
Studying the Evolution of Build Systems

by

Shane McIntosh

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

January 2011

Copyright c© Shane McIntosh, 2011

Abstract

As a software project ages, its source code is improved by refining existing features,

adding new ones, and fixing bugs. Software developers can attest that such changes

often require accompanying changes to the infrastructure that converts source code

into executable software packages, i.e., the build system. Intuition suggests that these

build system changes slow down development progress by diverting developer focus

away from making improvements to the source code.

While source code evolution and maintenance is studied extensively, there is little

work that focuses on the build system. In this thesis, we empirically study the static

and dynamic evolution of build system complexity in proprietary and open source

projects. To help counter potential bias of the study, 13 projects with different sizes,

domains, build technologies, and release strategies were selected for examination,

including Eclipse, Linux, Mozilla, and JBoss.

We find that: (1) similar to Lehman’s first law of software evolution, Java build

system specifications tend to grow unless explicit effort is invested into restructuring

them, (2) the build system accounts for up to 31% of the code files in a project, and

(3) up to 27% of source code related development tasks require build maintenance.

Project managers should include build maintenance effort of this magnitude in their

project planning and budgeting estimations.

i

Co-authorship

Earlier versions of the work in this thesis were published as listed below:

1) The Evolution of ANT Build Systems (Chapter 4)

Shane McIntosh, Bram Adams, and Ahmed E. Hassan. In Proceedings of the 7th

IEEE Working Conference on Mining Software Repositories (MSR), pages 42–51,

Cape Town, South Africa, 2010. IEEE Computer Society Press. (Acceptance

ratio: 16/51 = 31%, Invited for Special Issue).

My contribution – Drafting the research plan, gathering and analyzing the data,

and drafting manuscripts.

2) The Evolution of Build Systems for Java Projects (Chapter 4)

Shane McIntosh, Bram Adams, and Ahmed E. Hassan. Under review for the Jour-

nal of Empirical Software Engineering, Special Issue on Mining Software Reposito-

ries. Springer Press. (Invited extension of “The Evolution of ANT Build Systems”,

Impact factor: 1.612 1).

My contribution – Drafting the research plan, expanding upon our collection of

gathered data, analyzing the data, and drafting manuscripts.

1Based on 2009 Journal Citation Report R©, Thomson Reuters

ii

3) An Empirical Study of Build Maintenance Effort (Chapter 5 and 6)

Shane McIntosh, Bram Adams, Thanh H. D. Nguyen, Yasutaka Kamei, and Ahmed

E. Hassan. To appear in Proceedings of the 33rd International Conference on Soft-

ware Engineering (ICSE), Honolulu, Hawaii, USA, 2011. ACM Press. (Acceptance

ratio: 62/441 = 14%).

My contribution – Drafting the research plan, expanding upon an existing col-

lection of gathered data, analyzing the data, and drafting manuscripts.

iii

Acknowledgments

With the utmost respect, I would like to thank my co-supervisors, Dr. Ahmed E.

Hassan and Dr. Bram Adams. You have each left an indelible mark on my life, and

for that I am humbled and eternally grateful. Ahmed, you have motivated not only

to set big goals, but to put into motion a plan of action to achieve them. Bram, your

enthusiasm, talent, and dedication are truly awe-inspiring.

I would also like to thank my colleagues, at the Software Analysis and Intelligence

Lab (SAIL). You have each become personal role models of mine, exemplifying the

type of strong work ethic and commitment to quality that I can only hope to emulate.

My sincere thanks to my thesis examiners, Dr. G. Scott Knight of the Royal

Military College of Canada and Dr. James R. Cordy of Queen’s University, for their

fruitful suggestions.

I would like to dedicate this work to my family and friends. Without your sup-

port, this thesis would not have been possible. Also, to Victoria, for your patience,

understanding, and love, I am forever grateful.

iv

Statement of Originality

I, Shane McIntosh, hereby declare that I am the sole author of this thesis. All ideas

and inventions attributed to others have been properly referenced. This is a true copy

of the thesis, including any required final revisions, as accepted by my examiners. I

understand that my thesis may be made electronically available to the public.

v

Table of Contents

Abstract i

Co-authorship ii

Acknowledgments iv

Statement of Originality v

Table of Contents vi

List of Tables viii

List of Figures ix

Chapter 1:
Introduction . 1

1.1 Research Statement . 5
1.2 Thesis Overview . 6
1.3 Major Thesis Contributions . 6
1.4 Organization of Thesis . 7

Chapter 2:
Background and Definitions 8

2.1 What is a build system? . 9
2.2 What is the typical architecture of a build system? 10
2.3 What are the typical build system languages? 12
2.4 Chapter Summary . 19

Chapter 3:
Related Research . 20

3.1 Build System Design . 21
3.2 Build System Evolution . 24

vi

3.3 Chapter Summary . 26

Chapter 4:
Java Build System Evolution at the Release-level 28

4.1 Case Study Setup . 31
4.2 ANT Case Study . 37
4.3 Maven Case Study . 50
4.4 Discussion . 57
4.5 Chapter Summary . 60

Chapter 5:
Build System Evolution at the Revision-level 63

5.1 Studied Projects . 65
5.2 Case Study Setup . 66
5.3 How many files does a typical build system consist of? 67
5.4 How much does a typical build system churn? 68
5.5 How large are typical build system changes? 70
5.6 Chapter Summary . 70

Chapter 6:
An Empirical Study of Build Maintenance Overhead . . 72

6.1 How often are build changes required to complete development tasks? 73
6.2 How do projects distribute build maintenance work? 82
6.3 Chapter Summary . 87

Chapter 7:
Summary and Conclusions 89

7.1 Summary . 89
7.2 Limitations and Future Work . 91

Bibliography . 94

vii

List of Tables

2.1 Build technologies and their appropriate build layers. 13
2.2 The Maven default lifecycle for JAR packages. 18

4.1 Metrics used in release-level build system analysis 32
4.2 Java projects studied at the release-level 37
4.3 Correlation of static size metrics (ArgoUML, Tomcat, JBoss, and Eclipse).

Most size metrics have a high correlation (≥ 0.8). Those that do not
are printed in bold. 39

4.4 Pearson correlation between Halstead Complexity Metrics (Rows) and
BLOC size (Columns). 43

4.5 Pearson correlation between dynamic metrics (Rows) and build graph
depth in each project (Columns). ArgoUML and Eclipse grow similarly
in length and depth, while Tomcat and JBoss do not. Anomalies for a
particular project are printed in bold and are discussed in the text. . 49

4.6 Pearson correlation between BLOC (Columns) and the build system’s
Halstead complexity and SLOC (Rows). Anomalies in bold. 53

5.1 Projects studied at the revision-level 65
5.2 File type classification examples . 66
5.3 Number of lines changed per revision 70

6.1 Association rule interest metrics . 75
6.2 Association rule metric values for production, test, and build code . . 78
6.3 Overview of work item data. 79
6.4 Work item interest metrics . 80
6.5 Developer-based interest metrics. 83
6.6 Number and percentage of developers responsible for 80% of the file

changes to production, test, and build files. 85

viii

List of Figures

2.1 Conceptual architecture of a typical build system. 10
2.2 Example Makefile target expression 13
2.3 Example ANT build.xml files (left, top-right) and the resulting build

graph (bottom-right). The build graph has a depth of 2 (i.e., “compile”
in build.xml references “init” in sub/build.xml) and a length of 5 (i.e.,
execute (1), (2), (3), (4), then (5)). 15

4.1 Overview of our approach for studying the release-level evolution of
Java build systems. 31

4.2 Standardized BLOC and SLOC values. In most projects, the source
code and build system evolution trends are very similar. Anomalies
are discussed in the text. 38

4.3 The exponential trend in Eclipse BLOC. The trend line has an R2 value
of 0.98. 42

4.4 Standardized build graph dimensions (Dynamic analysis). Build graph
length (in targets) and depth. Linear regressions are plotted for the
dimensions in Eclipse, which have R2 values of 0.94 (length) and 0.88
(depth). 46

4.5 Standardized BLOC and SLOC values for the Maven projects. Source
code and build system evolution trends are very similar. 51

4.6 Standardized build graph dimensions (Dynamic analysis). 55

5.1 Distribution of monthly churn in source (black) and build (grey) files. 68

6.1 An association rule example scenario. 76

ix

Chapter 1

Introduction

[...] there are few things more
important to a programmer’s work
flow and therefore productivity than
how their system is built [50].

George V. Neville-Neal

As a software project ages, its source code is changed continuously to address

rapidly changing environments and new user demands [33]. Each time the source

code has been changed, new deliverable artifacts that reflect the latest changes must

be produced in order to test the actual software.

The build system automates the process of producing deliverable artifacts rapidly,

correctly, and across all supported platforms, with the aim of simplifying the lives

of all software development stakeholders. For instance, software developers use the

build system to produce installable packages and test their changes after completing

a source code modification. Software testers rely on the build system to execute

automated tests that report when the deliverables no longer produce expected output,

i.e., regress. Further, project managers use the build system to generate releases of

1

CHAPTER 1 INTRODUCTION 2

the software system for delivery to customers.

Although the build system plays such a pivotal role in the lives of software devel-

opment stakeholders, it is one of many artifacts that software engineering researchers

tend to overlook [57]. This is unfortunate since the build system can have a dramatic

impact on a software project, as the following evidence suggests:

1) U.S. Department of Energy (DoE)

By performing a developer survey, Kumfert et al. estimate that the build induces a

12% mean overhead on the development process [32]. That is, 12% of a developer’s

time is spent maintaining the build system rather than implementing features,

fixing bugs, or restructuring source code.

2) The Linux Kernel

The Linux build engineers spent many years, and numerous releases, evolving the

core build machinery of the Linux kernel, which contains over 15,000 lines of build

code, to make integration of new code easy for contributors [2].

3) KDE

The KDE 3 project’s build system was such a burden to maintain that it limited

the productivity of KDE developers, and even warranted migration to newer build

technologies. The SCons and CMake build technologies were briefly experimented

with until CMake was established as the supported build technology. The migra-

tion efforts themselves required a substantial investment of developer time and

effort, as build infrastructure was reimplemented entirely using the new technolo-

gies, and had to be introduced incrementally to avoid disruption to development

progress [48].

CHAPTER 1 INTRODUCTION 3

The maintenance of the build system seems to be a real nuisance for developers,

i.e., build maintenance diverts developer focus away from the main tasks of fixing

bugs, improving existing features, and adding new features. A brief survey of the

developer mailing lists of Tomcat shows that developers often need help understanding

their build systems [54, 58]. Contributors frequently vent their frustrations about

difficulties executing the build [30, 49]. To illustrate the frustrating role that the build

system plays in the lives of developers, we manually analyzed the bug repositories of

Mozilla and ArgoUML by examining defect records that relate to build system issues,

and found the following examples of build-related frustrations:

1) Disruption of development progress

While working on a defect, one Mozilla developer removed an obsolete part of the

build code and tested his changes locally without any issue [42]. However, when

another developer merged the build changes with his working copy, he could no

longer run the build because of subtle differences between his build environment

and the first developer’s. The second developer (and conceivably many others)

could no longer build or test changes locally until the build defect was resolved.

2) Inappropriate feedback

On the ArgoUML continuous integration server [52, 62], which regularly updates

a local copy of the ArgoUML source code to execute all automated tests, the build

process failed to complete [49]. However, developers could not determine which

change was the one that broke the build. Developer time and effort was then

invested to determine which change is responsible and what corrective action was

needed. This investigation diverts the developer’s attention away from the core

tasks of fixing bugs and adding new features.

CHAPTER 1 INTRODUCTION 4

3) Impact on product quality

In Firefox 3.0, there was a “show-stopper” defect [59] that prevented users in a

networked environment from accessing a web page via the address and search bar,

the core feature of any web browser. The fix for the issue was not delivered for

four months. Users in this networked environment could not use the Firefox 3.0

product until the release of the first service pack, i.e., 3.0.1. It turned out that

a change to the Firefox build system was including an incorrect version of the

SQLite library, which caused inconsistencies in the delivered packages.

Despite the crucial role of build systems and their non-trivial maintenance effort,

software engineering research rarely focuses on them [57]. Initial findings show that

the size and complexity of make-based build systems grow over time [2, 66]. To

the best of our knowledge, no study has focused on the evolution of the size and

complexity of non-make build systems, nor on the impact that build maintenance

has on software development. Without a strong understanding of how build systems

evolve, resources cannot be properly allocated, and software releases may be delivered

late and over-budget. Similarly, since feature-rich build technologies such as ANT [5],

Maven [6], and CMake [36] are gaining momentum, projects are beginning to migrate

away from make [17, 26, 35, 48]. During such a migration, the development team

must throw away thousands of lines of build code and reimplement the build logic

using the selected technology, requiring a large investment of development time and

effort, and risking the disruption of development progress.

To better understand the impact that the build system has on software main-

tenance and evolution, this thesis studies the evolution of software build systems as

standalone entities and with respect to the source code that the build system breathes

CHAPTER 1 INTRODUCTION 5

life into. With a better understanding of build system evolution, development stake-

holders can better estimate software maintenance effort. For instance, (1) developers

and testers could more accurately estimate the time and effort required for a devel-

opment task with build maintenance effort included, and (2) project managers could

include a more informed estimation of maintenance effort in their project planning

and budget.

1.1 Research Statement

Prior research, experience maintaining large software projects, and interaction with

industrial software developers lead to us to the following hypothesis:

Build system maintenance plays an important role in software develop-

ment.

Motivation – Prior work reports that the effort required to maintain the build sys-

tem is so great that a dedicated team of build experts is required, e.g., in the Perl

interpreter [61], and the Linux kernel [2]. Furthermore, Kumfert et al. estimate that

developers spend 12% (median) of their time maintaining the build system rather

than performing core development tasks [32]. Tu et al. report that build systems for

projects that support many platforms are difficult for people to interpret [61]. We

are interested in studying the evolution of the build system to determine its impact

on different stakeholders in the software development process.

CHAPTER 1 INTRODUCTION 6

1.2 Thesis Overview

This thesis studies the evolution of build systems across the lifetime of 13 open source

projects and one commercial project. We perform three analyses to validate our

research hypothesis:

1) High-level evolution analysis of Java build systems (Chapter 4)

To assess whether build maintenance is impacting Java developers, we study the

evolution of Java build systems to complement earlier release-level studies that

find that make-based build systems of C projects evolve.

2) Fine-grained evolution analysis (Chapter 5)

By analyzing each source code revision committed to Version Control System

(VCS) repositories of ten software projects, we study the scale of the build system

and its maintenance.

3) Maintenance overhead analysis (Chapter 6)

We study each committed developer revision and groups of related revisions recorded

in the VCSs of ten software projects to measure the impact that build system

maintenance has on the development process.

1.3 Major Thesis Contributions

This thesis presents support for the research hypothesis as listed below:

Results – As demonstrated by the Mozilla project, managers for C projects should

anticipate that 27% of development tasks that involve source code changes will require

accompanying build system changes. Managers for Java projects should anticipate

CHAPTER 1 BACKGROUND AND DEFINITIONS 7

that build maintenance is required for 4–16% of the source code tasks. We observed

two build maintenance ownership styles: (1) Centralized build ownership, where most

build system changes are performed by a small team of build experts, or (2) Dis-

tributed build ownership, where build changes are rather evenly dispersed amongst

the team of developers.

1.4 Organization of Thesis

The remainder of the thesis is organized as follows: Chapter 2 provides a brief back-

ground on the build system, its role in software development, and a comparison of

common build technologies. Chapter 3 presents research related to our analysis of

the evolution of build systems.

In Chapter 4, we present a coarse-grained study of Java build system evolution

at the release-level, i.e., development releases are considered data points. In the

chapter, we study six open source Java projects to verify that build system evolution

also exists in non-make build systems, complementing prior work on make-based build

systems [2, 66].

In Chapter 5, we present a fine-grained study of build system evolution in make

and non-make build systems at the revision-level, i.e., each development change is

considered a data point.

In Chapter 6, we study how successful projects cope with the overhead of main-

taining the build system from task-centric and developer-centric perspectives.

Finally, Chapter 7 concludes the thesis, and discusses the limitations and potential

directions for future work in this area.

Chapter 2

Background and Definitions

If someone can provide a link to
something like “Make for
Dummies” I’d appreciate it. Having
constructed abstract Turing
Machines to do arithmetic, read and
written technical papers, I’d like to
think the problem [of understanding
the build system] is more than
brain-death on my part.

Anonymous developer

Before we analyze the evolution of build systems, we first provide an overview of

build systems themselves. The following questions are addressed in this chapter:

2.1) What is a build system?

We define the concept of a build system and discuss its role in the software

development process.

2.2) What is the typical architecture of a build system?

Based on prior research and personal experiences with build systems, we propose

8

CHAPTER 2 BACKGROUND AND DEFINITIONS 9

a reference architecture for build systems. The reference architecture breaks the

task of building software down into four layers.

2.3) What are the typical build system languages?

We introduce the popular make, ANT, and Maven build system languages, which

are used by the studied projects.

2.1 What is a build system?

For the purposes of this thesis, we define the build system as:

The infrastructure responsible for transforming development artifacts

such as source code, into a deliverable format that is ready for testing

and subsequent release.

Build systems play an important role in software development, since they interact

with many software development stakeholders [50]:

1) Developers

Developers use the build system on a daily basis to test a software system after

adding a new feature or creating a (potential) bug fix.

2) Testers

Testers weave automated unit and integration tests into the build process in order

to quickly detect regression, i.e., incorrect behaviour that was correct in prior

versions of the software.

3) Managers

Managers use the build system to generate releases for distribution to users.

CHAPTER 2 BACKGROUND AND DEFINITIONS 10

Default
Values

Build Tools

Construction
Layer

Software Features

Drives

Enables
Raw

Deliverables

Helper
Scripts

Supports
User Preferences

Environmental
Settings

Produces
Selects

Compiler
/usr/bin/gcc

Compiler Fiags
-g -Wall -Werror

Linker
/usr/bin/ld

Link Flags
-lm

Selects

Configuration
Layer

Feature Flags
-D_FEAT_FLAG

Certification
Layer

Verified
by

Packaging
Layer

Bundled
by

Verified
DeliverablesProduces

Produces Installable
Package

Focus of this thesis Source
code

Figure 2.1: Conceptual architecture of a typical build system.

2.2 What is the typical architecture of a build sys-

tem?

Figure 2.1 shows our conceptual architecture of a build system consisting of four

layers. Each layer is derived from prior research. We describe each layer below.

2.2.1 Configuration Layer

The configuration layer allows build system users to select the code features that

should be included in the final product, and the build tools to use during the build

process [1, 9, 60]. A configuration tool identifies which build tools are needed during

the build and checks whether the configuration of software features selected by the

CHAPTER 2 BACKGROUND AND DEFINITIONS 11

user is valid. These requirements and constraints of build tools and software features

are derived from specifications written in a configuration language, such as KConfig

or CDL [9].

2.2.2 Construction Layer

After a configuration of build tools and software features has been ratified by the con-

figuration layer, the construction layer executes the commands necessary to produce

the deliverables [1]. A construction tool parses the build specification files to deter-

mine the necessary commands and the order in which they must be executed in order

to produce the final product correctly. Construction layer (or build) specifications

are typically expressed in terms of a build system language. Among build system lan-

guages, popular choices include make (i.e., GNU make, BSD make, etc.) and ANT.

However, new languages such as Maven and CMake are gaining popularity [17, 48].

Build specification files conceptually specify build targets. A build target repre-

sents an abstract build goal (or collection of goals) T such as “complete all compilation

commands”. A target T typically has two key characteristics, (1) a build rule that

defines the sequence of commands that must be executed when T is triggered, and

(2) a list of dependent targets that determine whether or not T should be triggered.

Heuristics are used to speed up a build such that a target is only triggered if its

output files do not exist yet, its output files are older than its input files, or at least

one dependent target has been rebuilt.

The construction layer can have complex architectures [1, 61]. Our research reveals

that in addition to code implemented directly in build specification files, many build

systems also depend upon a layer of build-related helper scripts such as Perl and Bash

CHAPTER 2 BACKGROUND AND DEFINITIONS 12

scripts. These scripts implement common build rule logic and reduce repetition in

build specification files.

2.2.3 Certification Layer

After constructing the deliverables, the build system drives the deliverables through a

sequence of automated tests [28]. We refer to the scripts and build logic necessary for

this phase of the build process as the certification layer. The build system drives the

execution of these tests using the certification layer. When the regression tests fail,

the certification layer reports issues to the developers. The certification layer ensures

that when software regresses, reports are produced promptly so that developers may

address the issues early in the development cycle.

2.2.4 Packaging Layer

The final step in the build process is to produce an installable package [16]. The pack-

aging layer gathers the constructed deliverables, third-party redeliverable libraries,

and associated product documentation and bundles them into an installation bun-

dle format, such as Microsoft Installer (.msi) for Windows users or RedHat Package

Management (.rpm) format for RedHat-like “flavours” of GNU/Linux.

2.3 What are the typical build system languages?

This section presents a brief history and the major features of the popular make,

ANT, and Maven build system languages. Table 2.1 shows which reference architec-

ture layers are typically implemented by which build system languages that we will

CHAPTER 2 BACKGROUND AND DEFINITIONS 13

Table 2.1: Build technologies and their appropriate build layers.

Configuration Construction Certification Packaging

make X
ANT X X

Maven X X X X

Figure 2.2: Example Makefile target expression

1 main . o : main . c message . h
2 $ (CC) −c main . c

consider in this thesis. The languages may be used to implement layers that are not

indicated in Table 2.1, however, they are not designed for them.

2.3.1 Make

The make build language first appeared in literature in 1979. Feldman declares

that make is “a program for maintaining computer programs” [18]. More accurately,

make can be used to automatically synchronize program source code with its deliver-

ables. If a properly constructed make build system is deployed, the make command

will execute only the necessary commands to create an up-to-date deliverable. In this

sense, make was revolutionary. Before make, there existed no specialized language for

implementing build systems.

Figure 2.2 shows an example of a make target expression. Line 1 describes the de-

pendency relationship between the target file “main.o” and its dependencies “main.c”

and “message.h”. Line 2 defines the rule that will (re)generate the target, i.e., compile

“main.c” using the compiler assigned to the $(CC) make variable.

Target expressions are listed in a Makefile. When the make command is executed,

CHAPTER 2 BACKGROUND AND DEFINITIONS 14

it automatically attempts to bring the first target listed in the Makefile up-to-date.

A target is considered up-to-date when its output has a newer modification time than

its dependencies. If this is not true, the make command will execute the specified

rule. If the target is up-to-date when the make command is executed, make will skip

the execution of that rule, since it is not necessary. In this sense, make builds are

incremental and will only execute the minimal set of rules necessary to bring the

output in sync with its dependencies.

Makefiles list dependencies among files. However, it is sometimes useful to collect

conceptual dependencies between targets that do not correspond to files. For such

cases, make provides “phony” targets, i.e., virtual targets that do not correspond to

files.

The dependencies among targets in a Makefile together form a build graph. This

is a Directed Acyclic Graph (DAG) that represents the dependency model of the build

system. The DAG can differ between build executions depending on the targets that

are out-of-date, or differences in the selected tools and configurable features.

2.3.2 ANT

ANT, an acronym for Another Neat Tool, was created by James Duncan Davidson in

1999. He was fed up with some of the inconsistencies in the make build language [47],

which was and still is the de facto standard among build system languages for C

and C++ projects. Although make pioneered many build system concepts, there are

serious flaws in its design, such as the inherent platform dependence of commands in

build rules and the common recursive architecture found in many make-based build

systems [43]. To resolve these flaws, ANT was designed to be small, extensible, and

CHAPTER 2 BACKGROUND AND DEFINITIONS 15

init

compile

link

init

compile

sub/build.xml
<project name="example" default="link">
 <property name="blddir" location="build" />
 <property name="classes" location="${blddir}/classes" />
 <property name="dist" location="${blddir}/dist" />

 <target name="init">
 <mkdir dir="${blddir}" />
 <mkdir dir="${classes}" />
 <mkdir dir="${dist}" />
 </target>

 <target name="compile" depends="init">
 <javac
 destdir="${classes}"
 srcdir="maindir"
 includes="**/*.java"
 />

 <ant
 antfile="sub/build.xml"
 target="compile"
 />
 </target>

 <target name="link" depends="compile">
 <jar
 jarfile="${dist}/example.jar"
 basedir="${classes}"
 />
 </target>

 <target name="clean">
 <delete dir="${blddir}" />
 </target>
</project>

build.xml
<project name="example-sub" default="compile">
 <target name="init">
 <echo message="In sub/build.xml" />
 </target>

 <target name="compile" depends="init">
 <javac
 destdir="${classes}"
 srcdir="."
 includes="**/*.java"
 />
 </target>
</project>

build.xml sub/build.xml

init

compile

link

init

compile

References
Follows

(1)

(2)

(3)

(4)(5)

Figure 2.3: Example ANT build.xml files (left, top-right) and the resulting build
graph (bottom-right). The build graph has a depth of 2 (i.e., “compile”
in build.xml references “init” in sub/build.xml) and a length of 5 (i.e.,
execute (1), (2), (3), (4), then (5)).

operating system independent. Still, many of the concepts introduced by make survive

in ANT. An example ANT specification file and the resulting build graph is shown

in Figure 2.3.

An ANT build system is specified by a collection of XML files. <project> tags

contain all of the build code related to a software project. In ANT, a target does not

correspond to a file, but to a sequence of related conceptual tasks (c.f., phony targets

in make), such as “compile all source files” (“compile” <target> in Figure 2.3) or

“collect all class files in a jar archive” (“link” <target> in Figure 2.3). <task> tags

represent atomic commands inside a build <target>’s build rule. A task may “create

a directory” (“mkdir” tasks in the “init” target of build.xml) or “run the compiler

on the given set of source files” (“javac” task in the “compile” target of either XML

CHAPTER 2 BACKGROUND AND DEFINITIONS 16

file). The <task> is the most fine-grained element in an ANT build specification file.

The ANT build language comes stocked with a library of common build <task>s.

If a <task> implementation does not exist, ANT provides an Application Program-

mer Interface (API) for developing expansion tasks. The Task API, like the ANT

parser itself, is implemented for the Java SE platform.

Targets may “depend” on one another. Using these dependencies, a graph may

be constructed. We only provide an example of such a graph using an ANT script,

however this same concept may be applied to targets in many build languages.

Consider the build graph shown in the bottom-right section of Figure 2.3. In this

example, ANT has been instructed to execute the “link” target, yet its dependencies

must be satisfied first. The “link” target depends on the “compile” target, which in

turn depends on the “init” target.

Targets may also depend upon targets in other build files. Build developers often

leverage this feature to preserve build system modularity. As an example of a depth

dependency, the “compile” target (via its <ant> task) depends on another “compile”

target in a different specification file (i.e., sub/build.xml). The “compile” target may

depend upon “compile” targets in subdirectories of the “sub” directory producing a

chain of depth dependencies.

The build graph shown in Figure 2.3 is said to have a length of five since five targets

were triggered, and a depth of two since two was the maximum depth encountered in

the graph.

CHAPTER 2 BACKGROUND AND DEFINITIONS 17

2.3.3 Maven

Maven was created with build process standardization in mind, since many Java

projects of the Apache foundation shared similar ANT scripts [6]. The Maven build

process is called the Build Lifecycle. A lifecycle is composed of one or more se-

quential phases. For example, a simple lifecycle may contain (1) a “compile” phase

where source code is compiled into bytecode, followed by (2) a “package” phase where

bytecode is bundled into a deliverable format.

Each build phase may have zero or more sequential goals bound to it. A phase

without any goals bound to it is skipped during the build, however those with one or

more goals bound execute these goals during the build. For example, the “compile”

phase may (1) enforce a coding style standard by binding an “enforce” goal to it,

then (2) compile the source code by binding a “compile” goal to it. Each goal is

implemented in a Maven plugin.

The build lifecycle is composed of 23 phases. A subset of the 23 phases is bound to

default goals depending on the deliverable package type. The studied Maven projects

use JAR packaging, and as such, use the JAR package phase-to-goal bindings outlined

in Table 2.2.

Additional goals may be bound to lifecycle phases by configuring additional Maven

plugins in build specification files. For example, integration testing may be executed

during the build process by loading an appropriate plugin and binding an integration

testing goal to the integration-test lifecycle phase.

Maven prescribes to the design principle of “convention over configuration”. A

project that is built with Maven can minimize the amount of build code necessary by

conforming to the Maven convention. Deviation from the Maven convention requires

CHAPTER 2 BACKGROUND AND DEFINITIONS 18

Table 2.2: The Maven default lifecycle for JAR packages.

Phase Description

process-resources Pre-process the resource files.

compile Compile the source code.

process-test-resources Pre-process the test resource files.

test-compile Compile the test code.

test Execute the unit tests.

package Package the compiled code into the de-
liverable format.

install Install the deliverables in the local
Maven repository.

deploy Upload the installed deliverables to a
remote repository.

additional build code.

In addition to build process standardization through the build lifecycle, Maven

also features automatic management of third party libraries. Java projects often

struggle with managing these external dependencies, often opting to either (1) commit

the exact versions of the libraries into the project’s VCS, or (2) download them

automatically using hard coded ANT targets. Maven provides support for specifying

required versions and sharing them in a local cache repository for use in all Maven-

built projects.

CHAPTER 2 RELATED RESEARCH 19

2.4 Chapter Summary

This chapter lays the foundation necessary for the remainder of the thesis. We first

defined the build system and discussed its impact on various stakeholders in the soft-

ware development process. Next, based on prior research, we established a reference

architecture for build systems. Finally, we introduced the three build technologies

that are used to implement build systems in the studied projects.

In the next chapter, we discuss the prior research that has been performed involv-

ing the build system.

Chapter 3

Related Research

The study of history is a powerful
antidote to contemporary arrogance.
It is humbling to discover how many
of our glib assumptions, which seem
to us novel and plausible, have been
tested before, not once but many
times and in innumerable guises;
and discovered to be, at great
human cost, wholly false.

Paul Johnson

In this chapter, we present a survey of prior build system research. In performing

the survey, we identified two common research topics:

1) Build system design

2) Build system evolution

The remainder of the chapter discusses the prior research with respect to these

two topics.

20

CHAPTER 3 RELATED RESEARCH 21

3.1 Build System Design

Build system design is critical. Just as design and architecture bugs are more expen-

sive than implementation bugs in source code [38], the same is true for build systems.

Neglecting to carefully design the build system may result in a highly complex build

system implementation that is difficult to maintain and requires a considerable in-

vestment of effort to restructure.

3.1.1 Analysis of Design

De Jonge showed that the lack of modularity in build systems limits the reusability

of software components, since components cannot be built independently [13, 14]. To

remedy this, de Jonge proposes the use of Component-Based Software Engineering

(CBSE) principles in the design of build systems, i.e., build systems should consist

of build components that communicate through a standard public interface. Such

a design allows the build component implementation to vary independently of the

build interface. A large-scale case study on Mozilla [44] shows that CBSE-based

build systems can improve the reusability of software components.

Adams et al. present MAKAO (Makefile Architecture Kernel featuring Aspect

Orientation), a design recovery tool for make-based build systems. MAKAO visualizes

build targets executed during an execution of a make build. MAKAO is useful for

restructuring, since it models concrete executions of the build process. The produced

model can be queried and filtered, allowing users to navigate and customize the build

visualization. Case studies of open and proprietary systems, such as Linux and the

Kava system, show that make-based build systems can be very complex.

CHAPTER 3 RELATED RESEARCH 22

De Jonge and Adams’ findings show that build systems for large projects have

complex and non-trivial designs and implementations. Intuition suggests that these

complex build system designs require careful maintenance, which would induce an

overhead on the development process (c.f., our research hypothesis).

3.1.2 Patterns and Pitfalls

Software designers use design patterns [21] and avoid anti-patterns [19] to improve

the design of software. The following studies investigate similar patterns in build

system design.

Miller presents a study of make build systems implemented using the common “re-

cursive make” paradigm and argues that it should be considered an anti-pattern [43].

Traditionally, UNIX software projects use the recursive make technique to transform

source code into deliverables. As these projects age, their recursive make systems

begin to exhibit symptoms such as slow performance, incomplete or highly redundant

builds, and build sensitivity to irrelevant changes in the source code. Miller attributes

these symptoms to the recursive make technique itself when used in an unbounded

fashion.

Conversely, Tu et al. [61] discuss the code robot, a build system design pattern

with a positive effect on a build system structure. A code robot is a program that is

built during an initial phase in the build process and used in later phases to generate

platform-specific code from code templates. Use of the code robot pattern allows

development teams to avoid having to ship and maintain dozens of platform-specific

files in the project VCS. The GCC [23] and Perl [53] projects provide examples of

the code robot. In GCC, the code robot comprises a smaller version of GCC used

CHAPTER 3 RELATED RESEARCH 23

to build the remainder of the compiler collection. Similarly, in Perl, the code robot

is used to build a small Perl interpreter that interprets Perl scripts containing build

tasks.

Adherence to patterns and avoidance of anti-patterns further suggests that the

build system design process is non-trivial and imposes an implicit overhead on the

development process (c.f., our research hypothesis).

3.1.3 Build Performance

The build system is an important part of software development and maintenance.

After completing a code fix, developers must run the build process in order to test

the changes. While the build process is executing, the developer must wait. If the

build process is slow, this idle period is extended, frustrating developers and slowing

development progress. The time consumed by the build process is a perceived form

of build system overhead. Hence, we survey related work in the field of build process

acceleration.

There is much work on build acceleration strategies. Build tools such as make,

ANT, and Maven operate incrementally by examining the last modification time of

target output and input, executing only the smallest list of commands necessary to

bring the deliverable artifacts up-to-date. The SCons [31] build tool uses checksums

of each file to avoid performing link commands when only code comments have been

modified. Adams et al. empirically evaluate strategies for accelerating the build pro-

cess [3]. Yu et al. improve both incremental and fresh build speed by automatically

removing unnecessary dependencies between files [65] and redundant code from C

header files [64].

CHAPTER 3 RELATED RESEARCH 24

Improving build performance is a means of mitigating the considerable impact that

the build system imposes on development stakeholders (c.f., our research hypothesis).

3.2 Build System Evolution

Lehman et al. present observations of program evolution in their body of work, com-

monly referred to as “Lehman’s Laws” [8, 33, 34]. In this thesis, we focus on the first

two laws:

1) A program evolves due to changes in its environment, e.g., platform upgrades, new

customer requirements.

2) Due to the modifications induced by law 1, the program grows in complexity.

Lehman et al. recorded these observations by analyzing large, proprietary software

systems as they aged during the 1970’s and 1980’s. Godfrey et al. verified these results

for open source systems [24].

Similar environmental factors that cause software systems to evolve (law 1) are

also present for build systems. Since transforming source code into a usable artifact

is the main goal of the build system, the source code is a part of the environment of

a build system. Hence, source code evolution may act as a catalyst to the evolution

of build systems.

Furthermore, build systems have two dimensions in which they may evolve: (1)

A static dimension that evaluates the static characteristics of the build system speci-

fication files, and (2) A dynamic dimension that evaluates the build system run-time

execution properties. The below subsections discuss studies of each dimension.

CHAPTER 3 RELATED RESEARCH 25

3.2.1 Build Specification Evolution

Build specification evolution is evaluated by analyzing changes in source code met-

rics adapted for use with build systems. The use of source code metrics is justified

since build specification files share many similarities with source code implemented

in an interpreted programming language. Case in point, the SCons build language is

entirely based on the Python programming language.

Zadok studied the effect of changing build technology. He examined the static size

and complexity of the Berkeley Automounter build system [66]. He found that the

build system was growing in size and complexity until a build technology migration

from make to GNU Autotools. The migration reduced the size and complexity metrics,

which encourages other project maintainers to migrate to Autotools. While the paper

does not consider the development investment that was required to migrate build

technologies, the paper does hint that build systems have a tendency to grow unless

disturbed by major project restructuring.

Adams et al. studied the static evolution of the Linux kernel build system, which is

implemented using make [2]. They found that the Linux kernel build system is growing

exponentially in terms of the Build Lines of Code (BLOC). Godfrey et al. [24] found

that the Linux source code also grows exponentially in terms of LOC. Furthermore,

the build and source code appear to grow together or shrink together, suggesting that

source code and build system co-evolve.

In summary, not only do make-based build systems appear to evolve [66], but

they appear to co-evolve with project source code [2]. That is, changes in the source

code often induce changes in the build system, and vice versa. We conjecture that

this co-evolution imposes an overhead on the development process (c.f., our research

CHAPTER 3 RELATED RESEARCH 26

hypothesis).

3.2.2 Build-time Evolution

Build-time evolution is observed by analyzing the results of build execution. Such an

analysis is not representative of the entire build system, but rather a single path of

possible build execution. The studies below focus on a single build configuration with

a consistent build environment, i.e., the same operating system, versions of third-

party libraries, etc. The evolution is observed using metrics intuitive to the data,

e.g., the number of executed targets (build length).

Using the MAKAO tool [1], Adams et al. study the number of targets and de-

pendencies in executed builds of different versions of the Linux kernel [2]. They find

that there was a large structural change from the 2.4 version to the 2.6 version of

the Linux kernel. Using the querying capabilities of MAKAO, they identify the root

cause of the change in build system structure.

The changes to build system structure required a large investment of developer

effort over three years of development of the Linux kernel (c.f., our research hypoth-

esis).

3.3 Chapter Summary

In this chapter, we survey prior work focused on two topics:

3.1) Build system design

Findings – Build system design is critical to the smooth evolution of source

CHAPTER 3 JAVA BUILD SYSTEM EVOLUTION 27

code. A poorly designed build system can limit the reusability of software com-

ponents [13, 14] and produce incorrect artifacts [43].

3.2) Build system evolution

Findings – make-based build systems for C projects evolve [66], and furthermore,

appear to co-evolve with the source code at the release-level [2].

This thesis focuses on further expanding upon the impact that the evolution of

build systems has on source code development. In the next chapter, we evaluate build

systems for Java projects to find out whether prior evolution findings for make-based

build systems at the release-level [2, 66] apply to Java build systems as well.

Chapter 4

Java Build System Evolution at

the Release-level

I suspect one of the reasons that
[build systems] mushroom so much
is that most people don’t understand
[them well] enough, so they just
take an existing example and hack
some more into it (sic).

Anonymous developer

In the prior chapters, we have introduced the build system and related terminology

(Chapter 2), as well as surveyed the prior research (Chapter 3). We found that little

is known about the evolution of the Java build systems as a project ages. Adams

et al. made initial findings in the Linux kernel, which suggest that the build system

evolves across major releases [2]. Zadok also found evolution-like patterns in the

Berkeley automounter build system across major releases [66]. However, this research

is limited to make-based build systems for C projects and to the release-level (more

on this in the next chapter).

28

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 29

Little is known about build specifications for Java projects. Java is a popular

programming language that is used both in industry and academia. Similar to C

source code, Java source code must be compiled and linked before it can be delivered

to end users. Hence, Java projects also require build systems to translate source

code files into deliverable bytecode. However, the Java compiler differs from the C

compiler in two ways: (1) a single invocation of the Java compiler will automatically

resolve dependencies between all of the input source files, while the C compiler must

rely on external dependency management through build tools like make, and (2)

Java compiler invocations are expensive, since the Java Virtual Machine (JVM) must

be started before and shut down after each invocation [15]. For these reasons, we

conjecture that Java build systems require less maintenance than C build systems,

since the compiler performs tasks formerly required of the construction layer.

In order to validate our hypothesis, i.e., build system maintenance plays an impor-

tant role in software development, we expand upon prior work on make-based build

systems for C projects [2, 66] by studying the evolution of Java build systems across

software releases. An earlier version of this study was published at the 7th IEEE

Working Conference on Mining Software Repositories [39]. A more recent extension

is under review for a special issue of the journal of Empirical Software Engineering [40].

To focus our analysis, the release-level study addresses two research questions:

RQ1) Do the static size and complexity of source code and build systems

evolve similarly?

Motivation – Traditionally, evolution studies measure evolutionary trends in

source code metrics to analyze how projects evolve. In our case, we need to

study the evolution of specialized complexity measures for build systems. In

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 30

addition, we need to analyze how the evolution of build systems is related to

that of the source code in order to: (1) validate earlier build system findings

for make-based build systems, and (2) contrast the evolution of build systems

against the evolution of source code.

Findings – The static analysis of build system specifications in this chapter

not only shows that Java build systems follow linear or exponential evolution

patterns in terms of size and complexity, but also that such patterns are highly

correlated with the evolution of the Java source code.

RQ2) Does the build-time complexity evolve?

Motivation – Measuring dynamic properties of a build system provides a com-

plementary perspective of the complexity of a build system. We define dy-

namic complexity as the amount of build code that a typical build exercises

and the time elapsed during a typical build. Intuition suggests that as a build

executes more build code and takes longer to complete, it grows in complexity.

We investigate whether this complexity exhibits evolutionary trends.

Findings – The dynamic analysis of Java build systems in this chapter does not

reveal a common pattern in the studied projects, although we observe linear

growth and other interesting trends in build-time length, recursive depth, and

build coverage dimensions.

The chapter is organized as follows. Section 4.1 discusses the setup of our case

studies on six open source Java projects. Section 4.2 presents the results for our case

studies of ANT build systems, and Section 4.3 presents the results of our case studies

of Maven build systems. Section 4.4 compares the case studies of ANT and Maven

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 31

1. Data RetrievalRelease
Archive

1

2

N

Static
Metrics

Dynamic
Metrics

Authors

Documentation,
Commit
Logs, ...

Code
Analysis

Runtime
Analysis

Analysis
Results

3. Data Analysis2. Evolution Metrics

Figure 4.1: Overview of our approach for studying the release-level evolution of Java
build systems.

build systems, and furthermore compares our Java case studies to prior work on C

build systems. Section 4.5 concludes the chapter.

4.1 Case Study Setup

We track the evolution of software build systems across release snapshots of six open

source Java projects. There are some existing metrics from the source code domain

that we can study across time, but we also need to define metrics that are customized

to the domain of build systems. The focus of these metrics is on the identification of

trends related to RQ1 and RQ2. An overview of our approach is shown in Figure 4.1.

The remainder of this section discusses each step in our approach:

4.1.1) Data Retrieval

Release snapshots are gathered from project release archives and version con-

trol systems (VCS).

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 32

Table 4.1: Metrics used in release-level build system analysis

Group Metric Description

Static

Build Lines of Code (BLOC) The number of lines of code in build specification files.
Target Count The number of build targets in the build specification files.
Task Count The number of tasks in the build specification files.
File Count The number of specification files in the build system.
Halstead Complexity The quantity of information contained in the build system (Volume),

the mental difficulty associated with understanding the build system
specification files (Difficulty), and the weighted Difficulty with re-
spect to Volume (Effort).

Dynamic
Build Graph Length The length of a build graph, either in terms of the total number of

executed tasks or of the total number of executed targets.
Build Graph Depth The depth of a build in terms of the maximum level of depth refer-

ences made.
Target Coverage The percentage of targets in the build system that are exercised by

the default or clean targets.
Dynamic Build Lines of Code
(DBLOC)

The percentage of code in the build system that is exercised by the
default or clean targets.

4.1.2) Evolution Metrics

A set of metrics are calculated for each release snapshot.

4.1.3) Data Analysis

We analyze the set of releases using the calculated metrics, investigating trends

and anomalies.

4.1.1 Data Retrieval

In order to validate our hypothesis, this chapter starts with a course-grained analysis

of build system evolution. We consider official software releases of a project to achieve

this the level of granularity.

We consider each type of release equal, including major releases that increment

the first digit in the version numbering of a project, minor releases that increment the

second digit, and service pack releases that increment the third digit. For example,

Eclipse release number 3.2.1 is major release number 3, minor release number 2, and

service pack 1.

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 33

For each project, a collection of source code snapshots were retrieved correspond-

ing to official project releases. These releases were downloaded from the official release

archives, except for the ArgoUML and Hibernate data, which was retrieved from the

project VCS. The released versions of ArgoUML and Hibernate are easily retrieved,

since they are marked with annotated tags in the respective repositories.

4.1.2 Evolution Metrics

In our study, we use various static and dynamic metrics to quantify a wide variety

of build system characteristics across the release snapshots. The metrics are summa-

rized in Table 4.1. BLOC, build target/task/file count, and Halstead complexity are

gathered statically. Dynamically, build system content is measured with the length

and depth dimensions of the build graph. Metrics such as BLOC, file count, DBLOC

and the Halstead suite of complexity metrics are inspired by corresponding source

code metrics, whereas others, such as target count and task count were used in earlier

studies [2]. Build graph depth and target coverage are new metrics proposed by this

study.

Most of the metrics are self-explanatory, except for the Halstead complexity met-

rics, as we had to adapt their definition from source code to build systems. To our

knowledge, the notion of such an explicit metric for static build system complexity

is new. We use a source code metric to measure the complexity of build files be-

cause build specification files share many similarities with source code implemented

in an interpreted programming language. With this in mind, we conjecture that build

system complexity can be measured using source code complexity metrics on build

system description files.

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 34

Since establishing a definitive measure of static complexity for build systems is not

the focus of this thesis, we only focus on the Halstead suite of complexity metrics [27].

In future work, we plan to examine the McCabe cyclomatic complexity [37] and how

it applies to build systems, although results of our case study indicate that (similar

to source code [25, 56]), size metrics already provide a good approximation of build

complexity metrics.

Halstead Metrics

We now define the Halstead suite of complexity metrics for build system languages.

The Halstead complexity metrics measure [27]:

Eq 4.1) Volume

How much information a reader has to absorb in order to understand a

program’s meaning.

Eq 4.2) Difficulty

How much mental effort a reader must expend to create a program or un-

derstand its meaning.

Eq 4.3) Effort

How much mental effort would be required to recreate a program.

Each Halstead metric depends on four tally metrics that are based on programming

language characteristics. First, we must tally the number of operators, i.e., functions

that take input parameters to produce some output. Within the scope of build

systems, we consider an operator as any target or task in ANT or any XML tag in

Maven.

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 35

Next, we must tally the number of operands used in the source code. Within the

scope of build systems, we consider operands as the parameters passed to a target or

task tag in ANT or any child tag in Maven.

Tallies of both the operators/operands that occur at least once (n1 or n2) and

the total number of operators/operands (N1 or N2) are collected. The four tallies are

described below:

• n1 – The number of distinct operators.

• n2 – The number of distinct operands.

• N1 – The total number of operators.

• N2 – The total number of operands.

These tallies are then used to calculate the Halstead volume, difficulty, and effort

as follows:

Volume = (N1 +N2)× log2(n1 + n2) (4.1)

Difficulty =
n1

2
× N2

n2
(4.2)

Effort = Difficulty× Volume (4.3)

4.1.3 Data Analysis

As suggested by our choice of metrics in Table 4.1, we analyze each release snapshot

from two perspectives.

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 36

RQ1) Static analysis

Build system files and program source files (including unit tests) of each release

are examined statically. We measure the size of the source code (SLOC) so

we can compare it against the size of the build system (BLOC). SLOC was

measured using David A. Wheeler’s sloccount utility [63]. We developed a

SAX-based Java tool to measure static build metrics such as target count,

task count, and the Halstead complexity of build system specification files.

Since comment and whitespace lines are discarded by the sloccount tool, our

BLOC count also discards them using a sed script. The surviving lines are

tallied using wc.

RQ2) Dynamic analysis

The build system of each release was exercised using the default build config-

uration [2] and the results were logged. The ANT output was exported to an

XML log using the built-in ANT XML logger (-logger XmlLogger). The Maven

output was exported in text, since Maven does not support XML output. The

log of a build embodies the dynamic build graph. To analyze the graph, we

extended our Java tool to calculate dynamic metrics such as target coverage,

build graph length and depth in terms of both targets and tasks, and the time

elapsed during the build.

Historical project documentation such as mailing list archives, release notes, and

source code revision comments were consulted in order to investigate our findings for

RQ1 and RQ2.

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 37

Table 4.2: Java projects studied at the release-level

A
rg

o
U
M

L

T
o
m
c
a
t

J
B
o
ss

E
c
li
p
se

H
ib
e
rn

a
te

G
e
ro

n
im

o

Build Tech. ANT ANT ANT ANT Maven Maven

Domain
UML Web App IDE ORM App
Editor Container Server Server

Max. Source Size
176 277 731 2,900 328 219

(KSLOC)
Max. Build System

6 11 29 200 3 30
Size (KBLOC)
Timespan 2002-09 1999-09 2002-09 2001-09 2008-10 2006-10
Number of

12 90 25 25 9 11
Releases
Shortest Rel.

53 days 2 days 13 days 32 days 15 days 8 days
Cycle
Longest Rel.

593 days 714 days 398 days 176 days 286 days 328 days
Cycle
Average Rel.

228 days 95 days 130 days 110 days 91 days 100 days
Cycle
Release Style Single Parallel Parallel Single Parallel Single

4.2 ANT Case Study

In this section, we present the results of our ANT case study with respect to our two

research questions.

4.2.1 Studied Projects

We selected four open source projects built using ANT with different sizes, domains,

and release styles. Table 4.2 summarizes the characteristics of the projects.

ArgoUML is a Computer Aided Software Engineering (CASE) tool for producing

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 38

14/01/04 28/05/05 10/10/06 22/02/08 06/07/09 18/11/10

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

3

BLOC (4.x)
SLOC (4.x)
BLOC (5.x)
SLOC (5.x)

Time

S
ta

nd
ar

di
ze

d
V

al
ue

19/04/00 14/01/03 10/10/05 06/07/08

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

BLOC (4.0.x)
SLOC (4.0.x)
BLOC (4.1.x)
SLOC (4.1.x)

Time

S
ta

nd
ar

di
ze

d
V

al
ue

13/01/02 09/10/04 06/07/07 01/04/10

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

BLOC
SLOC

Time

S
ta

nd
ar

di
ze

d
V

al
ue

(1) ArgoUML

(a) (b)

(c)

(3) JBoss

(f)

(2) Tomcat

(g)

(d)

(e)

02-01-13 04-10-09 07-07-06 10-04-01

-2

-1.5

-1

-0.5

0
0.5

1

1.5

2

2.5

3

BLOC
SLOC

Time

S
ta

nd
ar

di
ze

d
V

al
ue

(4) Eclipse (h)

Figure 4.2: Standardized BLOC and SLOC values. In most projects, the source code
and build system evolution trends are very similar. Anomalies are dis-
cussed in the text.

Unified Modelling Language (UML) diagrams. Tomcat is popular implementation of

the Java Servlet and Java Server Pages (JSP) technologies. JBoss is a well-known

Java Application Server. Eclipse is a general-purpose Integrated Development Envi-

ronment (IDE) developed by IBM.

4.2.2 Do the static size and complexity of source code and

build systems evolve similarly?

We explored the evolution of ANT build system specification files from three angles.

First, we use Figure 4.2 to show a general trend of increasing size in the four projects,

then we use Table 4.3 and 4.4 to show that there is a strong correlation between the

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 39

Table 4.3: Correlation of static size metrics (ArgoUML, Tomcat, JBoss, and Eclipse).
Most size metrics have a high correlation (≥ 0.8). Those that do not are
printed in bold.

Task Count File Count

A
rg

o
U

M
L

T
o
m

ca
t

J
B

o
ss

E
cl

ip
se

A
rg

o
U

M
L

T
o
m

ca
t

J
B

o
ss

E
cl

ip
se

Target Count 0.99 0.99 0.88 0.97 0.98 0.99 0.75 0.98
Task Count 0.95 0.98 0.64 0.99

BLOC SLOC
A

rg
o
U

M
L

T
o
m

ca
t

J
B

o
ss

E
cl

ip
se

A
rg

o
U

M
L

T
o
m

ca
t

J
B

o
ss

E
cl

ip
se

Target Count 0.98 0.99 0.40 0.98 0.78 0.97 0.89 0.95
Task Count 1.00 1.00 0.15 1.00 0.90 0.97 0.78 0.99
File Count 0.94 0.99 0.59 0.99 0.88 0.98 0.88 0.98

BLOC 0.89 0.98 0.40 0.99

growth in the static size and in the complexity of a build system, and finally we use

Figure 4.2 and Table 4.3 again to show that the build system and source code show

similar evolutionary trends in terms of size.

ANT Build systems grow in size: In Figure 4.2, we plot the standardized

BLOC and SLOC metrics so that we may compare these two metrics in one graph,

as SLOC values have a much higher scale than BLOC values (see Table 4.2). This

standardization is calculated by weighting each data point in terms of its distance

from the average BLOC or SLOC across all releases of a system. The standardization

is measured in units of standard deviation from the mean (i.e., Y = n−µ
σ

).

In the JBoss and Tomcat projects, multiple release branches are supported in

parallel. For example, JBoss developers produce service packs for the JBoss 4 and

JBoss 5 releases simultaneously. For these projects, we standardize values with respect

to each branch rather than across all releases. A logarithmic transformation was

explored, but we found that it compressed many of the subtle characteristics of the

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 40

trends.

The BLOC of ArgoUML in Figure 4.2 shows a clearly increasing trend with the

exception of one period in between releases 0.18.1 and 0.20 (Figure 4.2(b)). During

this period, ArgoUML underwent a restructuring where modules for C# code gen-

eration and internationalization were migrated from the main ArgoUML repository

into separate repositories. In doing so, the ArgoUML team seized an opportunity to

revise the associated build specifications for these modules. As a result, the overall

build system size was reduced. The ArgoUML team confirmed our findings.

Tomcat shows two unique trends of growth in BLOC. In the 4.0.x releases, the

build system was initially subject to a rapid growth (Figure 4.2(d)). This was due

to extensive work in the Catalina subproject. 568 lines of BLOC were added to

implement configuration detection and release packaging logic in the Catalina build

specification file. This period of rapid growth was followed by a rather calm period

where only critical bug fixes were committed to the branch as it neared the end of its

maintenance life. The 4.1.x branch begins its life with a calm period, followed by an

18-month hiatus between revisions 4.1.31 and 4.1.32 (Figure 4.2(e)) as Tomcat moved

out of the Jakarta project and was rebranded as a standalone Apache project. This

period shows an explosive increase of both BLOC and SLOC as a result of the 18

month project structure overhaul. After the restructuring was complete, the branch

returns to a relatively calm progression as it approaches its end of maintenance life.

Restructuring efforts shown in Figure 4.2(f) and Figure 4.2(g) skew the first half

of the results in JBoss, which otherwise has an increasing trend in BLOC. During

Figure 4.2(f), an entire rewrite of the enormous test suite build specification file re-

sulted in the removal of approximately 5,000 BLOC. During Figure 4.2(g), code for

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 41

supporting JAX-RPC was moved out of the main JBoss project and into a separate

plugin project called JBoss WS (Web Services). In addition, the ‘common’ module

was removed and its source code was integrated into other areas of the project hier-

archy. As a result, the main JBoss project lost two build specification files and 568

BLOC.

Figure 4.2 shows that the Eclipse build system is growing in terms of BLOC.

Further inspection of the trend in Figure 4.3 shows that the Eclipse build system is

actually growing exponentially. This exponential trend is accounted for by the plugin

nature of Eclipse. The Eclipse project maintains a modular and self-contained build

system for each plugin. The top level of the build system simply chains together the

builds for each plugin. It then follows that with each new plugin added, a large amount

of build code is also introduced. As popularity rises and more plugins make their way

into the Eclipse project mainline, these new plugins introduce with themselves more

build code. This suggests that the exponentially rising trend in build system size

strongly correlates with the trend in the number of plugins per release, which is also

growing exponentially.

Similar to Lehman’s first law of software evolution, build system speci-

fications tend to grow over time unless explicit effort is invested to re-

structure them.

All dimensions of ANT build systems grow: Table 4.3 shows the Pearson

correlation between the static size metrics for each studied system. With the exception

of the JBoss project, which will be discussed later, the high correlation values indicate

that BLOC, target and task count evolve similarly. Since the general trends of BLOC

are growing, we can say that all dimensions of the ANT build systems grow.

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 42

13/01/02 09/10/04 06/07/07 01/04/10
0

50000

100000

150000

200000

250000
BLOC
Exponential
Regression
for BLOC

Time

Figure 4.3: The exponential trend in Eclipse BLOC. The trend line has an R2 value
of 0.98.

We find that the Halstead complexity metrics follow trends similar to BLOC.

Table 4.4 shows, for each studied system, the Pearson correlation between each Hal-

stead complexity metric and the BLOC. With the exception of the JBoss project,

our results indicate that build specification complexity metrics are highly correlated

with build specification size metrics (BLOC). This result seems to agree with similar

findings from research in the source code domain [25, 56].

In the JBoss build system, the Halstead complexity metrics and build system

size are not highly correlated, as the JBoss build system is implemented using a

different style called JBoss buildmagic. It leverages the underlying XML roots of

ANT specification files to introduce a system of abstraction. The <!ENTITY> macro

substitution tag is used extensively to import build specification code from external

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 43

Table 4.4: Pearson correlation between Halstead Complexity Metrics (Rows) and
BLOC size (Columns).

ArgoUML Tomcat JBoss Eclipse

Volume 0.99 1.00 0.17 1.00
Difficulty 0.98 0.99 0.20 1.00

Effort 0.93 0.98 0.11 0.96

files, similar to header file inclusion in C. The expansion is performed at run-time.

This causes skew in our results since we study BLOC in the unexpanded build files,

whereas for the three other systems there is no difference between expanded and

unexpanded form.

The Halstead complexity of a build system is highly correlated with the

build system’s size (BLOC), indicating that BLOC is a good approxima-

tion of build system complexity.

Source code and ANT build system size are highly correlated: Based on

our observations of size and complexity trends, we are now able to verify whether

trends in the size of the build system coincide with trends in the size of the source

code. For each project, we: (1) calculate the Pearson correlation between BLOC and

SLOC, and (2) visually compare the trends of BLOC and SLOC in Figure 4.2.

Table 4.3 shows that BLOC and SLOC are highly correlated, suggesting that the

build system and source code tend to evolve together. Once again, the JBoss results

are skewed because of their <!ENTITY> code inclusion method.

Figure 4.2 illustrates the correlation between the growth in BLOC and SLOC

for the four subject systems. In most cases, the characteristics of the source code

and build specification curves are very similar, which suggests that build system and

source code are co-dependent. Deviations from the trend are analyzed by investigating

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 44

individual commits in the respective source code repositories.

In ArgoUML, anomalies occur at Figure 4.2(a), (b), and (c). During Figure 4.2(a),

a restructuring was performed where source code that was previously hard-coded in six

java source files, became automatically generated from an ANTLR grammar file. The

build specifications were updated to perform the Java code generation task. Hence,

we see an increase in BLOC and a sharp decrease in SLOC. During Figure 4.2(b),

C# code generation and internationalization modules were moved out of the main

ArgoUML repository and into individual repositories (as mentioned above) and the

test source code of the unit tests module was distributed across different areas of the

project hierarchy. The build specifications for the original unit tests module were

deleted. Since no source was removed in the restructuring process and development

work in other areas was continuing, we see an increase in normalized project source

code. During Figure 4.2(c), another restructuring effort was undertaken where the

documentation module was removed and placed into its own repository. In ArgoUML,

the majority of build system restructuring seems to be instigated by source code

evolution.

In the Tomcat project, the trends suggest that the source code and build system

are growing in sync with each other. The increases at Figure 4.2(d) (i.e., Catalina

subproject build growth) and (e) (i.e., Jakarta to Apache rebranding) are explained

above.

For the first of the parallel release branches of the JBoss project, it would appear

that there is little correlation between the BLOC and SLOC trends. During the

rewrite of the build specification file in the testsuite module in the Figure 4.2(f)

interval, the system source code was unaffected and hence was subject to the standard

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 45

growth. During Figure 4.2(g), JAX-RPC support was moved out of the main JBoss

project and as a result, the SLOC reduced by 72 KSLOC. These two events produce

considerable noise in otherwise highly correlated BLOC and SLOC trends.

In Eclipse, the trends in BLOC and SLOC are very similar. However, in be-

tween releases 3.5 and 3.5.1 (Figure 4.2(h)), we observe a sharp increase in BLOC

and a moderate increase in SLOC. The BLOC increase is due to the introduction

of a special plugin with the express purpose of driving the build system. The

org.eclipse.releng.eclipsebuilder plugin contains ANT code that invokes script gen-

erators to build all of the shipped Eclipse plugins. The plugin contains nine new

ANT files and 1,127 BLOC.

In most projects, BLOC and SLOC are highly correlated. Manual in-

spection suggests that many large restructurings in the build system are

caused by major restructurings in the source code.

4.2.3 Does the build-time complexity evolve?

We study the evolution of build-time complexity from three angles. First, we use

Figure 4.4 to show growth of build graph length and depth in the four studied build

systems, then we use Table 4.5 to examine the build recursion complexity, and finally

we analyze changes in target coverage.

ANT Build Graph Behaviour Analysis: We study the dynamic behaviour

of a build system, by examining changes to the standardized length and depth of its

build graph.

During Figure 4.4(a), ArgoUML shows a large change in both dimensions of the

build graph. This was caused by the introduction of new internationalization and

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 46

13/01/02 09/10/04 06/07/07 01/04/10
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

Length
Depth

Time

S
ta

nd
ar

di
ze

d
Va

lu
e

01/09/02 14/01/04 28/05/05 10/10/06 22/02/08 06/07/09
-2.5

-2
-1.5

-1
-0.5

0
0.5

1
1.5

Length (3.x)
Depth (3.x)
Length (4.x)
Depth (4.x)

Time

S
ta

nd
ar

di
ze

d
Va

lu
e

19/04/01 14/01/04 10/10/06 06/07/09
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time

S
ta

nd
ar

di
ze

d
Va

lu
e

Length
Depth

13/01/02 09/10/04 06/07/07 01/04/10
-4

-2

0

2

4

6

Length
Depth

Time

S
ta

nd
ar

di
ze

d
Va

lu
e

(1) ArgoUML (2) Tomcat

(3) JBoss

(4) Eclipse

(a) (b)
(c)

(d)

Figure 4.4: Standardized build graph dimensions (Dynamic analysis). Build graph
length (in targets) and depth. Linear regressions are plotted for the
dimensions in Eclipse, which have R2 values of 0.94 (length) and 0.88
(depth).

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 47

unit test compilation targets that became part of the default build. The Figure 4.4(b)

interval corresponds to the Figure 4.2(b) interval. The restructuring of modules into

independent projects results in a considerable decrease in the build graph dimensions,

and hence build time of the main project.

Figure 4.4(2) does not show data for Tomcat 3.x, 4.x and 6.x because of an inter-

esting evolution. The Tomcat build system automatically downloads required third

party Java archives (.jar files) based on hard coded URLs of the archived releases.

The hard coded URLs for Tomcat 3.x and 4.x have become stale by now, preventing

us from building these releases. The Tomcat 5.x URLs were still valid, allowing us to

build these releases. During Figure 4.4(c), Tomcat shows an increase in build graph

length and depth where a collection of third party library dependencies were, for a

brief period, built from source instead of downloaded prebuilt. The inability to build

Tomcat 3.x and 4.x shows that managing third-party dependencies is an important

driver for build system evolution. This is why the Maven build technology integrates

third-party library dependency management into the build system as discussed in

Section 2.3.3.

In JBoss 3.x, the trend in build graph length sees rapid change initially, followed

by a lull in later releases. However, JBoss 4.x shows a decrease in build length at (d)

due to the removal of the JAX-RPC support and its build files from the main project

at release 4.0.5 (mentioned above). JBoss 5.x is not plotted since only three releases

in this branch are analyzed and this is not enough data to derive a solid trend.

In the Eclipse project, we see a steady linear increase for both the length and

depth dimensions.

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 48

We found no general laws for build graph behaviour. Studied systems

show either increasing trends in build graph length, or periods of growth

and reduction. Trends are due to build restructurings or functionality

being added to the default build.

Constant Depth vs. Varying Depth: Figure 4.4 shows two distinct trends

in the build graph depth: (1) a near-constant depth (Tomcat and JBoss), and (2)

a varying depth (ArgoUML and Eclipse). Table 4.5 shows the Pearson correlation

between build graph depth and length metrics. The table indicates that the ArgoUML

and Eclipse builds grow similarly in both length and depth dimensions, while Tomcat

and JBoss do not. Manual investigation of the build systems of the projects reveals

that the ArgoUML and Eclipse builds are recursive, while the Tomcat and JBoss

ones are not. A recursive build process is one that divides the build process into

smaller builds of each component, and each component build is further divided into

builds of subcomponents, and so on. Conversely, non-recursive builds are performed

in one build process. We observe that the recursive builds vary in depth, while the

non-recursive builds have a constant depth. Through manual inspection of the release

snapshots, we find that only the Tomcat project briefly switched between recursive

and non-recursive build system designs early in the life of the project (Figure 4.4(c)).

Interestingly, Table 4.5 shows that the build length in targets and the elapsed time

in the ArgoUML build process are not correlated. Since ArgoUML is a relatively small

project, there is very little variation between the fastest build of 5 seconds and the

slowest build of 23 seconds. Hence, ArgoUML’s build is more susceptible to noise due

to process scheduling and other environmental factors.

As the Eclipse project ages, the maximum depth of recursion reached during

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 49

Table 4.5: Pearson correlation between dynamic metrics (Rows) and build graph
depth in each project (Columns). ArgoUML and Eclipse grow similarly
in length and depth, while Tomcat and JBoss do not. Anomalies for a
particular project are printed in bold and are discussed in the text.

ArgoUML Tomcat JBoss Eclipse

Elapsed Time 0.37 0.14 0.40 0.92

Build Graph Length
0.92 0.37 0.48 0.96

(Targets)
Build Graph Length

0.94 0.12 0.26 0.96
(Tasks)

its build process increases. This implies that as the project ages, the build pro-

cess actually grows in both length and depth dimensions. The build system had

grown to such a state that the Eclipse team has introduced in version 3.5.1 the

org.eclipse.releng.eclipsebuilder plugin mentioned earlier.

The studied projects either select a recursive design or a non-recursive

one. Once a design has been selected, the studied projects only switch

early in the life of the project (e.g., Tomcat), since design changes during

the implementation phase are not trivial.

ANT Build Coverage Behaviour Analysis: To study the dynamic coverage

of a typical build, we calculate the proportion of targets exercised in a typical build

relative to the total number of targets. We do not show a graph for coverage because

the values remain relatively constant unless a major event occurs.

In ArgoUML, the coverage varies between 14-29%, with two notable increases

of 7% and 8% corresponding to the project restructuring periods discussed earlier

(Figure 4.4(b) and (c)). The BLOC shrank during the restructuring, which implies

that the ArgoUML build system was bloated with unused code prior to the project

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 50

restructuring.

The coverage metrics in both Tomcat and JBoss are rather consistent at around

30% and 40% respectively. Minor fluctuations of ±3% occur between release branches

(e.g., Tomcat 5.0.x to 5.5.x), however the major restructurings that were mentioned

above do not seem to have an effect on the build system coverage.

In Eclipse, there is one notable change in the otherwise constant coverage showing

an increase of 36% from 2.x to 3.x. This was caused by a decrease in the total number

of existing targets and an increase in the number of targets hit by the default build.

The decrease in total targets was caused by the removal of redundant build logic.

This indicates that while major changes were made to system functionality (enough to

warrant an increase in major release number), a similar amount of work was invested

in the build system.

Target coverage remains more or less constant for each project. Major

fluctuations of ±10% correspond to major project events like restructur-

ings and major releases, suggesting that build maintenance can impact

the performance of a build system as perceived by developers and users.

4.3 Maven Case Study

In this section, we present the results of our Maven case study with respect to our

two research questions, which are the same as for the ANT study.

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 51

●

●●
●

●●
● ●

●

●

●

−2
.5

−1
.5

−0
.5

0.
5

Time

St
an

da
rd

ize
d

Va
lu

e

2006 2007 2008 2009 2010

● SBLOC
SLOC

●
●

●

●

●
● ● ●

●

−1
.0

−0
.5

0.
0

0.
5

Time

St
an

da
rd

ize
d

Va
lu

e

2009 2010

● SBLOC
SLOC

(a)

(b)

(1) Hibernate

(2) Geronimo

Figure 4.5: Standardized BLOC and SLOC values for the Maven projects. Source
code and build system evolution trends are very similar.

4.3.1 Studied Projects

We selected two open source projects built using Maven with different sizes, domains,

and release styles. Table 4.2 summarizes the characteristics of the projects. Hibernate

is an Object-to-Relational mapping framework for Java programs, of which we studied

the “core” subsystem. Geronimo is a web application server.

Four of the studied projects use ANT as the build technology (ArgoUML, Tomcat,

JBoss, Eclipse), while only two studied projects use Maven (Hibernate and Geron-

imo). Since Maven is a newer build technology that is starting to gain momentum,

there is less project data available for analysis.

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 52

4.3.2 Do the static size and complexity of source code and

build systems evolve similarly?

We explored the evolution of Maven build specification files using the same three

angles as ANT. First, we use Figure 4.5 to show a general trend of increasing size

in the two projects, then we use Table 4.6 to show that there is a strong correlation

between the growth in the static size and complexity of a build system, and finally

we use Figure 4.5 and Table 4.6 again to show that the build system and source code

evolve similarly.

Maven builds also grow: Figure 4.5 shows that, similar to ANT and make,

the size of Maven-based build systems also grows over time. Below, we discuss the

anomalies in each project.

In May 2007, the Hibernate project migrated their existing ANT build system

to Maven build technology [17]. The exact motivation for the migration is unclear.

Hibernate version 3.3.0, which was released in August of 2008, is the first Hibernate

release that used the Maven build system to produce the official deliverables. In

Figure 4.5, we show only the Hibernate releases built with Maven, i.e., from version

3.3.0 onward. In this section, we analyze the Maven-built portion of the Hibernate

project evolution.

The Hibernate Maven build system shows consistent growth throughout it’s life-

time. The large spike in Figure 4.5(a) is due to major changes from the 3.3.2 to the

3.5.0 releases, while the smaller increases are due to small changes between service

pack releases (e.g., 3.3.x). Large changes to the build are delayed until a new minor

release (e.g., 3.5.0) in order to avoid breaking the existing build infrastructure of a

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 53

Table 4.6: Pearson correlation between BLOC (Columns) and the build system’s Hal-
stead complexity and SLOC (Rows). Anomalies in bold.

Hibernate Geronimo

Volume 1.00 1.00
Difficulty 0.99 0.33

Effort 1.00 0.84
SLOC 0.99 0.76

released branch.

The Geronimo project used Maven for their build system from project birth. The

Geronimo build is consistently growing, with the exception of the encircled 1.0 to 2.0

transition, when the build shrank (Figure 4.5(b). In Geronimo, the 1.0 build system

was implemented using Maven 1.x technology. In version 2.0, the Geronimo build

system was migrated to Maven 2.x technology, which required major build specifi-

cation changes [7]. Specifically, the project.properties and build.properties files are

merged into a settings.xml file, and the maven.xml and project.xml files are replaced

with the pom.xml file.

Maven builds grow unless explicit effort is invested to restructure them.

Maven specification static complexity evolves: Table 4.6 shows that, similar

to ANT build systems, the Halstead complexity of Maven specification files is highly

correlated with BLOC. Again, this is similar to prior work in the source code domain

that suggests that size is a good approximation for source code complexity [25, 56].

In Geronimo, we observe little correlation between BLOC and Halstead Difficulty

(0.33). The p-value for this metric was 0.30, much larger than the standard cutoff

of 0.05, indicating that this correlation is not statistically significant. The Pearson

correlation of the Volume and Effort Halstead metrics had p-values that were less

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 54

than 0.01, indicating that those correlations are statistically significant.

Since the studied build systems grow in size, and the build system complexity

metrics are highly correlated with the size, we can say that the studied build systems

also grow in complexity, as projects age.

Similar to findings in the source code domain [25, 56], build system com-

plexity can be reasonably approximated using size in BLOC.

Maven build growth is highly correlated with source growth: The positive

correlations in Table 4.6 also show that trends of growth or reduction in the source

code are often accompanied by similar trends in the build system. We encircle periods

in Figure 4.5 when the build and source code do not agree. Below, we elaborate on

each anomaly with respect to each project.

In Hibernate, most periods of growth in the source code have similar growth in

the build system. However, in the encircled period between releases 3.5.0 and 3.5.1,

the build grew quicker than the source code. The build files were modified to add

Groovy source code generation to the build process, which introduced a family of new

library dependencies to the build.

In Geronimo, the encircled discrepancy between build and source code was due

to the migration of Maven versions 1 and 2 mentioned above. Otherwise, the source

and build size trends are similar.

Source code and Maven build systems tend to grow and shrink together.

4.3.3 Does the build-time complexity evolve?

We study the evolution of perceived build system complexity in Maven build systems

using a similar approach as used to study ANT systems. We use Figure 4.6 to show

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 55

●● ●

●
●

● ● ●

−1
.0

−0
.5

0.
0

0.
5

Time

St
an

da
rd

ize
d

Va
lu

e

2008 2009

● ●

●

●
● ● ● ● ●

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Time

St
an

da
rd

ize
d

Va
lu

e

2009 2010

● Length
Depth

(1) Hibernate (2) Geronimo

Figure 4.6: Standardized build graph dimensions (Dynamic analysis).

the growth of build graph dimensions in the two studied build systems.

Similar to our ANT study, we measure two dimensions of Maven build graphs.

We measure the length of the build by counting the goals executed during the default

build, and we measure the depth of a build by counting the number of directories from

the deepest module containing a Maven specification file to the top of the source tree.

Figure 4.6 shows the standardized versions of these two build graph dimensions for

each release.

Since versions prior to 3.3.x of Hibernate were not built using Maven, we refrain

from presenting them in Figure 4.6. In Geronimo, builds prior to 2.x require libraries

that are no longer served in the Geronimo Maven repositories, hence we only present

Geronimo builds of the 2.x releases.

Maven build length slowly increases as a project ages: Figure 4.6 shows

growth in the length of a build as projects age. The steep increases in length happen

during minor release changes, i.e., 3.3.2 and 3.5.0 in Hibernate and 2.0.2 and 2.1.0 in

Geronimo. There is much less growth between service pack releases, e.g., 2.0.1 and

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 56

2.0.2 in Geronimo. There are fewer large changes in service pack releases, since they

are more likely to introduce defects [45]. Thus, there is little growth in the build

length since there is little new code to build. In minor and major releases, there are

larger amounts of source code change, and hence longer build lengths since the new

code must be compiled and linked.

Maven builds consistently grow longer as a project ages. There is much

more growth between minor releases than in between service pack releases.

Maven build depth remains constant: In Maven, multi-module builds may be

achieved using “Reactor” builds. In a Maven Reactor build, the top-level specification

file is parsed first. The specification lists any modules that must be built in order to

complete the build. The Maven process will then parse all of the module build files,

each of which may contain their own specification lists that are processed recursively

until there are no longer any module specifications to parse. The Maven process

then proceeds to execute the necessary goals in each module until the build request

is satisfied.

Figure 4.6 shows that depth is constant for both Hibernate and Geronimo projects.

This suggests that Hibernate and Geronimo do not need to grow deeper. This may

be due to the evolutionary activity before the period that we examine. For instance,

we study Hibernate builds 3.3.x-3.5.x. This means that Hibernate has had 2 major

releases, i.e., 1.x.x and 2.x.x, to solidify a source tree structure before we begin ex-

amining the build. Similarly, in Geronimo, we study the 2.x builds, leaving out the

1.x builds where much of the depth growth may have occurred.

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 57

The depth of the studied Maven projects does not change. More data is

necessary to support a hypothesis about the depth dimension in Maven

build systems.

4.4 Discussion

We divide our post-experiment discussion into (1) a comparison of our findings for

ANT and Maven build technologies, and (2) a comparison of our findings for Java

build systems to earlier findings for C and C++ build systems.

4.4.1 ANT and Maven comparison

We study the evolution of both ANT and Maven build systems in open source projects.

We find that both build system types: (1) grow as a project ages unless explicit

effort is invested to restructure them, (2) the build system size in BLOC is a good

approximation for build system complexity, and (3) build system and source code

grow together, and in cases when they disagree, they were often reacting to the same

development event.

Although the Hibernate project migrated its existing ANT build infrastructure to

Maven between versions 3.2.7 and 3.3.0, we are unable to directly compare the ANT

and Maven build evolution. Such a comparison would not be fair for three reasons:

1. While the ANT build was much smaller, only ever reaching 1,152 BLOC, it

provided much less functionality. Maven builds provide built-in mechanisms for

library dependency management, automated test execution, report publishing,

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 58

and website generation. While these three tasks are achievable in ANT, they

require a large investment of development effort.

2. The Hibernate migration to the Maven build was accompanied by a project

restructuring. The Hibernate ANT build only needed to produce client and back

end libraries, whereas the Maven build must produce several smaller libraries.

This decomposition of the larger libraries was done to allow Hibernate users to

only link their applications with those classes that they require. However, the

smaller source code components that produce the smaller libraries must also

have a build component to allow for seamless decomposition [14]. Thus, the

number of build files increased. Furthermore, we find that the last Hibernate

ANT build (version 3.2.7) had 288 BLOC/file on average in four files, and

the first Maven build (version 3.3.0) had 78 BLOC/file in 27 files. This drop

in average size was likely due to the restructuring effort and is likely not a

generalizable trend across all Maven migrations, however more case studies are

required to clarify this.

3. Due to Maven’s convention over configuration design principle, Maven build

systems inherently perform more functionality with less code than ANT build

systems. Hence, comparing the size of an ANT build system to the size of a

Maven build system is not productive.

4.4.2 C and Java build system comparison

We expected to find that Java build systems would require less effort to remain in

sync with the source code than C build systems for two reasons:

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 59

1. A single invocation of the Java compiler automatically resolves dependencies

between the input source files, while the C compiler must rely on external

dependency management through build tools like make.

2. Since the Java compiler invocations are expensive (the Java Virtual Machine

(JVM) must be started before and shut down after each invocation), build

developers capitalize on the Java compiler’s ability to compile many Java source

files in one invocation.

In this section, we compare our findings for Java to prior work on make-based C

build systems.

Adams et al. made three observations about the evolution of the make-based Linux

build system: (1) the Linux build system evolves, (2) the complexity of the build

increases over time, and (3) maintenance drives the evolution of the build system.

These findings are mirrored by our findings with both ANT and Maven build systems

for Java projects, i.e., both ANT and Maven build systems grow in size and complexity

unless explicit effort is invested to restructure them.

In the studied projects, we found that the build and source code grow at similar

rates when standardized (RQ1). This indicates that, similar to C build systems, effort

is still invested in keeping the build in sync with the source code. However, there are

differences in the driving motivations of the evolution. For instance, in make, there

are serious flaws in the common recursive make paradigm used to implement modular

make-based build systems [43]. The Linux build engineers invested much effort in

maintaining a modular build system that is not susceptible the flaws associated with

recursive make [2]. Build system modularity support is built into ANT via the <ant>

task, and into Maven via Reactor builds. Modularity support provided by ANT

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 60

and Maven relieves ANT and Maven build engineers from concerns about potential

modularity flaws, unlike make. Instead, ANT and Maven build system evolution is

driven mainly by development events such as restructurings.

The Linux build engineers were also greatly concerned with maintaining a simple

interface for driver developers to integrate code into the Linux build process. This

is a major concern since driver source code contributions make up the majority of

the Linux source code [24]. We found that similar concerns drive the evolution of

the Eclipse and JBoss build systems. Eclipse build engineers maintain a separate

plugin that simplifies the Eclipse build process for plugin developers. The JBoss

buildmagic code increases build code reuse and simplifies the process of adding a

JBoss component to the JBoss project.

Finally, Linux build engineers must maintain explicit dependency listings among

targets in the build specifications, i.e., makefiles. ANT and Maven build specifica-

tion are not concerned with such details, since the Java compiler handles dependency

management among source files.

4.5 Chapter Summary

Software build systems are complex entities in and of themselves. They evolve both

statically and dynamically in terms of size and complexity. We find that Lehman’s

first two laws apply in the context of build systems. That is, our case study indicates

that:

1. Build systems change continuously, especially due to changes in their environ-

ment (i.e., source code and development libraries).

CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 61

2. Build systems grow in complexity as a side effect of the changes induced by

Lehman’s first law.

Through a case study of six open source Java projects, we made the following

important observations across ANT and Maven build systems:

• Both the static and dynamic size and complexity of build systems show differing

patterns of growth over time that correlate with the size of the source code.

• The exponential growth of Eclipse’s build system is highly correlated with the

project plugin count.

• Once a build system has established either a recursive or non-recursive design,

it rarely switches between designs.

• The Halstead complexity of a build system is highly correlated with the build

system’s size (BLOC).

• As observed in Tomcat, management of third-party libraries is a crucial factor

in build system evolution.

• Major fluctuations in build-time target coverage of ±10% correspond to ma-

jor project events like restructurings and major releases, suggesting that build

maintenance can impact the performance of a build system as perceived by

developers and users.

• The findings above are consistent with earlier findings for make-based systems

with slightly different drivers of build system evolution.

CHAPTER 4 REVISION-LEVEL BUILD SYSTEM EVOLUTION 62

We conclude that C and Java build systems evolve similarly at the release-level.

Java build systems in general appear to co-evolve with the project source code, which

agrees with prior work on make-based build systems [2, 66]. Armed with this un-

derstanding, project managers can predict that periods of substantial change in the

source code will be accompanied by similar change in the build system.

Reason suggests that such a co-evolution of build and source code imposes some

degree of overhead on software development, yet we cannot measure it with such a

coarse level of analysis. In the next chapter, we study the co-evolution of build and

source code at a finer granularity, i.e., individual source code revisions instead of

releases, to further validate our research hypothesis, i.e., build system maintenance

plays an important role in software development.

Chapter 5

Build System Evolution at the

Revision-level

[Build system migration is] surely a
lot of work, that also includes the
risk of scaring people away. Answer
this: what is more scary: the
current build system or the idea of
throwing anything you know about
the current build system away?

Anonymous developer

In the prior chapter, we presented our study of release level build system evolution

in Java projects. We find that Java build systems evolve both statically in the build

specification files, and dynamically at build execution time. These findings agree with

those of prior work on make-based build system for C projects [2, 66].

The prior chapter focused on a coarse analysis from release to release. However,

these releases are composed of numerous developer changes, i.e., revisions. In our

release-level analysis, these revisions are blurred together, and as a result, we may be

63

CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 64

overlooking phenomena that occur in between the releases.

To further validate our research hypothesis, i.e., build system maintenance plays

an important role in software development, this chapter presents our study of the

day-to-day maintenance of the build system throughout revisions. An earlier version

of this study will be published at the 33rd International Conference on Software

Engineering (ICSE) [41]. The study addresses three research questions:

RQ1) How many files does a typical build system consist of?

Motivation – We want to study the size of a typical build system and how it

evolves at the revision-level to better understand the magnitude of the build

system.

Findings – The build system accounts for a relatively small proportion of the

files in a project (9% median).

RQ2) How much does a typical build system churn?

Motivation – Churn measures the rate of change in source code. Prior studies

have found that frequently changing source code, i.e., code with high churn,

has a higher defect density [45] and causes more post-release defects [46]. We

want to measure churn in the build system to gain insight into how susceptible

the build system is to defects.

Findings – The build system has a churn rate comparable to the source code.

This suggests that build systems are constantly evolving and are likely to have

defects [45].

RQ3) How large are typical build system changes?

Motivation – There is no prior work that quantifies the size of typical build

CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 65

Table 5.1: Projects studied at the revision-level

A
r
g
o
U

M
L

H
ib

e
r
n
a
t
e
-c

o
r
e

E
c
li

p
s
e
-c

o
r
e

J
a
z
z

G
C

C

G
it

L
in

u
x

M
o
z
il

la

P
L

p
lo

t

P
o
s
t
g
r
e
S
Q

L

Timespan ’98-’09 ’01-’07 ’01-’10 ’07-’08 ’88-’05 ’05-’09 ’05-’10 ’98-’10 ’92-’09 ’96-’09
Program lang. Java Java Java Java C C C C C C

Build techs. Make* ANT* PDE PDE Autotools Make Make Make Make* Autotools
ANT Maven Autoconf KConfig Autoconf Autotools*

CMake

Config. Files 289 54 437 5,707 942 10 1,708 2,394 314 50
Const. Files 325 157 46 260 777 33 2,018 8,315 338 721

Total (TB) 614 211 483 5,967 1,719 43 3,726 10,709 652 771

Prod Files 7,116 9,272 2,391 45,275 14,181 743 42,912 43,952 659 2,683
Test Files 891 7,426 1,211 14,738 21,109 824 340 30,835 791 1,377

Total (TS) 8,007 16,698 3,602 60,013 35,290 1,567 43,252 74,787 1,450 4,060

TB
TB+TS 7% 1% 12% 10% 5% 3% 8% 12% 31% 16%

* Build technologies used before migration

system changes. Large changes imply that considerable effort is put into build

system maintenance.

Findings – A typical build change adds or removes 3 to 4 build lines of code

(BLOC), while a typical source change adds or removes 4 to 17 source lines

of code (SLOC).

The chapter is organized as follows. Section 5.1 presents the studied projects.

Section 5.2 discusses the design of our case studies used to address the research

questions, while Sections 5.3, 5.4, and 5.5 present the results.

5.1 Studied Projects

We conduct a large scale study of ten different open and closed-source software

projects. Table 5.1 summarizes the characteristics of the studied projects.

CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 66

Table 5.2: File type classification examples

Build Production Test

Config. and Const. layer Production code Unit tests
(Makefile*, configure*) (*.c*, *.h*, *.java) (*.c*, *.h*, *.java)

Jazz TM1 is a commercial next-generation IDE developed by IBM. The GNU Com-

piler Collection (GCC) is a popular source code compiler with front-ends for many

programming languages. Git is a distributed version control system. Linux is an

operating system kernel. Mozilla is a suite of internet tools, such as the Firefox web

browser. PLPlot is a plotting library with bindings for many popular programming

languages. PostgreSQL is an object-relational database system. ArgoUML, Hiber-

nate, and Eclipse are introduced in the prior chapter.

We selected open source projects of different domains, build technologies, and

programming languages to reduce bias. Jazz is one of the few available data sets with

high-quality work item linkage [10, 51].

5.2 Case Study Setup

We first classify each file that existed in the given timespan as either build, production,

or test code. Those files that do not fit in any category are marked as “other”.

Table 5.2 provides some example file type classifications that we used.

The classification process was semi-automated. Most files could be classified using

file type naming conventions. However, patterns such as “.java” and “.xml” were

ambiguous, i.e., some .java files are production code while others are test code. After

initial filtering of unambiguous file types, the remaining files had to be classified

1http://www.jazz.net. IBM and Jazz are trademarks of IBM Corporation in the US, other
countries, or both.

http://www.jazz.net

CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 67

manually. For example, of the 49,364 files in Linux, approximately 40,000 could be

classified automatically. The remaining 9,000 or so files had to be tagged manually

based on our prior experience with build systems.

5.2.1 Build Abstraction

The GCC, Git, Mozilla, PLplot, and PostgreSQL projects make use of the GNU Auto-

tools and CMake build abstraction languages. These languages allow build engineers

to implement build logic for many different platforms using an abstract representation

of the build process. A build code generator produces the necessary platform-specific

code at build time. For these case studies, we focus on our analysis on revisions to

the Autotools and CMake abstraction files.

5.3 How many files does a typical build system

consist of?

The build system accounts for 9% of the maintained files (median). Table 5.1 shows

that the build accounts for 1-31% of the maintained files that existed in the given

timespan, with a median of 9%. These low values indicate that in most cases (PLplot

being the exception), the build system is dwarfed by the other development artifacts.

Hibernate-core (1%) and PLplot (31%) are anomalies. Being entirely composed of

a single library, the Hibernate-core project has little build code (211 files), which ex-

plains the low 1%. On the other hand, the PLplot project has the most inflated build

file percentage of 31%. While the PLplot project is rather small, it provides bindings

CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 68

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ArgoUML Hibernate−core Eclipse−core Jazz GCC Git Linux Mozilla PLplot PostgreSQL

Projects

N
or

m
al

iz
ed

 C
hu

rn

Figure 5.1: Distribution of monthly churn in source (black) and build (grey) files.

to many programming languages. Each binding has its own construction layer compo-

nent and extensive configuration code, increasing the build system size. The problem

is compounded by two build technology migrations that PLPlot has undergone. The

migrations reimplemented build code from make [18] into GNU Autotools [22], and

later from Autotools into CMake [36], as mentioned in 5.1.

5.4 How much does a typical build system churn?

The normalized churn of build files is similar to source code. To study the churn rate

in the build system, we compare its churn rate against that of the source code. We

measure the churn rate in the source code and build system using normalized churn to

take system size into account. We count the number of source files and the number

of build files that were changed in each month-long development period. We then

divide each count by the total number of source files or the total number of build

files that existed in the period. We repeat this process for each development month.

We chose a development month period length rather than shorter periods, such as a

CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 69

day or week, because we feel that a month is enough time for a significant amount of

development to occur.

Figure 5.1 plots the distribution of the monthly normalized change using a bean-

plot. Beanplots are boxplots in which the vertical curves summarize and compare the

distributions of different data sets [29], which in our case correspond to the normalized

churn of build and source code in month-long development periods. The horizontal

black lines indicate the median of the normalized change for each project’s source

(black) and build files (grey).

In most of the studied projects, the median of the monthly normalized change for

the source and build files are relatively close to each other, only differing by at most

7% (GCC).

The Hibernate-core is the only project with a median value of the normalized

change for the build files greater than that of the source files. The Hibernate-core

project had only 1-7 build files during the first 12 months of development, and easily

reached 100% normalized churn, skewing the median.

The comparable rate of change in the source and build files is concerning, since

rapidly changing source code modules often contain more defects than slowly chang-

ing ones [45]. Build maintainers must take great care to ensure that the build system

does not become defect-prone, since a defect-ridden build system may: (1) slow devel-

opment progress due to suboptimal build routines [43], or (2) fail to produce correct

deliverables, which grinds development progress to a halt [30, 49].

CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 70

Table 5.3: Number of lines changed per revision

Quantiles

A
r
g
o
U
M

L

H
ib

e
r
n
a
te

E
c
li
p
se

G
C
C

G
it

L
in
u
x

M
o
z
il
la

P
L
p
lo
t

P
o
st
g
r
e
S
Q
L

+ - + - + - + - + - + - + - + - + -

B
ld

Lower 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1
Median 2 2 4 2 3 2 6 5 2 1 2 2 4 3 5 4 4 3
Upper 9 5 13 6 9 4 36 32 6 3 8 6 11 11 16 12 14 12

P
r
o
d Lower 4 3 4 2 3 2 3 2 3 2 3 2 3 2 5 2 4 2

Median 15 9 17 9 10 5 8 5 8 4 9 6 11 6 14 7 15 9
Upper 49 36 61 33 32 19 30 21 24 13 29 21 44 28 44 26 65 43

5.5 How large are typical build system changes?

A typical build change adds and removes 3–4 lines of code (median). Table 5.3 shows

the median, the lower and the upper quartiles of the number of line of code added

and deleted per revision in the nine studied projects. Jazz data was unavailable for

analysis because we do not have access to the actual code.

Most source changes add between 8–17 lines and remove between 4–9 lines (me-

dian). The corresponding numbers for build changes are 2–6 lines and 1–5 lines

(median). Thus, when the build changes, the size of the change is about 1
4
–1

2
of the

size of a typical source change.

5.6 Chapter Summary

Our findings indicate that while the build system is small, many developer revisions

include build maintenance. Build system maintenance generates a churn rate compa-

rable to that of the source code when normalized by their respective sizes. As such,

CHAPTER 5 BUILD MAINTENANCE OVERHEAD 71

the build system may be similarly susceptible to defects [45].

In analyzing the evolution of build systems at the revision level, we make the fol-

lowing important observations that support our hypothesis, i.e., build system main-

tenance plays an important role in software development:

• The build system accounts for up to 31% of the code files in a project, with a

median value of 9%.

• While most build systems are small in comparison to the source code, the nor-

malized churn is comparable to that of the source code.

• A typical build change involves adding and deleting 3–4 lines of build code.

Chapter 6

An Empirical Study of Build

Maintenance Overhead

The results of Chapter 4 and prior work [2, 66] suggest that build system and source

code co-evolve with each other between releases. In Chapter 5, we find that the build

system is relatively small in size, being composed of 9% (median) of the code files in

the studied projects. However, it churns frequently, at rates similar to the source code

when normalized by their respective sizes, suggesting a high overhead on developers.

To analyze whether these revision-level build changes are burdensome on developers,

we now investigate how tightly coupled developer changes to production and test code

are to build system changes. To do so, we address two research questions:

RQ1) How often are build changes required to complete development

tasks?

Motivation – Kumfert et al. estimate that developers spend 12% of their time

keeping the build system in sync with the source code, rather than fixing bugs

72

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 73

and adding new features [32]. These results are based on a survey asking

developers about their overall build maintenance effort. We are interested in

rigorously validating these findings with the actual changes developers make.

Findings – Managers of C projects should explicitly account for up to 27% of

production code work items to require build maintenance. Java projects can

expect 4–16% of production code work items to require build changes.

RQ2) How do projects distribute build maintenance work?

Motivation – Since build systems have high churn, some projects designate

members of the development team as build experts. To study the different

ways in which projects are allocating personnel to build maintenance, we want

to see how many developers have to modify the build system.

Findings – We find that the teams in the analyzed projects adopt one of two

build ownership styles: (1) most build changes are performed by a small team

of build experts (Linux and Git), or (2) build changes are dispersed amongst

the development team (Jazz).

The chapter is organized as follows. Sections 6.1 and 6.2 present the results of our

case studies used to address our research questions.

6.1 How often are build changes required to com-

plete development tasks?

In this section, we study how successful projects maintain consistency between the

build system and the production or test code. We measure the coupling between

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 74

these entities by evaluating various association rules using “interest” metrics.

6.1.1 Approach

We study consistency management at two levels of granularity:

1. Revision Level

We study coupling between production/test code and build code in revisions,

as is typically done in empirical studies. However, revisions offer too fine of an

analysis, since typical developer tasks such as adding a new feature or fixing a

serious bug involve multiple revisions.

2. Work Item Level

The set of changes resolving a developer task is called a “work item”. Since

developers typically reason in terms of work items rather than revisions, we

also studied coupling between production/test code and build code at the work

item level. However, most projects do not record this data in a recoverable

fashion [11, 51]. Hence, our work item analysis is limited to three of the studied

projects.

We adopt association rule interest metrics to measure the relationships between

production, test, and build files. An association rule is a statistical description of co-

occurring elements in a dataset [4]. For example, Amazon.com recommends additional

purchases by mining association rules from their database of prior customer purchases.

We do not mine association rules from the data, but rather we evaluate the following

associations:

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 75

Table 6.1: Association rule interest metrics

Metric Calculation

Support(A)
class A transactions
total transactions

Conf(A ⇒ B)
Support(A,B)
Support(A)

Conv(A ⇒ B)
Support(A)×Support(¬B)

Support(A,¬B)

Prod ⇒ Bld measures the coupling between production code and the build

system layers, i.e., the implication that a production code change will be accompanied

by a build code change in the same revision. Similarly, Test ⇒ Bld measures the

implication that test code change will be accompanied by a build code change in the

same revision.

Bld ⇒ Prod measures the implication that a change to the build system layers

will be accompanied by a production code change in the same revision. Intuitively,

we expect this implication to be strong since Chapter 4 showed that the majority of

build system maintenance is the result of production code change, and hence should

be grouped together. Similarly, Bld ⇒ Test measures the implication that a build

layer change requires an accompanying test change.

We evaluate the association rules above using the “interest” metrics in Table 6.1.

Support(X) is defined as the proportion of revisions that contain X [4].

Confidence(X ⇒ Y) (Henceforth abbreviated to Conf(X ⇒ Y)) measures the

strength of the implication that X implies Y [4]. In our context, Conf(X ⇒ Y) is

the probability that a revision or work item changes Y, given that it changes X. Gall

et al. use an identical metric to measure logical dependencies between modules, i.e.,

logical coupling [20]. Thus, we use confidence to measure the strength of the logical

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 76

coupling from X to Y. Note that confidence measures are directional, i.e., Conf(X ⇒

Y) 6= Conf(Y ⇒ X).

Conviction(X ⇒ Y) (Henceforth abbreviated to Conv(X ⇒ Y)) is a measure

of the departure of Conf(X ⇒ Y) from independence [12]. A Conv(X ⇒ Y) of 1

indicates that the Conf(X ⇒ Y) is no different than would be expected if X and Y

were independent of each other. Conviction values less than one indicates that the

confidence observed is less than expected for independent variables. Conviction values

greater than one indicate that the confidence observed is more than for independent

variables. Throughout this study, we use conviction to evaluate whether the logical

coupling induced by build maintenance is exceptionally lower or higher than expected,

i.e., conviction values much less than or greater than one, or as expected in the case

of independence, i.e., approximately one.

Finally, we use a χ2 goodness-of-fit test [55] to validate the statistical significance

of the coupling between the production and test code components and the build sys-

tem. If the χ2 statistic is greater than 3.84 (α ≤ 0.05), the relationship is statistically

significant. We report the p-value of the χ2 test, rather than the χ2 statistic.

foo.c

bar.c

Makefile

configure.ac

T1 T2 T3 T4 T5

B
ui
ld

Fi
le
s

Time

Pr
od
uc
tio
n

Fi
le
s

Figure 6.1: An association rule example scenario.

We use the example in Figure 6.1 to illustrate the confidence and conviction

metrics. A series of five revisions appear on the Time axis and a series of four files (two

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 77

Table 6.2: Association rule metric values for production, test, and build code

A
rg

o
U

M
L

H
ib

er
n

a
te

-c
o
re

E
cl

ip
se

-c
o
re

J
a
zz

G
C

C

G
it

L
in

u
x

M
o
zi

ll
a

P
L

p
lo

t

P
o
st

g
re

S
Q

L

Support

Prod 0.62 0.62 0.68 0.69 0.56 0.61 0.87 0.70 0.39 0.55
Test 0.06 0.32 0.23 0.18 0.13 0.11 0.01 0.08 0.19 0.10
Bld 0.07 0.08 0.08 0.09 0.15 0.07 0.10 0.16 0.36 0.16

Prod, Bld 0.01 0.03 0.02 0.03 0.04 0.03 0.06 0.06 0.03 0.05
Test, Bld <0.01 0.02 0.01 0.01 0.01 <0.01 <0.01 0.01 0.03 0.02

Conf

Prod ⇒ Bld 0.02 0.05 0.03 0.04 0.07 0.04 0.06 0.08 0.08 0.10
Bld ⇒ Prod 0.16 0.36 0.28 0.28 0.27 0.41 0.56 0.35 0.09 0.34

Test ⇒ Bld 0.05 0.05 0.03 0.07 0.07 0.04 0.13 0.16 0.17 0.19
Bld ⇒ Test 0.04 0.20 0.09 0.13 0.06 0.07 0.01 0.08 0.09 0.11

Conv

Prod ⇒ Bld 0.95 0.96 0.95 0.94 0.92 0.98 0.96 0.91 0.69 0.93
Bld ⇒ Prod 0.45 0.59 0.44 0.43 0.60 0.66 0.30 0.46 0.67 0.68

Test ⇒ Bld 0.98 0.97 0.95 0.97 0.91 0.97 1.04 1.00 0.77 1.03
Bld ⇒ Test 1.02 0.91 1.34 0.94 0.96 0.96 1.01 1.02 0.97 1.05

χ2 (p-value)
Prod, Bld <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Test, Bld 0.06 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.93 <0.01 <0.01

production and two build) appear on the Y-axis. Of the four production file revisions,

two have build file changes as well (T3 and T4), thus the Conf(Prod ⇒ Bld) is 0.5.

The Conf(Bld ⇒ Prod) is 0.67 since two of the three revisions have a production file

change. The Conv(Prod⇒ Bld) is 0.8 due to a more complex calculation, but can be

interpreted as the Conf(Prod ⇒ Bld) of 0.5 is 20% less than expected if production

and build system were independent entities (conviction of 1). We do not calculate

the χ2 value for this example, since the test was intended for a larger sample size.

However, suppose the statistic for the production-build relationship is larger than

3.84 (and hence, the p-value smaller than 0.05), then the low coupling and conviction

of Prod ⇒ Bld would be statistically significant, i.e., not just an artifact of noise.

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 78

6.1.2 Revision-Level Results

In this section, we use Table 6.2 to show that there is low revision-level coupling

between the source and build files.

Low revision-level coupling from the production or test code to the

build system: The confidence values in Table 6.2 show that the coupling values

from production or test files to the build files are lower than Kumfert et al.’s 12%

survey-based estimate [32]. We examine the coupling from production and test code

to the build system below.

A revision rarely includes both production and build file changes as reflected by

the low Support(Prod, Bld) values. The Conv(Prod⇒ Bld) values reveal that in most

cases (except Jazz) the observed coupling is consistently less than coupling expected

of independent production and build files. The χ2 statistic shows that the production

and build files are significantly independent of each other in all of the studied projects.

In PLplot, the Conv(Prod ⇒ Bld) and Conv(Test ⇒ Bld) values show that the

coupling between test and build code is low. The changes in PLplot are especially

disconnected due to the two migration efforts that generated many build-only changes.

There is low revision-level coupling from production and test code to the

build system.

Low revision-level coupling from the build system to the production

or test code: The confidence values in Table 6.2 indicate that the build system is

coupled more to the source code than vice versa. The Conv(Bld ⇒ Prod) values

are all much less than 1 (0.43–0.68), indicating that there is much less coupling from

the build and production files than expected. This finding is counter-intuitive, since

we would expect that most build changes would be accompanied by production code

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 79

Table 6.3: Overview of work item data.

E
cl

ip
se

-c
or

e

J
az

z

M
oz

il
la

Txs 6,391 36,557 210,400
Txs w/ Work Items 4,092 22,485 79,242

% Tx w/ Work Items 64% 62% 38%
Work Items 2,452 11,611 55,199

changes. The Conv(Bld ⇒ Test) are all close to 1 (except Eclipse-core), indicating

that the coupling values are not out of the ordinary.

In PLplot, the confidence values are low due to the slow migration period. Much

of the build migration effort was committed in revisions that were not related to any

source code. Hence, the confidence values are reduced.

While the coupling from the build system to the production and test code

is higher than in the other direction, the conviction values indicate that

the observed coupling is lower than statistically expected.

6.1.3 Work Item Results

The confidence values we have observed suggest that there is low coupling between

the production or test files and the build system. These values are lower than we

had anticipated based on the Kumfert et al.’s survey-based estimation of 12% [32].

However, they confirm an earlier study of KDE that found that build revisions are

often dominated by the build and do not co-change with other entities [57].

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 80

Table 6.4: Work item interest metrics

E
cl

ip
se

-c
or

e

J
az

z

M
oz

il
la

Support

Prod 0.87 0.85 0.83
Test 0.31 0.24 0.17
Bld 0.17 0.05 0.26

Prod, Bld 0.14 0.04 0.22
Test, Bld 0.06 0.02 0.08

Conf

Prod ⇒ Bld 0.16 0.04 0.27
Bld ⇒ Prod 0.82 0.72 0.86

Test ⇒ Bld 0.20 0.08 0.44
Bld ⇒ Test 0.36 0.36 0.29

Conv

Prod ⇒ Bld 0.99 0.99 1.01
Bld ⇒ Prod 0.74 0.52 1.15

Test ⇒ Bld 1.03 1.03 1.31
Bld ⇒ Test 1.07 1.19 1.16

χ2 (p-value)
Prod, Bld 0.02 <0.01 <0.01
Test, Bld 0.16 <0.01 <0.01

We conjecture that the low observed coupling is due to developer commit be-

haviour. For example, while some developers commit related build and source changes

under one revision, others may commit build changes in separate revisions from source

code changes, which introduces noise in the revision-level data. To address this, we

find that all related revisions should be linked to a single ITS work item, i.e., groups

of related revisions can be linked together according to the ITS work item that they

collectively resolve. By investigating the relationship between source and build files at

the work item level, we aim to reduce the noise caused by different developer commit

behaviour.

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 81

Our work item analysis is limited to the three projects in Table 6.3. Prior work

notes the lack of availability of high quality work item linkage in VCS data [11, 51].

With this in mind, a three project study is actually quite unique.

Table 6.3 shows that a large portion of the VCS revisions of Eclipse-core (64%),

Jazz (62%), and Mozilla (38%) could be linked to ITS work item IDs. The other

projects did not adopt a pattern for linking revisions to work item identifiers.

Production code work items are more tightly coupled to the build sys-

tem in C projects than Eclipse-based Java ones: The Conf(Prod ⇒ Bld) and

Conf(Test ⇒ Bld) values in Table 6.4 shows that there is considerable coupling from

the production and test code to the build system in Mozilla (27% and 44%). However,

the Eclipse-core and Jazz projects have less coupling. We investigate this phenomenon

below.

27% of Mozilla work items that contain a related source code change also contain

changes to the build system. These numbers indicate that production code and

build system consistency requires considerable developer participation. However, in

Eclipse-core, the coupling is reduced to 16% and in Jazz, the observed coupling is a

mere 4%.

Eclipse-core and Jazz achieve lower build coupling by leveraging the automated

Eclipse Plugin Development Environment (PDE) build technology called PDE build.

Each Eclipse subsystem contains a build specification file “build.properties”, that lists

the high-level build system configuration. The PDE build parses these property files

to either: (1) generate ANT scripts to perform the build appropriately, or (2) use

an appropriate Eclipse plugin to perform the compilation and packaging. Since the

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 82

developer must only maintain the build.properties file, which does not contain low-

level details that change frequently, the daily build maintenance overhead is reduced.

The Mozilla Conv(Test ⇒ Bld) value in Table 6.4 indicates that the logical cou-

pling between test and build code of 44% is considerably higher than expected, while

the Conv(Test⇒ Bld) values for Eclipse-core and Jazz indicate no significant increase.

The χ2 results further reflect the significance of the Mozilla relationship with a sig-

nificant p-value. The p-value for Eclipse-core indicates that the observed relationship

between test and build code is not statistically significant.

By studying Mozilla at the work item level, we find that there is a substantial

coupling between production and test code with the build system. We observe a 19%

increase in Conf(Prod ⇒ Bld) and a 28% increase in Conf(Test ⇒ Bld) over the

revision-level analysis. We observe similar increases in Eclipse-core of 13% and 17%

respectively. There was little change in the observed coupling for Jazz.

The maintenance of the build system impacts both production and test

development in Mozilla. The Eclipse and Jazz build code is automatically

generated, resulting in reduced build system maintenance and coupling to

the source code.

6.2 How do projects distribute build maintenance

work?

Our study of RQ1 reveals that Mozilla developers will have to perform build changes

for roughly one in every four work items they are tasked with. However, we did not

consider build ownership, i.e., which developers actually make changes to the build

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 83

Table 6.5: Developer-based interest metrics.

J
az

z

G
it

L
in

u
x

All 156 795 6,502

Support

Prod 0.81 0.85 0.97
Test 0.36 0.22 0.02
Bld 0.73 0.22 0.26

Prod, Bld 0.63 0.19 0.24
Test, Bld 0.32 0.05 0.01

Conf

Prod ⇒ Bld 0.79 0.22 0.25
Bld ⇒ Prod 0.87 0.85 0.93

Test ⇒ Bld 0.89 0.24 0.58
Bld ⇒ Test 0.44 0.23 0.06

Conv

Prod ⇒ Bld 1.26 1.00 0.99
Bld ⇒ Prod 1.46 0.98 0.48

Test ⇒ Bld 2.51 1.02 1.76
Bld ⇒ Test 1.14 1.02 1.03

χ2 (p-value)
Prod, Bld 0.02 1.00 <0.01
Test, Bld 0.01 0.95 <0.01

system. Prior work reports that projects may elect to dedicate a team of experts

to build maintenance tasks, e.g., the Perl interpreter [61], and the Linux kernel [2].

In those cases, although build coupling seems high, the work is delegated to build

experts.

We study the relationship between production, test, and build developers by eval-

uating the association between them with the Support, Confidence, and Conviction

“interest” metrics introduced above.

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 84

6.2.1 Approach

We label authors as a build, test, or source code developers. An author may hold one

or more labels. We assume that developers who produce source code revisions are

source code developers, since source code development is the main focus of a devel-

opment team. Hence, we label authors as source developers if they produce at least

one source code modifying revision. However, we only label authors as build devel-

opers if their personal source-build coupling is greater than or equal to the project

wide source-build coupling. Similarly, we only label authors as test developers if their

personal source-test coupling is greater than or equal to the project wide source-test

coupling. We choose such a definition to identify those developers responsible for a

significant portion of build system (and test) development.

Our study is limited to projects that retain correct author names. A common

practice in open source development is to restrict VCS write access to a set of core

developers [11]. Many authors send patches, i.e., files containing their changes, to

the core developers for review. After engaging in a review process, the core developer

will send the changes to the VCS. Only the Git, Linux, and Jazz project’s VCS retain

the name of the original author of the patch (instead of the core developer), so our

analysis is limited to these three projects.

6.2.2 Results

We use Table 6.5 to illustrate two build ownership styles that projects adopt for

maintaining the build system.

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 85

Table 6.6: Number and percentage of developers responsible for 80% of the file
changes to production, test, and build files.

Jazz Git Linux

Prod 41 (26%) 57 (7%) 523 (8%)
Test 58 (37%) 95 (12%) 484 (7%)
Build 53 (34%) 44 (5%) 365 (5%)

Concentrated and dispersed build ownership: We observe two patterns of

build ownership:

1. Concentrated ownership (Linux and Git)

Most build maintenance comes from a small team of build engineers

2. Dispersed ownership (Jazz)

Most developers contribute code to the build system.

The Conf(Prod ⇒ Bld) values of Git (22%) and Linux (25%) in Table 6.5 show

that the majority of source code contributors do not have to change the build system

frequently. However, the χ2 p-value shows that the coupling in Git is not statistically

significant.

While the build system in the Jazz project rarely changes, the changes are made

by most production and test developers. Jazz’s Support(Bld) value in Table 6.4 shows

that only 5% of work items require build changes, however, the Conf(Prod ⇒ Bld)

values in Table 6.5 show that 79% of production code developers make a considerable

number of changes to the build. Keeping the coupling between source code and build

system changes at a low 5% for production ensures that although the distribution of

build maintenance affects most developers, it does not affect them greatly.

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 86

Table 6.6 shows that to make 80% of all build changes, a, smaller proportion

of developers are needed in Git (7%) and Linux (8%) than in Jazz (34%). This

indicates that build expertise is concentrated in the Git and Linux projects whereas

it is dispersed among developers in the Jazz project. Comparing the numbers to

those of the production and test code, we see that the build consistently has the

lowest proportion of developers that contribute 80% of the changes in the two open

source projects (5%). In Jazz, we see that the build has a higher proportion of

developers involved (34%) than the two open source projects.

Since most of the build changes in Linux and Git are made by a core team of build

experts, contributors are saved the hassle of build maintenance. In 2001, the Linux

project in particular invested time and effort into reducing the build system impact

that the build system has on contributors [2]. Our findings suggest that they were

successful in concentrating the maintenance of the build system onto a core team of

build experts.

While we do not have the data to speculate about which style performs best

universally, we conjecture that build ownership style (1) is more suitable for open

source teams. Open source development depends on casual developer contributions.

Casual developers will have a hard enough time learning the intricacies of the foreign

source code without having to struggle with the build system. Thus, offloading the

build maintenance on a core engineer seems advisable.

The studied projects adopt either a concentrated (Linux and Git), or dis-

persed (Jazz) build ownership style to limit the overhead of build main-

tenance on individual developers.

CHAPTER 6 BUILD MAINTENANCE OVERHEAD 87

Most test developers have to make build changes: The Conf(Test ⇒ Bld)

values in Table 6.5 reveal that 89% of Jazz test developers, 58% of Linux test de-

velopers, and 24% of Git test developers also make changes to the build code. This

indicates that the build system maintenance is impacting most test developers in Jazz

and Linux. The corresponding conviction and χ2 values for Jazz and Linux show

that these percentages are higher than expected and statistically significant. Project

managers should keep this in mind when performing test development planning and

budget estimations.

6.3 Chapter Summary

In analyzing the relationship between the source code and the build system in ten

software projects, we make the following important observations:

• There is low revision-level coupling between the production or test code and the

build system. However, there is considerable work item coupling. Developers

may not commit all related code under one revision, but the related work will

be filed under one work item ID. We suggest that future co-evolution studies

consider analysis at the work item level, as we feel it more accurately represents

the development workflow.

• A larger proportion of developers are responsible for maintaining the build sys-

tem in the analyzed commercial project than in the open source ones. In the

three studied projects, the actual overhead of build system maintenance is lim-

ited for individual developers.

CHAPTER 6 SUMMARY AND CONCLUSIONS 88

• Many test developers must also maintain the build, meaning that the test to

build code consistency management affects many people.

These findings support our research hypothesis, i.e., build system maintenance

plays an important role in software development. However, in practice, projects try

to mitigate the overhead by using an automated build generation framework, such as

the Eclipse PDE (RQ1), or by dedicating a team of build experts to the majority of

build maintenance tasks (RQ2).

In Chapter 5, we found that typical build changes add and remove 3 to 4 build lines

of code. In this chapter, we find that 4–16% of source code tasks in Java projects and

up to 27% of source code tasks in C projects require an accompanying build change.

Project managers should explicitly account for this when performing project planning

and budgeting exercises.

In Chapter 5, we also found that the build system has a high churn rate when

normalized by the build system size. In this chapter, we observe that the analyzed

projects have two build ownership styles for coping with this high churn rate in the

build system: (1) a small team of build experts handle most of the maintenance, and

(2) maintenance is dispersed amongst most developers. In future work, we plan to

investigate the advantages and disadvantages of these two build ownership styles.

Chapter 7

Summary and Conclusions

What we call the beginning is often
the end. And to make an end is to
make a beginning. The end is where
we start from.

T. S. Eliot

This chapter concludes the thesis. The concepts presented throughout this thesis

are summarized and our hypothesis is resolved. The limitations and possible direc-

tions for future work are also presented.

7.1 Summary

Developers fix defects and add new features in source code to adapt software projects

to changing environments and address user demands [33]. Build systems are critical

to support these developer changes, since build systems automate the translation of

the project source code into testable and deliverable artifacts.

However, similar to source code, build systems require maintenance in order to

89

CHAPTER 7 SUMMARY AND CONCLUSIONS 90

keep producing project deliverables correctly and rapidly. Neglecting to keep the

build system up-to-date can cause latent defects that are difficult to diagnose and

can have a dramatic effect on product quality (e.g., Firefox 3.0 [59]).

To better understand the overhead induced by the build system, we study build

system maintenance over time. We perform empirical studies of 13 large-scale open

source and proprietary software projects to validate our research hypothesis:

Build system maintenance plays an important role in software develop-

ment.

In Chapters 4 and 5, we measured the build maintenance activity of Java build sys-

tems across releases (Chapter 4), and C, C++, and Java build systems across revisions

(Chapter 5). Our findings and prior research [2, 66] suggest that build systems evolve

at the release and revision levels. When normalized by their respective sizes, we

find that source and build components of the software project churn at similar rates.

Since the build system accounts for up to 31% of the files in a software project, 9%

on average, this means that the build system is susceptible to defects [45].

In Chapter 6, we studied how build maintenance is distributed across production

code changes and developers. We find that up to 27% of source code work items

require accompanying build changes in C projects, while 4–16% of source code work

items require build changes in Java projects. Similarly, we find that up to 44% of test

code work items require accompanying build changes in C projects, while 8–20% of

test code work items require build changes in Java projects. Furthermore, we observe

two build ownership styles adopted by projects to reduce the build maintenance over-

head on individual developers: (1) dispersed, i.e., build maintenance is spread among

most of the development team (observed in the Jazz project); (2) concentrated, i.e.,

CHAPTER 7 SUMMARY AND CONCLUSIONS 91

build maintenance is performed by a small team of build experts.

The above evidence confirms our hypothesis, i.e., build system maintenance plays

an important role in software development. Project managers, developers, and soft-

ware testers should consider the overhead of build system maintenance when plan-

ning and budgeting for future releases, new features, test cases, and even bug fixes.

Stakeholders should also consider adopting a build ownership style that suits their

development environment.

7.2 Limitations and Future Work

The work presented in this thesis has several limitations. In this section, we outline

those limitations and how future work may be designed to address them.

• The majority of the studied projects in this thesis are open source. Since open

source and commercial project development styles differ, our results may be bi-

ased towards open source projects. For instance, in Jazz, our studied commercial

project, build maintenance is dispersed amongst most developers, whereas in

open source projects such as Linux and Git, build maintenance is managed by

a core team of build engineers. More studies that analyze the build systems of

commercial projects are needed.

• Our results may be biased by the studied projects. We attempted to prevent

potential bias by selecting projects with different characteristics for analysis;

replication of our studies using different projects may be necessary.

• We perform our dynamic analysis of build systems only at the release level

because most software teams cannot guarantee their product to be buildable at

CHAPTER 7 SUMMARY AND CONCLUSIONS 92

any arbitrary time in the development cycle. A release snapshot is by nature a

buildable and runnable version of a project. By focusing our analysis at such a

high level of granularity, we may miss development events that occur in between

releases. Future work that studies the dynamic evolution of a build system at

the revision level may prove useful.

• Similar to the work of Adams et al. [2], our dynamic analysis in chapter 4

is based on a single platform and configuration, i.e., GNU/Linux on an x86-

based processor with the default configuration suggested for this platform. This

decision was made to ensure that we used a consistent platform for comparison.

By only exploring a single configuration, we have left areas of the build system

unexplored.

• Our metric for static build system complexity is derived from the Halstead suite

of complexity metrics. The Halstead complexity metrics are parametric, with

different constants for different systems. Since the purpose of this thesis is not

to establish a definitive measure for build system complexity, we assume that

typical Halstead parametric constants apply to the domain of build systems.

The striking similarities between build system languages and interpreted pro-

gramming languages lead us to believe that this assumption is valid. However,

our use of the Halstead metric has not been validated. Validating the use of

the Halstead metrics or establishing a domain-specific static build system com-

plexity metric may provide an interesting avenue for future work.

• Throughout the thesis, the BLOC metric measures lines of build specification

code, but does not consider build task implementation code. As such, custom

CHAPTER 7 SUMMARY AND CONCLUSIONS 93

ANT task implementations and custom Maven build goals do not factor into

the build system size or complexity. Build task implementation code remains an

unmeasured dimension of the build system size and complexity. Future work

may find interesting patterns in the evolution of custom tasks in ANT build

systems.

• Our file classification approach is subject to opinion and may not be 100% accu-

rate. To classify files that may have fit in more than one category, the authors’

best judgement was employed. Future work may address this by implementing a

file discriminator that classified files by examining their content (first suggested

by Robles et al. [57]).

• We make the assumption that the collected data is always correct, e.g., develop-

ers always commit necessary build changes in the same revision as the associated

source code change, or all related revisions are linked to an appropriate work

item. This assumption does not always hold, which introduces noise in our

analysis. For instance, a developer neglects to commit all related changes under

a single revision, or mistypes the work item ID in the revision message. We

address noise in the revision level analysis by studying work items. However,

noise in the work item level analysis is very difficult to detect and filter.

• Since the well-linked data necessary for our work item and build ownership

analyses is hard to access [10, 51], our studies are limited to three projects.

As such, our results may not generalize well. We selected three projects from

different domains in order to combat this sort of bias in our results, yet future

replication work may be necessary to further solidify our findings.

Bibliography

[1] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. De-

sign Recovery and Maintenance of Build Systems. In Proc. of the 23rd Int’l Conf.

on Software Maintenance (ICSM), pages 114–123, 2007.

[2] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. The

Evolution of the Linux Build System. ECEASST, 8, 2007.

[3] Rolf Adams, Walter Tichy, and Annette Weinert. The Cost of Selective Recom-

pilation and Environment Processing. Transactions On Software Engineering

and Methodology (TOSEM), 3(1):3–28, January 1994.

[4] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining Association Rules

between Sets of Items in Large Databases. ACM SIGMOD Records, 22(2):207–

216, 1993.

[5] Apache Software Foundation. Apache ANT Manual. http://ant.apache.org/

manual/, 2010. Last viewed: 07-Jul-2010.

[6] Apache Software Foundation. Apache Maven. http://maven.apache.org/,

2010. Last viewed: 18-Mar-2010.

94

http://ant.apache.org/manual/
http://ant.apache.org/manual/
http://maven.apache.org/

CHAPTER 7 SUMMARY AND CONCLUSIONS 95

[7] Apache Software Foundation. Maven Migration Guide. http://maven.apache.

org/guides/mini/guide-m1-m2.html, 2010. Last Viewed: 02-Sep-2010.

[8] Laszlo A. Belady and Meir M. Lehman. A Model of Large Program Development.

IBM Systems Journal, 15(3):225–252, 1976.

[9] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof

Czarnecki. Variability Modeling in the Real: A Perspective from the Operat-

ing Systems Domain. In Proc. of the 25th Int’l Conf. on Automated Software

Engineering (ASE). IEEE/ACM, 2010.

[10] Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bernstein,

Vladimir Filkov, and Premkumar Devanbu. Fair and Balanced? Bias in Bug-Fix

Datasets. In Proc. of the 7th joint meeting of the European Software Engineer-

ing Conference and the ACM SIGSOFT Sym. on the Foundations of Software

Engineering (ESEC/FSE), pages 121–130, 2009.

[11] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M.

German, and Prem Devanbu. The Promises and Perils of Mining Git. In Proc. of

the 6th Working Conf. on Mining Software Repositories (MSR). IEEE Computer

Society, 2009.

[12] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic

Itemset Counting and Implication Rules for Market Basket Data. In Proc. of

the 1997 ACM SIGMOD Int’l Conf. on Management Of Data, pages 255–264.

ACM, 1997.

http://maven.apache.org/guides/mini/guide-m1-m2.html
http://maven.apache.org/guides/mini/guide-m1-m2.html

CHAPTER 7 SUMMARY AND CONCLUSIONS 96

[13] Merijn de Jonge. Decoupling Source Trees into Build-Level Components. In

J. Bosch and C. Krueger, editors, Eighth International Conference on Software

Reuse, volume 3107 of LNCS, pages 215–231. Springer-Verlag, July 2004.

[14] Merijn de Jonge. Build-Level Components. IEEE Transactions on Software

Engineering, 31(7):588–600, 2005.

[15] Mikhail Dmitriev. Language-Specific Make Technology for the Java Program-

ming Language. In Proc. of the 17th Annual Conf. on Object-Oriented Program-

ming, Systems, Languages & Applications (OOPSLA). ACM, 2002.

[16] Eelco Dolstra. Integrating Software Construction and Software Deployment.

Lecture Notes in Computer Science, 2649:102–117, 2003.

[17] Steve Ebersole. Maven migration. http://lists.jboss.org/pipermail/hibernate-

dev/2007-May/002075.html, 2007. Last viewed: 18-Mar-2010.

[18] Stuart I. Feldman. Make-A Program for Maintaining Computer Programs. Soft-

ware - Practice and Experience, 9(4):255–265, 1979.

[19] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.

Refactoring: Improving the Design of Existing Code. Addison-Wesley Profes-

sional, Reading, Mass, USA, 1999.

[20] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of Logical Coupling

Based on Product Release History. In Proc. of the Int’l Conf. on Software Main-

tenance (ICSM), pages 190–198, Washington, DC, USA, 1998. IEEE Computer

Society.

CHAPTER 7 SUMMARY AND CONCLUSIONS 97

[21] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-wesley Reading,

MA, 1995.

[22] GNU Autotools Team. An Introduction to the Autotools. http://www.gnu.org/

software/hello/manual/automake/Autotools-Introduction.html. Last

viewed: 14-Aug-2010.

[23] GNU Development Team. GNU Compiler Collection. http://gcc.gnu.org/.

Last viewed: 11-Apr-2010.

[24] Michael W. Godfrey and Qiang Tu. Evolution in Open Source Software: A

Case Study. In Proc. of the Int’l Conf. on Software Maintenance (ICSM), pages

131–140. IEEE Computer Society, 2000.

[25] Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey Siy. Predicting fault

incidence using software change history. IEEE Trans. Softw. Eng., 26(7):653–661,

2000.

[26] Lenz Grimmer. Building MySQL Server with CMake

on Linux/Unix. http://www.lenzg.net/archives/

291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html. Last viewed:

20-Aug-2010.

[27] Maurice H. Halstead. Elements of Software Science (Operating and Programming

Systems Series). Elsevier Science Inc., New York, NY, USA, 1977.

http://www.gnu.org/software/hello/manual/automake/Autotools-Introduction.html
http://www.gnu.org/software/hello/manual/automake/Autotools-Introduction.html
http://gcc.gnu.org/
http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html
http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html

CHAPTER 7 SUMMARY AND CONCLUSIONS 98

[28] Ahmed E. Hassan and Ken Zhang. Using Decision Trees to Predict the Certifi-

cation Result of a Build. In Proc. of the 21st Int’l Conf. on Automated Software

Engineering (ASE), Washington, DC, USA, 2006. IEEE Computer Society.

[29] Peter Kampstra. Beanplot: A boxplot alternative for visual comparison of dis-

tributions. Journal of Statistical Software, Code Snippets, 28(1):1–9, 2008.

[30] KDE developer: “mosfet”. Autoconf/Automake errors in kdelibs. http:

//lists.kde.org/?l=kde-core-devel&m=95953244511288&w=4. Last viewed:

18-Aug-2010.

[31] Steven Knight. SCons Design and Implementation. In Tenth Int’l Python Conf.,

2002.

[32] Gary K. Kumfert and Tom G. W. Epperly. Software in the DOE: The Hid-

den Overhead of “The Build”. Technical Report UCRL-ID-147343, Lawrence

Livermore National Laboratory, CA, USA, February 2002.

[33] Meir M. Lehman. On Understanding Laws, Evolution and Conservation in the

Large Program Life Cycle. Journal of Systems and Software, 1(3):213–221, 1980.

[34] Meir M. Lehman, Dewayne E. Perry, Juan F. Ramil, Wladyslaw M. Turski, and

Paul D. Wernick. Metrics and Laws of Software Evolution – The Nineties View.

In Proc. of the 4th Int’l Software Metrics Symposium (METRICS), 1997.

[35] Linden Labs. CMake. http://wiki.secondlife.com/wiki/CMake, July 2010.

Last viewed: 20-Aug-2010.

[36] Ken Martin and Bill Hoffman. Mastering CMake, 5th Edition. Kitware Inc.,

Clifton Park, NY, USA, 2009.

http://lists.kde.org/?l=kde-core-devel&m=95953244511288&w=4
http://lists.kde.org/?l=kde-core-devel&m=95953244511288&w=4
http://wiki.secondlife.com/wiki/CMake

CHAPTER 7 SUMMARY AND CONCLUSIONS 99

[37] Thomas J. McCabe. A Complexity Measure. In Proc. of the 2nd int’l conf. on

Software engineering (ICSE), page 407. IEEE Computer Society Press, 1976.

[38] Steve McConnell. Code Complete, 2nd Edition. Microsoft Press, 2004.

[39] Shane McIntosh, Bram Adams, and Ahmed E. Hassan. The evolution of ANT

build systems. In Proc. of the 7th working conf. on Mining Software Repositories

(MSR), pages 42–51. IEEE Computer Society, 2010.

[40] Shane McIntosh, Bram Adams, and Ahmed E. Hassan. The Evolution of Build

Systems for Java Projects (Under review). Empirical Software Engineering, 2011.

[41] Shane McIntosh, Bram Adams, Thanh H. D. Nguyen, Yasutaka Kamei, and

Ahmed E. Hassan. An Empirical Study of Build Maintenance Effort. In Proc. of

the 33rd Int’l Conf. on Software Engineering (ICSE) (To appear). ACM Press,

2011.

[42] Andrew Miller. js/Makefile.in gone but still in allmakefiles.sh. https://

bugzilla.mozilla.org/show_bug.cgi?id=351377. Last viewed: 18-Aug-2010.

[43] Peter A. Miller. Recursive Make Considered Harmful. In Australian Unix User

Group Newsletter, volume 19, pages 14–25, 1998.

[44] Mozilla Foundation. Mozilla communications suite. http://www.mozilla.com/.

Viewed on: 11-Apr-2010.

[45] Nachiappan Nagappan and Thomas Ball. Use of Relative Code Churn Measures

to Predict System Defect Density. In Proc’ of the 27th int’l conf. on Software

engineering (ICSE), pages 284–292, New York, NY, USA, 2005. ACM.

https://bugzilla.mozilla.org/show_bug.cgi?id=351377
https://bugzilla.mozilla.org/show_bug.cgi?id=351377
http://www.mozilla.com/

CHAPTER 7 SUMMARY AND CONCLUSIONS 100

[46] Nachiappan Nagappan and Thomas Ball. Using Software Dependencies and

Churn Metrics to Predict Field Failures: An Empirical Case Study. In Proc. of

the 1st Int’l Symposium on Empirical Software Engineering and Measurement

(ESEM), pages 364–373, Washington, DC, USA, 2007. IEEE Computer Society.

[47] Adrian Neagu. What is Wrong with Make. http://freshmeat.net/articles/

what-is-wrong-with-make, 2010. Last viewed: 26-Feb-2010.

[48] Alexander Neundorf. Why the KDE project switched to CMake – and how

(continued). http://lwn.net/Articles/188693/, 2010. Last viewed: 06-Mar-

2010.

[49] Thomas Neustupny. Build failed in Hudson, what to do? http://argouml.

tigris.org/ds/viewMessage.do?dsForumId=450&dsMessageId=2618367.

Last viewed: 18-Aug-2010.

[50] George V. Neville-Neal. Kode Vicious: System Changes and Side Effects. Com-

munications of the ACM, 52(4):25–26, April 2009.

[51] Thanh H. D. Nguyen, Bram Adams, and Ahmed E. Hassan. A case study of bias

in bug-fix datasets. In International Conference in Software Maintenance, page

Accepted, Beverly, Massachusetts, 2010.

[52] Glenn Niemeyer and Jeremy Poteet. Extreme Programming with Ant: Building

and Deploying Java Applications with JSP, EJB, XSLT, XDoclet, and JUnit.

Sams, first edition edition, May 2003. ISBN-0672325624.

[53] Perl Development Team. Perl Scripting Language. http://www.perl.org/. Last

viewed: 11-Apr-2010.

http://freshmeat.net/articles/what-is-wrong-with-make
http://freshmeat.net/articles/what-is-wrong-with-make
http://lwn.net/Articles/188693/
http://argouml.tigris.org/ds/viewMessage.do?dsForumId=450&dsMessageId=2618367
http://argouml.tigris.org/ds/viewMessage.do?dsForumId=450&dsMessageId=2618367
http://www.perl.org/

CHAPTER 7 SUMMARY AND CONCLUSIONS 101

[54] Pier P. Fumagalli. Pain building... http://marc.info/?l=tomcat-dev&m=

97537754000329&w=2. Last viewed: 2-Jan-2011.

[55] John A. Rice. Mathematical Statistics and Data Analysis. Duxbury press, 1995.

[56] Gregorio Robles, Juan J. Amor, Jesus M. Gonzalez-Barahona, and Israel Herraiz.

Evolution and Growth in Large Libre Software Projects. In Proc. of the Int’l

Workshop on Principles of Software Evolution (IWPSE), pages 165–174, 2005.

[57] Gregorio Robles, Jesus M. Gonzalez-Barahona, and Juan J. Merelo. Beyond

Source Code: The Importance of Other Artifacts in Software Development (A

Case Study). Journal of Systems and Software (JSS), 79(9):1233–1248, 2006.

[58] Roy Wilson. Make rant. http://marc.info/?l=tomcat-dev&m=

97412077403986&w=2. Last viewed: 2-Jan-2011.

[59] Tim Steiner. mozStorage chokes on databases over AFP. https://bugzilla.

mozilla.org/show_bug.cgi?id=417037. Last viewed: 18-Aug-2010.

[60] Andrew Sutton and Jonathan I. Maletic. How We Manage Portability and Con-

figuration with the C Preprocessor. In Proc. of the 23rd Int’l Conf. on Software

Maintenance (ICSM). IEEE Computer Society Press, 2007.

[61] Qiang Tu and Michael W. Godfrey. The Build-Time Software Architecture View.

In Proc. of IEEE Int’l Conf. on Software Maintenance (ICSM), pages 398–407.

IEEE Computer Society, 2002.

[62] Tijs van der Storm. The Sisyphus Continuous Integration System. In Proceedings

of the 11th Conference on Software Maintenance and Reengineering (CSMR),

Amsterdam, The Netherlands, 2007. IEEE Computer Society Press.

http://marc.info/?l=tomcat-dev&m=97537754000329&w=2
http://marc.info/?l=tomcat-dev&m=97537754000329&w=2
http://marc.info/?l=tomcat-dev&m=97412077403986&w=2
http://marc.info/?l=tomcat-dev&m=97412077403986&w=2
https://bugzilla.mozilla.org/show_bug.cgi?id=417037
https://bugzilla.mozilla.org/show_bug.cgi?id=417037

CHAPTER SUMMARY AND CONCLUSIONS 102

[63] David A. Wheeler. Sloccount. http://www.dwheeler.com/sloccount/, 2010.

Last viewed: 26-Feb-2010.

[64] Yijun Yu, Homayoun Dayani-Fard, John Mylopoulos, and Periklis Andritsos.

Reducing Build Time Through Precompilations for Evolving Large Software. In

Proc. of the 21st Int’l Conf. on Software Maintenance (ICSM). IEEE Computer

Society Press, 2005.

[65] Yijun Yu, Homy Dayani-Fard, and John Mylopoulos. Removing False Code

Dependencies to Speedup Software Build Processes. In Proc. of the 13th Int’l

Conf of the IBM Center for Advanced Studies (CASCON). IBM, 2003.

[66] Erez Zadok. Overhauling Amd for the ’00s: A Case Study of GNU Autotools.

In Proc. of the FREENIX Track on the USENIX Annual Technical Conf., pages

287–297, Berkeley (CA, USA), 2002. USENIX Association.

http://www.dwheeler.com/sloccount/

	Abstract
	Co-authorship
	Acknowledgments
	Statement of Originality
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Research Statement
	Thesis Overview
	Major Thesis Contributions
	Organization of Thesis

	Background and Definitions
	What is a build system?
	What is the typical architecture of a build system?
	What are the typical build system languages?
	Chapter Summary

	Related Research
	Build System Design
	Build System Evolution
	Chapter Summary

	Java Build System Evolution at the Release-level
	Case Study Setup
	ANT Case Study
	Maven Case Study
	Discussion
	Chapter Summary

	Build System Evolution at the Revision-level
	Studied Projects
	Case Study Setup
	How many files does a typical build system consist of?
	How much does a typical build system churn?
	How large are typical build system changes?
	Chapter Summary

	An Empirical Study of Build Maintenance Overhead
	How often are build changes required to complete development tasks?
	How do projects distribute build maintenance work?
	Chapter Summary

	Summary and Conclusions
	Summary
	Limitations and Future Work

	Bibliography

