STUDYING THE EVOLUTION OF BUILD SYSTEMS

SHANE McINTOSH

A thesis submitted to the
School of Computing
in conformity with the requirements for

the degree of Master of Science

Queen’s University
Kingston, Ontario, Canada

January 2011

Copyright (©) Shane McIntosh, 2011



Abstract

As a software project ages, its source code is improved by refining existing features,
adding new ones, and fixing bugs. Software developers can attest that such changes
often require accompanying changes to the infrastructure that converts source code
into executable software packages, i.e., the build system. Intuition suggests that these
build system changes slow down development progress by diverting developer focus
away from making improvements to the source code.

While source code evolution and maintenance is studied extensively, there is little
work that focuses on the build system. In this thesis, we empirically study the static
and dynamic evolution of build system complexity in proprietary and open source
projects. To help counter potential bias of the study, 13 projects with different sizes,
domains, build technologies, and release strategies were selected for examination,
including Eclipse, Linux, Mozilla, and JBoss.

We find that: (1) similar to Lehman’s first law of software evolution, Java build
system specifications tend to grow unless explicit effort is invested into restructuring
them, (2) the build system accounts for up to 31% of the code files in a project, and
(3) up to 27% of source code related development tasks require build maintenance.
Project managers should include build maintenance effort of this magnitude in their

project planning and budgeting estimations.

i



Co-authorship

Earlier versions of the work in this thesis were published as listed below:

1)

2)

The Evolution of ANT Build Systems (Chapter 4)

Shane McIntosh, Bram Adams, and Ahmed E. Hassan. In Proceedings of the 7th

IEEE Working Conference on Mining Software Repositories (MSR), pages 42-51,
Cape Town, South Africa, 2010. IEEE Computer Society Press. (Acceptance

ratio: 16/51 = 31%, Inwvited for Special Issue).

My contribution — Drafting the research plan, gathering and analyzing the data,

and drafting manuscripts.

The Evolution of Build Systems for Java Projects (Chapter 4)

Shane McIntosh, Bram Adams, and Ahmed E. Hassan. Under review for the Jour-
nal of Empirical Software Engineering, Special Issue on Mining Software Reposito-
ries. Springer Press. (Invited extension of “The Evolution of ANT Build Systems”,

Impact factor: 1.612 1).

My contribution — Drafting the research plan, expanding upon our collection of

gathered data, analyzing the data, and drafting manuscripts.

'Based on 2009 Journal Citation Report®), Thomson Reuters

11



3) An Empirical Study of Build Maintenance Effort (Chapter 5 and 6)
Shane McIntosh, Bram Adams, Thanh H. D. Nguyen, Yasutaka Kamei, and Ahmed

E. Hassan. To appear in Proceedings of the 33rd International Conference on Soft-
ware Engineering (ICSE), Honolulu, Hawaii, USA, 2011. ACM Press. (Acceptance
ratio: 62/441 = 14%).

My contribution — Drafting the research plan, expanding upon an existing col-

lection of gathered data, analyzing the data, and drafting manuscripts.

11



Acknowledgments

With the utmost respect, I would like to thank my co-supervisors, Dr. Ahmed E.
Hassan and Dr. Bram Adams. You have each left an indelible mark on my life, and
for that I am humbled and eternally grateful. Ahmed, you have motivated not only
to set big goals, but to put into motion a plan of action to achieve them. Bram, your
enthusiasm, talent, and dedication are truly awe-inspiring.

I would also like to thank my colleagues, at the Software Analysis and Intelligence
Lab (SAIL). You have each become personal role models of mine, exemplifying the
type of strong work ethic and commitment to quality that I can only hope to emulate.

My sincere thanks to my thesis examiners, Dr. G. Scott Knight of the Royal
Military College of Canada and Dr. James R. Cordy of Queen’s University, for their
fruitful suggestions.

I would like to dedicate this work to my family and friends. Without your sup-
port, this thesis would not have been possible. Also, to Victoria, for your patience,

understanding, and love, I am forever grateful.

v



Statement of Originality

I, Shane McIntosh, hereby declare that I am the sole author of this thesis. All ideas
and inventions attributed to others have been properly referenced. This is a true copy
of the thesis, including any required final revisions, as accepted by my examiners. I

understand that my thesis may be made electronically available to the public.



Table of Contents

Abstract

Co-authorship
Acknowledgments
Statement of Originality
Table of Contents

List of Tables

List of Figures

Chapter 1:

Introduction . . . ... ... ... ...l
1.1 Research Statement . . . . . . . ... .. ... ...
1.2 Thesis Overview . . . . . . . . . ... ... .....
1.3 Major Thesis Contributions . . . . ... ... ...
1.4 Organization of Thesis . . . . . .. ... ... ...

Chapter 2:

Background and Definitions . . . . .. ... ... .....
2.1 What is a build system? . . . ... ... ... ...

2.2  What is the typical architecture of a build system?

2.3 What are the typical build system languages? . . .
2.4 Chapter Summary . . .. ... ... ... .....

Chapter 3:

Related Research . . . . ... ... ... ..........
3.1 Build System Design . . . . . ... .. ... .. ..
3.2 Build System Evolution . . . .. ... ... .. ..

vi

ii

iv

vi

viii

ix

O O Ot =



3.3 Chapter Summary . . . .. .. .. ...

Chapter 4:
Java Build System Evolution at the Release-level . . . .
4.1 Case Study Setup . . . . . . . ..
4.2 ANT Case Study . . . . . . .. ..
4.3 Maven Case Study . . . . . .. ...
4.4 Discussion . . . . ...
4.5 Chapter Summary . . . . . . . . .. ..

Chapter 5:

Build System Evolution at the Revision-level . . . . . . .
5.1 Studied Projects . . . . . . . ... ..
5.2 Case Study Setup . . . . . . . . ...
5.3 How many files does a typical build system consist of?7 . . . . .. ..
5.4 How much does a typical build system churn? . . . .. ... ... ..
5.5 How large are typical build system changes? . . . . .. ... ... ..
5.6 Chapter Summary . . . . . . . .. ...

Chapter 6:
An Empirical Study of Build Maintenance Overhead . .
6.1 How often are build changes required to complete development tasks?

Chapter 7:
Summary and Conclusions . . . . . . ... ... ......
7.1 Summary . . ... ..
7.2 Limitations and Future Work . . . . . .. ... ... ... .. ...,

Bibliography . . . . . . . . .o o e e

vii



List of Tables

2.1
2.2

4.1
4.2
4.3

4.4

4.5

4.6

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6

Build technologies and their appropriate build layers. . . . . . . . .. 13
The Maven default lifecycle for JAR packages. . . . . .. . ... ... 18
Metrics used in release-level build system analysis . . . . . . .. . .. 32
Java projects studied at the release-level . . . . . . ... ... ... . 37

Correlation of static size metrics (ArgoUML, Tomcat, JBoss, and Eclipse).
Most size metrics have a high correlation (> 0.8). Those that do not

are printed in bold. . . . . . ... 39
Pearson correlation between Halstead Complexity Metrics (Rows) and
BLOC size (Columns). . . . . . ... .. ... 43

Pearson correlation between dynamic metrics (Rows) and build graph
depth in each project (Columns). ArgoUML and Eclipse grow similarly
in length and depth, while Tomcat and JBoss do not. Anomalies for a

particular project are printed in bold and are discussed in the text. . 49
Pearson correlation between BLOC (Columns) and the build system’s

Halstead complexity and SLOC (Rows). Anomalies in bold. . . . . . 53
Projects studied at the revision-level . . . . . . . ... .. ... ... 65
File type classification examples . . . . . . . .. ... ... ... ... 66
Number of lines changed per revision . . . . . . ... ... ... ... 70
Association rule interest metrics . . . . . . .. ... 75
Association rule metric values for production, test, and build code . . 78
Overview of work item data. . . . . . . ... ... ... ... ..... 79
Work item interest metrics . . . . . .. ... 80
Developer-based interest metrics. . . . . . . . ... ... ... .. .. 83
Number and percentage of developers responsible for 80% of the file

changes to production, test, and build files. . . . . . . . . . . ... .. 85

Viil



List of Figures

2.1
2.2
2.3

4.1

4.2

4.3

4.4

4.5

4.6
5.1

6.1

Conceptual architecture of a typical build system. . . . . ... .. ..
Example Makefile target expression . . . . . . . . ... ... .. ...
Example ANT build.xml files (left, top-right) and the resulting build
graph (bottom-right). The build graph has a depth of 2 (i.e., “compile”
in build.xml references “init” in sub/build.xml) and a length of 5 (i.e.,
execute (1), (2), (3), (4), then (5)). . . . .. ... ... .. ... ...

Overview of our approach for studying the release-level evolution of
Java build systems. . . . . .. ... L
Standardized BLOC and SLOC values. In most projects, the source
code and build system evolution trends are very similar. Anomalies
are discussed in the text. . . . . . . .. ... oo
The exponential trend in Eclipse BLOC. The trend line has an R? value

Standardized build graph dimensions (Dynamic analysis). Build graph
length (in targets) and depth. Linear regressions are plotted for the
dimensions in Eclipse, which have R? values of 0.94 (length) and 0.88
(depth). . . . .
Standardized BLOC and SLOC values for the Maven projects. Source
code and build system evolution trends are very similar. . . . . . ..
Standardized build graph dimensions (Dynamic analysis). . . . . . . .

Distribution of monthly churn in source (black) and build (grey) files.

An association rule example scenario. . . . . . . ... ... ... ...

1X

15

31

38

42

68



Chapter 1

Introduction

[...] there are few things more
important to a programmer’s work
flow and therefore productivity than
how their system is built [50].

George V. Neville-Neal

As a software project ages, its source code is changed continuously to address
rapidly changing environments and new user demands [33]. Each time the source
code has been changed, new deliverable artifacts that reflect the latest changes must
be produced in order to test the actual software.

The build system automates the process of producing deliverable artifacts rapidly,
correctly, and across all supported platforms, with the aim of simplifying the lives
of all software development stakeholders. For instance, software developers use the
build system to produce installable packages and test their changes after completing
a source code modification. Software testers rely on the build system to execute
automated tests that report when the deliverables no longer produce expected output,

i.e., regress. Further, project managers use the build system to generate releases of

1



CHAPTER 1 INTRODUCTION 2

the software system for delivery to customers.

Although the build system plays such a pivotal role in the lives of software devel-

opment stakeholders, it is one of many artifacts that software engineering researchers

tend to overlook [57]. This is unfortunate since the build system can have a dramatic

impact on a software project, as the following evidence suggests:

1)

2)

3)

U.S. Department of Energy (DoE)

By performing a developer survey, Kumfert et al. estimate that the build induces a
12% mean overhead on the development process [32]. That is, 12% of a developer’s
time is spent maintaining the build system rather than implementing features,

fixing bugs, or restructuring source code.

The Linuz Kernel
The Linux build engineers spent many years, and numerous releases, evolving the
core build machinery of the Linux kernel, which contains over 15,000 lines of build

code, to make integration of new code easy for contributors [2].

KDE

The KDE 3 project’s build system was such a burden to maintain that it limited
the productivity of KDE developers, and even warranted migration to newer build
technologies. The SCons and CMake build technologies were briefly experimented
with until CMake was established as the supported build technology. The migra-
tion efforts themselves required a substantial investment of developer time and
effort, as build infrastructure was reimplemented entirely using the new technolo-
gies, and had to be introduced incrementally to avoid disruption to development

progress [48].



CHAPTER 1 INTRODUCTION 3

1.e.

The maintenance of the build system seems to be a real nuisance for developers,

, build maintenance diverts developer focus away from the main tasks of fixing

bugs, improving existing features, and adding new features. A brief survey of the

developer mailing lists of Tomcat shows that developers often need help understanding

their build systems [54, 58]. Contributors frequently vent their frustrations about

difficulties executing the build [30, 49]. To illustrate the frustrating role that the build

system plays in the lives of developers, we manually analyzed the bug repositories of

Mozilla and ArgoUML by examining defect records that relate to build system issues,

and found the following examples of build-related frustrations:

1)

2)

Disruption of development progress

While working on a defect, one Mozilla developer removed an obsolete part of the
build code and tested his changes locally without any issue [42]. However, when
another developer merged the build changes with his working copy, he could no
longer run the build because of subtle differences between his build environment
and the first developer’s. The second developer (and conceivably many others)

could no longer build or test changes locally until the build defect was resolved.

Inappropriate feedback

On the ArgoUML continuous integration server [52, 62], which regularly updates
a local copy of the ArgoUML source code to execute all automated tests, the build
process failed to complete [49]. However, developers could not determine which
change was the one that broke the build. Developer time and effort was then
invested to determine which change is responsible and what corrective action was
needed. This investigation diverts the developer’s attention away from the core

tasks of fixing bugs and adding new features.



CHAPTER 1 INTRODUCTION 4

3) Impact on product quality
In Firefox 3.0, there was a “show-stopper” defect [59] that prevented users in a
networked environment from accessing a web page via the address and search bar,
the core feature of any web browser. The fix for the issue was not delivered for
four months. Users in this networked environment could not use the Firefox 3.0
product until the release of the first service pack, i.e., 3.0.1. It turned out that
a change to the Firefox build system was including an incorrect version of the

SQLite library, which caused inconsistencies in the delivered packages.

Despite the crucial role of build systems and their non-trivial maintenance effort,
software engineering research rarely focuses on them [57]. Initial findings show that
the size and complexity of make-based build systems grow over time [2, 66]. To
the best of our knowledge, no study has focused on the evolution of the size and
complexity of non-make build systems, nor on the impact that build maintenance
has on software development. Without a strong understanding of how build systems
evolve, resources cannot be properly allocated, and software releases may be delivered
late and over-budget. Similarly, since feature-rich build technologies such as ANT [5],
Maven [6], and CMake [36] are gaining momentum, projects are beginning to migrate
away from make [17, 26, 35, 48|. During such a migration, the development team
must throw away thousands of lines of build code and reimplement the build logic
using the selected technology, requiring a large investment of development time and
effort, and risking the disruption of development progress.

To better understand the impact that the build system has on software main-
tenance and evolution, this thesis studies the evolution of software build systems as

standalone entities and with respect to the source code that the build system breathes



CHAPTER 1 INTRODUCTION )

life into. With a better understanding of build system evolution, development stake-
holders can better estimate software maintenance effort. For instance, (1) developers
and testers could more accurately estimate the time and effort required for a devel-
opment task with build maintenance effort included, and (2) project managers could
include a more informed estimation of maintenance effort in their project planning

and budget.

1.1 Research Statement

Prior research, experience maintaining large software projects, and interaction with
industrial software developers lead to us to the following hypothesis:

Build system maintenance plays an important role in software develop-
ment.
Motivation — Prior work reports that the effort required to maintain the build sys-
tem is so great that a dedicated team of build experts is required, e.g., in the Perl
interpreter [61], and the Linux kernel [2]. Furthermore, Kumfert et al. estimate that
developers spend 12% (median) of their time maintaining the build system rather
than performing core development tasks [32]. Tu et al. report that build systems for
projects that support many platforms are difficult for people to interpret [61]. We
are interested in studying the evolution of the build system to determine its impact

on different stakeholders in the software development process.



CHAPTER 1 INTRODUCTION 6

1.2 Thesis Overview

This thesis studies the evolution of build systems across the lifetime of 13 open source
projects and one commercial project. We perform three analyses to validate our

research hypothesis:

1) High-level evolution analysis of Java build systems (Chapter 4)
To assess whether build maintenance is impacting Java developers, we study the
evolution of Java build systems to complement earlier release-level studies that

find that make-based build systems of C projects evolve.

2) Fine-grained evolution analysis (Chapter 5)
By analyzing each source code revision committed to Version Control System
(VCS) repositories of ten software projects, we study the scale of the build system

and its maintenance.

3) Maintenance overhead analysis (Chapter 6)
We study each committed developer revision and groups of related revisions recorded
in the VCSs of ten software projects to measure the impact that build system

maintenance has on the development process.

1.3 Major Thesis Contributions

This thesis presents support for the research hypothesis as listed below:
Results — As demonstrated by the Mozilla project, managers for C projects should
anticipate that 27% of development tasks that involve source code changes will require

accompanying build system changes. Managers for Java projects should anticipate



CHAPTER 1 BACKGROUND AND DEFINITIONS 7

that build maintenance is required for 4-16% of the source code tasks. We observed
two build maintenance ownership styles: (1) Centralized build ownership, where most
build system changes are performed by a small team of build experts, or (2) Dis-
tributed build ownership, where build changes are rather evenly dispersed amongst

the team of developers.

1.4 Organization of Thesis

The remainder of the thesis is organized as follows: Chapter 2 provides a brief back-
ground on the build system, its role in software development, and a comparison of
common build technologies. Chapter 3 presents research related to our analysis of
the evolution of build systems.

In Chapter 4, we present a coarse-grained study of Java build system evolution
at the release-level, i.e., development releases are considered data points. In the
chapter, we study six open source Java projects to verify that build system evolution
also exists in non-make build systems, complementing prior work on make-based build
systems [2, 66].

In Chapter 5, we present a fine-grained study of build system evolution in make
and non-make build systems at the revision-level, i.e., each development change is
considered a data point.

In Chapter 6, we study how successful projects cope with the overhead of main-
taining the build system from task-centric and developer-centric perspectives.

Finally, Chapter 7 concludes the thesis, and discusses the limitations and potential

directions for future work in this area.



Chapter 2

Background and Definitions

If someone can provide a link to
something like “Make for
Dummies” I'd appreciate it. Having
constructed abstract Turing
Machines to do arithmetic, read and
written technical papers, I'd like to
think the problem [of understanding
the build system] is more than
brain-death on my part.

Anonymous developer

Before we analyze the evolution of build systems, we first provide an overview of

build systems themselves. The following questions are addressed in this chapter:

2.1) What is a build system?
We define the concept of a build system and discuss its role in the software

development process.

2.2) What is the typical architecture of a build system?
Based on prior research and personal experiences with build systems, we propose

8



CHAPTER 2 BACKGROUND AND DEFINITIONS 9

a reference architecture for build systems. The reference architecture breaks the

task of building software down into four layers.

2.8) What are the typical build system languages?
We introduce the popular make, ANT, and Maven build system languages, which

are used by the studied projects.

2.1 What is a build system?

For the purposes of this thesis, we define the build system as:

The infrastructure responsible for transforming development artifacts
such as source code, into a deliverable format that is ready for testing

and subsequent release.

Build systems play an important role in software development, since they interact

with many software development stakeholders [50]:

1) Developers
Developers use the build system on a daily basis to test a software system after

adding a new feature or creating a (potential) bug fix.

2) Testers
Testers weave automated unit and integration tests into the build process in order
to quickly detect regression, i.e., incorrect behaviour that was correct in prior

versions of the software.

3) Managers

Managers use the build system to generate releases for distribution to users.



CHAPTER 2

BACKGROUND AND DEFINITIONS

10

ser Preferences

Default
Values

Environmental
Settings

Figure 2.1: Conceptual architecture of a typical build system.

Focus of this thesis

Selects
Configuration
Layer
Selects

Build Tools

Compiler
lusr/bin/gcc
Compiler Fiags
-g -Wall -Werror
Linker
usr/bin/ld
Link Flags
-lm

Helper
Scripts

Feature Flags
-D_FEAT_FLAG

Software Features

Supports

Enables

Drives

N
Source »
code II

Construction

Produces
Layer

Raw

Deliverables II

l

Verified
by

M_

Bundled

<
Certification Verified
Layer — Produces Deliverables
«
Packaging | proquces
Layer

N
Installable
Package I

2.2 What is the typical architecture of a build sys-

tem?

Figure 2.1 shows our conceptual architecture of a build system consisting of four

layers. Each layer is derived from prior research. We describe each layer below.

2.2.1 Configuration Layer

The configuration layer allows build system users to select the code features that

should be included in the final product, and the build tools to use during the build

process [1, 9, 60]. A configuration tool identifies which build tools are needed during

the build and checks whether the configuration of software features selected by the



CHAPTER 2 BACKGROUND AND DEFINITIONS 11

user is valid. These requirements and constraints of build tools and software features

are derived from specifications written in a configuration language, such as KConfig

or CDL [9].

2.2.2 Construction Layer

After a configuration of build tools and software features has been ratified by the con-
figuration layer, the construction layer executes the commands necessary to produce
the deliverables [1]. A construction tool parses the build specification files to deter-
mine the necessary commands and the order in which they must be executed in order
to produce the final product correctly. Construction layer (or build) specifications
are typically expressed in terms of a build system language. Among build system lan-
guages, popular choices include make (i.e., GNU make, BSD make, etc.) and ANT.
However, new languages such as Maven and CMake are gaining popularity [17, 48].

Build specification files conceptually specify build targets. A build target repre-
sents an abstract build goal (or collection of goals) T such as “complete all compilation
commands”. A target T typically has two key characteristics, (1) a build rule that
defines the sequence of commands that must be executed when T is triggered, and
(2) a list of dependent targets that determine whether or not T should be triggered.
Heuristics are used to speed up a build such that a target is only triggered if its
output files do not exist yet, its output files are older than its input files, or at least
one dependent target has been rebuilt.

The construction layer can have complex architectures [1, 61]. Our research reveals
that in addition to code implemented directly in build specification files, many build

systems also depend upon a layer of build-related helper scripts such as Perl and Bash



CHAPTER 2 BACKGROUND AND DEFINITIONS 12

scripts. These scripts implement common build rule logic and reduce repetition in

build specification files.

2.2.3 Certification Layer

After constructing the deliverables, the build system drives the deliverables through a
sequence of automated tests [28]. We refer to the scripts and build logic necessary for
this phase of the build process as the certification layer. The build system drives the
execution of these tests using the certification layer. When the regression tests fail,
the certification layer reports issues to the developers. The certification layer ensures
that when software regresses, reports are produced promptly so that developers may

address the issues early in the development cycle.

2.2.4 Packaging Layer

The final step in the build process is to produce an installable package [16]. The pack-
aging layer gathers the constructed deliverables, third-party redeliverable libraries,
and associated product documentation and bundles them into an installation bun-
dle format, such as Microsoft Installer (.msi) for Windows users or RedHat Package

Management (.rpm) format for RedHat-like “flavours” of GNU/Linux.

2.3 What are the typical build system languages?

This section presents a brief history and the major features of the popular make,
ANT, and Maven build system languages. Table 2.1 shows which reference architec-

ture layers are typically implemented by which build system languages that we will



CHAPTER 2 BACKGROUND AND DEFINITIONS 13

Table 2.1: Build technologies and their appropriate build layers.

Configuration Construction Certification Packaging

make v
ANT v v
Maven e v v v

Figure 2.2: Example Makefile target expression

1|main.o : main.c message.h

2 $(CC) —c main.c

consider in this thesis. The languages may be used to implement layers that are not

indicated in Table 2.1, however, they are not designed for them.

2.3.1 Make

The make build language first appeared in literature in 1979. Feldman declares
that make is “a program for maintaining computer programs” [18]. More accurately,
make can be used to automatically synchronize program source code with its deliver-
ables. If a properly constructed make build system is deployed, the make command
will execute only the necessary commands to create an up-to-date deliverable. In this
sense, make was revolutionary. Before make, there existed no specialized language for
implementing build systems.

Figure 2.2 shows an example of a make target expression. Line 1 describes the de-
pendency relationship between the target file “main.o” and its dependencies “main.c”
and “message.h”. Line 2 defines the rule that will (re)generate the target, i.e., compile
“main.c” using the compiler assigned to the $(CC) make variable.

Target expressions are listed in a Makefile. When the make command is executed,



CHAPTER 2 BACKGROUND AND DEFINITIONS 14

it automatically attempts to bring the first target listed in the Makefile up-to-date.
A target is considered up-to-date when its output has a newer modification time than
its dependencies. If this is not true, the make command will execute the specified
rule. If the target is up-to-date when the make command is executed, make will skip
the execution of that rule, since it is not necessary. In this sense, make builds are
incremental and will only execute the minimal set of rules necessary to bring the
output in sync with its dependencies.

Makefiles list dependencies among files. However, it is sometimes useful to collect
conceptual dependencies between targets that do not correspond to files. For such
cases, make provides “phony” targets, i.e., virtual targets that do not correspond to
files.

The dependencies among targets in a Makefile together form a build graph. This
is a Directed Acyclic Graph (DAG) that represents the dependency model of the build
system. The DAG can differ between build executions depending on the targets that

are out-of-date, or differences in the selected tools and configurable features.

2.3.2 ANT

ANT, an acronym for Another Neat Tool, was created by James Duncan Davidson in
1999. He was fed up with some of the inconsistencies in the make build language [47],
which was and still is the de facto standard among build system languages for C
and C++ projects. Although make pioneered many build system concepts, there are
serious flaws in its design, such as the inherent platform dependence of commands in
build rules and the common recursive architecture found in many make-based build

systems [43]. To resolve these flaws, ANT was designed to be small, extensible, and



CHAPTER 2

BACKGROUND AND DEFINITIONS 15

build.xml

<project name="example" default="link">
<property name="blddir" location="build" />
<property name="classes" location="${blddir}/classes" />
<property name="dist" location="${blddir}/dist" />

<target name="init">
<mkdir dir="${blddir}" />
<mkdir dir="§{classes}" />
<mkdir dir="${dist}" />
</target>
<target name="compile" depends="init">
<javac
destdir="${classes}"
srcdir="maindir"
includes="**/* java"

Coompile> |

<ant
antfile="sub/build.xml"
target="compile"

/>

sub/build.xml

<project name="example-sub" default="compile">
<target name="init">
<echo message="In sub/build.xml" /> }
</target>

<target name="compile" depends="init">
<javac
destdir="${classes}"
sredir=""
includes="**/* java"
/>

</target>
</project>

build.xml  sub/build.xml

(1)

</target>

<target name="link" depends="compile">
<jar
jarfile="${dist}/example.jar"
basedir="${classes}"
/>
</target>
<target name="clean">
<delete dir="${blddir}" />

Cinit D
@y

@ -----= References
© @) —» Follows

Figure 2.3: Example ANT build.xml files (left, top-right) and the resulting build
graph (bottom-right). The build graph has a depth of 2 (i.e., “compile”
in build.xml references “init” in sub/build.xml) and a length of 5 (i.e.,

execute (1), (2), (3), (4), then (5)).

</target>
</oroiect>

operating system independent. Still, many of the concepts introduced by make survive
in ANT. An example ANT specification file and the resulting build graph is shown
in Figure 2.3.

An ANT build system is specified by a collection of XML files. <project> tags
contain all of the build code related to a software project. In ANT, a target does not
correspond to a file, but to a sequence of related conceptual tasks (c.f., phony targets
in make), such as “compile all source files” (“compile” <target> in Figure 2.3) or
“collect all class files in a jar archive” (“link” <target> in Figure 2.3). <task> tags
represent atomic commands inside a build <target>’s build rule. A task may “create
a directory” (“mkdir” tasks in the “init” target of build.xml) or “run the compiler

on the given set of source files” (“javac” task in the “compile” target of either XML



CHAPTER 2 BACKGROUND AND DEFINITIONS 16

file). The <task> is the most fine-grained element in an ANT build specification file.

The ANT build language comes stocked with a library of common build <task>s.
If a <task> implementation does not exist, ANT provides an Application Program-
mer Interface (API) for developing expansion tasks. The Task API, like the ANT
parser itself, is implemented for the Java SE platform.

Targets may “depend” on one another. Using these dependencies, a graph may
be constructed. We only provide an example of such a graph using an ANT script,
however this same concept may be applied to targets in many build languages.

Consider the build graph shown in the bottom-right section of Figure 2.3. In this
example, ANT has been instructed to execute the “link” target, yet its dependencies
must be satisfied first. The “link” target depends on the “compile” target, which in
turn depends on the “init” target.

Targets may also depend upon targets in other build files. Build developers often
leverage this feature to preserve build system modularity. As an example of a depth
dependency, the “compile” target (via its <ant> task) depends on another “compile”
target in a different specification file (i.e., sub/build.xml). The “compile” target may
depend upon “compile” targets in subdirectories of the “sub” directory producing a
chain of depth dependencies.

The build graph shown in Figure 2.3 is said to have a length of five since five targets
were triggered, and a depth of two since two was the maximum depth encountered in

the graph.



CHAPTER 2 BACKGROUND AND DEFINITIONS 17

2.3.3 Maven

Maven was created with build process standardization in mind, since many Java
projects of the Apache foundation shared similar ANT scripts [6]. The Maven build
process is called the Build Lifecycle. A lifecycle is composed of one or more se-
quential phases. For example, a simple lifecycle may contain (1) a “compile” phase
where source code is compiled into bytecode, followed by (2) a “package” phase where
bytecode is bundled into a deliverable format.

Each build phase may have zero or more sequential goals bound to it. A phase
without any goals bound to it is skipped during the build, however those with one or
more goals bound execute these goals during the build. For example, the “compile”
phase may (1) enforce a coding style standard by binding an “enforce” goal to it,
then (2) compile the source code by binding a “compile” goal to it. Each goal is
implemented in a Maven plugin.

The build lifecycle is composed of 23 phases. A subset of the 23 phases is bound to
default goals depending on the deliverable package type. The studied Maven projects
use JAR packaging, and as such, use the JAR package phase-to-goal bindings outlined
in Table 2.2.

Additional goals may be bound to lifecycle phases by configuring additional Maven
plugins in build specification files. For example, integration testing may be executed
during the build process by loading an appropriate plugin and binding an integration
testing goal to the integration-test lifecycle phase.

Maven prescribes to the design principle of “convention over configuration”. A
project that is built with Maven can minimize the amount of build code necessary by

conforming to the Maven convention. Deviation from the Maven convention requires



CHAPTER 2 BACKGROUND AND DEFINITIONS 18

Table 2.2: The Maven default lifecycle for JAR packages.

Phase Description
process-resources Pre-process the resource files.
compile Compile the source code.

process-test-resources Pre-process the test resource files.

test-compile Compile the test code.
test Execute the unit tests.
package Package the compiled code into the de-

liverable format.

install Install the deliverables in the local
Maven repository.

deploy Upload the installed deliverables to a
remote repository.

additional build code.

In addition to build process standardization through the build lifecycle, Maven
also features automatic management of third party libraries. Java projects often
struggle with managing these external dependencies, often opting to either (1) commit
the exact versions of the libraries into the project’s VCS, or (2) download them
automatically using hard coded ANT targets. Maven provides support for specifying
required versions and sharing them in a local cache repository for use in all Maven-

built projects.



CHAPTER 2 RELATED RESEARCH 19

2.4 Chapter Summary

This chapter lays the foundation necessary for the remainder of the thesis. We first
defined the build system and discussed its impact on various stakeholders in the soft-
ware development process. Next, based on prior research, we established a reference
architecture for build systems. Finally, we introduced the three build technologies
that are used to implement build systems in the studied projects.

In the next chapter, we discuss the prior research that has been performed involv-

ing the build system.



Chapter 3

Related Research

The study of history is a powerful
antidote to contemporary arrogance.
It is humbling to discover how many
of our glib assumptions, which seem
to us novel and plausible, have been
tested before, not once but many
times and in innumerable guises;
and discovered to be, at great
human cost, wholly false.

Paul Johnson

In this chapter, we present a survey of prior build system research. In performing

the survey, we identified two common research topics:

1) Build system design

2) Build system evolution

The remainder of the chapter discusses the prior research with respect to these

two topics.

20



CHAPTER 3 RELATED RESEARCH 21

3.1 Build System Design

Build system design is critical. Just as design and architecture bugs are more expen-
sive than implementation bugs in source code [38], the same is true for build systems.
Neglecting to carefully design the build system may result in a highly complex build
system implementation that is difficult to maintain and requires a considerable in-

vestment of effort to restructure.

3.1.1 Analysis of Design

De Jonge showed that the lack of modularity in build systems limits the reusability
of software components, since components cannot be built independently [13, 14]. To
remedy this, de Jonge proposes the use of Component-Based Software Engineering
(CBSE) principles in the design of build systems, i.e., build systems should consist
of build components that communicate through a standard public interface. Such
a design allows the build component implementation to vary independently of the
build interface. A large-scale case study on Mozilla [44] shows that CBSE-based
build systems can improve the reusability of software components.

Adams et al. present MAKAO (Makefile Architecture Kernel featuring Aspect
Orientation), a design recovery tool for make-based build systems. MAKAO visualizes
build targets executed during an execution of a make build. MAKAO is useful for
restructuring, since it models concrete executions of the build process. The produced
model can be queried and filtered, allowing users to navigate and customize the build
visualization. Case studies of open and proprietary systems, such as Linux and the

Kava system, show that make-based build systems can be very complex.



CHAPTER 3 RELATED RESEARCH 22

De Jonge and Adams’ findings show that build systems for large projects have
complex and non-trivial designs and implementations. Intuition suggests that these
complex build system designs require careful maintenance, which would induce an

overhead on the development process (c.f., our research hypothesis).

3.1.2 Patterns and Pitfalls

Software designers use design patterns [21] and avoid anti-patterns [19] to improve
the design of software. The following studies investigate similar patterns in build
system design.

Miller presents a study of make build systems implemented using the common “re-
cursive make” paradigm and argues that it should be considered an anti-pattern [43].
Traditionally, UNIX software projects use the recursive make technique to transform
source code into deliverables. As these projects age, their recursive make systems
begin to exhibit symptoms such as slow performance, incomplete or highly redundant
builds, and build sensitivity to irrelevant changes in the source code. Miller attributes
these symptoms to the recursive make technique itself when used in an unbounded
fashion.

Conversely, Tu et al. [61] discuss the code robot, a build system design pattern
with a positive effect on a build system structure. A code robot is a program that is
built during an initial phase in the build process and used in later phases to generate
platform-specific code from code templates. Use of the code robot pattern allows
development teams to avoid having to ship and maintain dozens of platform-specific
files in the project VCS. The GCC [23] and Perl [53] projects provide examples of

the code robot. In GCC, the code robot comprises a smaller version of GCC used



CHAPTER 3 RELATED RESEARCH 23

to build the remainder of the compiler collection. Similarly, in Perl, the code robot
is used to build a small Perl interpreter that interprets Perl scripts containing build
tasks.

Adherence to patterns and avoidance of anti-patterns further suggests that the
build system design process is non-trivial and imposes an implicit overhead on the

development process (c.f., our research hypothesis).

3.1.3 Build Performance

The build system is an important part of software development and maintenance.
After completing a code fix, developers must run the build process in order to test
the changes. While the build process is executing, the developer must wait. If the
build process is slow, this idle period is extended, frustrating developers and slowing
development progress. The time consumed by the build process is a perceived form
of build system overhead. Hence, we survey related work in the field of build process
acceleration.

There is much work on build acceleration strategies. Build tools such as make,
ANT, and Maven operate incrementally by examining the last modification time of
target output and input, executing only the smallest list of commands necessary to
bring the deliverable artifacts up-to-date. The SCons [31] build tool uses checksums
of each file to avoid performing link commands when only code comments have been
modified. Adams et al. empirically evaluate strategies for accelerating the build pro-
cess [3]. Yu et al. improve both incremental and fresh build speed by automatically

removing unnecessary dependencies between files [65] and redundant code from C

header files [64].



CHAPTER 3 RELATED RESEARCH 24

Improving build performance is a means of mitigating the considerable impact that

the build system imposes on development stakeholders (c.f., our research hypothesis).

3.2 Build System Evolution

Lehman et al. present observations of program evolution in their body of work, com-
monly referred to as “Lehman’s Laws” [8, 33, 34]. In this thesis, we focus on the first

two laws:

1) A program evolves due to changes in its environment, e.g., platform upgrades, new

customer requirements.

2) Due to the modifications induced by law 1, the program grows in complexity.

Lehman et al. recorded these observations by analyzing large, proprietary software
systems as they aged during the 1970’s and 1980’s. Godfrey et al. verified these results
for open source systems [24].

Similar environmental factors that cause software systems to evolve (law 1) are
also present for build systems. Since transforming source code into a usable artifact
is the main goal of the build system, the source code is a part of the environment of
a build system. Hence, source code evolution may act as a catalyst to the evolution
of build systems.

Furthermore, build systems have two dimensions in which they may evolve: (1)
A static dimension that evaluates the static characteristics of the build system speci-
fication files, and (2) A dynamic dimension that evaluates the build system run-time

execution properties. The below subsections discuss studies of each dimension.



CHAPTER 3 RELATED RESEARCH 25

3.2.1 Build Specification Evolution

Build specification evolution is evaluated by analyzing changes in source code met-
rics adapted for use with build systems. The use of source code metrics is justified
since build specification files share many similarities with source code implemented
in an interpreted programming language. Case in point, the SCons build language is
entirely based on the Python programming language.

Zadok studied the effect of changing build technology. He examined the static size
and complexity of the Berkeley Automounter build system [66]. He found that the
build system was growing in size and complexity until a build technology migration
from make to GNU Autotools. The migration reduced the size and complexity metrics,
which encourages other project maintainers to migrate to Autotools. While the paper
does not consider the development investment that was required to migrate build
technologies, the paper does hint that build systems have a tendency to grow unless
disturbed by major project restructuring.

Adams et al. studied the static evolution of the Linux kernel build system, which is
implemented using make [2]. They found that the Linux kernel build system is growing
exponentially in terms of the Build Lines of Code (BLOC). Godfrey et al. [24] found
that the Linux source code also grows exponentially in terms of LOC. Furthermore,
the build and source code appear to grow together or shrink together, suggesting that
source code and build system co-evolve.

In summary, not only do make-based build systems appear to evolve [66], but
they appear to co-evolve with project source code [2]. That is, changes in the source
code often induce changes in the build system, and vice versa. We conjecture that

this co-evolution imposes an overhead on the development process (c.f., our research



CHAPTER 3 RELATED RESEARCH 26

hypothesis).

3.2.2 Build-time Evolution

Build-time evolution is observed by analyzing the results of build execution. Such an
analysis is not representative of the entire build system, but rather a single path of
possible build execution. The studies below focus on a single build configuration with
a consistent build environment, i.e., the same operating system, versions of third-
party libraries, etc. The evolution is observed using metrics intuitive to the data,
e.g., the number of executed targets (build length).

Using the MAKAO tool [1], Adams et al. study the number of targets and de-
pendencies in executed builds of different versions of the Linux kernel [2]. They find
that there was a large structural change from the 2.4 version to the 2.6 version of
the Linux kernel. Using the querying capabilities of MAKAOQO, they identify the root
cause of the change in build system structure.

The changes to build system structure required a large investment of developer
effort over three years of development of the Linux kernel (c.f., our research hypoth-

esis).

3.3 Chapter Summary
In this chapter, we survey prior work focused on two topics:

3.1) Build system design

Findings — Build system design is critical to the smooth evolution of source



CHAPTER 3 JAVA BUILD SYSTEM EVOLUTION 27

code. A poorly designed build system can limit the reusability of software com-

ponents [13, 14] and produce incorrect artifacts [43].

3.2) Build system evolution
Findings — make-based build systems for C projects evolve [66], and furthermore,

appear to co-evolve with the source code at the release-level [2].

This thesis focuses on further expanding upon the impact that the evolution of
build systems has on source code development. In the next chapter, we evaluate build
systems for Java projects to find out whether prior evolution findings for make-based

build systems at the release-level [2, 66] apply to Java build systems as well.



Chapter 4

Java Build System Evolution at

the Release-level

I suspect one of the reasons that
[build systems] mushroom so much
1s that most people don’t understand
[them well] enough, so they just
take an existing example and hack
some more into it (sic).

Anonymous developer

In the prior chapters, we have introduced the build system and related terminology
(Chapter 2), as well as surveyed the prior research (Chapter 3). We found that little
is known about the evolution of the Java build systems as a project ages. Adams
et al. made initial findings in the Linux kernel, which suggest that the build system
evolves across major releases [2]. Zadok also found evolution-like patterns in the
Berkeley automounter build system across major releases [66]. However, this research
is limited to make-based build systems for C projects and to the release-level (more

on this in the next chapter).
28



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 29

Little is known about build specifications for Java projects. Java is a popular
programming language that is used both in industry and academia. Similar to C
source code, Java source code must be compiled and linked before it can be delivered
to end users. Hence, Java projects also require build systems to translate source
code files into deliverable bytecode. However, the Java compiler differs from the C
compiler in two ways: (1) a single invocation of the Java compiler will automatically
resolve dependencies between all of the input source files, while the C compiler must
rely on external dependency management through build tools like make, and (2)
Java compiler invocations are expensive, since the Java Virtual Machine (JVM) must
be started before and shut down after each invocation [15]. For these reasons, we
conjecture that Java build systems require less maintenance than C build systems,
since the compiler performs tasks formerly required of the construction layer.

In order to validate our hypothesis, i.e., build system maintenance plays an impor-
tant role in software development, we expand upon prior work on make-based build
systems for C projects [2, 66] by studying the evolution of Java build systems across
software releases. An earlier version of this study was published at the 7th IEEE
Working Conference on Mining Software Repositories [39]. A more recent extension
is under review for a special issue of the journal of Empirical Software Engineering [40].

To focus our analysis, the release-level study addresses two research questions:

RQ1) Do the static size and complexity of source code and build systems
evolve similarly?
Motivation — Traditionally, evolution studies measure evolutionary trends in
source code metrics to analyze how projects evolve. In our case, we need to

study the evolution of specialized complexity measures for build systems. In



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 30

RQ2)

addition, we need to analyze how the evolution of build systems is related to
that of the source code in order to: (1) validate earlier build system findings
for make-based build systems, and (2) contrast the evolution of build systems

against the evolution of source code.

Findings — The static analysis of build system specifications in this chapter
not only shows that Java build systems follow linear or exponential evolution
patterns in terms of size and complexity, but also that such patterns are highly

correlated with the evolution of the Java source code.

Does the build-time complexity evolve?

Motivation — Measuring dynamic properties of a build system provides a com-
plementary perspective of the complexity of a build system. We define dy-
namic complexity as the amount of build code that a typical build exercises
and the time elapsed during a typical build. Intuition suggests that as a build
executes more build code and takes longer to complete, it grows in complexity.

We investigate whether this complexity exhibits evolutionary trends.

Findings — The dynamic analysis of Java build systems in this chapter does not
reveal a common pattern in the studied projects, although we observe linear
growth and other interesting trends in build-time length, recursive depth, and

build coverage dimensions.

The chapter is organized as follows. Section 4.1 discusses the setup of our case

studies on six open source Java projects. Section 4.2 presents the results for our case

studies of ANT build systems, and Section 4.3 presents the results of our case studies

of Maven build systems. Section 4.4 compares the case studies of ANT and Maven



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 31
Documentation,

Release | |- Data Retrieval 2. Evolution Metrics
Archive Commit
— Logs, ...
L __L Code_ L __ Static N
P Analysis Metrics S~ - N
<7 T~ Analysis
~ | Results

RN -
N — -
- ——5\ Runtime __ 2| pynamic Y-~ Authors
Analysis Metrics

Figure 4.1: Overview of our approach for studying the release-level evolution of Java
build systems.

3. Data Analysis

»

\
ZIA||\) -
7\
AN A
N
7N
)
\
\
\
\

build systems, and furthermore compares our Java case studies to prior work on C

build systems. Section 4.5 concludes the chapter.

4.1 Case Study Setup

We track the evolution of software build systems across release snapshots of six open
source Java projects. There are some existing metrics from the source code domain
that we can study across time, but we also need to define metrics that are customized
to the domain of build systems. The focus of these metrics is on the identification of
trends related to RQ1 and RQ2. An overview of our approach is shown in Figure 4.1.

The remainder of this section discusses each step in our approach:

4.1.1) Data Retrieval
Release snapshots are gathered from project release archives and version con-

trol systems (VCS).



CHAPTER 4

JAVA BUILD SYSTEM EVOLUTION 32

Table 4.1: Metrics used in release-level build system analysis

[ Group Metric [ Description
Build Lines of Code (BLOC) The number of lines of code in build specification files.
Target Count The number of build targets in the build specification files.
Static Task Count The number of tasks in the build specification files.

File Count The number of specification files in the build system.

Halstead Complexity The quantity of information contained in the build system (Volume),
the mental difficulty associated with understanding the build system
specification files (Difficulty), and the weighted Difficulty with re-
spect to Volume (Effort).

Dynamic Build Graph Length The length of a build graph, either in terms of the total number of

executed tasks or of the total number of executed targets.

Build Graph Depth

The depth of a build in terms of the maximum level of depth refer-
ences made.

Target Coverage

The percentage of targets in the build system that are exercised by
the default or clean targets.

Dynamic Build Lines of Code
(DBLOC)

The percentage of code in the build system that is exercised by the
default or clean targets.

4.1.2) Evolution Metrics

A set of metrics are calculated for each release snapshot.

4.1.3) Data Analysis

We analyze the set of releases using the calculated metrics, investigating trends

and anomalies.

4.1.1 Data Retrieval

In order to validate our hypothesis, this chapter starts with a course-grained analysis

of build system evolution. We consider official software releases of a project to achieve

this the level of granularity.

We consider each type of release equal, including major releases that increment

the first digit in the version numbering of a project, minor releases that increment the

second digit, and service pack releases that increment the third digit. For example,

Eclipse release number 3.2.1 is major release number 3, minor release number 2, and

service pack 1.




CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 33

For each project, a collection of source code snapshots were retrieved correspond-
ing to official project releases. These releases were downloaded from the official release
archives, except for the ArgoUML and Hibernate data, which was retrieved from the
project VCS. The released versions of ArgoUML and Hibernate are easily retrieved,

since they are marked with annotated tags in the respective repositories.

4.1.2 Evolution Metrics

In our study, we use various static and dynamic metrics to quantify a wide variety
of build system characteristics across the release snapshots. The metrics are summa-
rized in Table 4.1. BLOC, build target/task/file count, and Halstead complexity are
gathered statically. Dynamically, build system content is measured with the length
and depth dimensions of the build graph. Metrics such as BLOC, file count, DBLOC
and the Halstead suite of complexity metrics are inspired by corresponding source
code metrics, whereas others, such as target count and task count were used in earlier
studies [2]. Build graph depth and target coverage are new metrics proposed by this
study.

Most of the metrics are self-explanatory, except for the Halstead complexity met-
rics, as we had to adapt their definition from source code to build systems. To our
knowledge, the notion of such an explicit metric for static build system complexity
is new. We use a source code metric to measure the complexity of build files be-
cause build specification files share many similarities with source code implemented
in an interpreted programming language. With this in mind, we conjecture that build
system complexity can be measured using source code complexity metrics on build

system description files.



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 34

Since establishing a definitive measure of static complexity for build systems is not
the focus of this thesis, we only focus on the Halstead suite of complexity metrics [27].
In future work, we plan to examine the McCabe cyclomatic complexity [37] and how
it applies to build systems, although results of our case study indicate that (similar
to source code (25, 56]), size metrics already provide a good approximation of build

complexity metrics.

Halstead Metrics

We now define the Halstead suite of complexity metrics for build system languages.

The Halstead complexity metrics measure [27]:

Eq 4.1) Volume
How much information a reader has to absorb in order to understand a

program’s meaning.

Eq 4.2) Difficulty
How much mental effort a reader must expend to create a program or un-

derstand its meaning.

Eq 4.3) Effort

How much mental effort would be required to recreate a program.

Each Halstead metric depends on four tally metrics that are based on programming
language characteristics. First, we must tally the number of operators, i.e., functions
that take input parameters to produce some output. Within the scope of build
systems, we consider an operator as any target or task in ANT or any XML tag in

Maven.



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 35

Next, we must tally the number of operands used in the source code. Within the
scope of build systems, we consider operands as the parameters passed to a target or
task tag in ANT or any child tag in Maven.

Tallies of both the operators/operands that occur at least once (nl or n2) and
the total number of operators/operands (N1 or N2) are collected. The four tallies are

described below:

e nl — The number of distinct operators.
e n2 — The number of distinct operands.
e N1 — The total number of operators.

e N2 — The total number of operands.

These tallies are then used to calculate the Halstead volume, difficulty, and effort

as follows:

Volume = (N1 4+ N2) x logy(nl + n2) (4.1)
1 N2

Difficulty = o x —— (4.2)
2 n2

Effort = Difficulty x Volume (4.3)

4.1.3 Data Analysis

As suggested by our choice of metrics in Table 4.1, we analyze each release snapshot

from two perspectives.



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 36

RQ1)

RQ2)

Static analysis

Build system files and program source files (including unit tests) of each release
are examined statically. We measure the size of the source code (SLOC) so
we can compare it against the size of the build system (BLOC). SLOC was
measured using David A. Wheeler’s sloccount utility [63]. We developed a
SAX-based Java tool to measure static build metrics such as target count,
task count, and the Halstead complexity of build system specification files.
Since comment and whitespace lines are discarded by the sloccount tool, our
BLOC count also discards them using a sed script. The surviving lines are

tallied using wc.

Dynamic analysis

The build system of each release was exercised using the default build config-
uration [2] and the results were logged. The ANT output was exported to an
XML log using the built-in ANT XML logger (-logger XmlLogger). The Maven
output was exported in text, since Maven does not support XML output. The
log of a build embodies the dynamic build graph. To analyze the graph, we
extended our Java tool to calculate dynamic metrics such as target coverage,
build graph length and depth in terms of both targets and tasks, and the time

elapsed during the build.

Historical project documentation such as mailing list archives, release notes, and

source code revision comments were consulted in order to investigate our findings for

RQ1 and RQ2.



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 37
Table 4.2: Java projects studied at the release-level
= ) o
p= 5 =
D & . 2 3 E
o 9] 2 ) o
&0 = o = 0 5
S o) m [3) o Q
< = - 3 am &}
Build Tech. ANT ANT ANT ANT | Maven  Maven
. UML Web App IDE ORM App
Domain Editor  Container  Server Server
Max. Source Size
(KSLOC) 176 277 731 2,900 328 219
Max. Build System
Size (KBLOC) 6 11 29 200 3 30
Timespan 2002-09 1999-09 2002-09  2001-09 | 2008-10  2006-10
Number of 12 90 25 25 9 11
Releases
Shortest Rel.
Cycle 53 days 2 days 13 days 32 days | 15 days 8 days
g(;réingt Rel. 593 days 714 days 398 days 176 days | 286 days 328 days
é;’ifjge Rel. 228 days 95 days 130 days 110 days | 91 days 100 days
Release Style Single Parallel Parallel Single Parallel Single

4.2 ANT Case Study

In this section, we present the results of our ANT case study with respect to our two

research questions.

4.2.1 Studied Projects

We selected four open source projects built using ANT with different sizes, domains,

and release styles. Table 4.2 summarizes the characteristics of the projects.

ArgoUML is a Computer Aided Software Engineering (CASE) tool for producing



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 38

2 2

15 (1) ArgoUML (c) #-4 15 (2) Tomeat L 444+
3 1 o 1 e
g 05 S 05
E 0 3 0
5 -05 S 05 = BLOC (4.0.x)
5 -1 s 1 +-SLOC (4.0.x)
€ 15 = BLOC ® s ¥ BLOC (4.1.x)
& o +SLOC g S -+ SLOC (4.1.x)

25 -2.5

13/01/02 09/10/04 06/07/07 01/04/10 19/04/00 14/01/03 10/10/05 06/07/08

Time Time

3 3 -

25 ()/n"  (g)s .  =BLOC(4x) 25 (4) Eclipse (h)/ 2
o 2 \ /\ " +SLOC (4x) o 2 I
=) =)
< 15 (5.x) < 15
> (5:) 2 1
8 ©
g o5 ® o5
T o T 9
8 .05 3
2 ‘ S -05
g -1 4 8
has (3) JBoss Z

2 '_2

14/01/04 28/05/05 10/10/06 22/02/08 06/07/09 18/11/10

Time 02-01-13 04-10-09 L~ 07-07-06 10-04-01

Figure 4.2: Standardized BLOC and SLOC values. In most projects, the source code
and build system evolution trends are very similar. Anomalies are dis-
cussed in the text.

Unified Modelling Language (UML) diagrams. Tomcat is popular implementation of
the Java Servlet and Java Server Pages (JSP) technologies. JBoss is a well-known

Java Application Server. Eclipse is a general-purpose Integrated Development Envi-

ronment (IDE) developed by IBM.

4.2.2 Do the static size and complexity of source code and

build systems evolve similarly?

We explored the evolution of ANT build system specification files from three angles.
First, we use Figure 4.2 to show a general trend of increasing size in the four projects,

then we use Table 4.3 and 4.4 to show that there is a strong correlation between the



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 39

Table 4.3: Correlation of static size metrics (ArgoUML, Tomcat, JBoss, and Eclipse).
Most size metrics have a high correlation (> 0.8). Those that do not are
printed in bold.

Task Count File Count
= =
) +~
2 8§ gz E|R & g £
P : & £ |2 F 2 =
< = - &) < = - €a)
Target Count 099 0.99 088 097 | 098 0.99 0.75 0.98
Task Count 0.95 098 0.64 0.99
BLOC SLOC
= =
+ +~
= 8§ g &2 § g &
= 5 8 5|2 & & 32
< = - €a) < = - €a)

Target Count 0.98 099 0.40 098 | 0.78 097 0.89 0.95
Task Count 1.00 1.00 0.15 1.00 [ 090 097 0.78 0.99
File Count 094 099 0.59 099 | 0.88 098 0.8 0.98

BLOC 0.89 098 0.40 0.99

growth in the static size and in the complexity of a build system, and finally we use
Figure 4.2 and Table 4.3 again to show that the build system and source code show
similar evolutionary trends in terms of size.

ANT Build systems grow in size: In Figure 4.2, we plot the standardized
BLOC and SLOC metrics so that we may compare these two metrics in one graph,
as SLOC values have a much higher scale than BLOC values (see Table 4.2). This
standardization is calculated by weighting each data point in terms of its distance
from the average BLOC or SLOC across all releases of a system. The standardization
is measured in units of standard deviation from the mean (i.e., Y = =£).

In the JBoss and Tomcat projects, multiple release branches are supported in
parallel. For example, JBoss developers produce service packs for the JBoss 4 and
JBoss 5 releases simultaneously. For these projects, we standardize values with respect

to each branch rather than across all releases. A logarithmic transformation was

explored, but we found that it compressed many of the subtle characteristics of the



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 40

trends.

The BLOC of ArgoUML in Figure 4.2 shows a clearly increasing trend with the
exception of one period in between releases 0.18.1 and 0.20 (Figure 4.2(b)). During
this period, ArgoUML underwent a restructuring where modules for C# code gen-
eration and internationalization were migrated from the main ArgoUML repository
into separate repositories. In doing so, the ArgoUML team seized an opportunity to
revise the associated build specifications for these modules. As a result, the overall
build system size was reduced. The ArgoUML team confirmed our findings.

Tomcat shows two unique trends of growth in BLOC. In the 4.0.x releases, the
build system was initially subject to a rapid growth (Figure 4.2(d)). This was due
to extensive work in the Catalina subproject. 568 lines of BLOC were added to
implement configuration detection and release packaging logic in the Catalina build
specification file. This period of rapid growth was followed by a rather calm period
where only critical bug fixes were committed to the branch as it neared the end of its
maintenance life. The 4.1.x branch begins its life with a calm period, followed by an
18-month hiatus between revisions 4.1.31 and 4.1.32 (Figure 4.2(e)) as Tomcat moved
out of the Jakarta project and was rebranded as a standalone Apache project. This
period shows an explosive increase of both BLOC and SLOC as a result of the 18
month project structure overhaul. After the restructuring was complete, the branch
returns to a relatively calm progression as it approaches its end of maintenance life.

Restructuring efforts shown in Figure 4.2(f) and Figure 4.2(g) skew the first half
of the results in JBoss, which otherwise has an increasing trend in BLOC. During
Figure 4.2(f), an entire rewrite of the enormous test suite build specification file re-

sulted in the removal of approximately 5,000 BLOC. During Figure 4.2(g), code for



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 41

supporting JAX-RPC was moved out of the main JBoss project and into a separate
plugin project called JBoss WS (Web Services). In addition, the ‘common’ module
was removed and its source code was integrated into other areas of the project hier-
archy. As a result, the main JBoss project lost two build specification files and 568
BLOC.

Figure 4.2 shows that the Eclipse build system is growing in terms of BLOC.
Further inspection of the trend in Figure 4.3 shows that the Eclipse build system is
actually growing exponentially. This exponential trend is accounted for by the plugin
nature of Eclipse. The Eclipse project maintains a modular and self-contained build
system for each plugin. The top level of the build system simply chains together the
builds for each plugin. It then follows that with each new plugin added, a large amount
of build code is also introduced. As popularity rises and more plugins make their way
into the Eclipse project mainline, these new plugins introduce with themselves more
build code. This suggests that the exponentially rising trend in build system size
strongly correlates with the trend in the number of plugins per release, which is also

growing exponentially.

Similar to Lehman’s first law of software evolution, build system speci-

fications tend to grow over time unless explicit effort is invested to re-

structure them.

All dimensions of ANT build systems grow: Table 4.3 shows the Pearson
correlation between the static size metrics for each studied system. With the exception
of the JBoss project, which will be discussed later, the high correlation values indicate
that BLOC, target and task count evolve similarly. Since the general trends of BLOC

are growing, we can say that all dimensions of the ANT build systems grow.



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 42

250000
B BLOC
200000 . Exponential
Regression
150000 for BLOC
100000
50000
I Sy |
_ mpmp BEEH
0
13/01/02 09/10/04 06/07/07 01/04/10
Time

Figure 4.3: The exponential trend in Eclipse BLOC. The trend line has an R? value
of 0.98.

We find that the Halstead complexity metrics follow trends similar to BLOC.
Table 4.4 shows, for each studied system, the Pearson correlation between each Hal-
stead complexity metric and the BLOC. With the exception of the JBoss project,
our results indicate that build specification complexity metrics are highly correlated
with build specification size metrics (BLOC). This result seems to agree with similar
findings from research in the source code domain [25, 56].

In the JBoss build system, the Halstead complexity metrics and build system
size are not highly correlated, as the JBoss build system is implemented using a
different style called JBoss buildmagic. It leverages the underlying XML roots of
ANT specification files to introduce a system of abstraction. The <!ENTITY > macro

substitution tag is used extensively to import build specification code from external



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 43

Table 4.4: Pearson correlation between Halstead Complexity Metrics (Rows) and
BLOC size (Columns).

ArgoUML Tomcat JBoss Eclipse

Volume 0.99 1.00 0.17 1.00
Difficulty 0.98 0.99 0.20 1.00
Effort 0.93 0.98 0.11 0.96

files, similar to header file inclusion in C. The expansion is performed at run-time.
This causes skew in our results since we study BLOC in the unexpanded build files,
whereas for the three other systems there is no difference between expanded and

unexpanded form.

The Halstead complexity of a build system is highly correlated with the

build system’s size (BLOC), indicating that BLOC is a good approxima-

tion of build system complexity.

Source code and ANT build system size are highly correlated: Based on
our observations of size and complexity trends, we are now able to verify whether
trends in the size of the build system coincide with trends in the size of the source
code. For each project, we: (1) calculate the Pearson correlation between BLOC and
SLOC, and (2) visually compare the trends of BLOC and SLOC in Figure 4.2.

Table 4.3 shows that BLOC and SLOC are highly correlated, suggesting that the
build system and source code tend to evolve together. Once again, the JBoss results
are skewed because of their <![ENTITY> code inclusion method.

Figure 4.2 illustrates the correlation between the growth in BLOC and SLOC
for the four subject systems. In most cases, the characteristics of the source code
and build specification curves are very similar, which suggests that build system and

source code are co-dependent. Deviations from the trend are analyzed by investigating



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 44

individual commits in the respective source code repositories.

In ArgoUML, anomalies occur at Figure 4.2(a), (b), and (c¢). During Figure 4.2(a),
a restructuring was performed where source code that was previously hard-coded in six
java source files, became automatically generated from an ANTLR grammar file. The
build specifications were updated to perform the Java code generation task. Hence,
we see an increase in BLOC and a sharp decrease in SLOC. During Figure 4.2(b),
C# code generation and internationalization modules were moved out of the main
ArgoUML repository and into individual repositories (as mentioned above) and the
test source code of the unit tests module was distributed across different areas of the
project hierarchy. The build specifications for the original unit tests module were
deleted. Since no source was removed in the restructuring process and development
work in other areas was continuing, we see an increase in normalized project source
code. During Figure 4.2(c), another restructuring effort was undertaken where the
documentation module was removed and placed into its own repository. In ArgoUML,
the majority of build system restructuring seems to be instigated by source code
evolution.

In the Tomcat project, the trends suggest that the source code and build system
are growing in sync with each other. The increases at Figure 4.2(d) (i.e., Catalina
subproject build growth) and (e) (i.e., Jakarta to Apache rebranding) are explained
above.

For the first of the parallel release branches of the JBoss project, it would appear
that there is little correlation between the BLOC and SLOC trends. During the
rewrite of the build specification file in the testsuite module in the Figure 4.2(f)

interval, the system source code was unaffected and hence was subject to the standard



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 45

growth. During Figure 4.2(g), JAX-RPC support was moved out of the main JBoss
project and as a result, the SLOC reduced by 72 KSLOC. These two events produce
considerable noise in otherwise highly correlated BLOC and SLOC trends.

In Eclipse, the trends in BLOC and SLOC are very similar. However, in be-
tween releases 3.5 and 3.5.1 (Figure 4.2(h)), we observe a sharp increase in BLOC
and a moderate increase in SLOC. The BLOC increase is due to the introduction
of a special plugin with the express purpose of driving the build system. The
org.eclipse.releng.eclipsebuilder plugin contains ANT code that invokes script gen-

erators to build all of the shipped Eclipse plugins. The plugin contains nine new

ANT files and 1,127 BLOC.
In most projects, BLOC and SLOC are highly correlated. Manual in-

spection suggests that many large restructurings in the build system are

caused by major restructurings in the source code.

4.2.3 Does the build-time complexity evolve?

We study the evolution of build-time complexity from three angles. First, we use
Figure 4.4 to show growth of build graph length and depth in the four studied build
systems, then we use Table 4.5 to examine the build recursion complexity, and finally
we analyze changes in target coverage.

ANT Build Graph Behaviour Analysis: We study the dynamic behaviour
of a build system, by examining changes to the standardized length and depth of its
build graph.

During Figure 4.4(a), ArgoUML shows a large change in both dimensions of the

build graph. This was caused by the introduction of new internationalization and



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 46

2 6 N
. (1) ArgoUML @ (2) Tomcat
: 7y (N 4
$ 1 @ g E I
8 0 ﬂ [ | -—.—I/kir
N = I
T 05 © 0 ™
S 3
- -1 c 2
= 15 & Length I | , & | ength
S 1. N - Depth w ' - Depth
(2] 2 ep 4 - P
13/01/02 09/10/04 06/07/07 01/04/10 13/01/02 09/10/04 06/07/07 01/04/10
Time Time
15 2 .
1 ,( ), o 6o o 15 (4) Eclipse LLALP
d o -
o =a J—
> 0 e > 0.5
- o 0. 000 000 00 O
o -05 Q L N
N A PN 0 06 S & Length (3.x) S 0
B @ Depth (3.x) G .05
3 15 I -0.
2 B Length (4.x) S 4 _ & Length
S 2‘2 A (3) JBoss * Depth (4.x) B . RS - Depth
01/09/02 14/01/04 28/05/05 10/10/06 22/02/08 06/07/09 19/04/01 14/01/04 10/10/06 06/07/09
Time Time

Figure 4.4: Standardized build graph dimensions (Dynamic analysis). Build graph
length (in targets) and depth. Linear regressions are plotted for the
dimensions in Eclipse, which have R? values of 0.94 (length) and 0.88
(depth).



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 47

unit test compilation targets that became part of the default build. The Figure 4.4(b)
interval corresponds to the Figure 4.2(b) interval. The restructuring of modules into
independent projects results in a considerable decrease in the build graph dimensions,
and hence build time of the main project.

Figure 4.4(2) does not show data for Tomcat 3.x, 4.x and 6.x because of an inter-
esting evolution. The Tomcat build system automatically downloads required third
party Java archives (.jar files) based on hard coded URLSs of the archived releases.
The hard coded URLs for Tomcat 3.x and 4.x have become stale by now, preventing
us from building these releases. The Tomcat 5.x URLs were still valid, allowing us to
build these releases. During Figure 4.4(c), Tomcat shows an increase in build graph
length and depth where a collection of third party library dependencies were, for a
brief period, built from source instead of downloaded prebuilt. The inability to build
Tomcat 3.x and 4.x shows that managing third-party dependencies is an important
driver for build system evolution. This is why the Maven build technology integrates
third-party library dependency management into the build system as discussed in
Section 2.3.3.

In JBoss 3.x, the trend in build graph length sees rapid change initially, followed
by a lull in later releases. However, JBoss 4.x shows a decrease in build length at (d)
due to the removal of the JAX-RPC support and its build files from the main project
at release 4.0.5 (mentioned above). JBoss 5.x is not plotted since only three releases
in this branch are analyzed and this is not enough data to derive a solid trend.

In the Eclipse project, we see a steady linear increase for both the length and

depth dimensions.



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 48

We found no general laws for build graph behaviour. Studied systems
show either increasing trends in build graph length, or periods of growth

and reduction. Trends are due to build restructurings or functionality

being added to the default build.

Constant Depth vs. Varying Depth: Figure 4.4 shows two distinct trends
in the build graph depth: (1) a near-constant depth (Tomcat and JBoss), and (2)
a varying depth (ArgoUML and Eclipse). Table 4.5 shows the Pearson correlation
between build graph depth and length metrics. The table indicates that the ArgoUML
and Eclipse builds grow similarly in both length and depth dimensions, while Tomcat
and JBoss do not. Manual investigation of the build systems of the projects reveals
that the ArgoUML and Eclipse builds are recursive, while the Tomcat and JBoss
ones are not. A recursive build process is one that divides the build process into
smaller builds of each component, and each component build is further divided into
builds of subcomponents, and so on. Conversely, non-recursive builds are performed
in one build process. We observe that the recursive builds vary in depth, while the
non-recursive builds have a constant depth. Through manual inspection of the release
snapshots, we find that only the Tomcat project briefly switched between recursive
and non-recursive build system designs early in the life of the project (Figure 4.4(c)).

Interestingly, Table 4.5 shows that the build length in targets and the elapsed time
in the ArgoUML build process are not correlated. Since ArgoUML is a relatively small
project, there is very little variation between the fastest build of 5 seconds and the
slowest build of 23 seconds. Hence, ArgoUML’s build is more susceptible to noise due
to process scheduling and other environmental factors.

As the Eclipse project ages, the maximum depth of recursion reached during



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 49

Table 4.5: Pearson correlation between dynamic metrics (Rows) and build graph
depth in each project (Columns). ArgoUML and Eclipse grow similarly
in length and depth, while Tomcat and JBoss do not. Anomalies for a
particular project are printed in bold and are discussed in the text.

ArgoUML Tomcat JBoss Eclipse

Elapsed Time 0.37 0.14 0.40 0.92

Build Graph Length 0.92 0.37 0.48 0.96
(Targets)

Build Graph Length 0.94 0.12 0.26 0.96
(Tasks)

its build process increases. This implies that as the project ages, the build pro-
cess actually grows in both length and depth dimensions. The build system had
grown to such a state that the Eclipse team has introduced in version 3.5.1 the

org.eclipse.releng.eclipsebuilder plugin mentioned earlier.

The studied projects either select a recursive design or a non-recursive
one. Once a design has been selected, the studied projects only switch

early in the life of the project (e.g., Tomcat), since design changes during

the implementation phase are not trivial.

ANT Build Coverage Behaviour Analysis: To study the dynamic coverage
of a typical build, we calculate the proportion of targets exercised in a typical build
relative to the total number of targets. We do not show a graph for coverage because
the values remain relatively constant unless a major event occurs.

In ArgoUML, the coverage varies between 14-29%, with two notable increases
of 7% and 8% corresponding to the project restructuring periods discussed earlier
(Figure 4.4(b) and (c)). The BLOC shrank during the restructuring, which implies

that the ArgoUML build system was bloated with unused code prior to the project



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 50

restructuring.

The coverage metrics in both Tomcat and JBoss are rather consistent at around
30% and 40% respectively. Minor fluctuations of 3% occur between release branches
(e.g., Tomcat 5.0.x to 5.5.x), however the major restructurings that were mentioned
above do not seem to have an effect on the build system coverage.

In Eclipse, there is one notable change in the otherwise constant coverage showing
an increase of 36% from 2.x to 3.x. This was caused by a decrease in the total number
of existing targets and an increase in the number of targets hit by the default build.
The decrease in total targets was caused by the removal of redundant build logic.
This indicates that while major changes were made to system functionality (enough to
warrant an increase in major release number), a similar amount of work was invested

in the build system.

Target coverage remains more or less constant for each project. Major
fluctuations of £10% correspond to major project events like restructur-

imgs and major releases, suggesting that build maintenance can impact

the performance of a build system as perceived by developers and users.

4.3 Maven Case Study

In this section, we present the results of our Maven case study with respect to our

two research questions, which are the same as for the ANT study.



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 51

o SBLOC (1) Hibernate (a) -
A sLoC b

0.5
|
>
()]
-
o
(@]
[e]

0.5

:\0\% )
S~—--BO

0.0
|
-0.5
1

Standardized Value
Standardized Value

-1.5
i
\»/,
>

-1.0
1

(2) Geronimo

-25
|

Ro—eo———2
T T T T T T T
2009 2010 2006 2007 2008 2009 2010

Time Time

Figure 4.5: Standardized BLOC and SLOC values for the Maven projects. Source
code and build system evolution trends are very similar.

4.3.1 Studied Projects

We selected two open source projects built using Maven with different sizes, domains,
and release styles. Table 4.2 summarizes the characteristics of the projects. Hibernate
is an Object-to-Relational mapping framework for Java programs, of which we studied
the “core” subsystem. Geronimo is a web application server.

Four of the studied projects use ANT as the build technology (ArgoUML, Tomcat,
JBoss, Eclipse), while only two studied projects use Maven (Hibernate and Geron-
imo). Since Maven is a newer build technology that is starting to gain momentum,

there is less project data available for analysis.



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 52

4.3.2 Do the static size and complexity of source code and

build systems evolve similarly?

We explored the evolution of Maven build specification files using the same three
angles as ANT. First, we use Figure 4.5 to show a general trend of increasing size
in the two projects, then we use Table 4.6 to show that there is a strong correlation
between the growth in the static size and complexity of a build system, and finally
we use Figure 4.5 and Table 4.6 again to show that the build system and source code
evolve similarly.

Maven builds also grow: Figure 4.5 shows that, similar to ANT and make,
the size of Maven-based build systems also grows over time. Below, we discuss the
anomalies in each project.

In May 2007, the Hibernate project migrated their existing ANT build system
to Maven build technology [17]. The exact motivation for the migration is unclear.
Hibernate version 3.3.0, which was released in August of 2008, is the first Hibernate
release that used the Maven build system to produce the official deliverables. In
Figure 4.5, we show only the Hibernate releases built with Maven, i.e., from version
3.3.0 onward. In this section, we analyze the Maven-built portion of the Hibernate
project evolution.

The Hibernate Maven build system shows consistent growth throughout it’s life-
time. The large spike in Figure 4.5(a) is due to major changes from the 3.3.2 to the
3.5.0 releases, while the smaller increases are due to small changes between service
pack releases (e.g., 3.3.x). Large changes to the build are delayed until a new minor

release (e.g., 3.5.0) in order to avoid breaking the existing build infrastructure of a



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 53

Table 4.6: Pearson correlation between BLOC (Columns) and the build system’s Hal-
stead complexity and SLOC (Rows). Anomalies in bold.

Hibernate Geronimo

Volume 1.00 1.00
Difficulty 0.99 0.33
Effort 1.00 0.84
SLOC 0.99 0.76

released branch.

The Geronimo project used Maven for their build system from project birth. The
Geronimo build is consistently growing, with the exception of the encircled 1.0 to 2.0
transition, when the build shrank (Figure 4.5(b). In Geronimo, the 1.0 build system
was implemented using Maven 1.x technology. In version 2.0, the Geronimo build
system was migrated to Maven 2.x technology, which required major build specifi-
cation changes [7]. Specifically, the project.properties and build.properties files are
merged into a settings.xml file, and the maven.xml and project.xml files are replaced

with the pom.xml file.

Maven builds grow unless explicit effort is invested to restructure them.

Maven specification static complexity evolves: Table 4.6 shows that, similar
to ANT build systems, the Halstead complexity of Maven specification files is highly
correlated with BLOC. Again, this is similar to prior work in the source code domain
that suggests that size is a good approximation for source code complexity [25, 56].

In Geronimo, we observe little correlation between BLOC and Halstead Difficulty
(0.33). The p-value for this metric was 0.30, much larger than the standard cutoff
of 0.05, indicating that this correlation is not statistically significant. The Pearson

correlation of the Volume and Effort Halstead metrics had p-values that were less



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 54

than 0.01, indicating that those correlations are statistically significant.
Since the studied build systems grow in size, and the build system complexity
metrics are highly correlated with the size, we can say that the studied build systems

also grow in complexity, as projects age.

Similar to findings in the source code domain [25, 56/, build system com-

plexity can be reasonably approrimated using size in BLOC.

Maven build growth is highly correlated with source growth: The positive
correlations in Table 4.6 also show that trends of growth or reduction in the source
code are often accompanied by similar trends in the build system. We encircle periods
in Figure 4.5 when the build and source code do not agree. Below, we elaborate on
each anomaly with respect to each project.

In Hibernate, most periods of growth in the source code have similar growth in
the build system. However, in the encircled period between releases 3.5.0 and 3.5.1,
the build grew quicker than the source code. The build files were modified to add
Groovy source code generation to the build process, which introduced a family of new
library dependencies to the build.

In Geronimo, the encircled discrepancy between build and source code was due
to the migration of Maven versions 1 and 2 mentioned above. Otherwise, the source

and build size trends are similar.

’ Source code and Maven build systems tend to grow and shrink together.

4.3.3 Does the build-time complexity evolve?

We study the evolution of perceived build system complexity in Maven build systems

using a similar approach as used to study ANT systems. We use Figure 4.6 to show



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 55

O Length o2 00ee

“| & Depth o°

0.5

0.5

- AA A M AANAA

0.0

- —A AN A-A——r- A

0.0

Standardized Value
. -0.5 X

!
Standardized Value

o]

_ /(1)Hibernate

(2) Geronimo
[ele] @—0
T T T T
2009 2010 2008 2009

-1.0

-1.0

-15

Time Time

Figure 4.6: Standardized build graph dimensions (Dynamic analysis).

the growth of build graph dimensions in the two studied build systems.

Similar to our ANT study, we measure two dimensions of Maven build graphs.
We measure the length of the build by counting the goals executed during the default
build, and we measure the depth of a build by counting the number of directories from
the deepest module containing a Maven specification file to the top of the source tree.
Figure 4.6 shows the standardized versions of these two build graph dimensions for
each release.

Since versions prior to 3.3.x of Hibernate were not built using Maven, we refrain
from presenting them in Figure 4.6. In Geronimo, builds prior to 2.x require libraries
that are no longer served in the Geronimo Maven repositories, hence we only present
Geronimo builds of the 2.x releases.

Maven build length slowly increases as a project ages: Figure 4.6 shows
growth in the length of a build as projects age. The steep increases in length happen
during minor release changes, i.e., 3.3.2 and 3.5.0 in Hibernate and 2.0.2 and 2.1.0 in

Geronimo. There is much less growth between service pack releases, e.g., 2.0.1 and



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 56

2.0.2 in Geronimo. There are fewer large changes in service pack releases, since they
are more likely to introduce defects [45]. Thus, there is little growth in the build
length since there is little new code to build. In minor and major releases, there are
larger amounts of source code change, and hence longer build lengths since the new

code must be compiled and linked.

Maven builds consistently grow longer as a project ages. There is much

more growth between minor releases than in between service pack releases.

Maven build depth remains constant: In Maven, multi-module builds may be
achieved using “Reactor” builds. In a Maven Reactor build, the top-level specification
file is parsed first. The specification lists any modules that must be built in order to
complete the build. The Maven process will then parse all of the module build files,
each of which may contain their own specification lists that are processed recursively
until there are no longer any module specifications to parse. The Maven process
then proceeds to execute the necessary goals in each module until the build request
is satisfied.

Figure 4.6 shows that depth is constant for both Hibernate and Geronimo projects.
This suggests that Hibernate and Geronimo do not need to grow deeper. This may
be due to the evolutionary activity before the period that we examine. For instance,
we study Hibernate builds 3.3.x-3.5.x. This means that Hibernate has had 2 major
releases, i.e., 1.x.x and 2.x.x, to solidify a source tree structure before we begin ex-
amining the build. Similarly, in Geronimo, we study the 2.x builds, leaving out the

1.x builds where much of the depth growth may have occurred.



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 57

The depth of the studied Maven projects does not change. More data is
necessary to support a hypothesis about the depth dimension in Maven

build systems.

4.4 Discussion

We divide our post-experiment discussion into (1) a comparison of our findings for
ANT and Maven build technologies, and (2) a comparison of our findings for Java

build systems to earlier findings for C and C++ build systems.

4.4.1 ANT and Maven comparison

We study the evolution of both ANT and Maven build systems in open source projects.
We find that both build system types: (1) grow as a project ages unless explicit
effort is invested to restructure them, (2) the build system size in BLOC is a good
approximation for build system complexity, and (3) build system and source code
grow together, and in cases when they disagree, they were often reacting to the same
development event.

Although the Hibernate project migrated its existing ANT build infrastructure to
Maven between versions 3.2.7 and 3.3.0, we are unable to directly compare the ANT

and Maven build evolution. Such a comparison would not be fair for three reasons:

1. While the ANT build was much smaller, only ever reaching 1,152 BLOC, it
provided much less functionality. Maven builds provide built-in mechanisms for

library dependency management, automated test execution, report publishing,



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 58

and website generation. While these three tasks are achievable in ANT, they

require a large investment of development effort.

2. The Hibernate migration to the Maven build was accompanied by a project
restructuring. The Hibernate ANT build only needed to produce client and back
end libraries, whereas the Maven build must produce several smaller libraries.
This decomposition of the larger libraries was done to allow Hibernate users to
only link their applications with those classes that they require. However, the
smaller source code components that produce the smaller libraries must also
have a build component to allow for seamless decomposition [14]. Thus, the
number of build files increased. Furthermore, we find that the last Hibernate
ANT build (version 3.2.7) had 288 BLOC/file on average in four files, and
the first Maven build (version 3.3.0) had 78 BLOC/file in 27 files. This drop
in average size was likely due to the restructuring effort and is likely not a
generalizable trend across all Maven migrations, however more case studies are

required to clarify this.

3. Due to Maven’s convention over configuration design principle, Maven build
systems inherently perform more functionality with less code than ANT build
systems. Hence, comparing the size of an ANT build system to the size of a

Maven build system is not productive.

4.4.2 C and Java build system comparison

We expected to find that Java build systems would require less effort to remain in

sync with the source code than C build systems for two reasons:



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 59

1. A single invocation of the Java compiler automatically resolves dependencies
between the input source files, while the C compiler must rely on external

dependency management through build tools like make.

2. Since the Java compiler invocations are expensive (the Java Virtual Machine
(JVM) must be started before and shut down after each invocation), build
developers capitalize on the Java compiler’s ability to compile many Java source

files in one invocation.

In this section, we compare our findings for Java to prior work on make-based C
build systems.

Adams et al. made three observations about the evolution of the make-based Linux
build system: (1) the Linux build system evolves, (2) the complexity of the build
increases over time, and (3) maintenance drives the evolution of the build system.
These findings are mirrored by our findings with both ANT and Maven build systems
for Java projects, i.e., both ANT and Maven build systems grow in size and complexity
unless explicit effort is invested to restructure them.

In the studied projects, we found that the build and source code grow at similar
rates when standardized (RQ1). This indicates that, similar to C build systems, effort
is still invested in keeping the build in sync with the source code. However, there are
differences in the driving motivations of the evolution. For instance, in make, there
are serious flaws in the common recursive make paradigm used to implement modular
make-based build systems [43]. The Linux build engineers invested much effort in
maintaining a modular build system that is not susceptible the flaws associated with
recursive make [2]. Build system modularity support is built into ANT via the <ant>

task, and into Maven via Reactor builds. Modularity support provided by ANT



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 60

and Maven relieves ANT and Maven build engineers from concerns about potential
modularity flaws, unlike make. Instead, ANT and Maven build system evolution is
driven mainly by development events such as restructurings.

The Linux build engineers were also greatly concerned with maintaining a simple
interface for driver developers to integrate code into the Linux build process. This
is a major concern since driver source code contributions make up the majority of
the Linux source code [24]. We found that similar concerns drive the evolution of
the Eclipse and JBoss build systems. Eclipse build engineers maintain a separate
plugin that simplifies the Eclipse build process for plugin developers. The JBoss
buildmagic code increases build code reuse and simplifies the process of adding a
JBoss component to the JBoss project.

Finally, Linux build engineers must maintain explicit dependency listings among
targets in the build specifications, i.e., makefiles. ANT and Maven build specifica-
tion are not concerned with such details, since the Java compiler handles dependency

management among source files.

4.5 Chapter Summary

Software build systems are complex entities in and of themselves. They evolve both
statically and dynamically in terms of size and complexity. We find that Lehman’s
first two laws apply in the context of build systems. That is, our case study indicates

that:

1. Build systems change continuously, especially due to changes in their environ-

ment (i.e., source code and development libraries).



CHAPTER 4 JAVA BUILD SYSTEM EVOLUTION 61

2. Build systems grow in complexity as a side effect of the changes induced by

Lehman’s first law.

Through a case study of six open source Java projects, we made the following

important observations across ANT and Maven build systems:

e Both the static and dynamic size and complexity of build systems show differing

patterns of growth over time that correlate with the size of the source code.

e The exponential growth of Eclipse’s build system is highly correlated with the

project plugin count.

e Once a build system has established either a recursive or non-recursive design,

it rarely switches between designs.

e The Halstead complexity of a build system is highly correlated with the build
system’s size (BLOC).

e As observed in Tomcat, management of third-party libraries is a crucial factor

in build system evolution.

e Major fluctuations in build-time target coverage of +10% correspond to ma-
jor project events like restructurings and major releases, suggesting that build
maintenance can impact the performance of a build system as perceived by

developers and users.

e The findings above are consistent with earlier findings for make-based systems

with slightly different drivers of build system evolution.



CHAPTER 4 REVISION-LEVEL BUILD SYSTEM EVOLUTION 62

We conclude that C and Java build systems evolve similarly at the release-level.
Java build systems in general appear to co-evolve with the project source code, which
agrees with prior work on make-based build systems [2, 66]. Armed with this un-
derstanding, project managers can predict that periods of substantial change in the
source code will be accompanied by similar change in the build system.

Reason suggests that such a co-evolution of build and source code imposes some
degree of overhead on software development, yet we cannot measure it with such a
coarse level of analysis. In the next chapter, we study the co-evolution of build and
source code at a finer granularity, i.e., individual source code revisions instead of
releases, to further validate our research hypothesis, i.e., build system maintenance

plays an important role in software development.



Chapter 5

Build System Evolution at the

Revision-level

[Build system migration is] surely a
lot of work, that also includes the
risk of scaring people away. Answer
this: what is more scary: the
current build system or the idea of
throwing anything you know about
the current build system away?

Anonymous developer

In the prior chapter, we presented our study of release level build system evolution
in Java projects. We find that Java build systems evolve both statically in the build
specification files, and dynamically at build execution time. These findings agree with
those of prior work on make-based build system for C projects [2, 66].

The prior chapter focused on a coarse analysis from release to release. However,
these releases are composed of numerous developer changes, i.e., revisions. In our

release-level analysis, these revisions are blurred together, and as a result, we may be

63



CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 64

overlooking phenomena that occur in between the releases.

To further validate our research hypothesis, i.e., build system maintenance plays

an important role in software development, this chapter presents our study of the

day-to-day maintenance of the build system throughout revisions. An earlier version

of this study will be published at the 33rd International Conference on Software

Engineering (ICSE) [41]. The study addresses three research questions:

RQ1)

RQ2)

RQ3)

How many files does a typical build system consist of?

Motivation — We want to study the size of a typical build system and how it

evolves at the revision-level to better understand the magnitude of the build

system.

Findings — The build system accounts for a relatively small proportion of the

files in a project (9% median).

How much does a typical build system churn?

Motivation — Churn measures the rate of change in source code. Prior studies

have found that frequently changing source code, i.e., code with high churn,
has a higher defect density [45] and causes more post-release defects [46]. We
want to measure churn in the build system to gain insight into how susceptible

the build system is to defects.

Findings — The build system has a churn rate comparable to the source code.

This suggests that build systems are constantly evolving and are likely to have

defects [45].

How large are typical build system changes?

Motivation — There is no prior work that quantifies the size of typical build



CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 65

Table 5.1: Projects studied at the revision-level

0

s
; g 2
g $ ; g

[} 1
] 9]
=) g @ u = 3 )
3 ® & N ] g 5 'E X
o 2 S b] 0 £ g o a 2
< T R S 0 0 a > ~ A
Timespan ’98-’09 ’01-’07 ’01-’10 ’07-'08 ’88-’05 ’05-’09 ’05-"10 ’98-’10 ’92-’09 ’96-’09
Program lang. Java Java Java Java C C C C C C
Build techs. Make* ANT* PDE PDE Autotools Make Make Make Make* Autotools
ANT Maven Autoconf KConfig Autoconf Autotools*
CMake

# Config. Files 289 54 437 5,707 942 10 1,708 2,394 314 50
# Const. Files 325 157 46 260 T 33 2,018 8,315 338 721
Total (TB) 614 211 483 5,967 1,719 43 3,726 10,709 652 771
# Prod Files 7,116 9,272 2,391 45,275 14,181 743 42,912 43,952 659 2,683
# Test Files 891 7,426 1,211 14,738 21,109 824 340 30,835 791 1,377
Total (TS) 8,007 16,698 3,602 60,013 35,290 1,567 43,252 74,787 1,450 4,060
N - - 7% 1% 12% 10% 5% 3% 8% 12% 31% 16%
TB+TS () 0 (3 0 (3 (< 0 (3 0 (3

* Build technologies used before migration

system changes. Large changes imply that considerable effort is put into build

system maintenance.

Findings — A typical build change adds or removes 3 to 4 build lines of code
(BLOC), while a typical source change adds or removes 4 to 17 source lines

of code (SLOC).

The chapter is organized as follows. Section 5.1 presents the studied projects.
Section 5.2 discusses the design of our case studies used to address the research

questions, while Sections 5.3, 5.4, and 5.5 present the results.

5.1 Studied Projects

We conduct a large scale study of ten different open and closed-source software

projects. Table 5.1 summarizes the characteristics of the studied projects.



CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 66

Table 5.2: File type classification examples

Build Production Test
Config. and Const. layer Production code Unit tests
(Makefile*, configure*) (*.c*, *h* *java)  (*.c*, *.h* * java)

TM1 g a commercial next-generation IDE developed by IBM. The GNU Com-

Jazz
piler Collection (GCC) is a popular source code compiler with front-ends for many
programming languages. Git is a distributed version control system. Linux is an
operating system kernel. Mozilla is a suite of internet tools, such as the Firefox web
browser. PLPlot is a plotting library with bindings for many popular programming
languages. PostgreSQL is an object-relational database system. ArgoUML, Hiber-
nate, and Eclipse are introduced in the prior chapter.

We selected open source projects of different domains, build technologies, and

programming languages to reduce bias. Jazz is one of the few available data sets with

high-quality work item linkage [10, 51].

5.2 Case Study Setup

We first classify each file that existed in the given timespan as either build, production,
or test code. Those files that do not fit in any category are marked as “other”.
Table 5.2 provides some example file type classifications that we used.

The classification process was semi-automated. Most files could be classified using
file type naming conventions. However, patterns such as “java” and “.xml” were
ambiguous, i.e., some .java files are production code while others are test code. After

initial filtering of unambiguous file types, the remaining files had to be classified

Ihttp://www.jazz.net. IBM and Jazz are trademarks of IBM Corporation in the US, other
countries, or both.


http://www.jazz.net

CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 67

manually. For example, of the 49,364 files in Linux, approximately 40,000 could be
classified automatically. The remaining 9,000 or so files had to be tagged manually

based on our prior experience with build systems.

5.2.1 Build Abstraction

The GCC, Git, Mozilla, PLplot, and PostgreSQL projects make use of the GNU Auto-
tools and CMake build abstraction languages. These languages allow build engineers
to implement build logic for many different platforms using an abstract representation
of the build process. A build code generator produces the necessary platform-specific
code at build time. For these case studies, we focus on our analysis on revisions to

the Autotools and CMake abstraction files.

5.3 How many files does a typical build system
consist of?

The build system accounts for 9% of the maintained files (median). Table 5.1 shows
that the build accounts for 1-31% of the maintained files that existed in the given
timespan, with a median of 9%. These low values indicate that in most cases (PLplot
being the exception), the build system is dwarfed by the other development artifacts.

Hibernate-core (1%) and PLplot (31%) are anomalies. Being entirely composed of
a single library, the Hibernate-core project has little build code (211 files), which ex-
plains the low 1%. On the other hand, the PLplot project has the most inflated build

file percentage of 31%. While the PLplot project is rather small, it provides bindings



CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 68

1.0

| |

.( \
I

Lebbtedd

T T T T T
ArgoUML Hibernate-core  Eclipse—core Jazz GCC Git Linux Mozilla PLplot PostgreSQL

Projects

0.8
1

0.6
1

Normalized Churn
0.4

0.2

0.0
1

Figure 5.1: Distribution of monthly churn in source (black) and build (grey) files.

to many programming languages. Each binding has its own construction layer compo-
nent and extensive configuration code, increasing the build system size. The problem
is compounded by two build technology migrations that PLPlot has undergone. The
migrations reimplemented build code from make [18] into GNU Autotools [22], and

later from Autotools into CMake [36], as mentioned in 5.1.

5.4 How much does a typical build system churn?

The normalized churn of build files is similar to source code. To study the churn rate
in the build system, we compare its churn rate against that of the source code. We
measure the churn rate in the source code and build system using normalized churn to
take system size into account. We count the number of source files and the number
of build files that were changed in each month-long development period. We then
divide each count by the total number of source files or the total number of build
files that existed in the period. We repeat this process for each development month.

We chose a development month period length rather than shorter periods, such as a



CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 69

day or week, because we feel that a month is enough time for a significant amount of
development to occur.

Figure 5.1 plots the distribution of the monthly normalized change using a bean-
plot. Beanplots are boxplots in which the vertical curves summarize and compare the
distributions of different data sets [29], which in our case correspond to the normalized
churn of build and source code in month-long development periods. The horizontal
black lines indicate the median of the normalized change for each project’s source
(black) and build files (grey).

In most of the studied projects, the median of the monthly normalized change for
the source and build files are relatively close to each other, only differing by at most
7% (GCCQ).

The Hibernate-core is the only project with a median value of the normalized
change for the build files greater than that of the source files. The Hibernate-core
project had only 1-7 build files during the first 12 months of development, and easily
reached 100% normalized churn, skewing the median.

The comparable rate of change in the source and build files is concerning, since
rapidly changing source code modules often contain more defects than slowly chang-
ing ones [45]. Build maintainers must take great care to ensure that the build system
does not become defect-prone, since a defect-ridden build system may: (1) slow devel-
opment progress due to suboptimal build routines [43], or (2) fail to produce correct

deliverables, which grinds development progress to a halt [30, 49].



CHAPTER 5 REVISION-LEVEL BUILD SYSTEM EVOLUTION 70

Table 5.3: Number of lines changed per revision

i

< (5]

5 £ 2 y = 3 &

o oy a 0 2 5 B 2

@ 2 = @) P E o 3 2

. < 5 &5 O U A = o oy

Quantiles
+ -+ -+ -+ + + -+ -+ -+

= Lower 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1
5 Median 2 2 4 2 3 2 6 5 2 1 2 2 4 3 5 4 4 3
Upper 9 5 13 6 9 4 36 32 6 3 8 6 11 11 16 12 14 12
o Lower 4 3 4 2 3 2 3 2 3 2 3 2 3 2 5 2 4 2
e Median 15 9 17 9 10 5 8 5 8 4 9 6 11 6 14 7 15 9
A~ Upper 49 36 61 33 32 19 30 21 24 13 29 21 44 28 44 26 65 43

5.5 How large are typical build system changes?

A typical build change adds and removes 3—4 lines of code (median). Table 5.3 shows
the median, the lower and the upper quartiles of the number of line of code added
and deleted per revision in the nine studied projects. Jazz data was unavailable for
analysis because we do not have access to the actual code.

Most source changes add between 8-17 lines and remove between 4-9 lines (me-
dian). The corresponding numbers for build changes are 2—6 lines and 1-5 lines
(median). Thus, when the build changes, the size of the change is about %1,% of the

size of a typical source change.

5.6 Chapter Summary

Our findings indicate that while the build system is small, many developer revisions
include build maintenance. Build system maintenance generates a churn rate compa-

rable to that of the source code when normalized by their respective sizes. As such,



CHAPTER 5 BUILD MAINTENANCE OVERHEAD 71

the build system may be similarly susceptible to defects [45].
In analyzing the evolution of build systems at the revision level, we make the fol-
lowing important observations that support our hypothesis, i.e., build system main-

tenance plays an important role in software development:

e The build system accounts for up to 31% of the code files in a project, with a

median value of 9%.

e While most build systems are small in comparison to the source code, the nor-

malized churn is comparable to that of the source code.

e A typical build change involves adding and deleting 3-4 lines of build code.



Chapter 6

An Empirical Study of Build

Maintenance Overhead

The results of Chapter 4 and prior work [2, 66] suggest that build system and source
code co-evolve with each other between releases. In Chapter 5, we find that the build
system is relatively small in size, being composed of 9% (median) of the code files in
the studied projects. However, it churns frequently, at rates similar to the source code
when normalized by their respective sizes, suggesting a high overhead on developers.
To analyze whether these revision-level build changes are burdensome on developers,
we now investigate how tightly coupled developer changes to production and test code

are to build system changes. To do so, we address two research questions:

RQ1) How often are build changes required to complete development
tasks?
Motivation — Kumfert et al. estimate that developers spend 12% of their time

keeping the build system in sync with the source code, rather than fixing bugs

72



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 73

RQ2)

and adding new features [32]. These results are based on a survey asking
developers about their overall build maintenance effort. We are interested in

rigorously validating these findings with the actual changes developers make.

Findings — Managers of C projects should explicitly account for up to 27% of
production code work items to require build maintenance. Java projects can

expect 4-16% of production code work items to require build changes.

How do projects distribute build maintenance work?

Motivation — Since build systems have high churn, some projects designate
members of the development team as build experts. To study the different
ways in which projects are allocating personnel to build maintenance, we want

to see how many developers have to modify the build system.

Findings — We find that the teams in the analyzed projects adopt one of two
build ownership styles: (1) most build changes are performed by a small team
of build experts (Linux and Git), or (2) build changes are dispersed amongst

the development team (Jazz).

The chapter is organized as follows. Sections 6.1 and 6.2 present the results of our

case studies used to address our research questions.

6.1

How often are build changes required to com-

plete development tasks?

In this section, we study how successful projects maintain consistency between the

build system and the production or test code. We measure the coupling between



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 74

these entities by evaluating various association rules using “interest” metrics.

6.1.1 Approach

We study consistency management at two levels of granularity:

1. Rewvision Level
We study coupling between production/test code and build code in revisions,
as is typically done in empirical studies. However, revisions offer too fine of an
analysis, since typical developer tasks such as adding a new feature or fixing a

serious bug involve multiple revisions.

2. Work Item Level
The set of changes resolving a developer task is called a “work item”. Since
developers typically reason in terms of work items rather than revisions, we
also studied coupling between production/test code and build code at the work
item level. However, most projects do not record this data in a recoverable
fashion [11, 51]. Hence, our work item analysis is limited to three of the studied

projects.

We adopt association rule interest metrics to measure the relationships between
production, test, and build files. An association rule is a statistical description of co-
occurring elements in a dataset [4]. For example, Amazon.com recommends additional
purchases by mining association rules from their database of prior customer purchases.
We do not mine association rules from the data, but rather we evaluate the following

associations:



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 75

Table 6.1: Association rule interest metrics

Metric Calculation

# class A transactions
# total transactions
Support(A,B)
Support(A)
Support(A)x Support(—B)
Support(A,—B)

Support(A)

Conf(A = B)

Conv(A = B)

Prod = BIld measures the coupling between production code and the build
system layers, i.e., the implication that a production code change will be accompanied
by a build code change in the same revision. Similarly, Test = Bld measures the
implication that test code change will be accompanied by a build code change in the
same revision.

Bld = Prod measures the implication that a change to the build system layers
will be accompanied by a production code change in the same revision. Intuitively,
we expect this implication to be strong since Chapter 4 showed that the majority of
build system maintenance is the result of production code change, and hence should
be grouped together. Similarly, Bld = Test measures the implication that a build
layer change requires an accompanying test change.

We evaluate the association rules above using the “interest” metrics in Table 6.1.
Support(X) is defined as the proportion of revisions that contain X [4].

Confidence(X = Y) (Henceforth abbreviated to Conf(X = Y)) measures the
strength of the implication that X implies Y [4]. In our context, Conf(X = Y) is
the probability that a revision or work item changes Y, given that it changes X. Gall
et al. use an identical metric to measure logical dependencies between modules, i.e.,

logical coupling [20]. Thus, we use confidence to measure the strength of the logical



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 76

coupling from X to Y. Note that confidence measures are directional, i.e., Conf(X =
Y) # Conf(Y = X).

Conviction(X = Y) (Henceforth abbreviated to Conv(X = Y)) is a measure
of the departure of Conf(X = Y) from independence [12]. A Conv(X = Y) of 1
indicates that the Conf(X = Y) is no different than would be expected if X and Y
were independent of each other. Conviction values less than one indicates that the
confidence observed is less than expected for independent variables. Conviction values
greater than one indicate that the confidence observed is more than for independent
variables. Throughout this study, we use conviction to evaluate whether the logical
coupling induced by build maintenance is exceptionally lower or higher than expected,
i.e., conviction values much less than or greater than one, or as expected in the case
of independence, i.e., approximately one.

Finally, we use a x* goodness-of-fit test [55] to validate the statistical significance
of the coupling between the production and test code components and the build sys-
tem. If the x? statistic is greater than 3.84 (o < 0.05), the relationship is statistically

significant. We report the p-value of the x? test, rather than the y? statistic.

EE bar.c < o
o, Makefie < <
- configure.ac <>
T T2 T3 T4 T5
Time

Figure 6.1: An association rule example scenario.

We use the example in Figure 6.1 to illustrate the confidence and conviction

metrics. A series of five revisions appear on the Time axis and a series of four files (two



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 7

Table 6.2: Association rule metric values for production, test, and build code

[
—
S g 2
= o 5] c
= k5 bt © %
S Q B N ] =) ES 2 +
2 =2 S 5 ) £ £ ] s 8
< T = -~ O O NS = o ~
Prod 0.62 0.62 0.68 0.69 0.56 0.61 0.87 0.70 0.39 0.55
Test 0.06 0.32 0.23 0.18 0.13 0.11 0.01 0.08 0.19 0.10
Support Bld 0.07 0.08 0.08 0.09 0.15 0.07 0.10 0.16 0.36 0.16
Prod, Bld 0.01 0.03 0.02 0.03 0.04 0.03 0.06 0.06 0.03 0.05

Test, Bld <0.01 0.02 0.01 0.01 0.01 <0.01 <0.01 0.01 0.03 0.02

Prod = BId 0.02 0.05 0.03 0.04 0.07 0.04 0.06 0.08 0.08 0.10
Bld = Prod 0.16 0.36 0.28 0.28 0.27 0.41 0.56 0.35 0.09 0.34

Conf
Test = Bld 0.05 0.05 0.03 0.07 0.07 0.04 0.13 0.16 0.17 0.19
Bld = Test 0.04 0.20 0.09 0.13 0.06 0.07 0.01 0.08 0.09 0.11
Prod = BId 0.95 0.96 0.95 0.94 0.92 0.98 0.96 0.91 0.69 0.93
Conv Bld = Prod 0.45 0.59 0.44 0.43 0.60 0.66 0.30 0.46 0.67 0.68

Test = Bld 0.98 0.97 0.95 0.97 0.91 0.97 1.04 1.00 0.77 1.03
Bld = Test 1.02 0.91 1.34 0.94 0.96 0.96 1.01 1.02 0.97 1.05

Prod, Bld <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <001 <001 <0.01 <0.01

2 (.
X" (p-value) Test, Bld 0.06 <001 <0.01 <0.01 <0.01 <0.0l <0.01 0.93 <001 <0.01

production and two build) appear on the Y-axis. Of the four production file revisions,
two have build file changes as well (T3 and T4), thus the Conf(Prod = BIld) is 0.5.
The Conf(Bld = Prod) is 0.67 since two of the three revisions have a production file
change. The Conv(Prod = Bld) is 0.8 due to a more complex calculation, but can be
interpreted as the Conf(Prod = Bld) of 0.5 is 20% less than expected if production
and build system were independent entities (conviction of 1). We do not calculate
the x? value for this example, since the test was intended for a larger sample size.
However, suppose the statistic for the production-build relationship is larger than
3.84 (and hence, the p-value smaller than 0.05), then the low coupling and conviction

of Prod =- Bld would be statistically significant, i.e., not just an artifact of noise.



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 78

6.1.2 Revision-Level Results

In this section, we use Table 6.2 to show that there is low revision-level coupling
between the source and build files.

Low revision-level coupling from the production or test code to the
build system: The confidence values in Table 6.2 show that the coupling values
from production or test files to the build files are lower than Kumfert et al.’s 12%
survey-based estimate [32]. We examine the coupling from production and test code
to the build system below.

A revision rarely includes both production and build file changes as reflected by
the low Support(Prod, Bld) values. The Conv(Prod = Bld) values reveal that in most
cases (except Jazz) the observed coupling is consistently less than coupling expected
of independent production and build files. The ? statistic shows that the production
and build files are significantly independent of each other in all of the studied projects.

In PLplot, the Conv(Prod = Bld) and Conv(Test = Bld) values show that the
coupling between test and build code is low. The changes in PLplot are especially

disconnected due to the two migration efforts that generated many build-only changes.

There is low revision-level coupling from production and test code to the

build system.

Low revision-level coupling from the build system to the production
or test code: The confidence values in Table 6.2 indicate that the build system is
coupled more to the source code than vice versa. The Conv(Bld = Prod) values
are all much less than 1 (0.43-0.68), indicating that there is much less coupling from
the build and production files than expected. This finding is counter-intuitive, since

we would expect that most build changes would be accompanied by production code



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 79

Table 6.3: Overview of work item data.

Eclipse-core

Jazz

Txs | 6,391 36,557 210,400

Txs w/ Work Ttems | 4,092 22,485 79,242
% Tx w/ Work Items | 64%  62% 38%
Work Items | 2,452 11,611 55,199

changes. The Conv(Bld = Test) are all close to 1 (except Eclipse-core), indicating
that the coupling values are not out of the ordinary.

In PLplot, the confidence values are low due to the slow migration period. Much
of the build migration effort was committed in revisions that were not related to any

source code. Hence, the confidence values are reduced.

While the coupling from the build system to the production and test code

18 higher than in the other direction, the conviction values indicate that

the observed coupling is lower than statistically expected.

6.1.3 Work Item Results

The confidence values we have observed suggest that there is low coupling between
the production or test files and the build system. These values are lower than we
had anticipated based on the Kumfert et al.’s survey-based estimation of 12% [32].
However, they confirm an earlier study of KDE that found that build revisions are

often dominated by the build and do not co-change with other entities [57].



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 80

Table 6.4: Work item interest metrics

g

3
o <
sy %
& = =
Prod 0.87 085  0.83
Test 0.31 0.24 0.17
Support Bld 0.17  0.05 0.26
Prod, Bld | 0.14 0.04 0.22
Test, Bld | 0.06  0.02  0.08
Prod = BId | 0.16 0.04 0.27
Bld = Prod | 0.82 0.72  0.86

Conf
Test = Bld | 0.20 0.08 0.44
Bld = Test | 0.36  0.36  0.29
Prod = BId | 0.99  0.99 1.01
Bld = Prod | 0.74 0.52 1.15
Conv

Test = Bld | 1.03 1.03 1.31
Bld = Test | 1.07 1.19 1.16
9 Prod, Bld | 0.02 <0.01 <0.01
X* (pvalue) | 4T Bld | 016 <0.01 <0.01

We conjecture that the low observed coupling is due to developer commit be-

haviour. For example, while some developers commit related build and source changes

under one revision, others may commit build changes in separate revisions from source

code changes, which introduces noise in the revision-level data. To address this, we

find that all related revisions should be linked to a single ITS work item, i.e., groups

of related revisions can be linked together according to the ITS work item that they

collectively resolve. By investigating the relationship between source and build files at

the work item level, we aim to reduce the noise caused by different developer commit

behaviour.



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 81

Our work item analysis is limited to the three projects in Table 6.3. Prior work
notes the lack of availability of high quality work item linkage in VCS data [11, 51].
With this in mind, a three project study is actually quite unique.

Table 6.3 shows that a large portion of the VCS revisions of Eclipse-core (64%),
Jazz (62%), and Mozilla (38%) could be linked to ITS work item IDs. The other
projects did not adopt a pattern for linking revisions to work item identifiers.

Production code work items are more tightly coupled to the build sys-
tem in C projects than Eclipse-based Java ones: The Conf(Prod = Bld) and
Conf(Test = Bld) values in Table 6.4 shows that there is considerable coupling from
the production and test code to the build system in Mozilla (27% and 44%). However,
the Eclipse-core and Jazz projects have less coupling. We investigate this phenomenon
below.

27% of Mozilla work items that contain a related source code change also contain
changes to the build system. These numbers indicate that production code and
build system consistency requires considerable developer participation. However, in
Eclipse-core, the coupling is reduced to 16% and in Jazz, the observed coupling is a
mere 4%.

Eclipse-core and Jazz achieve lower build coupling by leveraging the automated
Eclipse Plugin Development Environment (PDE) build technology called PDE build.
Each Eclipse subsystem contains a build specification file “build.properties”, that lists
the high-level build system configuration. The PDE build parses these property files
to either: (1) generate ANT scripts to perform the build appropriately, or (2) use

an appropriate Eclipse plugin to perform the compilation and packaging. Since the



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 82

developer must only maintain the build.properties file, which does not contain low-
level details that change frequently, the daily build maintenance overhead is reduced.

The Mozilla Conv(Test = Bld) value in Table 6.4 indicates that the logical cou-
pling between test and build code of 44% is considerably higher than expected, while
the Conv(Test = Bld) values for Eclipse-core and Jazz indicate no significant increase.
The x? results further reflect the significance of the Mozilla relationship with a sig-
nificant p-value. The p-value for Eclipse-core indicates that the observed relationship
between test and build code is not statistically significant.

By studying Morzilla at the work item level, we find that there is a substantial
coupling between production and test code with the build system. We observe a 19%
increase in Conf(Prod = Bld) and a 28% increase in Conf(Test = Bld) over the
revision-level analysis. We observe similar increases in Eclipse-core of 13% and 17%

respectively. There was little change in the observed coupling for Jazz.

The maintenance of the build system impacts both production and test
development in Mozilla. The Eclipse and Jazz build code is automatically

generated, resulting in reduced build system maintenance and coupling to

the source code.

6.2 How do projects distribute build maintenance
work?

Our study of RQ1 reveals that Mozilla developers will have to perform build changes
for roughly one in every four work items they are tasked with. However, we did not

consider build ownership, i.e., which developers actually make changes to the build



CHAPTER 6

BUILD MAINTENANCE OVERHEAD

Table 6.5: Developer-based interest metrics.

o
N - =
SEN 3
All | 156 795 6,502
Prod 0.81 0.85  0.97
Test 0.36 0.22  0.02
Support Bld 0.73 0.22 0.26
Prod, Bld | 0.63 0.19 0.24
Test, Bld | 0.32 0.05  0.01
Prod = Bld | 0.79 0.22  0.25
Bld = Prod | 0.87 0.85  0.93

Conf
Test = Bld | 0.89 0.24  0.58
Bld = Test | 0.44 0.23  0.06
Prod = Bld | 1.26 1.00  0.99
Bld = Prod | 1.46 0.98  0.48

Conv
Test = Bld | 2.51 1.02  1.76
Bld = Test | 1.14 1.02  1.03
* (povalue) Prod, Bld | 0.02 1.00 <0.01
X~ \pmvatd Test, Bld | 0.01 0.95 <0.01

system. Prior work reports that projects may elect to dedicate a team of experts
to build maintenance tasks, e.g., the Perl interpreter [61], and the Linux kernel [2].

In those cases, although build coupling seems high, the work is delegated to build

experts.

We study the relationship between production, test, and build developers by eval-

uating the association between them with the Support, Confidence, and Conviction

“Interest” metrics introduced above.



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 84

6.2.1 Approach

We label authors as a build, test, or source code developers. An author may hold one
or more labels. We assume that developers who produce source code revisions are
source code developers, since source code development is the main focus of a devel-
opment team. Hence, we label authors as source developers if they produce at least
one source code modifying revision. However, we only label authors as build devel-
opers if their personal source-build coupling is greater than or equal to the project
wide source-build coupling. Similarly, we only label authors as test developers if their
personal source-test coupling is greater than or equal to the project wide source-test
coupling. We choose such a definition to identify those developers responsible for a
significant portion of build system (and test) development.

Our study is limited to projects that retain correct author names. A common
practice in open source development is to restrict VCS write access to a set of core
developers [11]. Many authors send patches, i.e., files containing their changes, to
the core developers for review. After engaging in a review process, the core developer
will send the changes to the VCS. Only the Git, Linux, and Jazz project’s VCS retain
the name of the original author of the patch (instead of the core developer), so our

analysis is limited to these three projects.

6.2.2 Results

We use Table 6.5 to illustrate two build ownership styles that projects adopt for

maintaining the build system.



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 85

Table 6.6: Number and percentage of developers responsible for 80% of the file
changes to production, test, and build files.

Jazz Git Linux

Prod | 41 (26%) 57 (%) 523 (8%)
Test | 58 (37%) 95 (12%) 484 (7%)
Build | 53 (34%) 44 (5%) 365 (5%)

Concentrated and dispersed build ownership: We observe two patterns of

build ownership:

1. Concentrated ownership (Linux and Git)

Most build maintenance comes from a small team of build engineers

2. Dispersed ownership (Jazz)

Most developers contribute code to the build system.

The Conf(Prod = Bld) values of Git (22%) and Linux (25%) in Table 6.5 show
that the majority of source code contributors do not have to change the build system
frequently. However, the y? p-value shows that the coupling in Git is not statistically
significant.

While the build system in the Jazz project rarely changes, the changes are made
by most production and test developers. Jazz’s Support(Bld) value in Table 6.4 shows
that only 5% of work items require build changes, however, the Conf(Prod = BId)
values in Table 6.5 show that 79% of production code developers make a considerable
number of changes to the build. Keeping the coupling between source code and build
system changes at a low 5% for production ensures that although the distribution of

build maintenance affects most developers, it does not affect them greatly.



CHAPTER 6 BUILD MAINTENANCE OVERHEAD 86

Table 6.6 shows that to make 80% of all build changes, a, smaller proportion
of developers are needed in Git (7%) and Linux (8%) than in Jazz (34%). This
indicates that build expertise is concentrated in the Git and Linux projects whereas
it is dispersed among developers in the Jazz project. Comparing the numbers to
those of the production and test code, we see that the build consistently has the
lowest proportion of developers that contribute 80% of the changes in the two open
source projects (5%). In Jazz, we see that the build has a higher proportion of
developers involved (34%) than the two open source projects.

Since most of the build changes in Linux and Git are made by a core team of build
experts, contributors are saved the hassle of build maintenance. In 2001, the Linux
project in particular invested time and effort into reducing the build system impact
that the build system has on contributors [2]. Our findings suggest that they were
successful in concentrating the maintenance of the build system onto a core team of
build experts.

While we do not have the data to speculate about which style performs best
universally, we conjecture that build ownership style (1) is more suitable for open
source teams. Open source development depends on casual developer contributions.
Casual developers will have a hard enough time learning the intricacies of the foreign
source code without having to struggle with the build system. Thus, offloading the

build maintenance on a core engineer seems advisable.

The studied projects adopt either a concentrated (Linuz and Git), or dis-
persed (Jazz) build ownership style to limit the overhead of build main-

tenance on individual developers.




CHAPTER 6 BUILD MAINTENANCE OVERHEAD 87

Most test developers have to make build changes: The Conf(Test = Bld)
values in Table 6.5 reveal that 89% of Jazz test developers, 58% of Linux test de-
velopers, and 24% of Git test developers also make changes to the build code. This
indicates that the build system maintenance is impacting most test developers in Jazz
and Linux. The corresponding conviction and x? values for Jazz and Linux show
that these percentages are higher than expected and statistically significant. Project
managers should keep this in mind when performing test development planning and

budget estimations.

6.3 Chapter Summary

In analyzing the relationship between the source code and the build system in ten

software projects, we make the following important observations:

e There is low revision-level coupling between the production or test code and the
build system. However, there is considerable work item coupling. Developers
may not commit all related code under one revision, but the related work will
be filed under one work item ID. We suggest that future co-evolution studies
consider analysis at the work item level, as we feel it more accurately represents

the development workflow.

e A larger proportion of developers are responsible for maintaining the build sys-
tem in the analyzed commercial project than in the open source ones. In the
three studied projects, the actual overhead of build system maintenance is lim-

ited for individual developers.



CHAPTER 6 SUMMARY AND CONCLUSIONS 88

e Many test developers must also maintain the build, meaning that the test to

build code consistency management affects many people.

These findings support our research hypothesis, i.e., build system maintenance
plays an important role in software development. However, in practice, projects try
to mitigate the overhead by using an automated build generation framework, such as
the Eclipse PDE (RQ1), or by dedicating a team of build experts to the majority of
build maintenance tasks (RQ2).

In Chapter 5, we found that typical build changes add and remove 3 to 4 build lines
of code. In this chapter, we find that 4-16% of source code tasks in Java projects and
up to 27% of source code tasks in C projects require an accompanying build change.
Project managers should explicitly account for this when performing project planning
and budgeting exercises.

In Chapter 5, we also found that the build system has a high churn rate when
normalized by the build system size. In this chapter, we observe that the analyzed
projects have two build ownership styles for coping with this high churn rate in the
build system: (1) a small team of build experts handle most of the maintenance, and
(2) maintenance is dispersed amongst most developers. In future work, we plan to

investigate the advantages and disadvantages of these two build ownership styles.



Chapter 7

Summary and Conclusions

What we call the beginning is often
the end. And to make an end is to

make a beginning. The end is where
we start from.

T. S. Eliot

This chapter concludes the thesis. The concepts presented throughout this thesis
are summarized and our hypothesis is resolved. The limitations and possible direc-

tions for future work are also presented.

7.1 Summary

Developers fix defects and add new features in source code to adapt software projects
to changing environments and address user demands [33]. Build systems are critical
to support these developer changes, since build systems automate the translation of
the project source code into testable and deliverable artifacts.

However, similar to source code, build systems require maintenance in order to

89



CHAPTER 7 SUMMARY AND CONCLUSIONS 90

keep producing project deliverables correctly and rapidly. Neglecting to keep the
build system up-to-date can cause latent defects that are difficult to diagnose and
can have a dramatic effect on product quality (e.g., Firefox 3.0 [59]).

To better understand the overhead induced by the build system, we study build
system maintenance over time. We perform empirical studies of 13 large-scale open
source and proprietary software projects to validate our research hypothesis:

Build system maintenance plays an important role in software develop-

ment.
In Chapters 4 and 5, we measured the build maintenance activity of Java build sys-
tems across releases (Chapter 4), and C, C++, and Java build systems across revisions
(Chapter 5). Our findings and prior research [2, 66] suggest that build systems evolve
at the release and revision levels. When normalized by their respective sizes, we
find that source and build components of the software project churn at similar rates.
Since the build system accounts for up to 31% of the files in a software project, 9%
on average, this means that the build system is susceptible to defects [45].

In Chapter 6, we studied how build maintenance is distributed across production
code changes and developers. We find that up to 27% of source code work items
require accompanying build changes in C projects, while 4-16% of source code work
items require build changes in Java projects. Similarly, we find that up to 44% of test
code work items require accompanying build changes in C projects, while 8-20% of
test code work items require build changes in Java projects. Furthermore, we observe
two build ownership styles adopted by projects to reduce the build maintenance over-
head on individual developers: (1) dispersed, i.e., build maintenance is spread among

most of the development team (observed in the Jazz project); (2) concentrated, i.e.,



CHAPTER 7 SUMMARY AND CONCLUSIONS 91

build maintenance is performed by a small team of build experts.

The above evidence confirms our hypothesis, i.e., build system maintenance plays
an important role in software development. Project managers, developers, and soft-
ware testers should consider the overhead of build system maintenance when plan-
ning and budgeting for future releases, new features, test cases, and even bug fixes.
Stakeholders should also consider adopting a build ownership style that suits their

development environment.

7.2 Limitations and Future Work

The work presented in this thesis has several limitations. In this section, we outline

those limitations and how future work may be designed to address them.

e The majority of the studied projects in this thesis are open source. Since open
source and commercial project development styles differ, our results may be bi-
ased towards open source projects. For instance, in Jazz, our studied commercial
project, build maintenance is dispersed amongst most developers, whereas in
open source projects such as Linux and Git, build maintenance is managed by
a core team of build engineers. More studies that analyze the build systems of

commercial projects are needed.

e Our results may be biased by the studied projects. We attempted to prevent
potential bias by selecting projects with different characteristics for analysis;

replication of our studies using different projects may be necessary.

e We perform our dynamic analysis of build systems only at the release level

because most software teams cannot guarantee their product to be buildable at



CHAPTER 7 SUMMARY AND CONCLUSIONS 92

any arbitrary time in the development cycle. A release snapshot is by nature a
buildable and runnable version of a project. By focusing our analysis at such a
high level of granularity, we may miss development events that occur in between
releases. Future work that studies the dynamic evolution of a build system at

the revision level may prove useful.

e Similar to the work of Adams et al. [2], our dynamic analysis in chapter 4
is based on a single platform and configuration, i.e., GNU/Linux on an x86-
based processor with the default configuration suggested for this platform. This
decision was made to ensure that we used a consistent platform for comparison.
By only exploring a single configuration, we have left areas of the build system

unexplored.

e Our metric for static build system complexity is derived from the Halstead suite
of complexity metrics. The Halstead complexity metrics are parametric, with
different constants for different systems. Since the purpose of this thesis is not
to establish a definitive measure for build system complexity, we assume that
typical Halstead parametric constants apply to the domain of build systems.
The striking similarities between build system languages and interpreted pro-
gramming languages lead us to believe that this assumption is valid. However,
our use of the Halstead metric has not been validated. Validating the use of
the Halstead metrics or establishing a domain-specific static build system com-

plexity metric may provide an interesting avenue for future work.

e Throughout the thesis, the BLOC metric measures lines of build specification

code, but does not consider build task implementation code. As such, custom



CHAPTER 7 SUMMARY AND CONCLUSIONS 93

ANT task implementations and custom Maven build goals do not factor into
the build system size or complexity. Build task implementation code remains an
unmeasured dimension of the build system size and complexity. Future work
may find interesting patterns in the evolution of custom tasks in ANT build

systems.

e Our file classification approach is subject to opinion and may not be 100% accu-
rate. To classify files that may have fit in more than one category, the authors’
best judgement was employed. Future work may address this by implementing a
file discriminator that classified files by examining their content (first suggested

by Robles et al. [57]).

e We make the assumption that the collected data is always correct, e.g., develop-
ers always commit necessary build changes in the same revision as the associated
source code change, or all related revisions are linked to an appropriate work
item. This assumption does not always hold, which introduces noise in our
analysis. For instance, a developer neglects to commit all related changes under
a single revision, or mistypes the work item ID in the revision message. We
address noise in the revision level analysis by studying work items. However,

noise in the work item level analysis is very difficult to detect and filter.

e Since the well-linked data necessary for our work item and build ownership
analyses is hard to access [10, 51|, our studies are limited to three projects.
As such, our results may not generalize well. We selected three projects from
different domains in order to combat this sort of bias in our results, yet future

replication work may be necessary to further solidify our findings.



Bibliography

1]

[6]

Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. De-
sign Recovery and Maintenance of Build Systems. In Proc. of the 23rd Int’l Conf.
on Software Maintenance (ICSM), pages 114-123, 2007.

Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. The
Evolution of the Linux Build System. ECEASST, 8, 2007.

Rolf Adams, Walter Tichy, and Annette Weinert. The Cost of Selective Recom-
pilation and Environment Processing. Transactions On Software Engineering

and Methodology (TOSEM), 3(1):3-28, January 1994.

Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining Association Rules
between Sets of Items in Large Databases. ACM SIGMOD Records, 22(2):207—
216, 1993.

Apache Software Foundation. Apache ANT Manual. http://ant.apache.org/
manual/, 2010. Last viewed: 07-Jul-2010.

Apache Software Foundation. Apache Maven. http://maven.apache.org/,

2010. Last viewed: 18-Mar-2010.

94


http://ant.apache.org/manual/
http://ant.apache.org/manual/
http://maven.apache.org/

CHAPTER 7 SUMMARY AND CONCLUSIONS 95

[7]

[10]

[11]

Apache Software Foundation. Maven Migration Guide. http://maven.apache.

org/guides/mini/guide-m1-m2.html, 2010. Last Viewed: 02-Sep-2010.

Laszlo A. Belady and Meir M. Lehman. A Model of Large Program Development.
IBM Systems Journal, 15(3):225-252, 1976.

Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof
Czarnecki. Variability Modeling in the Real: A Perspective from the Operat-
ing Systems Domain. In Proc. of the 25th Int’l Conf. on Automated Software

Engineering (ASE). IEEE/ACM, 2010.

Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bernstein,
Vladimir Filkov, and Premkumar Devanbu. Fair and Balanced? Bias in Bug-Fix
Datasets. In Proc. of the 7th joint meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Sym. on the Foundations of Software
Engineering (ESEC/FSE), pages 121-130, 20009.

Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M.
German, and Prem Devanbu. The Promises and Perils of Mining Git. In Proc. of
the 6th Working Conf. on Mining Software Repositories (MSR). IEEE Computer
Society, 2009.

Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic
Itemset Counting and Implication Rules for Market Basket Data. In Proc. of
the 1997 ACM SIGMOD Int’l Conf. on Management Of Data, pages 255—264.
ACM, 1997.


http://maven.apache.org/guides/mini/guide-m1-m2.html
http://maven.apache.org/guides/mini/guide-m1-m2.html

CHAPTER 7 SUMMARY AND CONCLUSIONS 96

[13]

[14]

[15]

Merijn de Jonge. Decoupling Source Trees into Build-Level Components. In
J. Bosch and C. Krueger, editors, Fighth International Conference on Software

Reuse, volume 3107 of LNCS, pages 215-231. Springer-Verlag, July 2004.

Merijn de Jonge. Build-Level Components. [EEE Transactions on Software
Engineering, 31(7):588-600, 2005.

Mikhail Dmitriev. Language-Specific Make Technology for the Java Program-
ming Language. In Proc. of the 17th Annual Conf. on Object-Oriented Program-
ming, Systems, Languages & Applications (OOPSLA). ACM, 2002.

Eelco Dolstra. Integrating Software Construction and Software Deployment.

Lecture Notes in Computer Science, 2649:102—-117, 2003.

Steve Ebersole. Maven migration. http://lists.jboss.org/pipermail /hibernate-
dev/2007-May/002075.html, 2007. Last viewed: 18-Mar-2010.

Stuart I. Feldman. Make-A Program for Maintaining Computer Programs. Soft-

ware - Practice and Experience, 9(4):255-265, 1979.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Ezisting Code. Addison-Wesley Profes-
sional, Reading, Mass, USA, 1999.

Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of Logical Coupling
Based on Product Release History. In Proc. of the Int’l Conf. on Software Main-
tenance (ICSM), pages 190-198, Washington, DC, USA, 1998. IEEE Computer

Society.



CHAPTER 7 SUMMARY AND CONCLUSIONS 97

[21]

[22]

[23]

[24]

[26]

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-wesley Reading,
MA, 1995.

GNU Autotools Team. An Introduction to the Autotools. http://www.gnu.org/
software/hello/manual/automake/Autotools-Introduction.html. Last

viewed: 14-Aug-2010.

GNU Development Team. GNU Compiler Collection. http://gcc.gnu.org/.

Last viewed: 11-Apr-2010.

Michael W. Godfrey and Qiang Tu. Evolution in Open Source Software: A
Case Study. In Proc. of the Int’l Conf. on Software Maintenance (ICSM), pages
131-140. IEEE Computer Society, 2000.

Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey Siy. Predicting fault

incidence using software change history. IEEE Trans. Softw. Eng., 26(7):653-661,

2000.
Lenz Grimmer. Building  MySQL Server  with CMake
on Linux/Unix. http://www.lenzg.net/archives/

291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html. Last viewed:

20-Aug-2010.

Maurice H. Halstead. Elements of Software Science (Operating and Programming

Systems Series). Elsevier Science Inc., New York, NY, USA, 1977.


http://www.gnu.org/software/hello/manual/automake/Autotools-Introduction.html
http://www.gnu.org/software/hello/manual/automake/Autotools-Introduction.html
http://gcc.gnu.org/
http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html
http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html

CHAPTER 7 SUMMARY AND CONCLUSIONS 98

28]

[29]

[30]

[33]

[34]

[35]

[36]

Ahmed E. Hassan and Ken Zhang. Using Decision Trees to Predict the Certifi-
cation Result of a Build. In Proc. of the 21st Int’l Conf. on Automated Software

Engineering (ASE), Washington, DC, USA, 2006. IEEE Computer Society.

Peter Kampstra. Beanplot: A boxplot alternative for visual comparison of dis-

tributions. Journal of Statistical Software, Code Snippets, 28(1):1-9, 2008.

KDE developer: “mosfet”.  Autoconf/Automake errors in kdelibs. http:
//1lists.kde.org/?1l=kde-core-devel&m=95953244511288&w=4. Last viewed:

18-Aug-2010.

Steven Knight. SCons Design and Implementation. In Tenth Int’l Python Conf.,
2002.

Gary K. Kumfert and Tom G. W. Epperly. Software in the DOE: The Hid-
den Overhead of “The Build”. Technical Report UCRL-ID-147343, Lawrence

Livermore National Laboratory, CA, USA, February 2002.

Meir M. Lehman. On Understanding Laws, Evolution and Conservation in the

Large Program Life Cycle. Journal of Systems and Software, 1(3):213-221, 1980.

Meir M. Lehman, Dewayne E. Perry, Juan F. Ramil, Wladyslaw M. Turski, and
Paul D. Wernick. Metrics and Laws of Software Evolution — The Nineties View.

In Proc. of the 4th Int’l Software Metrics Symposium (METRICS), 1997.

Linden Labs. CMake. http://wiki.secondlife.com/wiki/CMake, July 2010.

Last viewed: 20-Aug-2010.

Ken Martin and Bill Hoffman. Mastering CMake, 5th Edition. Kitware Inc.,
Clifton Park, NY, USA, 2009.


http://lists.kde.org/?l=kde-core-devel&m=95953244511288&w=4
http://lists.kde.org/?l=kde-core-devel&m=95953244511288&w=4
http://wiki.secondlife.com/wiki/CMake

CHAPTER 7 SUMMARY AND CONCLUSIONS 99

[37]

[38]

[39]

[40]

[41]

Thomas J. McCabe. A Complexity Measure. In Proc. of the 2nd int’l conf. on

Software engineering (ICSE), page 407. IEEE Computer Society Press, 1976.
Steve McConnell. Code Complete, 2nd Edition. Microsoft Press, 2004.

Shane McIntosh, Bram Adams, and Ahmed E. Hassan. The evolution of ANT
build systems. In Proc. of the 7th working conf. on Mining Software Repositories
(MSR), pages 42-51. IEEE Computer Society, 2010.

Shane McIntosh, Bram Adams, and Ahmed E. Hassan. The Evolution of Build

Systems for Java Projects (Under review). Empirical Software Engineering, 2011.

Shane McIntosh, Bram Adams, Thanh H. D. Nguyen, Yasutaka Kamei, and
Ahmed E. Hassan. An Empirical Study of Build Maintenance Effort. In Proc. of
the 33rd Int’l Conf. on Software Engineering (ICSE) (To appear). ACM Press,
2011.

Andrew Miller. js/Makefile.in gone but still in allmakefiles.sh. https://

bugzilla.mozilla.org/show_bug.cgi?id=351377. Last viewed: 18-Aug-2010.

Peter A. Miller. Recursive Make Considered Harmful. In Australian Uniz User

Group Newsletter, volume 19, pages 14-25, 1998.

Mozilla Foundation. Mozilla communications suite. http://www.mozilla.com/.

Viewed on: 11-Apr-2010.

Nachiappan Nagappan and Thomas Ball. Use of Relative Code Churn Measures
to Predict System Defect Density. In Proc’ of the 27th int’l conf. on Software

engineering (ICSE), pages 284-292, New York, NY, USA, 2005. ACM.


https://bugzilla.mozilla.org/show_bug.cgi?id=351377
https://bugzilla.mozilla.org/show_bug.cgi?id=351377
http://www.mozilla.com/

CHAPTER 7 SUMMARY AND CONCLUSIONS 100

[46]

[47]

[48]

[49]

[52]

[53]

Nachiappan Nagappan and Thomas Ball. Using Software Dependencies and
Churn Metrics to Predict Field Failures: An Empirical Case Study. In Proc. of
the 1st Int’l Symposium on Empirical Software Engineering and Measurement

(ESEM), pages 364-373, Washington, DC, USA, 2007. IEEE Computer Society.

Adrian Neagu. What is Wrong with Make. http://freshmeat.net/articles/

what-is-wrong-with-make, 2010. Last viewed: 26-Feb-2010.

Alexander Neundorf. Why the KDE project switched to CMake — and how
(continued). http://lwn.net/Articles/188693/, 2010. Last viewed: 06-Mar-

2010.

Thomas Neustupny. Build failed in Hudson, what to do? http://argouml.
tigris.org/ds/viewMessage.do?dsForumId=450&dsMessageld=2618367.

Last viewed: 18-Aug-2010.

George V. Neville-Neal. Kode Vicious: System Changes and Side Effects. Com-
munications of the ACM, 52(4):25-26, April 2009.

Thanh H. D. Nguyen, Bram Adams, and Ahmed E. Hassan. A case study of bias
in bug-fix datasets. In International Conference in Software Maintenance, page

Accepted, Beverly, Massachusetts, 2010.

Glenn Niemeyer and Jeremy Poteet. Ezxtreme Programming with Ant: Building
and Deploying Java Applications with JSP, EJB, XSLT, XDoclet, and JUnit.
Sams, first edition edition, May 2003. ISBN-0672325624.

Perl Development Team. Perl Scripting Language. http://www.perl.org/. Last

viewed: 11-Apr-2010.


http://freshmeat.net/articles/what-is-wrong-with-make
http://freshmeat.net/articles/what-is-wrong-with-make
http://lwn.net/Articles/188693/
http://argouml.tigris.org/ds/viewMessage.do?dsForumId=450&dsMessageId=2618367
http://argouml.tigris.org/ds/viewMessage.do?dsForumId=450&dsMessageId=2618367
http://www.perl.org/

CHAPTER 7 SUMMARY AND CONCLUSIONS 101

[54]

[57]

[58]

[59]

[60]

[62]

Pier P. Fumagalli. Pain building... http://marc.info/?1=tomcat-dev&m=

97537754000329&w=2. Last viewed: 2-Jan-2011.
John A. Rice. Mathematical Statistics and Data Analysis. Duxbury press, 1995.

Gregorio Robles, Juan J. Amor, Jesus M. Gonzalez-Barahona, and Israel Herraiz.
Evolution and Growth in Large Libre Software Projects. In Proc. of the Int’l
Workshop on Principles of Software Evolution (IWPSE), pages 165174, 2005.

Gregorio Robles, Jesus M. Gonzalez-Barahona, and Juan J. Merelo. Beyond
Source Code: The Importance of Other Artifacts in Software Development (A
Case Study). Journal of Systems and Software (JSS), 79(9):1233-1248, 2006.

Roy Wilson. Make rant. http://marc.info/?1=tomcat-dev&m=

97412077403986&w=2. Last viewed: 2-Jan-2011.

Tim Steiner. mozStorage chokes on databases over AFP. https://bugzilla.

mozilla.org/show_bug.cgi?id=417037. Last viewed: 18-Aug-2010.

Andrew Sutton and Jonathan I. Maletic. How We Manage Portability and Con-
figuration with the C Preprocessor. In Proc. of the 23rd Int’l Conf. on Software

Maintenance (ICSM). IEEE Computer Society Press, 2007.

Qiang Tu and Michael W. Godfrey. The Build-Time Software Architecture View.
In Proc. of IEEE Int’l Conf. on Software Maintenance (ICSM), pages 398-407.
[EEE Computer Society, 2002.

Tijs van der Storm. The Sisyphus Continuous Integration System. In Proceedings
of the 11th Conference on Software Maintenance and Reengineering (CSMR),

Amsterdam, The Netherlands, 2007. IEEE Computer Society Press.


http://marc.info/?l=tomcat-dev&m=97537754000329&w=2
http://marc.info/?l=tomcat-dev&m=97537754000329&w=2
http://marc.info/?l=tomcat-dev&m=97412077403986&w=2
http://marc.info/?l=tomcat-dev&m=97412077403986&w=2
https://bugzilla.mozilla.org/show_bug.cgi?id=417037
https://bugzilla.mozilla.org/show_bug.cgi?id=417037

CHAPTER SUMMARY AND CONCLUSIONS 102

[63] David A. Wheeler. Sloccount. http://www.dwheeler.com/sloccount/, 2010.

Last viewed: 26-Feb-2010.

[64] Yijun Yu, Homayoun Dayani-Fard, John Mylopoulos, and Periklis Andritsos.
Reducing Build Time Through Precompilations for Evolving Large Software. In
Proc. of the 21st Int’l Conf. on Software Maintenance (ICSM). IEEE Computer

Society Press, 2005.

[65] Yijun Yu, Homy Dayani-Fard, and John Mylopoulos. Removing False Code
Dependencies to Speedup Software Build Processes. In Proc. of the 13th Int’l
Conf of the IBM Center for Advanced Studies (CASCON). IBM, 2003.

[66] Erez Zadok. Overhauling Amd for the '00s: A Case Study of GNU Autotools.
In Proc. of the FREENIX Track on the USENIX Annual Technical Conf., pages
287-297, Berkeley (CA, USA), 2002. USENIX Association.


http://www.dwheeler.com/sloccount/

	Abstract
	Co-authorship
	Acknowledgments
	Statement of Originality
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Research Statement
	Thesis Overview
	Major Thesis Contributions
	Organization of Thesis

	Background and Definitions
	What is a build system?
	What is the typical architecture of a build system?
	What are the typical build system languages?
	Chapter Summary

	Related Research
	Build System Design
	Build System Evolution
	Chapter Summary

	Java Build System Evolution at the Release-level
	Case Study Setup
	ANT Case Study
	Maven Case Study
	Discussion
	Chapter Summary

	Build System Evolution at the Revision-level
	Studied Projects
	Case Study Setup
	How many files does a typical build system consist of?
	How much does a typical build system churn?
	How large are typical build system changes?
	Chapter Summary

	An Empirical Study of Build Maintenance Overhead
	How often are build changes required to complete development tasks?
	How do projects distribute build maintenance work?
	Chapter Summary

	Summary and Conclusions
	Summary
	Limitations and Future Work

	Bibliography

