 2010.

[174] Jifeng Xuan, Yan Hu, and He Jiang. Debt-prone bugs: technical debt in software
maintenance. arXiv preprint arXiv:1704.04766, 2017.

[175] Kai-Hsiang Yang, Tai-Liang Kuo, Hahn-Ming Lee, and Jan-Ming Ho. A reviewer rec-
ommendation system based on collaborative intelligence. In 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technology,
pages 564–567. IEEE, 2009.

[176] Xin Ye, Hui Shen, Xiao Ma, Razvan Bunescu, and Chang Liu. From word embeddings
to document similarities for improved information retrieval in software engineering.
In Proceedings of the 38th international conference on software engineering, pages
404–415, 2016.

[177] Xin Ye, Yongjie Zheng, Wajdi Aljedaani, and Mohamed Wiem Mkaouer. Recom-
mending pull request reviewers based on code changes. Soft Computing, pages 5619–
5632, 2021.

[178] Ying Yin, Yuhai Zhao, Yiming Sun, and Chen Chen. Automatic code review by
learning the structure information of code graph. Sensors, 23(5):2551, 2023.

[179] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan
Vasilescu. Wait for it: Determinants of pull request evaluation latency on github.
In 2015 IEEE/ACM 12th working conference on mining software repositories, pages
367–371. IEEE, 2015.

133

[180] Yue Yu, Huaimin Wang, Gang Yin, and Charles X Ling. Reviewer recommender of
pull-requests in github. In 2014 IEEE International Conference on Software Main-
tenance and Evolution, pages 609–612. IEEE, 2014.

[181] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. Reviewer recommendation for
pull-requests in github: What can we learn from code review and bug assignment?
Information and Software Technology, pages 204–218, 2016.

[182] Farida El Zanaty, Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Mat-
sumoto. An empirical study of design discussions in code review. In Proceedings of
the 12th ACM/IEEE international symposium on empirical software engineering and
measurement, pages 1–10, 2018.

[183] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. Automatically rec-
ommending peer reviewers in modern code review. IEEE Transactions on Software
Engineering, pages 530–543, 2015.

[184] Matej Zečević, Moritz Willig, Devendra Singh Dhami, and Kristian Kersting. Causal
parrots: Large language models may talk causality but are not causal. Transactions
on Machine Learning Research, 2023.

[185] Jiyang Zhang, Chandra Maddila, Ram Bairi, Christian Bird, Ujjwal Raizada,
Apoorva Agrawal, Yamini Jhawar, Kim Herzig, and Arie van Deursen. Using large-
scale heterogeneous graph representation learning for code review recommendations
at microsoft. In 2023 IEEE/ACM 45th International Conference on Software Engi-
neering: Software Engineering in Practice (ICSE-SEIP), pages 162–172. IEEE, 2023.

[186] Xunhui Zhang, Yue Yu, Gousios Georgios, and Ayushi Rastogi. Pull request decisions
explained: An empirical overview. IEEE Transactions on Software Engineering,
2022.

[187] Minghui Zhou and Audris Mockus. What make long term contributors: Willing-
ness and opportunity in oss community. In 2012 34th International Conference on
Software Engineering (ICSE), pages 518–528. IEEE, 2012.

[188] Xin Zhou, Kisub Kim, Bowen Xu, DongGyun Han, Junda He, and David Lo.
Generation-based code review automation: How far are we. In 2023 IEEE/ACM 31st
International Conference on Program Comprehension (ICPC). IEEE, May 2023.

134

[189] Kun Zhu, Shi Ying, Nana Zhang, and Dandan Zhu. Software defect prediction based
on enhanced metaheuristic feature selection optimization and a hybrid deep neural
network. Journal of Systems and Software, 180:111026, 2021.

[190] Thomas Zimmermann and Nachiappan Nagappan. Predicting defects using network
analysis on dependency graphs. In Proceedings of the 30th international conference
on Software engineering, pages 531–540, 2008.

135

Part V

Supporting Materials and
Appendices

136

APPENDICES

137

Appendix A

Experiment details and Supporting
Materials for “Studying the Staleness
of Code Reviewer Recommendation
Systems”

Table A.1: Precision, Recall, and F-Score for the applied time-based filter as a mitigation
plan for different approaches on different settings.

Approach K PContributionGap project Precision Recall F-score

LearnRec 1 1 month Roslyn 100.00 79.43 88.53
LearnRec 2 1 month Roslyn 100.00 89.70 94.57
LearnRec 3 1 month Roslyn 100.00 92.51 96.11
LearnRec 1 3 months Roslyn 100.00 78.17 87.75
LearnRec 2 3 months Roslyn 100.00 89.39 94.40
LearnRec 3 3 months Roslyn 100.00 92.33 96.01
LearnRec 1 6 months Roslyn 100.00 76.23 86.51
LearnRec 2 6 months Roslyn 100.00 88.95 94.15
LearnRec 3 6 months Roslyn 100.00 92.10 95.89
LearnRec 1 1 year Roslyn 100.00 67.04 80.27
LearnRec 2 1 year Roslyn 100.00 87.12 93.12

Continued on next page

138

Table A.1 continued from previous page

Approach K PContributionGap Project Precision Recall F-score

LearnRec 3 1 year Roslyn 100.00 91.07 95.33
LearnRec 1 1 month Rust 100.00 100.00 100.00
LearnRec 2 1 month Rust 100.00 100.00 100.00
LearnRec 3 1 month Rust 100.00 100.00 100.00
LearnRec 1 3 months Rust 100.00 100.00 100.00
LearnRec 2 3 months Rust 100.00 100.00 100.00
LearnRec 3 3 months Rust 100.00 100.00 100.00
LearnRec 1 6 months Rust 100.00 100.00 100.00
LearnRec 2 6 months Rust 100.00 100.00 100.00
LearnRec 3 6 months Rust 100.00 100.00 100.00
LearnRec 1 1 year Rust 100.00 100.00 100.00
LearnRec 2 1 year Rust 100.00 100.00 100.00
LearnRec 3 1 year Rust 100.00 100.00 100.00
LearnRec 2 1 month Kubernetes 100.00 99.93 99.97
LearnRec 3 1 month Kubernetes 100.00 95.00 97.44
LearnRec 1 3 months Kubernetes 100.00 100.00 100.00
LearnRec 2 3 months Kubernetes 100.00 99.93 99.97
LearnRec 3 3 months Kubernetes 100.00 94.75 97.31
LearnRec 1 6 months Kubernetes 100.00 100.00 100.00
LearnRec 2 6 months Kubernetes 100.00 99.93 99.96
LearnRec 3 6 months Kubernetes 100.00 94.15 96.99
LearnRec 1 1 year Kubernetes 100.00 100.00 100.00
LearnRec 2 1 year Kubernetes 100.00 99.89 99.95
LearnRec 3 1 year Kubernetes 100.00 91.61 95.62
cHRev 1 1 month Roslyn 100.00 3.90 7.51
cHRev 2 1 month Roslyn 100.00 5.01 9.54
cHRev 3 1 month Roslyn 100.00 6.03 11.37
cHRev 1 3 months Roslyn 100.00 3.69 7.12
cHRev 2 3 months Roslyn 100.00 4.64 8.88
cHRev 3 3 months Roslyn 100.00 5.43 10.31
cHRev 1 6 months Roslyn 100.00 2.57 5.02
cHRev 2 6 months Roslyn 100.00 3.47 6.71
cHRev 3 6 months Roslyn 100.00 4.19 8.04

Continued on next page

139

Table A.1 continued from previous page

Approach K PContributionGap Project Precision Recall F-score

cHRev 1 1 year Roslyn 100.00 1.29 2.54
cHRev 2 1 year Roslyn 100.00 2.13 4.18
cHRev 3 1 year Roslyn 100.00 2.74 5.33
cHRev 1 1 month Rust 100.00 5.90 11.15
cHRev 2 1 month Rust 100.00 8.82 16.21
cHRev 3 1 month Rust 100.00 10.43 18.89
cHRev 1 3 months Rust 100.00 4.94 9.41
cHRev 2 3 months Rust 100.00 7.49 13.94
cHRev 3 3 months Rust 100.00 8.97 16.47
cHRev 1 6 months Rust 100.00 3.93 7.57
cHRev 2 6 months Rust 100.00 5.95 11.24
cHRev 3 6 months Rust 100.00 7.25 13.52
cHRev 1 1 year Rust 100.00 2.36 4.62
cHRev 2 1 year Rust 100.00 3.77 7.26
cHRev 3 1 year Rust 100.00 4.68 8.95
cHRev 1 1 month Kubernetes 100.00 7.18 13.40
cHRev 2 1 month Kubernetes 100.00 9.42 17.21
cHRev 3 1 month Kubernetes 100.00 10.46 18.94
cHRev 1 3 months Kubernetes 100.00 5.82 11.00
cHRev 2 3 months Kubernetes 100.00 8.00 14.81
cHRev 3 3 months Kubernetes 100.00 8.81 16.19
cHRev 1 6 months Kubernetes 100.00 4.30 8.25
cHRev 2 6 months Kubernetes 100.00 6.10 11.49
cHRev 3 6 months Kubernetes 100.00 6.78 12.70
cHRev 1 1 year Kubernetes 100.00 1.99 3.90
cHRev 2 1 year Kubernetes 100.00 3.19 6.18
cHRev 3 1 year Kubernetes 100.00 3.58 6.92
Sofia 1 1 month Roslyn 100.00 2.98 5.78
Sofia 2 1 month Roslyn 100.00 3.76 7.25
Sofia 3 1 month Roslyn 100.00 4.35 8.33
Sofia 1 3 months Roslyn 100.00 2.84 5.52
Sofia 2 3 months Roslyn 100.00 3.47 6.70
Sofia 3 3 months Roslyn 100.00 3.87 7.44

Continued on next page

140

Table A.1 continued from previous page

Approach K PContributionGap Project Precision Recall F-score

Sofia 1 6 months Roslyn 100.00 1.95 3.82
Sofia 2 6 months Roslyn 100.00 2.52 4.92
Sofia 3 6 months Roslyn 100.00 2.87 5.57
Sofia 1 1 year Roslyn 100.00 0.99 1.96
Sofia 2 1 year Roslyn 100.00 1.51 2.97
Sofia 3 1 year Roslyn 100.00 1.78 3.49
Sofia 1 1 month Rust 100.00 3.39 6.56
Sofia 2 1 month Rust 100.00 5.36 10.18
Sofia 3 1 month Rust 100.00 6.51 12.22
Sofia 1 3 months Rust 100.00 2.69 5.24
Sofia 2 3 months Rust 100.00 4.44 8.50
Sofia 3 3 months Rust 100.00 5.50 10.42
Sofia 1 6 months Rust 100.00 2.10 4.11
Sofia 2 6 months Rust 100.00 3.44 6.64
Sofia 3 6 months Rust 100.00 4.33 8.30
Sofia 1 1 year Rust 100.00 1.01 1.99
Sofia 2 1 year Rust 100.00 1.95 3.82
Sofia 3 1 year Rust 100.00 2.55 4.97
Sofia 1 1 month Kubernetes 100.00 5.73 10.84
Sofia 2 1 month Kubernetes 100.00 7.56 14.06
Sofia 3 1 month Kubernetes 100.00 8.46 15.60
Sofia 1 3 months Kubernetes 100.00 4.52 8.65
Sofia 2 3 months Kubernetes 100.00 6.31 11.87
Sofia 3 3 months Kubernetes 100.00 7.01 13.10
Sofia 1 6 months Kubernetes 100.00 3.17 6.15
Sofia 2 6 months Kubernetes 100.00 4.67 8.93
Sofia 3 6 months Kubernetes 100.00 5.28 10.02
Sofia 1 1 year Kubernetes 100.00 1.46 2.89
Sofia 2 1 year Kubernetes 100.00 2.43 4.75
Sofia 3 1 year Kubernetes 100.00 2.76 5.37
WRLREC 1 1 month Roslyn 15.91 80.72 26.59
WRLREC 2 1 month Roslyn 16.87 67.65 27.01
WRLREC 3 1 month Roslyn 17.76 60.18 27.42

Continued on next page

141

Table A.1 continued from previous page

Approach K PContributionGap Project Precision Recall F-score

WRLREC 1 3 months Roslyn 15.79 81.29 26.45
WRLREC 2 3 months Roslyn 16.72 67.79 26.82
WRLREC 3 3 months Roslyn 17.51 60.35 27.14
WRLREC 1 6 months Roslyn 15.85 79.75 26.45
WRLREC 2 6 months Roslyn 16.47 67.44 26.47
WRLREC 3 6 months Roslyn 17.06 61.24 26.68
WRLREC 1 1 year Roslyn 15.56 80.88 26.11
WRLREC 2 1 year Roslyn 16.18 69.34 26.24
WRLREC 3 1 year Roslyn 16.70 61.26 26.25
WRLREC 1 1 month Rust 17.24 57.01 26.48
WRLREC 2 1 month Rust 21.16 53.13 30.27
WRLREC 3 1 month Rust 24.74 50.71 33.25
WRLREC 1 3 months Rust 17.18 57.03 26.41
WRLREC 2 3 months Rust 20.95 53.49 30.10
WRLREC 3 3 months Rust 24.57 50.60 33.08
WRLREC 1 6 months Rust 17.09 56.80 26.28
WRLREC 2 6 months Rust 20.79 53.34 29.92
WRLREC 3 6 months Rust 24.30 50.78 32.87
WRLREC 1 1 year Rust 17.03 56.43 26.17
WRLREC 2 1 year Rust 20.58 53.70 29.75
WRLREC 3 1 year Rust 23.99 50.67 32.56
WRLREC 1 1 month Kubernetes 22.13 94.71 35.87
WRLREC 2 1 month Kubernetes 20.38 90.70 33.28
WRLREC 3 1 month Kubernetes 18.76 85.28 30.75
WRLREC 1 3 months Kubernetes 22.08 95.05 35.83
WRLREC 2 3 months Kubernetes 20.37 90.60 33.26
WRLREC 3 3 months Kubernetes 18.71 84.93 30.67
WRLREC 1 6 months Kubernetes 22.09 94.82 35.83
WRLREC 2 6 months Kubernetes 20.29 91.23 33.20
WRLREC 3 6 months Kubernetes 18.63 85.82 30.61
WRLREC 1 1 year Kubernetes 22.06 95.12 35.82
WRLREC 2 1 year Kubernetes 20.26 90.72 33.13
WRLREC 3 1 year Kubernetes 18.59 85.56 30.54

142

0 1 2 3 4 5 6 7 8
0

10

20

30

St
al

e
Re

co
m

m
en

da
tio

ns
(%

) Roslyn

0 2 4 6 8 10 12 14

Rust

0 1 2 3 4 5 6 7 8

Reviewer set Length = 1

Kubernetes

0 1 2 3 4 5 6 7 8
0

10

20

30

St
al

e
Re

co
m

m
en

da
tio

ns
(%

)

0 2 4 6 8 10 12 14 0 1 2 3 4 5 6 7 8

Reviewer set Length = 2

0 1 2 3 4 5 6 7 8
Period Number

0

10

20

30

St
al

e
Re

co
m

m
en

da
tio

ns
(%

)

0 2 4 6 8 10 12 14
Period Number

0 1 2 3 4 5 6 7 8
Period Number

Reviewer set Length = 3

RetentionRec cHRev Sofia WLRRec

Figure A.1: The proportions of stale to all recommendations (y-axis). The period numbers
are normalized, with zero representing the oldest period.

Table A.3: Reduction of SRR in all the recommendations when time-based filter is applied
for different Settings.

Approach PContributionGap Project Stale Rec. Ratio (%) Stale Rec. Ratio Improv.(%)

LearnRec 1 month Roslyn 7.93% 91.15%
LearnRec 3 months Roslyn 19.63% 78.09%
LearnRec 6 months Roslyn 29.08% 67.54%
LearnRec 1 year Roslyn 55.09% 38.51%
LearnRec 1 month Rust 7.52% 92.48%
LearnRec 3 months Rust 21.56% 78.44%
LearnRec 6 months Rust 38.06% 61.94%
LearnRec 1 year Rust 66.32% 33.68%
LearnRec 1 month Kubernetes 8.91% 90.86%
LearnRec 3 months Kubernetes 27.36% 71.94%

Continued on next page

143

Approach PContributionGap Project Stale Rec. Ratio (%) Stale Rec. Ratio Improv.(%)

LearnRec 6 months Kubernetes 50.45% 48.26%
LearnRec 1 year Kubernetes 78.07% 19.93%
cHRev 1 month Roslyn 0.44% 92.16%
cHRev 3 months Roslyn 1.04% 81.49%
cHRev 6 months Roslyn 2.31% 58.86%
cHRev 1 year Roslyn 3.81% 32.28%
cHRev 1 month Rust 1.13% 88.65%
cHRev 3 months Rust 2.77% 72.13%
cHRev 6 months Rust 4.62% 53.60%
cHRev 1 year Rust 7.15% 28.13%
cHRev 1 month Kubernetes 1.17% 88.79%
cHRev 3 months Kubernetes 3.17% 69.58%
cHRev 6 months Kubernetes 5.42% 48.03%
cHRev 1 year Kubernetes 8.20% 21.44%
Sofia 1 month Roslyn 0.32% 92.39%
Sofia 3 months Roslyn 0.76% 81.62%
Sofia 6 months Roslyn 1.77% 57.33%
Sofia 1 year Roslyn 2.84% 31.40%
Sofia 1 month Rust 0.69% 88.83%
Sofia 3 months Rust 1.74% 71.84%
Sofia 6 months Rust 2.84% 54.17%
Sofia 1 year Rust 4.44% 28.22%
Sofia 1 month Kubernetes 0.97% 88.56%
Sofia 3 months Kubernetes 2.58% 69.57%
Sofia 6 months Kubernetes 4.39% 48.20%
Sofia 1 year Kubernetes 6.58% 22.42%
WLRRec 1 month Roslyn 1.67% 89.45%
WLRRec 3 months Roslyn 4.16% 73.64%
WLRRec 6 months Roslyn 7.74% 50.97%
WLRRec 1 year Roslyn 12.38% 21.62%
WLRRec 1 month Rust 2.06% 88.89%
WLRRec 3 months Rust 4.97% 73.20%
WLRRec 6 months Rust 8.52% 54.03%
WLRRec 1 year Rust 12.49% 32.61%

Continued on next page

144

Approach PContributionGap Project Stale Rec. Ratio (%) Stale Rec. Ratio Improv.(%)

WLRRec 1 month Kubernetes 2.35% 87.87%
WLRRec 3 months Kubernetes 6.19% 68.10%
WLRRec 6 months Kubernetes 10.19% 47.47%
WLRRec 1 year Kubernetes 14.79% 23.77%

145

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

Af
fe

ct
ed

 C
ha

ng
e

se
ts

 (%
) Roslyn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

Rust

0 1 2 3 4 5 6 7 8 9
0

10

20

30

Kubernetes

K=1

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

Af
fe

ct
ed

 C
ha

ng
e

se
ts

 (%
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

K=2

0 1 2 3 4 5 6 7 8 9
Period Number

0

20

40

60

Af
fe

ct
ed

 C
ha

ng
e

se
ts

 (%
)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Period Number

0

10

20

30

40

50

Suggested Leavers No.
Three Reviewers Two Reviewers One Reviewer

0 1 2 3 4 5 6 7 8 9
Period Number

0

20

40

60

K=3

Figure A.2: Percentage of changesets impacted by stale recommendations. Each set of
bars shows results for cHRev (left) [183], Sofia [109](middle), and WLRRec [2](right) in
each period.

146

0 1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

Pr
op

or
tio

n
of

 a
ll

st
al

e
re

co
m

m
en

da
tio

ns
 (%

) Roslyn
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

20

40

60

Rust

0 1 2 3 4 5 6 7 8 9

0

20

40

60
Kubernetes

K=1

0 1 2 3 4 5 6 7 8 9

0

20

40

60

Pr
op

or
tio

n
of

 a
ll

st
al

e
re

co
m

m
en

da
tio

ns
 (%

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

0 1 2 3 4 5 6 7 8 9

0

10

20

30

40

K=2

0 1 2 3 4 5 6 7 8 9

Period Number
0

20

40

60

Pr
op

or
tio

n
of

 a
ll

st
al

e
re

co
m

m
en

da
tio

ns
 (%

)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Period Number

0

10

20

30

Suggested Leavers No.
Rank #3 Rank #2 Rank #1

0 1 2 3 4 5 6 7 8 9

Period Number
0

10

20

30

40

K=3

Figure A.3: The top-3 most frequently stale recommendations and their share of all sug-
gested leavers for cHRev (leftmost bar), Sofia (middle bar), and WLRRec (right bar) for
various periods under different conditions

147

0

20

40

60

80

100

Sh
ar

e
of

 su
gg

es
te

d
le

av
er

s (
%

) Approach = cHRev Approach = Sofia

K = 1

Approach = WLRRec

0

20

40

60

80

100

Sh
ar

e
of

 su
gg

es
te

d
le

av
er

s (
%

)

K = 2

0 10 20 30 40 50

Top-N project leavers suggested

0

20

40

60

80

100

Sh
ar

e
of

 su
gg

es
te

d
le

av
er

s (
%

)

0 10 20 30 40 50

Top-N project leavers suggested

0 10 20 30 40 50

Top-N project leavers suggested

K = 3

Projects
Roslyn Rust Kubernetes

Figure A.4: Share of top-N significant leavers for different review set sizes (K) for different
projects and approaches. The increase of Share, considering more top-N project leavers,
increased the logarithmic trend.

148

12 13 14 15 16 17 18 19 20
0

200

400

600

800

Ti
m

e
di

st
rib

ut
io

n
(d

ay
s)

Roslyn

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

500

1000

1500
Rust

11 12 13 14 15 16 17 18 19
0

200

400

600

800

Kubernetes

K=1

12 13 14 15 16 17 18 19 20
0

250

500

750

1000

Ti
m

e
di

st
rib

ut
io

n
(d

ay
s)

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

500

1000

1500

11 12 13 14 15 16 17 18 19
0

200

400

600

K=2

12 13 14 15 16 17 18 19 20
Period Number

0

250

500

750

1000

Ti
m

e
di

st
rib

ut
io

n
(d

ay
s)

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Period Number

0

500

1000

cHRev Sofia WRLREC

11 12 13 14 15 16 17 18 19
Period Number

0

200

400

600

K=3

Figure A.5: The distribution of lingering time for the top-3 reviewers over quarterly periods.

Table A.2: The Developers’ Work Load Ratio (DWLR) for top-3 reviewers of each Ap-
proach. This indicate that by limiting the PContibutionGap the top-3 reviewers are recom-
mended more often.

mean std Q1 median Q3 max Approach Strategy Name ContibGap

26.11 21.47 11.76 19.15 33.33 100.00 cHRev Time-based Filter 1 month
23.42 19.78 10.79 16.21 28.57 100.00 cHRev Time-based Filter 3 months
21.19 17.63 9.76 14.81 25.00 100.00 cHRev Time-based Filter 6 months
18.55 15.61 8.61 13.33 22.22 100.00 cHRev Time-based Filter 1 year
17.01 14.77 7.93 12.29 19.28 100.00 cHRev No Filter -
26.97 21.54 12.50 20.00 33.33 100.00 Sofia Time-based Filter 1 month
23.34 19.80 10.71 16.67 27.87 100.00 Sofia Time-based Filter 3 months
21.30 18.57 9.76 15.00 25.00 100.00 Sofia Time-based Filter 6 months
18.88 16.64 8.57 13.10 23.08 100.00 Sofia Time-based Filter 1 year
17.21 16.04 7.30 12.00 21.05 100.00 Sofia No Filter -
17.82 14.74 8.63 13.41 21.43 100.00 WLRRec Time-based Filter 1 month
14.96 13.15 7.14 11.11 18.22 100.00 WLRRec Time-based Filter 3 months
13.05 11.89 6.56 9.69 16.33 100.00 WLRRec Time-based Filter 6 months
11.15 11.53 5.04 8.33 13.33 100.00 WLRRec Time-based Filter 1 year
9.24 10.50 4.07 6.59 10.87 100.00 WLRRec No Filter -

149

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Period

2

4

6

Nu
m

be
r o

f R
el

ea
se

s

Number of Releases per Period

(a) Roslyn

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Period

2

4

6

Nu
m

be
r o

f R
el

ea
se

s

Number of Releases per Period

(b) Rust

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Period

10

15

20

25

Nu
m

be
r o

f R
el

ea
se

s

Number of Releases per Period

(c) Kubernetes

Figure A.6: Number of releases per period for per period and per project. The green
shades show the studied period (more than 80% review rate), and the red shades show the
sudden drops in top-3 reviewers’ share in stale recommendations.

150

0 1 2 3 4 5 6 7 8
Period

0

1

2

3

4
Pe

rc
en

ta
ge

 o
f e

xi
sit

in
g

fil
es

 b
ei

ng
 m

od
ifi

ed
project

Roslyn

(a) Roslyn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Period

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pe
rc

en
ta

ge
 o

f e
xi

sit
in

g
fil

es
 b

ei
ng

 m
od

ifi
ed

project
Rust

(b) Rust

0 1 2 3 4 5 6 7 8
Period

2

4

6

8

Pe
rc

en
ta

ge
 o

f e
xi

sit
in

g
fil

es
 b

ei
ng

 m
od

ifi
ed

project
Kubernetes

(c) Kubernetes

Figure A.7: The percentage of existing files being modified per period per project. The
orange dashed line is the Linear extrapolation in each graph, showing the trend. The
periods are normalized, and only studied periods are shown.

151

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Period Start Date

10

20

30

40
Nu

m
be

r o
f D

ev
el

op
er

s

Number of Developers Starting in Each Period
Project

Roslyn

(a) Roslyn

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637
Period Start Date

0

50

100

150

200

Nu
m

be
r o

f D
ev

el
op

er
s

Number of Developers Starting in Each Period
Project

Rust

(b) Rust

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Period Start Date

0

25

50

75

100

125

150

Nu
m

be
r o

f D
ev

el
op

er
s

Number of Developers Starting in Each Period
Project
Kubernetes

(c) Kubernetes

Figure A.8: Rate of new developers joining each project per period. The red and black
dashed lines indicate the median and average numbers over these periods, respectively. The
green shades show the studied period (more than 80% review rate), and the red shades
show the sudden drops in top-3 reviewers’ share in stale recommendations.

152

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Last Contribution Period ID

0

5

10

15

20

Fir
st

 C
on

tri
bu

tio
n

Pe
rio

d
ID

Distribution of First Contribution Period for Developers Who Leave Each Period

(a) Roslyn

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Last Contribution Period ID

0

5

10

15

20

25

30

35

40

Fir
st

 C
on

tri
bu

tio
n

Pe
rio

d
ID

Distribution of First Contribution Period for Developers Who Leave Each Period

(b) Rust

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Last Contribution Period ID

0

5

10

15

20

Fir
st

 C
on

tri
bu

tio
n

Pe
rio

d
ID

Distribution of First Contribution Period for Developers Who Leave Each Period

(c) Kubernetes

Figure A.9: Contributions of developers who left each project per period. The green shades
show the studied period (more than 80% review rate), and the red shades show the sudden
drops in top-3 reviewers’ share in stale recommendations.

153

Appendix B

Experiment details and Supporting
Materials for “Exploring the notion
of risk in Code Reviewer
Recommendation Systems”

154

Figure B.1: The distribution of predicted defect probability
of different projects.

155

	Examining Committee
	Author's Declaration
	Abstract
	Related Publications
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Statement
	Thesis Overview
	Limitations of Code Reviewer Recommendation Systems
	Relevance of Code Reviewer Recommendation Systems

	Thesis Contributions
	Thesis Organization

	I Preliminaries
	Background and Definitions
	Code Review Terms
	Code Changeset
	Pull Request

	Modern Code Review Process
	Overview of Modern Code Review

	Code Review Suggestion tools
	Code Reviewer Recommendation Systems
	Overview of the Role of Code Reviewer Recommendation Systems in the Modern Code Review Process
	Evaluation Measures of Code Reviewer Recommendation Systems

	Automatic Code Review Process
	Code Quality Estimation
	Code Revision (Before Review)
	Review Comment Generation
	Code Revision (After Review)

	Chapter Summary

	Related Work
	Reviewer Recommendation
	Developer Turnover
	Defect Prediction
	Automatic Code Review
	Review Comment Generators
	Chapter Summary

	II Limitations of Code Reviewer Recommendation System
	Studying the Staleness of Code Reviewer Recommendation Systems
	Introduction
	Study Design
	Dataset Preparation
	Mining Contributors Lifecycle
	Key Terms
	Generating Reviewer Recommendations
	Data Processing

	Preliminary Study
	Approach
	Results

	RQ1: The Prevalence of Stale Reviewers in Code Reviewer Recommendations
	Approach
	Results

	RQ2: The Distribution of Stale Recommendations Across Reviewers
	Approach
	Results

	RQ3: The Lingering effect of stale reviewer recommendations
	Approach
	Results

	Mitigation Plan
	Approach
	Results

	Threats to Validity
	Conclusions and Lessons Learned
	Chapter Summary

	Exploring the Notion of Risk in Code Reviewer Recommendation
	Introduction
	Studied Datasets
	Study Design
	Identifying and Predicting Fix-Inducing Pull Requests
	Ranking Potential Reviewers of a Pull Request
	Recommendation Component

	Evaluation Setup
	Experimental Results
	RQ1: How do existing code reviewer recommenders perform with respect to the risk of inducing future fixes?
	RQ2: How can the risk of fix-inducing code changes be effectively balanced with other quantities of interest?
	RQ3: How can we identify an effective fix-inducing likelihood threshold (PD) interval for a given project?

	Practical Implications
	Threats to Validity
	Conclusions
	Chapter Summary

	III Relevance of Code Reviewer Recommendation Systems
	Studying the Interrogative Comments Posed by Review Comment Generators
	Introduction
	Dataset Preparation
	Data Collection
	Data Cleaning
	Code Review Comment Generation
	Discussion Thread Response Generation

	Quantitative Analyses
	Approach
	Results

	Qualitative Analyses
	Approach
	Results

	Automatic Code Review Proposed Task: Discussion Thread Response Generation
	Threats to Validity
	Conclusions and Lessons Learned
	Chapter Summary

	IV Final Remarks
	Conclusion and Future Work
	Contributions and Findings
	Prospects for Future Research
	Assessing the Validity of Our Findings in Different Software Development Settings
	Comprehensive Code Reviewer Recommendation improvement Toolkit Development
	Assessing the Impact of Employing Improved Predictors for Stale Reviewers
	Surveying the Usefulness of Mitigation Strategies
	Development of Task-Specific or Large Language Model-based Models to Follow Up on Discussion Threads
	Assessing the similarity of Human-submitted and Machine-generated Comments
	Developing an Automatic Code Reviewer Selection Model

	References

	V Supporting Materials and Appendices
	APPENDICES
	Experiment details and Supporting Materials for ``Studying the Staleness of Code Reviewer Recommendation Systems"
	Experiment details and Supporting Materials for ``Exploring the notion of risk in Code Reviewer Recommendation Systems"

