STUDYING THE SOFTWARE DEVELOPMENT
OVERHEAD OF BUILD SYSTEMS

SHANE MCINTOSH

A thesis submitted to the
School of Computing
in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University
Kingston, Ontario, Canada

August 2015

Copyright © Shane McIntosh, 2015

Abstract

Software is developed at a rapid pace. Software development techniques like contin-
uous delivery have shortened the time between official releases of a software system
from months or years to a matter of minutes. At the heart of this rapid release cycle
of continuously delivered software is the build system, i.e., the system that specifies
how source code is translated into deliverables. An efficient build system that quickly
produces updated versions of a software system is required to keep up with market
competitors. However, the benefits of an efficient build system come at a cost — build
systems introduce overhead on the software development process.

In this thesis, we use historical data from a large collection of software projects to
perform four empirical studies. The focus of these empirical studies is on two types of
software development overhead that are introduced by the build system.

We first present three empirical studies that focus on the maintenance overhead
introduced by the need to keep the build system in sync with the source code that
it builds. We observe that: (1) although modern build technologies like Maven pro-
vide additional features, they tend to be prone to additional build maintenance activity
and more prone to cloning, i.e., duplication of build logic, than older technologies like
make are; (2) although typical cloning rates are higher in build systems than in other
software artifacts (e.g., source code), there are commonly-adopted patterns of creative
build system abstraction that can keep build cloning rates low; and (3) properties of
source and test code changes can be used to train accurate classifiers that indicate
whether a co-change to the build system is necessary.

We then present an empirical study that focuses on the execution overhead intro-
duced by the slow nature of (re)generating system deliverables using a build system.
We find that build optimization effort: (1) will yield more build performance improve-
ment by focusing on build hotspots, i.e., files that are not only slow to rebuild, but also
tend to change frequently; and (2) should be aligned with architectural refinement in
order to yield the most benefit.

Related Publications

Earlier versions of the work in this thesis were published as listed below:

* A Large-Scale Empirical Study of the Relationship between Build Technology
and Build Maintenance (Chapter 4). Shane Mclntosh, Meiyappan Nagappan,
Bram Adams, Audris Mockus, and Ahmed E. Hassan. Springer Journal of Empir-
ical Software Engineering (EMSE), 47 pages. In Press.

* Collecting and Leveraging a Benchmark of Build System Clones to Aid in Qual-
ity Assessments (Chapter 5). Shane McIntosh, Martin Poehlmann, Elmar Juer-
gens, Audris Mockus, Bram Adams, Ahmed E. Hassan, Brigitte Haupt, and Chris-
tian Wagner. In Proceedings of the 36th International Conference on Software
Engineering (ICSE 2014), Software Engineering In Practice (SEIP), pp. 145-154.

e Mining Co-Change Information to Understand when Build Changes are Nec-
essary (Chapter 6). Shane McIntosh, Bram Adams, Meiyappan Nagappan, and
Ahmed E. Hassan. In Proceedings of the 30th International Conference on Soft-
ware Maintenance and Evolution (ICSME 2014), pp. 241-250.

* Identifying and Understanding Header File Hotspots in C/C++ Build Processes
(Chapter 7). Shane McIntosh, Bram Adams, Meiyappan Nagappan, and Ahmed
E. Hassan. Springer Journal of Automated Software Engineering (AUSE), 29 pages,
In Press.

The following publications are not directly related to the material in this thesis, but
were produced in parallel to the research performed for this thesis.

e An Empirical Study of goto in C Code, Meiyappan Nagappan, Romain Robbes,
Yasutaka Kamei, Eric Tanter, Shane McIntosh, Audris Mockus, and Ahmed E. Has-
san. To appear in Proceedings of the 10th joint meeting of the European Software
Engineering Conference and the Symposium on the Foundations of Software En-
gineering (ESEC/FSE 2015), 12 pages.

ii

An Empirical Study of the Impact of Modern Code Review Practices on Soft-
ware Quality. Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E.
Hassan. Springer Journal of Empirical Software Engineering (EMSE), 45 pages.
In Press.

The Impact of Mislabelling on the Performance and Interpretation of De-
fect Prediction Models. Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed
E. Hassan, Akinori Thara, Kenichi Matsumoto. In Proceedings of the 37th Inter-
national Conference on Software Engineering (ICSE 2015), pp. 812-823.

Revisiting the Impact of Classification Techniques on the Performance of De-
fect Prediction Models. Baljinder Ghotra, Shane McIntosh, and Ahmed E. Has-
san. In Proceedings of the 37th International Conference on Software Engineer-
ing (ICSE 2015), pp. 789-800.

Investigating Code Review Practices in Defective Files: An Empirical Study of
the Qt Systems. Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Has-
san, and Hajimu lida. In Proceedings of the 12th Working Conference on Mining
Software Repositories (MSR 2015), pp. 168-179.

Cross-Project Build Co-change Prediction. Xin Xia, David Lo, Shane McIntosh,
Emad Shihab, and Ahmed E. Hassan. In Proceedings of the 22nd International
Conference on Software Analysis, Evolution, and Reengineering (SANER 2015),
pp- 311-320.

Do Code Review Practices Impact Design Quality? An Empirical Study of the
Qt, VTK, and ITK Projects, Rodrigo Morales, Shane McIntosh, and Foutse Khomh.
In Proceedings of the 22nd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER 2015), pp. 171-180.

An Empirical Study of Delays in the Integration of Addressed Issues. Daniel
Alencar da Costa, Surafel Lemma Abebe, Shane McIntosh, Uira Kulesza, and Ahmed
E.Hassan. In Proceedings of the 30th International Conference on Software Main-
tenance and Evolution (ICSME 2014), pp. 281-290.

‘¥ Nominated for best paper ¥

Tracing Software Build Processes to Uncover License Compliance Inconsis-
tencies. Sander van der Burg, Eelco Dolstra, Shane McIntosh, Julius Davies, Daniel
M. German, and Armijn Hemel. In Proceedings of the 29th International Confer-
ence on Automated Software Engineering (ASE 2014), pp. 731-741.

iii

The Impact of Code Review Coverage and Code Review Participation on Soft-
ware Quality: A Case Study of the Qt, VTK, and ITK Projects. Shane McIntosh,
Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. In Proceedings of 11th
Working Conference on Mining Software Repositories (MSR 2014), pp. 192-201.
‘Y Distinguished paper award ¥

An Empirical Study of Just-In-Time Defect Prediction Using Cross-Project
Models. Takafumi Fukushima, Yasutaka Kamei, Shane McIntosh, Kazuhiro Ya-
mashita, and Naoyasu Ubayashi. In Proceedings of the 11th Working Conference
on Mining Software Repositories (MSR 2014), pp. 172-18l.

‘¥ Nominated for distinguished paper award ¥

Magnet or Sticky? An OSS Project-by-Project Typology. Kazuhiro Yamashita,
Shane Mclntosh, Yasutaka Kamei, and Naoyasu Ubayashi. In Proceedings of the
11th Working Conference on Mining Software Repositories (MSR 2014), mining
challenge, pp. 353-357.

Orchestrating Change: An Artistic Representation of Software Evolution.
Shane McIntosh, Katie Legere, and Ahmed E. Hassan. In Proceedings of the 1st
joint meeting of the Conference on Software Maintenance, and Reengineering
and the Working Conference on Reverse Engineering (CSMR-WCRE 2014), Early
Research Achievements (ERA), pp. 348-352.

iv

Acknowledgments

Well, here we are! As I near the end of my PhD studies, I suppose that it’s natural to
reminisce about the important role that others have played in my life to get me here.
First, I would like to thank my co-advisors, Bram Adams and Ahmed E. Hassan, who
have both played formative roles in my development as a researcher and as a person.
They are remarkable people from whom I have learned a great deal.

I have had the privilege of working with an amazing group of young researchers at
the Software Analysis and Intelligence Lab (SAIL). Each SAILer has had an impact on
me and my work, but I am particularly grateful to Yasutaka Kamei, Meiyappan Nagap-
pan, Weiyi Shang, and Emad Shihab, who have been like older brothers to me, offering
advice and sharing their experiences.

I'm grateful for the support of my PhD committee, James R. Cordy and Patrick Mar-
tin, who have provided me with insightful feedback and guidance. I also extend thanks
to the other members of my examination committee, Gail C. Murphy, Thomas R. Dean,
and David A. Lamb, for taking the time to critique my work.

I feel lucky to work with an amazing network of collaborators. Those who co-wrote
publications related to the content of this thesis (Audris Mockus, Meiyappan Nagap-
pan, Elmar Juergens, Martin Poehlmann, Brigitte Haupt, and Christian Wagner) shared
their thoughts and helped to shape my work. Also, those collaborators on topics out-
side of the scope of this thesis (Surafel Lemma Abebe, Daniel Alencar da Costa, Julius
Davies, Eelco Dolstra, Akinori Ihara, Takafumi Fukushima, Baljinder Ghotra, Hajimu
lida, Daniel M. Germdn, Armijn Hemel, Yasutaka Kamei, Foutse Khomh, Uird Kulesza,
Katie Legere, David Lo, Kenichi Matsumoto, Rodrigo Morales, Thanh H. D. Nguyen,
Romain Robbes, Weiyi Shang, Emad Shihab, Eric Tanter, Chakkrit Tantithamthavorn,
Patanamon Thongtanunam, Naoyasu Ubayashi, Sander van der Burg, Xin Xia, Kazuhiro
Yamashita, and Ying Zou) have broadened my research perspective.

Without the support of my family and friends, this thesis would not have been pos-
sible. Finally, I am eternally indebted to my wife Victoria, for her devotion, sacrifice,
patience, and understanding.

Statement of Originality

I, Shane MclIntosh, hereby declare that I am the sole author of this thesis. All ideas
and inventions attributed to others have been properly referenced. This is a true copy
of the thesis, including any required final revisions, as accepted by my examiners. I
understand that my thesis may be made electronically available to the public.

vi

Table of Contents

Abstract

Related Publications

Acknowledgments

Statement of Originality

Table of Contents

List of Tables

List of Figures

Chapter 1:

11

INtroduction . . & ¢ v v v v o v v e e e e e b e e et e e e e
Problem Statement e e e e e e e

1.2 ThesisOverview i ittt
1.3 Thesis Contributions Lo oo
1.4 Thesis Organization,
Chapter 2:
Background and Definitions
2.1 An Overview of the Typical Build Process
2.2 Build Technology Paradigms
2.3 The Central Role of the Build System
24 ChapterSummary v i vt i ittt et e e
Chapter 3:
RelatedResearch00c00i e
31 MaintenanceOverhead
3.2 ExecutionOverhead

ii

3.3 ChapterSummary ittt 28
Chapter 4:

Build Technology Choice 30

41 Introduction e 30

4.2 Empirical StudyDesign o o o oL 35

4.3 Build Technology Adoption 43

44 BuildMaintenance 0 53

4.5 Build Technology Migration 75

4.6 ThreatstoValidity 81

4.7 ChapterSummaryttt e 83
Chapter 5:

Cloning in Build Specifications 87

51 Introduction 87

5.2 Background and Definitions 0oL 91

5.3 Build Logic CloninginIndustry 92

5.4 Empirical StudyDesign o oL 96

5.5 DerivingBaselineValues 102

5.6 Understanding Cloned Information 109

57 ThreatstoValidity 114

58 ChapterSummary e 116
Chapter 6:

Drivers of Build Co-Change 119

6.1 Introduction e 119

6.2 Empirical StudyDesign L. 122

6.3 Mozilla Case Study Results (C++) 133

6.4 JavaCaseStudyResults 140

6.5 ThreatstoValidity, 145

6.6 ChapterSummary it 147
Chapter 7:

BuildHotspots 0 v v i i it it et ittt e e 149

71 Introduction 149

72 BuildHotspots e 152

7.3 HotspotAnalysisApproach 156

7.4 Empirical StudyDesign o 160

7.5 Evaluation of the Hotspot Detection Approach 168

7.6 Hotspot CharacteristicAnalysis 174

7.7 Limitations and Threatsto Validity 183

viii

7.8 ChapterSummary ittt 186

Chapter 8:
Conclusionsand FutureWork00.... 188
81 ContributionsandFindings 189
8.2 Opportunities for FutureResearch 190
Appendix A:
Build Technology Examples. 210
Al Low-Level e e 210
A.2 Abstraction-Based e 213
A3 Framework-Driven L . 214
A4 Dependency Managementoe.n.... 216
Appendix B:
Additional Figures ¢ ¢« e vt o b bt et e e e 217
B.1 Build Technology Choice 217

List of Tables

41

4.2

4.3
4.4

5.1
5.2

6.1
6.2

6.3

6.4

6.5

6.6

[Empirical Study 1] Overview of the studied repositories. The most fre-
quently used build technologies and programming languages in the fil-
tered set of repositories are shown in boldface. Percentages will not add
up to 100%, since multiple technologies can be used by a single reposi-

TOTY. . . o e e e e e e e e e e 38
[Empirical Study 1] The adopted file name conventions for each build

technology. 40
[Empirical Study 1] Build maintenance activity metrics. 55
[Empirical Study 1] Build maintenance overhead metrics. 61
[Empirical Study 2] Overview of the studied systems. 96

[Empirical Study 2] A manual analysis of the clones that pertain to each
subcategory in a statistically representative subsample (95% confidence
level; +£5% confidence interval). Phase totals are not the sum of each
subcategory because a clone may pertain to many subcategories. 110

[Empirical Study 3] Characteristics of the studied projects. 123
[Empirical Study 3] A taxonomy of the studied language-agnostic code
change characteristics. Each is measured once for source code and once
fortestcode. e 126
[Empirical Study 3] A taxonomy of the studied language-aware code change
characteristics. Each is measured once for source code and once for test

code. e e e e e e 127
[Empirical Study 3] An example confusion matrix.. 132
[Empirical Study 3] The median of the recall, precision, F-measure, and

AUC values of the ten classifiers constructed at re-sampling bias (3) lev-

els of 0, optimal, and 1. The first row shows the raw values while the
second row shows the improvement of adding language-specific char-

acteristics to language-agnostic classifiers. 134
[Empirical Study 3] Categories of identified Eclipse-core build changes
with a 95% confidence level and a confidence interval of +10%. 142

X

7.1

7.2

7.3

7.4

[Empirical Study 4] Characteristics of the studied systems. For each stud-
ied system, we extract two years of historical data just prior to the release

dates. e 160
[Empirical Study 4] Source code properties used to build logistic regres-
sion models that explain header file hotspot likelihood. 176

[Empirical Study 4] Logistic regression model statistics for the larger stud-

ied systems (i.e., GLib and Qt). Deviance Explained (DE) indicates how

well the model explains the build hotspot data. A DE measures the im-

pact of dropping a variable from the model, while ES(.X') measures the
effect size (see equation 7.1), i.e., the impact of explanatory variables on
model prediction. e e 179
[Empirical Study 4] Logistic regression model statistics for the smaller
studied systems (i.e., PostgreSQL and Ruby). Deviance Explained (DE)
indicates how well the model explains the build hotspot data. ADEmea-

sures the impact of dropping a variable from the model, while ES(X)
measures the effect size (see equation 7.1), i.e., the impact of explana-

tory variables on model prediction. oL oL 180

List of Figures

1.1

2.1
2.2

41
4.2
4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11
412

An overview of the scope of thisthesis.

An overview of the typical build process.

The interactions between the build system and various practitioners,
release automation, and developmenttools.

[Empirical Study 1] Overview of our approach to the impact that tech-
nology choice has on build maintenance activity.

[Empirical Study 1] Threshold plots for filtering the corpus of repositories.

[Empirical Study 1] Build technology adoption over time.
[Empirical Study 1] Size of the source code (# files) per repository in the
forgesandecosystems.
[Empirical Study 1] Statistically significant (p < 1071%) co-occurrences
of build technology (black boxes) and programming language (white
ovals) on a fitted Poisson model. The higher the log odds ratio presented
above each edge, the higher the likelihood of a non-coincidental rela-
tionship. e e e
[Empirical Study 1] Number of active periods (months) per repository
in the forgesand ecosystems.
[Empirical Study 1] Median build commit proportion, size, and churn in
thestudiedforges. o .
[Empirical Study 1] Median build commit proportion, size, and churn in
the studied ecosystems.
[Empirical Study 1] Median source-build coupling and build author ra-
tiosin the studied forges.
[Empirical Study 1] Median source-build coupling and build author ra-
tios in the studied ecosystems.

[Empirical Study 1] Comparison of coupled and not coupled build changes.

[Empirical Study 1] Monthly source-build coupling rate (left) and monthly
build author ratio (right) in Android (make), GNOME (Autotools), Post-
greSQL (Autotools), and KDE (Autotools in grey, CMake in black).

xii

17

36
41
45

48

50

54

58

60

64

65
67

4.13

4.14

4.15
4.16

5.1
5.2

5.3

5.4

6.1

6.2

6.3

7.1

7.2

7.3
7.4

7.5

7.6
7.7

Al
A2

[Empirical Study 1] Build commit proportion in the studied forges clas-

sified by source languagesused. 72
[Empirical Study 1] Source-build coupling in the studied forges classi-

fied by source languagesused. L., 73
[Empirical Study 1] Build technology migration in the studied forges . . 78

[Empirical Study 1] Build technology migration in the studied ecosystems 79

[Empirical Study 2] Overview of our data extraction and analysis approach. 95
[Empirical Study 2] Number of clones detected vs. build system size (in

linesofbuildlogic). 98
[Empirical Study 2] Cloning metrics gathered from the studied systems.

Note: scales differamongtheplots. 103
[Empirical Study 2] Quantile plots of system-level cloning metrics. . . . 106

[Empirical Study 3] An overview of our data extraction and analysis ap-

proaches. e e e e 123
[Empirical Study 3] Comparison of the time and developer distribution

of transactions (black) and work items (grey). 129
[Empirical Study 3] Variable importance scores for the studied code change
characteristics (B =6). e e 137

[Empirical Study 4] An illustrative build dependency graph and its make

implementation. e 154
[Empirical Study 4] An example scenario of the impact that a header file
hotspot can have on a developmentteam. 155
[Empirical Study 4] Overview of our hotspot analysis approach. 157
[Empirical Study 4] The rebuild cost of the header and other (primarily
source) files in the studied systems. 164

[Empirical Study 4] Quadrant plot of rate of change and rebuild cost.
Hotspots are shown in the top-right (red) quadrant. The shaded circles
indicate header files, while plus (+) symbols indicate non-header files.
Non-header file hotspots are circledinred. 165
[Empirical Study 4] Overview of our simulation exercise. 169
[Empirical Study 4] Cumulative curves comparing the four approaches
for selecting header files for build performance optimization. The Total
Cost Improvement (TCI) measures the reduction of time spent rebuild-
ing in the future (testing corpus) when the performance of the selected

header files are improved by 10%. 172
Example low-level technology specifications. 211
Example abstraction-based technology specifications. 213

Xiii

A3

B.1

B.2

Example Framework-driven and dependency management technology
specifications. L e 215

Monthly build commit proportion, sizes, and churn volume in the stud-

iedforges. 218
Monthly source-build coupling and build author ratios in the studied
forges. L e e e e 219

Xiv

CHAPTER].

Introduction

Key CONCEPT

Although build systems provide criti-
cal infrastructure that software orga-

nizations require to keep pace with
market competitors, they introduce
overhead on the software development
process.

Modern software is developed at a breakneck pace. It is not uncommon for large
software systems like Mozilla to receive hundreds of change requests (e.g., defect re-
ports, feature requests) on a daily basis [10]. After these change requests have been
triaged to the appropriate team members, developers update the codebase to imple-
ment the change requests. In August 2014, the codebase of Mozilla was updated 13,090
times — an average of 422 times per day.’

In general, such an update would not be released immediately to the end user. In
the past, software releases would take several months or even years to prepare, while

modern software organizations like Google, LinkedIn, and Facebook release several

lhttp://relengofthenerds.blogspot.ca/2014/09/mozilla-pushes-august-2014.html
1

http://relengofthenerds.blogspot.ca/2014/09/mozilla-pushes-august-2014.html

2 CHAPTER 1: INTRODUCTION

times daily [1, 2], grouping the updates since the previous release. Techniques like
Continuous Delivery (CD) [45] enable software organizations to quickly produce of-
ficial releases by automatically packaging and deploying software changes that satisfy

automated testing criteria.

One of the key components of the software release process is the build system, i.e.,
the specifications that define the complex build process of large software systems. Such
a process may involve hundreds of compiler and tool invocations that must be exe-
cuted in a specific order. The build system interfaces with Integrated Development
Environments (IDEs) to provide developers with the means of compiling and testing
their code changes in their local environments prior to queuing up their code changes
forintegration. While modern IDEs can generate build systems for simple applications,

complex software systems still require manually specified build systems [86, 99].

An effective build system helps to manage risk in software development by helping
developers to detect code compilation and integration problems early in the develop-
ment cycle. For example, if any of the hundreds of daily code changes cause an error in
the build process, team members should be notified immediately so that reactionary
measures can be taken. To provide this rapid feedback loop, software organizations
adopt techniques like Continuous Integration (CI) [32] that routinely download the lat-
est source code changes onto dedicated servers to ensure that they are free of compi-
lation and test failures. This rapid feedback loop provided by CI would not be possible
without a robust and efficient build system. Moreover, the rapid release cycle fueled by
CD would be error-prone (and thus, too risky) without a reliable build system in place.
Indeed, Neville-Neal speculates that the build system is one of the most important de-

velopment tools [87].

SECTION 1.1: PROBLEM STATEMENT 3

1.1 Problem Statement

Although build systems provide critical infrastructure that software organizations re-
quire in order to keep pace with market competitors, they introduce overhead on the

software development process:

Thesis Statement: The overhead introduced by the build system is an important
issue that development teams need to manage. Historical data extracted from soft-
ware repositories and facts extracted from the build system itself can inform organi-
zational decisions that aim to mitigate this overhead.

Indeed, the build systems of some software projects introduce more overhead than
others, i.e., theyrequire developers and/or testers to spend some of their time updating
the build system rather than the code or tests. For example, while 27% of code changes
require accompanying build changes in the Mozilla system, only 4% require accompa-
nying build changes in the Jazz system [70]. Hence, in this thesis, we set out to glean
actionable information from historical data in software repositories and facts speci-
fied in the build system itself order to better understand: (1) the nature of the software
development overhead introduced by the build system, and (2) what can be done to

mitigate this overhead.

1.2 Thesis Overview

We now provide a brief overview of the thesis. Figure 1.1 provides an overview sketch
of the scope of this thesis. We first provide the necessary background material (purple

boxes):

4 CHAPTER 1: INTRODUCTION

Background Overhead introduced Maintenance Execution
by the build system overhead overhead
: e Y ~a v
Background and Definitions . Chapter 7:
Emp_'"cal _Chapter4: i X Chapter 6: Identifying and Understanding
studies Build Technology Choice Cloning in Build Specifications Drivers of Build Co-Change Build Hotspots
Chapter 3: ‘n
Related Research Y Y Y
Potential Pragmatic build Build clone Recommender Focus build
technology choice mitigation and system for build optimization effort on
outcomes and migration management changes high-yield targets

Figure 1.1: An overview of the scope of this thesis.

Chapter 2: Background and Definitions
Before delving into the software development overhead introduced by build
systems, we first provide the reader with background information and de-

fine key terms that we will use throughout the thesis.

Chapter 3: Related Research
In order to situate this thesis with respect to prior research, we present a

survey of research on software build systems.

Next, we shift our focus to the main body of the thesis. In this thesis, we focus on two
types of overhead introduced by the build system (green boxes). Each type of overhead
is further divided into a series of empirical studies (blue boxes) that have compelling
potential outcomes (orange clouds). Each empirical study is presented in its own chap-

ter. We introduce the two types of overhead, and the empirical studies below.

1.2.1 Maintenance Overhead

Just as source code must be maintained in order to fix defects, add new features, and

refactor existing ones, the build system must also be maintained. For example, the

SECTION 1.2: THESIS OVERVIEW 5

build system must be updated to correctly map the evolving software features to sys-
tem deliverables and keep up with changing market demands, such as new computing
platforms.

Maintenance overhead refers to this need to keep the build system synchronized
with the other software artifacts (e.g., source code). Kumfert et al. argue that there is a
“hidden overhead” associated with the maintenance of the build system [58]. Hochstein
et al. refer to this overhead as the “build tax” [44]. Adams et al. [4] and our prior work [66,
67] show that from release to release, source code and build system tend to co-evolve,
i.e., changes to the source code can induce changes in the build system, and vice versa.
Moreover, up to 27% of source code changes and 44% of test code changes are accom-
panied by changes to the build system [70]. To counteract the overhead introduced
by the maintenance of build systems, it is a common practice in industry to dedicate
specialized personnel to build teams [90], i.e., teams that are entirely focused on main-
taining the build system.

In this thesis, we perform three empirical studies that focus on the maintenance

overhead introduced by the build system:

Chapter 4: Build Technology Choice
There are numerous build technologies abound, each with its own nu-
ances. Developers often make build technologies choices for their projects
based on anecdotal evidence [100]. In order to help practitioners make
more sound, data-driven build technology choices, we analyze historical
trends in maintenance activity with respect to ten popular build technolo-

gies in a corpus of 177,039 software repositories.

Chapter 5: Cloning in Build Specifications

6 CHAPTER 1: INTRODUCTION

Like other software artifacts, build systems are susceptible to anti-patterns,
i.e., poor solutions to common design and implementation problems. Al-
though there are several documented anti-patterns [55], one of the most
prominent ones is code duplication (a.k.a., code cloning). Prior studies
suggest that excessive code duplication may make maintenance more dif-
ficult [48]. Since little is known about how cloning impacts build systems,

we collect and analyze a large benchmark of clones in build systems.

Chapter 6: Drivers of Build Co-Change
The overhead introduced by the maintenance of the build system is ex-
acerbated by the difficulty of identifying the code changes that require
accompanying build system changes. If build maintenance is neglected
when it is required, execution of the build may be “broken,” preventing
other team members from performing builds and slowing development
progress down. To better understand when build maintenance is required,
we train and analyze classifiers that are capable of identifying the source

and test code changes that require accompanying build maintenance.

1.2.2 Execution Overhead

Execution overhead is introduced by the slow nature of using the build system to gen-
erate (or regenerate) system deliverables. Since large software systems are made up of
thousands of files that contain millions of lines of code, the execution of the build sys-
tem can be prohibitively expensive, often taking hours, if not days to complete. For ex-

ample, builds of the Firefox web browser for the Windows operating system take more

SECTION 1.2: THESIS OVERVIEW 7

than 2.5 hours on dedicated build machines.” Certification builds of a large IBM sys-
tem take more than 24 hours to complete [42]. In a recent survey of 250 C++ developers,
more than 60% of respondents report that build speeds are an important issue.” In-
deed, while developers wait for build tools to execute the set of commands necessary

to synchronize source code with deliverables, they are effectively idle.

In this thesis, we perform an empirical study that focuses on the execution over-

head introduced by the build system:

Chapter 7: Identifying and Understanding Build Hotspots
Since some source files may trigger a larger number of commands or slower
ones, some source files take longer to rebuild than others. Moreover, some
source files are more prone to change than others, and hence, trigger up-
dates more frequently than other source files. Indeed, in prior work, we
found that only 10%-25% of the source files of ten large systems like Linux
and Mozilla change in a typical month. To help developers to focus build
optimization effort on the files that will truly make a difference in day-to-
day development, we propose an approach to detect build hotspots, i.e.,
files that not only rebuild slowly, but also tend to change frequently. We
evaluate our approach using four large software systems. Moreover, to
help developers to avoid creating build hotspots in the first place, we train
and analyze classifiers that are capable of explaining the incidence of build

hotspots in four large software systems.

Zhttp://tbpl.mozilla.org/
Shttp://mathiasdm.com/2014/01/24/a-c-questionnaire-on-build-speed-the-results-are-in/

http://tbpl.mozilla.org/
http://mathiasdm.com/2014/01/24/a-c-questionnaire-on-build-speed-the-results-are-in/

8 CHAPTER 1: INTRODUCTION

1.3 Thesis Contributions

This thesis demonstrates that:

¢ Although the more modern build technologies (e.g., Maven) provide additional
features that older technologies (e.g., make) do not provide, they tend to require
additional maintenance activity (Chapter 4). Moreover, the more modern tech-
nologies tend to be more prone to cloning than the older technologies (Chap-

ter 5).

» While typical cloning rates in build systems are much higher than those of other
software artifacts (e.g., source code), build cloning can be mitigated through the
use of indirect reuse patterns that are not directly offered by the build technolo-

gies themselves (Chapter 5).

* Properties of code changes can be used to accurately explain when build main-

tenance is required (Chapter 6).

* Our proposed technique for detecting build hotspots flags files that, if optimized,
yield a higher return on investment than focusing on the files that: (1) rebuild the
slowest, (2) change the most frequently, or (3) are used the most throughout the

codebase (Chapter 7).

e Inlarge projects, build optimization benefits more from architectural refinement

than from acting on code properties like file fan-in alone (Chapter 7).

SECTION 1.4: THESIS ORGANIZATION 9

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background
information and defines key terms. Chapter 3 presents research related to our analysis
of the overhead introduced by build systems. Chapters 4 and 5 present the results of our
large-scale analyses of build technology choice and build system cloning, respectively.
In Chapter 6, we present our study of the drivers of build co-change. Chapter 7 presents
the results of our study of build hotspots. Finally, Chapter 8 draws conclusions and

discusses promising avenues for future work.

CHAPTER 2

Background and Definitions

KeEy CONCEPT
ﬁ The build system is the set of spec-

ifications that describe how develop-
ment artifacts, such as source code, are
transformed into deliverables, such as
executables.

We use the term build system to refer to specifications that outline how a software
system is assembled from its sources. More specifically, for the purposes of this thesis,
the build system is the set of specifications that describe how development artifacts,

such as source code, are transformed into deliverables, such as executables.

In the remainder of this chapter, we describe the typical architecture of a build sys-
tem, the paradigms of build technologies that are used to specify build systems, and

the central role that the build system plays in modern software development.

10

SECTION 2.1: AN OVERVIEW OF THE TYPICAL BUILD PROCESS 11

2.1 An Overview of the Typical Build Process

Figure 2.1 provides an overview of the typical build process, i.e., the steps of assembling
a software system that are specified by the build system. The process is typically com-
posed of five steps. During the execution of the build process, if any of the five steps

are not successfully completed, the build is “broken.”

2.1.1 Configuration

The configuration step uses environment settings and user preferences to select the
set of software features that should be included in the final product from the codebase
snapshot that is being built. Moreover, this set of selected software features may influ-
ence the set of tools that are required to translate sources into deliverables.

After the configuration step has been executed, a concrete build system capable of

producing a concrete set of deliverables has been instantiated.

2.1.2 Construction

The construction step uses the concrete build system produced by the configuration
step to issue the commands (e.g., compilers and linkers) that are required to produce
deliverables. These commands are order-dependent, e.g., source code files must be
compiled into object code before the object code can be linked together into executa-
bles. Hence, specifications of the construction step often describe the relationship be-

tween sources, deliverables, and intermediary files using dependencies.

Traditionally, the construction step is conceptually represented using build targets.

12 CHAPTER 2: BACKGROUND AND DEFINITIONS

Abstract
Environment CalgiEEm User
settings preferences

) ’

Configuration
Y

Concrete
build system

)

Construction
Y

Raw
deliverables

1] Y
(3)
Certification

A A

Tested
deliverables

Y
4)
Packaging

\/

Installable
package

Codebase
snhapshot

-

Corpus of
tests

Y

Y

®)

Deployment

Available for

Services
download

updated

Figure 2.1: An overview of the typical build process.

SECTION 2.1: AN OVERVIEW OF THE TYPICAL BUILD PROCESS 13

A build target describes an abstract build goal (or collection of goals) 7', such as “com-
plete all compilation commands.” A target T typically has two key characteristics: (1)
a build rule that defines the sequence of commands that must be executed when T is
triggered, and (2) a list of dependent targets that determine whether or not T should be
triggered. Heuristics are used to speed up a build such that a target is only triggered if
its output files do not exist yet or at least one dependent target has been triggered.

After executing the construction step, a set of raw deliverables has been produced.

2.1.3 Certification

The certification step follows, automatically executing tests to ensure that the raw de-
liverables produced by the construction step have not introduced regression of system
behaviour. It is important to note that while we consider the infrastructure used to au-
tomate the execution of the tests as part of the build system, we exclude the automated
tests themselves.

After executing the certification step, the raw deliverables produced by the con-

struction step have cleanly passed the suite of automated tests and are ready for pack-

aging.

2.1.4 Packaging

The packaging step bundles the tested deliverables together with required libraries,
documentation, and data files. The gathered materials are collected into a package
that can be easily installed directly onto end-user machines, or deployed on organiza-
tion web infrastructure. After executing the packaging step, the installable package has

been created.

14 CHAPTER 2: BACKGROUND AND DEFINITIONS

2.1.5 Deployment

The final step in the build process is the deployment step, which either: (1) makes in-
stallable packages available for end-users either via organizational means (e.g., a prod-
uct website) or via a third-party distributor (e.g., software package distributions or so-
called “app” stores); or (2) updates the live application code being accessed via the web

(e.g., web applications).

2.2 Build Technology Paradigms

Build systems are supported by a variety of technologies that subscribe to different
design paradigms. In this thesis, we focus on four of the most common build tech-
nology paradigms [99]. Furthermore, we study a broad spectrum of technologies that
are spread across these build technology paradigms, and as we will show in Chapter 4,
are also adopted by several open source repositories. We briefly introduce each of the
studied paradigms below. Detailed information about the studied technologies can be

found in Appendix A.

2.2.1 Low-Level

Low-level technologies explicitly define build dependencies between input and output
files, as well as the commands that implement the input-output transformation. For
example, one of the earliest build technologies on record is Feldman’s make tool [35]
that automatically synchronizes program sources with deliverables. Make specifica-
tions outline target-dependency-recipe tuples. Targets specify files created by a recipe,

i.e., ashell script that is executed when the target either: (1) does not exist, or (2) is older

SECTION 2.2: BUILD TECHNOLOGY PARADIGMS 15

than one or more of its dependencies, i.e., a list of other files and targets. Targets may
also be phony, representing abstract phases of a build process rather than concrete
files in a filesystem. Ant borrows the tuple concept from make, however all Ant targets
are abstract. When an Ant target is triggered, a list of specified tasks are invoked that
each execute Java code rather than shell script recipes to synchronize sources with de-
liverables. Similarly, Rake, Jam, and SCons also follow the make tuple paradigm, but
allow build maintainers to write specifications in portable scripting languages: Ruby,
Perl], and Python respectively. We study the make, Ant, Rake, Jam, and SCons low-level

technologies.

2.2.2 Abstraction-Based

Platform-specific nuances forced maintainers of portable applications, but using low-
level build technologies, to repeat several “boilerplate” low-level build expressions for
handling variability in platform implementation over and over again (e.g., different
compilers, library support). Abstraction-based tools attempt to address this flaw by au-
tomatically generating low-level specifications based on higher level abstractions. For
example, GNU Autotools specifications describe external dependencies, configurable
compile-time features, and platform requirements. These specifications can be parsed
to generate make specifications that satisfy the described constraints. Similarly, CMake
abstractions can be used to generate make specifications, as well as Microsoft Visual
Studio and Apple Xcode project files. We study the Autotools and CMake abstraction-

based technologies.

16 CHAPTER 2: BACKGROUND AND DEFINITIONS

2.2.3 Framework-Driven

Framework-driven technologies favour build convention over configuration. For ex-
ample, the Maven technology assumes that source and test files are placed in default
locations and that projects adhere to a typical Java dependency policy (e.g., . class files
are generated by compiling . java files of the same name), unless otherwise specified.
If projects abide by the conventions, Maven can infer build behaviour automatically,

without any explicit specification. We study the Maven framework-driven technology.

2.2.4 Dependency Management

Dependency management tools augment the three types of build systems above by au-
tomatically managing external API dependencies. Developers specify the names and
exact or minimum version numbers of API dependencies. The dependency manage-
ment tool ensures that a local cache contains the APIs necessary to build the project,
downloading missing ones from an upstream repository server when necessary. De-
pendency management tools offer two advantages: (1) users no longer need to carefully
install the required versions of libraries manually, and (2) production and development
environments can coexist, since the potentially unstable versions of libraries that are
required for development are placed in a local cache that is quarantined from the run-

ning system. We study the Ivy and Bundler dependency management technologies.

2.3 The Central Role of the Build System

The build system plays an important role in modern software development. Figure 2.2

shows the various practitioners, release automation, and development tools that need

SEcCTION 2.3: THE CENTRAL ROLE OF THE BUILD SYSTEM

17

Release Automation

>

Nightly
Builds

*;

Continuous
Integration

)

{0

Continuous
Delivery

}

Practitioners

@ e

Developers Quality Release
Assurance Engineers

< Build System

_____________________l g

Development Tools

4
N

Static Code Review
Analysis Environments

Figure 2.2: The interactions between the build system and various practitioners, release
automation, and development tools.

to interact with the build system regularly. We describe each of these build system in-

teractions below.

2.3.1 Practitioners

Many types of practitioners rely on the build system in order to accomplish their jobs in

a timely manner. For example, after modifying the source code, developers rely on the

build system in order to integrate their code changes into system deliverables. Qual-

ity Assurance (QA) personnel integrate automated tests into the build process to help

development teams to avoid introducing regression of system behaviour. Release engi-

neersmaintain the build system to ensure that the process of producing official releases

is sound and repeatable.

18 CHAPTER 2: BACKGROUND AND DEFINITIONS

2.3.2 Release Automation

Various forms of release automation are also reliant on the build system. For exam-
ple, nightly builds are performed to integrate the set of changes that occurred during
the day into a testable version of the software system that QA personnel can test on
the following day. Moreover, techniques like Continuous Integration (CI) automatically
perform builds when a new change is recorded in the project’s Version Control System
(VCS) in order to detect compilation errors and test failures on a more frequent basis
than nightly builds do. Recently, companies such as Google have adopted Continuous
Delivery (CD) [45], a development approach that facilitates rapid distribution of newly
produced versions of a software system by extending CI builds, which typically termi-

nate after the certification step, to include packaging and deployment steps.

2.3.3 Development Tools

Finally, various tools that have become critical parts of the development process also
depend on the build system. For example, static analysis tools (e.g., Coverity Code Ad-
visor') construct system-level data structures, such as abstract syntax trees, by instru-
menting the build system. Furthermore, code reviewing environments (e.g., Gerrit?)
provide an interface for automation tools to scan changes that have been posted for
review. Software teams such as Qt, VTK, and ITK connect the build process with the
code review environment in order to detect build and test errors automatically before

human reviewers invest (expensive) manual effort [71].

http://wuw.coverity.com/products/code-advisor/
Zhttps://code.google.com/p/gerrit/

http://www.coverity.com/products/code-advisor/
https://code.google.com/p/gerrit/

SECTION 2.4: CHAPTER SUMMARY 19

2.4 Chapter Summary

This chapter defines foundational concepts and provides motivation for the general
study of build systems. Specifically, we define the build system, describe its typical
structure, the technologies that support modern build systems, and describe the criti-
cal role that build systems play in modern software development.

In the next chapter, we survey prior research on build systems in order to situate our
empirical studies of the software development overhead introduced by build systems

within the broader scope of the body of knowledge.

CHAPTER 3

Related Research

KeEy CONCEPT

ﬁ The critical role that build systems

play in the modern software develop-
ment process has inspired a wealth of
recent studies of build systems.

In this chapter, we survey the related research on build systems. We organize the
work along the maintenance and execution themes of software development overhead
that are the focus of this thesis. More specifically, we describe how the related work

motivates our four empirical studies.

3.1 Maintenance Overhead

The critical role that build systems play in the modern software development process
has inspired recent studies of the reliability of build systems. For example, by mining
the issue reports of the Ant, Maven, CMake, and QMake build tools, Xia et al. find that

the most defect-prone component of a build tool is the external interface with which

20

SECTION 3.1: MAINTENANCE OVERHEAD 21

users interact [109, 110]. Nadi et al. develop techniques for reporting anomalies be-
tween the source and build system as likely defects in Linux [83, 84, 85]. Al-Kofahi et

al. propose a fault localization technique for make-based build systems [6, 7].

To help practitioners to cope with the overhead of maintaining the build system,
recent research has proposed several tools. Adams et al. develop the MAKAO tool to
visualize and reason about build dependencies [3]. Tamrawi et al. propose a tech-
nique for visualizing and verifying build dependencies using symbolic dependency
graphs [101, 102]. Al-Kofahi et al. extract the semantics of build system changes using
MKDifT [8]. Buffenbarger proposes a variant of GNU make called amake [18] that uses
hash signatures of files to detect when files need to be rebuilt instead of using the last
modification timestamp in order to avoid inconsistent builds caused by unsynchro-
nized machine clocks in a multi-machine environment. Hardt and Munsen propose

Formiga — a tool that assists in performing common Ant maintenance tasks [41].

Little, however, is known about the factors that drive build maintenance. Although
modern Integrated Development Environments (IDEs) provide support for building
simple applications, complex software systems still require manually maintained build
systems [86, 99]. Indeed, Martin et al. find that hand-written build systems tend to use
more advanced features of the GNU make build technology [64]. In this section, we
motivate our three empirical studies of what drives build maintenance, and what can

be done to mitigate it.

22 CHAPTER 3: RELATED RESEARCH

Empirical Study 1: Build Technology Choice

There are dozens of build technologies available for developers to select from,' each
with its own nuances. These technologies adopt various design paradigms. As shown

in Chapter 2, four of the most common design paradigms are [99]:

Low-level technologies (e.g.,make [35]) require explicitly-defined build dependencies

between each input and output file.

Abstraction-based technologies (e.g., CMake”) use project metadata, such as the list

of files to build, to generate low-level build systems.

Framework-driven technologies (e.g., Maven®) eliminate the “boilerplate” dependency
expressions that are typical of low-level technologies in favour of conventions,

e.g., expecting input and output files to appear in default locations.

Dependency management technologies (e.g., Ivy*) are used to automatically man-

age external API dependencies.

When the costs associated with build maintenance grow unwieldy, software teams
like KDE,” MySQL,° and Hibernate’ have migrated between technologies, reimplement-
ing thousands of lines of build logic using a (perceived to be superior) technology [100].
Zadok reports that the size and complexity of the Berkeley Automounter build system

was reduced by migrating from make to GNU Autotools [113].

'http://en.wikipedia.org/wiki/List_of_build_automation_software

http://www.cmake.org/

Shttp://maven.apache.org/

“http://ant.apache.org/ivy/

Shttp://lists.kde.org/?1l=kde-core-devel&m=959532445112884w=4

Shttp://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.
html

"http://lists.jboss.org/pipermail/hibernate-dev/2007-May/002075.html

http://en.wikipedia.org/wiki/List_of_build_automation_software
http://www.cmake.org/
http://maven.apache.org/
http://ant.apache.org/ivy/
http://lists.kde.org/?l=kde-core-devel&m=95953244511288&w=4
http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html
http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html
http://lists.jboss.org/pipermail/hibernate-dev/2007-May/002075.html

SECTION 3.1: MAINTENANCE OVERHEAD 23

Thus far, build system studies have focused on a small sample of between one and
ten projects. In such small samples, confounding factors like build technology choice
can only be modestly controlled, with most of the studies being performed on make,
Ant, and Maven build systems. Hence, it is not clear whether a large investment in
migration to a different technology can truly impact build maintenance overhead.

We, therefore, set out to investigate the role that build technology choice plays with
respect to build maintenance. In order to ensure that our conclusions are valid and
repeatably observed, we mine the version history of a large corpus of open source VCS

repositories that was collected by Mockus [77].

Empirical Study 2: Cloning in Build Specifications

The design of software build systems is critical. De Jonge [25, 26] and Elsner ef al. [33]
argue that the reuse of software components is limited by the design of its build system.
Tu and Godfrey found examples of complex build system designs in the GCC and Perl
systems [104]. They identify the code robot design pattern, where the build system pro-
duces a partial version of the system that lacks some features (e.g., the GCC compiler)
in order to build the remainder of the system.

Complex software architectures like Software Product Lines (SPLs) [22] are often
implemented through carefully designed build systems. For example, Unphon shows
that investment in a well-designed build hierarchy, i.e., organization of software com-
ponents and dependencies, led to improved quality in an industrial SPL [105]. Berger et
al. find that the build systems of the Linux and eCos systems, which describe and con-
strain how various system features may be combined, are realizations of several theo-

retical variability modelling concepts [14]. Nadi et al. argue that the variability model

24 CHAPTER 3: RELATED RESEARCH

of Linux can be divided into high-level feature constraints described using configura-
tion tools like Linux KConfig (i.e., the problem space), and low-level details described

in source code and construction layer specifications (i.e., the solution space) [81].

Indeed, it is crucial that the build system is analyzed when studying SPLs in prac-
tice. For example, Dietrich et al. extract feature-to-code mappings from the Linux build
system [28]. Passos et al. catalog several patterns of co-evolution between the variabil-
ity model of the Linux kernel and its other artifacts, finding that many of these patterns

trigger changes in the build system [89].

On the other hand, poorly-designed build systems increase the difficulty of build
maintenance. For example, Miller shows that the commonly-adopted recursive-make
build system design, where build modules are implemented in independent build spec-
ification files, can produce indeterminate build results [74]. Adams et al. found that due
to maintenance difficulties, the initial build system for the Linux kernel needed to be
redesigned during the 2.5 release [4]. Suvorov et al. report that an initial build system
migration attempt was abandoned by the KDE team due to insufficient solicitation of

requirements [100].

One of the most common anti-patterns in software systems is cloning [57, 94], i.e.,
duplication of software logic. There is a lack of consensus about the harmfulness of
cloning in general. For example, Kasper and Godfrey show that there are positive ways
that cloning is used in open source systems [51], and Rahman et al. show that this link
between defect proneness and cloning is tenuous at best [92]. Nonetheless, Juergens et
al. find that there are open source and proprietary systems where clones are uninten-
tionally made inconsistent with one another, which introduces defects that are often

difficult to diagnose [48].

SECTION 3.1: MAINTENANCE OVERHEAD 25

Kasper and Godfrey also show that cloning is often a reactionary measure when
programming in languages that lack the mechanisms for properly abstracting a con-
cept [51]. Indeed, the recursive-make build system design may have stemmed from
this lack of abstraction mechanisms provided by early versions of the make technol-
ogy. Since build technologies share other similarities with programming languages,
we suspect that cloning may also impact build systems as well. We, therefore, set out

to empirically study cloning in build systems.

Empirical Study 3: Drivers of Build Co-Change

Broken builds can slow development progress and the release process down. Seo et
al. find that 30%-37% of builds triggered by Google developers on their local copies of
the source code are broken [95]. If those local build breakages are not fixed before the
changes are committed to upstream repositories, then the software team as a whole
will be negatively impacted. Neitsch et al. find that several Ubuntu 9.10 source code
packages implemented using multiple programming languages do not build cleanly
due to subtle differences in build environments [86]. Kwan et al. find that 31% (60/191)
of the studied IBM team builds were broken [59]. Furthermore, Hassan and Zhang find
that 15% (209/1,429) of the studied IBM certification builds (i.e., builds that the devel-
opment team believed were ready for testing) were broken [42]. Kerzazi et al. estimate
that between 893-2,133 man-hours are wasted due to a build breakage rate of 19% in a
large industrial system [52]. Downs et al. show that ambient devices can help to raise
awareness of build breakage in a non-intrusive manner [30]. To reduce this build down-
time, Van der Storm proposes an algorithm that automatically backtracks changes to a

VCS branch if the changes cause build breakage [107].

26 CHAPTER 3: RELATED RESEARCH

Recent studies have found that neglected build maintenance is a commonly de-
tected root cause of broken builds [95]. Indeed, neglecting to propagate changes to the
build system when it is necessary can generate lingering inconsistencies in the build
process. Morgenthaler ef al. show that neglected build maintenance at Google has gen-
erated build debt [80], i.e., a form of technical debt [23] that accumulates in the build
system due to neglected build change propagation. Nadi et al. find that Linux kernel
variability anomalies, i.e., inconsistencies between source code and build system are
rarely caused by trivial, typo-related issues, but they are more often caused by incom-
plete changes, e.g., changes to source code that are not entirely propagated to the build
system [82]. Furthermore, these variability anomalies tend to linger for as many as six
Linux releases before they are fixed.

Yet, despite the importance of performing source-build co-changes when they are
necessary, the driving factors of this co-change relationship are not well understood.
While recent work by Shridhar et al. study the frequency and invasiveness of differ-
ent types of build changes [98], little is known about the characteristics of changes
to other project artifacts like source and test code that would require accompanying
build changes. If source and test code co-change with the build system frequently,
those source and test changes may contain information about what would likely trigger
changes to the build system. Hence, we set out to empirically study the characteristics

of code changes that trigger accompanying build changes.

3.2 Execution Overhead

Large software systems can require more than 24 hours to completely rebuild [42]. De-

velopers need to execute several builds on a daily basis. For example, Seo et al. show

SECTION 3.2: EXECUTION OVERHEAD 27

that each developer at Google executes an average of 6-10 builds daily [95]. To avoid
incurring large build performance penalty for each build, build tools such as make [35]
provide incremental builds, i.e., builds that calculate and execute the minimal set of
commands necessary to synchronize updates to the source code with deliverables.
Humble and Farley suggest that incrementally building and testing a change to the
source code should take no more than a few minutes [45]. Developers have even scruti-
nized 5-minute long incremental build processes,? calling the process “abysmally slow.”?
Again, the slower the incremental build process, the longer the idle period, frustrating
developers and slowing down development progress.

Like build maintenance, slow build performance is another form of software de-
velopment overhead introduced by the build system. In this section, we motivate an
empirical study that aims to identify and understand build hotspots, i.e., source code

files that not only rebuild slowly, but also change often.

Empirical Study 4: Identifying and Understanding Build Hotspots

Prior work has explored how slow build processes can be accelerated. Adams et al. achieve
up to an 80% improvement in build performance through intelligent recompilation al-
gorithms and elimination of unused environment symbols [5]. Yu et al. improve build
speed by automatically removing unnecessary dependencies between files [112] and
redundant code from C header files [111]. Dayani-Fard et al. propose semi-automatic
architectural refactorings that improve build performance [24]. Telea and Voinea pro-
pose Build Analyzer [103] — a tool that mines build dependencies to identify bottle-

necks in the build process.

Shttps://bugs.webkit.org/show_bug.cgi?id=32921
Yhttps://bugs.webkit.org/show_bug.cgi?id=33556

https://bugs.webkit.org/show_bug.cgi?id=32921
https://bugs.webkit.org/show_bug.cgi?id=33556

28 CHAPTER 3: RELATED RESEARCH

While these studies propose approaches that can holistically improve build per-
formance, it is not clear if they truly target the files that slow typical builds down the
most. Since in prior work, we found that only 10%-25% of the source files of ten large
systems like Linux and Mozilla change in a typical month [70], this suggests that tradi-
tional build profiling techniques may miss the files that would really make a difference
in day-to-day development. Instead, we believe that build optimization effort should
be focused on build hotspots, i.e., files that not only take a substantial amount of time to
rebuild, but also require frequent maintenance, and thus generate considerable over-
head on incremental builds.

Since rebuild cost, rate of change, and impact on other files can also be used to
prioritize files for build optimization, we want to evaluate whether build hotspots are
truly the most costly files. We comparatively study build hotspots with respect to other
prioritization schemes.

Furthermore, since code changes are required to address defects or add new fea-
tures, one cannot simply avoid changing the code. Instead, build optimization effort
must focus on controllable properties that influence the likelihood of a file becoming
a build hotspot. Hence, we set out to study controllable file properties that have an

influence on the likelihood of a file becoming a build hotspot.

3.3 Chapter Summary

In this chapter, we survey prior research along the build maintenance and execution
overhead themes that are central to this thesis. We find that while the related work
supports our hypothesis that build systems introduce overhead on the software de-

velopment process, it is not yet clear: (1) what factors drive the maintenance of build

SECTION 3.3: CHAPTER SUMMARY 29

systems, and (2) where optimization effort should be invested in order to reduce the
build overhead and streamline the development and release processes.

Broadly speaking, the remainder of this thesis describes our empirical studies that
set out to tackle these two gaps in the literature. We begin, in the next chapter, by study-

ing the impact that technology choice can have on build maintenance activity.

CHAPTER 4

Build Technology Choice

CENTRAL QUESTION

Is there a relationship between build
technology choice and build mainte-
nance activity?

An earlier version of the work in this chap-
ter appears in the Springer Journal of Empiri-
cal Software Engineering (EMSE) [72]

4.1 Introduction

Prior research on build systems has shown that: (1) they require non-trivial mainte-

nance effort [70] in order to stay in sync with the source code that it builds [4, 67], and

30

SECTION 4.1: INTRODUCTION 31

(2) when the maintenance effort associated with the build system grows unwieldy, de-
velopment teams opt to migrate to a different (perceived to be superior) build tech-
nology [100]. Furthermore, anecdotal evidence"* indicates that developers who need
to make modifications to the build system are rarely fluent with them, making it hard
for them to keep up with the demanding requirements of the build system.

Thus far, build system studies have focused on a small sample of between one and
ten projects. In such a small sample, confounding factors like build technology choice
can only be modestly controlled, with most of the studies being performed on make,
Ant, and Maven build systems. Hence, it is not clear what role technology choice plays
in build maintenance, i.e., the amount of activity required to keep the build system in
sync with the source code.

We, therefore, set out to empirically study how widely a sample of popular build
technologies are adopted, and their relationship with build maintenance activity. We

set out to address the following question:

Central Question: Is there a relationship between build technology choice and
build maintenance activity?

In order to ensure that our conclusions are valid and repeatably observed, we mine
version history in a corpus of 177,039 open source code repositories. We record our

observations with respect to five research questions and three themes:

Theme 1: Build Technology Adoption

Adoption trends can provide insight into the build technologies that development com-

munities are using in practice. Much research focuses on the make, Ant, and Maven

http://lists.kde.org/?1=kde-core-devel&m=95953244511288&w=4
Zhttp://argouml.tigris.org/ds/viewMessage.do?dsForumId=450&dsMessageId=2618367

http://lists.kde.org/?l=kde-core-devel&m=95953244511288&w=4
http://argouml.tigris.org/ds/viewMessage.do?dsForumId=450&dsMessageId=2618367

32 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

build systems. However, little is known about how broadly these technologies are adopted
in practice, nor which other technologies require attention from researchers and ser-
vice providers. In order to bridge this gap, we formulate the following two research

questions:

(RQ1) Which build technologies are broadly adopted?
Motivation: It is unknown how widespread each technology is. Understand-
ing the market share associated with each technology would help: (1) projects
decide which technology to use, (2) researchers to select which technologies to
study, and (3) individuals and companies who provide products and services
that depend on or are related to build technologies to tailor their solutions to fit

the needs of target users.

Results: We find that while traditional build technologies like make are frequently

adopted, a growing number of projects use newer technologies like CMake.

(RQ2) Is choice of build technology impacted by project characteristics?
Motivation: The flexibility of build technologies enables use cases beyond those
for which they were initially designed. For example, the make technology was
not intended for use in large systems [35], nor for use in the recursive paradigm
thatis frequently adopted [74]. Hence, it is unclear whether project characteris-
tics like system size or programming language influence build technology adop-
tion. Understanding whether these factors are related to build technology use
may help in the design of better build tools and help build service providers se-

lect more effective solutions.

Results: Programming language choice influences build technology choice —

language-specific build technologies that are more attuned to the compile-time

SECTION 4.1: INTRODUCTION 33

and packaging needs of a programming language are more frequently adopted

than language-agnostic ones that are not.

Theme 2: Build Maintenance

Although the more modern build technologies offer powerful abstraction techniques,

itis not clear whether they actually ease the burden of build maintenance. The advan-

tages of a more rapid build cycle enabled by a more powerful build technology may be

outweighed by the complexity of build maintenance associated with it. Therefore, we

set out to examine the following two research questions:

(RQ3)

(RQ4)

Does build technology choice correlate with build change activity?

Motivation: Build systems require maintenance to remain functional and effi-
cient as source files, features, and supported platforms are added and removed.
Reducing the amount of build maintenance is of concern for practitioners who
often refer to build maintenance as a “tax” on software development [44]. We are
interested in studying whether build technology choice can have an influence

on the build “tax.”

Results: Surprisingly, the modern, framework-driven and dependency man-
agement technologies tend to induce more maintenance activity than low-level
and abstraction-based specifications. Indeed, for systems implemented using
Java and Ruby, a large portion of build specification churn is spent on external

dependency management.

Does build technology choice correlate with the overhead on source code develop-

ment?

34 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

Motivation: Developers rely on the build system to test their incremental source
code changes. Our prior work shows that source code changes frequently re-
quire accompanying build changes [70]. We are interested in studying whether
the development overhead of build maintenance is influenced by technology

choice.

Results: Complementary to the results of RQ3, we find that the modern, framework-
driven and dependency management technologies tend to be more tightly cou-

pled to source code than low-level and abstraction-based specifications.

Theme 3: Build Technology Migration

Any build system requires maintenance, which can quickly become unwieldy.® Soft-
ware teams take on build migration projects to counteract this, where build specifica-
tions are reimplemented, often using different (perceived to be superior) build tech-
nologies (e.g., MySQL* and KDE®). These build migration projects require a large in-
vestment of team resources, both in terms of time and effort. Even then, Suvorov et
al. find that migration projects can fail due to a lack of build system requirements [100].
Indeed, build maintainers often select build technologies based on “gut feel.” For ex-
ample, the first KDE build migration attempt failed partly because the build technology
was hastily selected by taking a vote at a developer conference [100]. To assess the im-
pact of build technology migration on build maintenance, we formulate the following

research question:

3http://lists.kde.org/?1l=kde-core-devel&m=95953244511288&w=4

4http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.
html

Shttp://lists.kde.org/?1=kde-core-devel&m=95953244511288&w=4

http://lists.kde.org/?l=kde-core-devel&m=95953244511288&w=4
http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html
http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html
http://lists.kde.org/?l=kde-core-devel&m=95953244511288&w=4

SECTION 4.2: EMPIRICAL STUDY DESIGN 35

(RQ5) Does build technology migration reduce the amount of build maintenance?
Motivation: Migration from one technology to another is often perceived as
a reasonable solution, however there is little quantitative evidence to indicate
whether these migrations are “worth it,” i.e., whether they really increase or re-

duce build maintenance activity.

Results: Most technology migrations successfully reduce the impact of build
maintenance on developers. Migrations are often accompanied with a shift to a
specialized build maintenance team, reducing the build “tax” that other devel-

opers must pay.

Chapter organization. The remainder of this chapter is structured as follows. Sec-
tion 4.2 describes the design of our empirical study, while Sections 4.3 to 4.5 discuss the
results with respect to our five research questions. Section 4.6 discloses the threats to

the validity of our empirical study. Finally, Section 4.7 draws conclusions.

4.2 Empirical Study Design

Figure 4.1 presents an overview of the approach that we took to address our research
questions. This design is based on the four steps suggested by Mockus for analyzing

software repositories [76]. We describe each of the four steps below.

4.2.1 Retrieve Raw Data

It is important that we study a large sample of software projects in order to improve
confidence in the conclusions that we draw. However, investigating a large number

of software projects leads to much diversity in terms of development processes and

36 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

Repositories = 843,976 170,497

A A A A
[Corpus of Software ! I | \
Repositories

—
Software Forges

Software Ecosystems

Mine Commit Determine Filter Immature Extract Analyze Resul
History File Type Projects Metrics Metrics esults

——
Large-Scale Projects

Retrieve Raw Data Clean and Process Construct Meaningful Analyze and Present
Raw Data Measures Results

Figure 4.1: [Empirical Study 1] Overview of our approach to the impact that technology
choice has on build maintenance activity.

practices. In order to control for this, it is important to stratify the sample accordingly.
Stratification of the sample has two benefits: (1) research questions can be addressed
for each relevant subsample, and (2) the reliability of the findings improves if the same
or similar behaviour is observed among subsamples. Hence, we extract, stratify, and
mine a large corpus of open source version history collected by Mockus [77]. We de-
scribe the corpus of repositories used in this study and explain our extraction, stratifi-

cation, and mining approaches below.

4.2.1.1 Corpus of Software Repositories

Table 4.1 provides an overview of the corpus of studied repositories of varying size and
purpose. The data in the corpus has been meticulously collected from numerous pub-
lic Version Control Systems (VCSs) over the past 10 years [77]. The corpus contains over
1.3 terabytes of textual data describing source code, build system, and other develop-

ment artifact changes that occurred in the VCS commit logs of various open source

SECTION 4.2: EMPIRICAL STUDY DESIGN 37

software projects. We first stratify the sample by:

Software forge: Aservice provider thathosts repositories for development teams. Since
forge repositories are contributed by a plethora of unrelated development teams,
they are rarely reliant on one another. We analyze repositories from the Github,

repo.or.cz, RubyForge, and Gitorious forges.

Software ecosystem: A collection of software that is developed using the same pro-
cess, often by a large team. Repositories are loosely reliant on one another. We

analyze repositories from the Apache, Debian, and GNU ecosystems.

Large-scale project: A software project that records changes to each subsystem using
separate repositories. Repositories are heavily reliant on one another. We analyze

the Android, GNOME, KDE, and PostgreSQL large-scale projects.

The majority of the repositories that we study are from the Github forge. The rea-
son for this is twofold. First, Github is a very popular software forge, perhaps the largest
of its kind, with millions of developers relying on it daily. This inflates the number of
repositories that originate there. Second, to ensure that our authorship analyses are
valid, we require that the original author of each code change is carefully recorded,
which the underlying Git VCS allows developers to do. In addition, sets of file changes
that authors submit together need to be recorded atomically with a single revision
identifier (i.e., atomic commits). To that end, we narrow our scope of study to reposi-
tories using a VCS that records these details, which artificially reduces the size of some

ecosystems that support several VCS tools (e.g., Debian).

38 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

Table 4.1: [Empirical Study1] Overview of the studied repositories. The most frequently
used build technologies and programming languages in the filtered set of repositories
are shown in boldface. Percentages will not add up to 100%, since multiple technologies
can be used by a single repository.

Forges Ecosystems Projects

5 S £ = m §

g g S U§> % é) § % %’o

: £ & £ 5 2 z|%2 z B %

&) G 3] & < A G g & 2 £

Repositories 832,379 2,693 1,823 539 | 179 3,799 412 | 239 991 858 64

After filtering 169,033 645 602 217 | 179 3,799 412 | 239 991 858 64

Ant 27,014 61 51 4 T 8 5 27 22

6% 9% 8% 2% | 63% 3% 2% | 8% 1% 3% 34%

_ fam 851 4 15 0 0 22 2 3 0 2 0

) 1% 2% 2% 0% | 0% 1% <1% | 1% 0% 1% 0%

K Make 62,107 381 395 24 | 41 1,890 225 | 227 348 182 42

2 37% 59% 66% 11% | 23% 50% 55% | 95% 35% 21% 66%

. 2 Rake 75,718 129 43 210 | 10 21 3 0 0 12 1

& 45% 20% 7% 97% | 6% 1% 1% | 0% 0% 1% 2%

° 3012 23 26 0 1 52 5 4 4 5 0
= SCons

< 2% 4% 4% 0% | 1% 1% 1% | 2% <1% 1% 0%

2 34,318 292 347 6 35 2,210 263 | 65 854 388 37

5 & AUl | 00t ce s8% 3% | 20% 58% 64% | 27% 86% 45% 58%

: 173 (o] 0 0 0 0 0 0 0 (1] 0 0

Z = 7920 74 66 0 2 138 18 2 3 705 4
CMake

5% 1% 1% 0% | 1% 4% 4% | 1% <1% 82% 6%

= Maven 17,958 9 19 3 | 135 8l 2 0 0 0 0

S 11% 1% 3% 1% |75% 2% <1% | 4% 0% 0% 0%

. 2,341 0 1 0 19 8 0 0 0 0 0

& vy 1% 0% <1% 0% | 1% <1% 0% | 0% 0% 0% 0%

B pundler | 37394 0 0 2 0 0 0 0 0 1 1

2% 0% 0% 1% | 0% 0% 0% | 0% 0% <1% 2%

Ruby 70,680 126 44 217 | 6 66 11 2 10 39 1

2% 20% 7% 100% | 3% 2% 3% | 1% 1% 5% 2%

Javascript 33,307 25 16 9 17 173 10 7 28 48 3

20% 4% 3% 4% | 9% 5% 2% | 3% 3% 6% 5%

Java 25436 80 45 3 | 134 169 8 | 8 14 10 7

@ 5% 12% 7% 1% |75% 4% 2% | 35% 1% 1% 11%

g Python 19,280 60 62 0 6 428 46 | 17 141 66 10

& 1% 9% 10% 0% | 3% 1% 1% | 7% 14% 8% 16%

8 Cos 17,582 349 380 10 13 525 198 | 54 87 603 31

% 10% 54% 63% 5% | 7% 14% 48% | 23% 9% 70% 48%

E o 16,918 225 280 17 12 1,363 178 | 93 523 44 31

E 10% 35% 47% 8% | 7% 36% 43% | 39% 53% 5% 48%

& obiectivec | 12905 0 1 0 5 877 1 56 488 4 0

e) 9% 0% <1% 0% | 8% 23% <1% | 23% 49% <1% 0%

A PHP 7198 28 23 0 4 10 19 4 18 30 3

4% 4% 4% 0% | 2% 3% 5% | 2% 2% 3% 5%

Shell 3253 17 24 3 16 863 86 | 39 232 101 14

2% 3% 4% 1% | 9% 23% 21% | 16% 23% 12% 22%

Perl 857 3 5 0 5 420 13 | 119 7 10

1% <1% 1% 0% | 3% 1% 3% | 5% 10% 1% 16%

SECTION 4.2: EMPIRICAL STUDY DESIGN 39

4.2.1.2 Mine Commit History

Our corpus contains 843,976 distinct repositories. Each repository contains a set of
atomic commits describing the change history of various source code, build system,
and other development artifacts. Each atomic commit includes a unique identifier, the

author name, a listing of file changes, and the time when the changes were submitted.

4.2.2 C(Clean and Process Raw Data

We process the raw commit data to identify the source and build files in each reposi-
tory. Once we have preprocessed the data, we need to filter out immature or inactive

software projects because they may not require a build system.

4.2.2.1 Determine File Type

We mark each commit as changing either source, build, both, or neither. In our prior
work [70], we categorized source and build files semi-automatically, however with a
corpus of this scale, manual categorization is infeasible. To address this, we conser-
vatively categorize source and build files based on filename conventions with an ex-
tended version of the Github Linguist tool.® We have made our extended version avail-
able online.” An overview of the filename conventions that we map to each technology

is given in Table 4.2.

Shttps://github.com/github/linguist/
"http://sailhome.cs.queensu.ca/replication/shane/PhD/

https://github.com/github/linguist/
http://sailhome.cs.queensu.ca/replication/shane/PhD/

40 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

Table 4.2: [Empirical Study 1] The adopted file name conventions for each build tech-
nology.

Paradigm Technology Conventions
Ant build.xml, build.properties
Jam [Jjlamfile, *. jam
Low-Level Make (GNU) 7 [Mm] akefile, *.mk, *.mak, * .make
Rake [Rr]akefile, *.rake,
SCons SConstruct, SConscript, *.scons
Autotools [Cclonfigure. (ac|in), ac(locallsite) .m4,
Abstraction-Based [Mm] akefile. (am|in), config.h.in
CMake CMakelists.txt, *.cmake
Framework-Driven Maven pom.xml, maven([123])7.xml
Ivy ivy.xml
D d M t
ependency Management giundler [Gglemfile, [Gglemfile.lock

4.2.2.2 Filter Inmature Projects

Software forges often contain projects that have not yet reached maturity. We apply
three filters to remove repositories that: (1) do not represent software projects, or (2)

are too small to require a build system and are hence not of interest in this study.

F1. Select a threshold for project size (measured in number of source files). Figure 4.2a
plots threshold values against the number of surviving repositories and the per-
centage of those with detected build systems. We select a threshold of 15 source
files because it appears near the knee of these two curves, and increases the per-
centage of repositories with detected build systems to 57% while only reducing cor-

pus size to 506,413 repositories.

F2. Selectathreshold for development activity (measured in number of commits). Fig-
ure 4.2b shows that selecting a 20 commit cutoff (at the knee of the two curves)

reduces the corpus size to 306,798 repositories, while increasing the number of

SECTION 4.2: EMPIRICAL STUDY DESIGN 41

£
@
Q
%)
>
7]
o
S 7o)
Qo ©
o
z
= o
S ©
(2]
©
.q) Ln
o Yo}
.
o
—
o
o Yo}
[¢]
(@]
I
8
C
@
o
S
(O]
o
e
[0]
Q
%)
=
AT
=) ~
=}
Qo
S o
s <
=
2]
o
s i
ko)
o
o
-
° o
[¢] o
(@]
I
8
c
(O]
(&)
.
(O]
o
Figure 4.2:

\
\
p— \\
\\ n
\ o
. = +
— N]
N O
s . —— Left axis — Percentage of projects with a build system
Sl - - - Right axis - Projects remaining in the corpus
— S~ o
.. o
Seel — +
Sl [}]
_ Teeal_L <
I I I I I I
0 20 40 60 80 100
Threshold (# source files)
(a) Project size.
p— \\ —
\\
. 1)
N o
— — +
N [}]
. <
S —— Left axis — Percentage of projects with a build system
S - - - Right axis - Projects remaining in the corpus
Tl 0
Te-ol L o
— Te-all — +
-------- (]
________________ o~

Threshold (# commits)

(b) Development activity.

[Empirical Study 1] Threshold plots for filtering the corpus of repositories.

42 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

repositories with build systems to 193,283 (63%).

F3. Removerepositories where our classification tool marks more than 20% of the project
files as unknown, since our results would ignore too much project activity. After

applying this filter, 261,367 repositories survive.

Table 4.1 shows that of the 261,367 forge repositories that survive our filtering pro-
cess, a corpus 0f 169,033 Github, 645 Gitorious, 602 repo.or.cz, and 217 RubyForge repos-
itories contain detectable build systems, i.e., a total of 170,497 repositories (65%). Sur-
prisingly, 35% of the surviving forge repositories did not have a detectable build system.
The majority of these repositories contained web applications, e.g., PHP or JSP code.
Savage suggests that the lack of build system uptake from web developers is worri-
some.® For example, build systems for web applications are necessary to drive contin-
uous delivery [45], i.e., automation of the source code deployment process, such that
automatically tested code changes can be quickly deployed for end user consumption.
Without a build system to automate the testing and deployment of web applications,
projects often rely on error-prone, manual deployment processes. Since we focus on
build maintenance in this chapter, we filter away projects without detected build sys-
tems.

Overall, we filtered the dataset to study software projects that are more likely to
benefit from build technology. Our selection criteria eliminated 80% of the projects,
i.e., those that are very small (less than 15 files) and those with little development ac-
tivity (less than 20 commits). We also report results for the four large-scale software
projects and three ecosystems to check if our findings are consistent in smaller, more

carefully controlled development environments.

8http://www.brandonsavage.net/build-systems-relevancy-of-automated-builds-in-a-web-world/

http://www.brandonsavage.net/build-systems-relevancy-of-automated-builds-in-a-web-world/

SECTION 4.3: BuiLD TECHNOLOGY ADOPTION 43

4.2.3 Construct Meaningful Measures

For each of our research questions, we extract a set of measures from the repositories
that survive the filtering process. We present the set of measures that we extracted for

each research question in more detail in Sections 4.3 to 4.5.

4.2.4 Analyze and Present Results

After extracting metric values, we analyzed them using various visual aids such as line
graphs, boxplots, and beanplots. These figures are also discussed in more detail in Sec-

tions 4.3 to 4.5.

4.3 Build Technology Adoption

In this section, we study build technology adoption by addressing our first two research

questions.

(RQ1) Which build technologies are broadly adopted?

We iterate over the changes in each repository, indicating that a repository uses a build
technology if any of its files have names that match patterns for that technology (since
a repository may use multiple build technologies, the percentages do not sum up to
100%). We show build technology adoption rates in Table 4.1 and Figure 4.3. We discuss
our results with respect to the studied forges, ecosystems, and large-scale projects be-

low.

44 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

(RQ1-1) Diversity in technology adoption

Software forge repositories are rarely coupled to each other. Hence, we expect diversity
in software forge build technology adoption. Table 4.1 shows that although there are
technologies with broad adoption, there is also much diversity, with many different
build technologies appearing in Github, Gitorious, and repo.or.cz forges. Rubyforge is

composed of Ruby projects, and hence the Ruby-specific Rake technology is popular.

Software ecosystem repositories are loosely coupled, often being free to evolve in-
dependently of each other. However, ecosystems often enforce guidelines on project
structure. Hence, we expect less diversity in build technology adoption within ecosys-
tems when compared to software forges. Table 4.1 shows that ecosystems tend to con-
verge on a small collection of build technologies. We expect that GNU and Apache
ecosystems would use the tools that are developed within the ecosystem, i.e., GNU
projects would use GNU Autotools or make, while Apache projects would use Apache
Ant, Maven, and Ivy tools. The use of exterior tools like CMake and Rake in these
ecosystems suggests that while technology convergence is often the case, developers

have the freedom to experiment with other build technologies.

Large-scale project repositories are tightly coupled. Repositories encapsulate sub-
systems that are merged into a larger system using the build system. Hence, we expect
to find little diversity in large-scale project technology adoption. Table 4.1 confirms our
suspicion, with the Android, GNOME, and KDE projects adopting a single technology

in more than 82% of project repositories.

PostgreSQL results in Table 4.1 show that the central technology can be used in tan-

dem with other technologies. Autotools, make, and even Ant appear in 66%, 58%, and

SECTION 4.3: BuiLD TECHNOLOGY ADOPTION 45

80000 -
60000 -

40000 -

20000 - Build Technology
-o— Ant

-/ Autotools
- Bundler

> CMake

<>~ Makefile

-7 Maven

-54- Rake

Number of repositories

I I I I I
2004 2006 2008 2010 2012
Adoption date

(a) Number of repositories (Y-axis begins at 100 projects).

%
P

Build Technology
x | —

I\ BBy -/ Autotools
-+ Bundler

-%- CMake

<>~ Makefile

-7 Maven

-4~ Rake

40% -

20% -

Percentage of repositories

-7V
T G SRR R e v

5 2% - =X= X
R ANV - X=X -
-¥f~€%-3§—’ﬁ3§?|<—+++%g

I I
2004 2006 2_008 2010 2012
Adoption date

0% -

(b) Percentage of repositories.

Figure 4.3: [Empirical Study 1] Build technology adoption over time.

46 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

34% of the repositories respectively. Manual inspection of the PostgreSQL build sys-
tem reveals that build configuration is implemented with GNU Autotools, while the
construction step is implemented using make. Ant specifications are used to build a
PostgreSQL Java Database Connectivity (JDBC) plugin, while the PGXN Urtils reposi-
tory, which provides an extension framework for PostgreSQL plugins is implemented

using Ruby and uses the Rake and Bundler technologies to produce Ruby packages.

Observation 1 — Language-specific technologies are growing in popularity. Soft-
ware forges show the highest degree of build technology diversity and hence offer an
interesting benchmark for build technology popularity. Table 4.1 shows that make is
still popular, appearing in many forge repositories. Language-specific tools like Ant
and Maven (Java) are also popular. Even Rake and Bundler (Ruby) are popular outside

of the Ruby-specific Rubyforge.

Figure 4.3a shows build technology adoption trends between 2004 and 2012 on alog-
arithmic scale. Prior to 2007, make and Autotools were the most popular technologies
with consistent growth. However, Figure 4.3b shows that make and Autotools began to
lose market share in 2005, due to an explosion of Rake-driven Ruby projects. In 2010,
CMake began to gather momentum, and Bundler was initially embraced by the Ruby
community. Ant and Maven show steady growth, with Ant having slightly more adop-

tion.

While many projects use traditional technologies likemake and Autotools, language-
specific technologies like Rake and Bundler capture are larger share of the open
source market (Observation 1). Although researchers and service providers should
continue to focus on older build technologies likemake that still account for a large
share of the open source market, more modern build technologies are gaining pop-
ularity and should also be considered.

SECTION 4.3: BuiLD TECHNOLOGY ADOPTION 47

(RQ2) Is choice of build technology impacted by project characteris-

tics?

To address this research question, we focus on two major factors: (1) the size of the
source code in the repository, and (2) the adopted programming languages. We hy-
pothesize that these factors may impose limitations on build technology choice. For
example, larger systems may require more powerful and expressive build technologies.
Similarly, the use of a programming language may require technology-specific support
to handle language-specific nuances. We use the forge and ecosystem data to address
this research question because the repositories within them are rarely dependent on

each other.

(RQ2-1) Source Code Size

We use the number of source files within a repository as a measure of source code
size. Although source code file count is a coarse-grained metric, prior work suggests
that finer-grained metrics, such as SLOC, show similar evolutionary patterns in large
datasets [43].

We use boxplots to provide an overview of the data with respect to the studied build
technologies. Finally, we use Tukey Honestly Significant Difference (HSD) tests [75] to
rank technology-specific samples to confirm that the differences that we observe in
the boxplots are statistically significant (o« = 0.01). Since the Tukey HSD test assumes
equal within-group variance across the groups, we transform source code size using
In(z + 1) in order to make the distribution of variances more comparable among the

groups.

48 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

Low-level Abstraction Frame Dependency
© 10000 -
N
»
IS
)
7
>
n
100 - ‘ ‘
I I I I I I I I I I
Ant Makefile Rake SCons Jam Autotools CMake Maven lvy Bundler

Figure 4.4: [Empirical Study 1] Size of the source code (# files) per repository in the
forges and ecosystems.

Observation 2 — Large repositories tend to adopt newer technologies earlier than
smallerones. Figure 4.4 shows that the repositories using the Jam, SCons, and CMake
technologies, i.e., the three technologies with the least adoption in our corpus (see Ta-
ble 4.1), tend to have more source code files than the repositories using other build
technologies. Tukey HSD test results indeed rank Jam as the largest sample, followed by
SCons, and then CMake. On the other hand, the more mature technologies see adop-
tion that spans a broader range of sizes, including several small repositories. Tukey
HSD test results rank Maven, Make, and Ant near the bottom due to the mass of small
repositories that adopt them. Although Rake and Bundler are newer build technolo-
gies, they occupy the bottommost rank according to the Tukey HSD test. We conjecture

that this is due to the terse nature of the Ruby language that applications built using

SECTION 4.3: BuiLD TECHNOLOGY ADOPTION 49

Rake and Bundler are implemented in.

(RQ2-2) Programming Language

We study the build technologies adopted by each language-specific group of reposito-
ries. As done in RQ1, we indicate that a repository uses a build technology if any of its
files have names that match patterns for that technology. Since a programming lan-
guage likely only becomes a build maintenance concern if a considerable proportion
of the system is implemented in it, we do not consider programming language used

unless at least 10% of its source files are implemented using that language.’

A common approach to model count data in contingency tables is via Poisson re-
gression. We use it to describe co-occurrences of build technology and programming
language: # Projects ~ forge + language + technology + language:technology. A cat-
egorical predictor of the forge/ecosystem is included to control for the role that the

repository host may play in the adoption of language or technology.

Figure 4.5 shows highly statistically significant connections (p < 1071%°) between
build technologies and programming languages according to that model. The odds
ratios are also presented, i.e., the ratio of the observed frequency to the likelihood of the
co-occurrences of technology and programming language if they were independent

events. We apply the logarithm to the odds ratio, since the values can be quite large.
Observation 3 — Programming language choice shares a relationship with build
technology choice. If there was truly no relationship between language and build

technology choice, we would expect that the technology usage in each group would be

9Threshold values of 5% and 15% yielded similar results.

50 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

Makefile

Bundler

Autotools

Figure 4.5: [Empirical Study 1] Statistically significant (p < 107'%°) co-occurrences of
build technology (black boxes) and programming language (white ovals) on a fitted
Poisson model. The higher the log odds ratio presented above each edge, the higher
the likelihood of a non-coincidental relationship.

SECTION 4.3: BuiLD TECHNOLOGY ADOPTION 51

similar. However, the formation of clustered groups of technologies around program-
ming languages in Figure 4.5 shows that each language has prevailing build technolo-
gies. For example, Ant, Maven, and Ivy are quite popular for Java projects, while Rake
and Bundler are almost unanimous choices for Ruby projects. C, C++, and Objective-C

projects favour make, Autotools, and CMake.

Furthermore, the data suggests that language-specific technologies are growing in
popularity. Figure 4.3 shows that language-specific technologies like Rake, Bundler,
Ant, and Maven have grown rapidly in the past few years, while Figure 4.5 confirms
that Rake and Bundler are de facto build technologies for Ruby repositories, and Ant

and Maven share the bulk of Java repositories.

Large projects tend to adopt newer technologies earlier than small projects do (Ob-
servation 2). Furthermore, there is a strong relationship between the programming
languages used to implement a system and the build technology used to assemble
it, which may limit the scope of technologies considered by software projects (Obser-
vation 3). Build technologies that are tailored for specific programming languages
have grown quite popular as of late, suggesting that tool developers and service
providers should follow suit.

Discussion

The studied technology adoption trends (RQ1) indicate that the use of traditional build
technologies like make and Autotools are still prevalent in the software forges, ecosys-
tems, and large-scale systems. However, language-specific technologies are growing in
popularity (Observation 1). We also observe that there is a strong relationship between

programming language and technology choice (Observation 3).

52 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

The Trade-off between Language-Agnostic and -Specific Build Technologies

Language-specific tools are almost unanimous choices for Java and Ruby systems. Fig-
ure 4.5 indicates that Java projects often select build technologies like Ant, Maven, and
Ivy, while Ruby systems select Rake and Bundler most frequently. These language-
specific build technologies offer several advanced features that are tailored for build-
ing projects of the respective languages. For example, language-agnostic tools like
make check that each targetis up-to-date with its dependencies in order to detect whether
the recipe should be executed. However, the Java compiler will perform these same
checks, potentially recompiling out of sync dependencies automatically. Being aware
of this feature of the Java compiler, Ant and Maven technologies defer . class depen-
dency checks to the Java compiler. This feature of Ant and Maven likely make them

more appealing to Java developers than language-agnostic alternatives.

When selecting a technology to adopt, software teams evaluate a trade-off between
the flexibility of language-agnostic tools like make and feature-rich language-specific
technologies like Maven. While it appears that repositories using modern languages
like Java and Ruby favour the latter, C, C++, and Objective-C teams are still frequently
adopting make. Indeed, despite lacking the powerful language-specific features that
tools like SCons, CMake, and Autotools provide, make is still quite popular among C,
C++, and Objective-C systems. Figure 4.3a shows that make continues to grow, albeit
more slowly than more modern technologies. For example, during the planning of
a build technology migration, the Apache OpenOffice (AOO) team recently evaluated

two primary options: make and CMake."” While debate is still ongoing, the AOO team

Ohttps://wiki.openoffice.org/wiki/Build_System_Analysis

https://wiki.openoffice.org/wiki/Build_System_Analysis

SECTION 4.4: BUILD MAINTENANCE 53

highlights several advantages that make maintains over CMake. For example, make sup-
ports pattern-based dependency expressions, while CMake does not. Moreover, CMake
specifications generate build systems on UNIX platforms that follow the notably flawed
recursive make paradigm [74] that the AOO aims to avoid.

The sustained popularity of make among C, C++, and Objective-C repositories may
also be due to the fact that the compilation and linking model are congruent with the
make dependency model. C, C++, and Objective-C compile and link tools require a
low-level dependency tool to manage dependencies between source, object, and exe-
cutable code. On the other hand, there is a mismatch between the dependency model
of make and the Java compiler, creating the need for language-specific build tool sup-

port for Java systems.

4.4 Build Maintenance

In this section, we study the relationship between build technology and build mainte-

nance by addressing RQ3 and RQ4.

(RQ3) Does build technology choice correlate with build change ac-
tivity?

We select metrics that measure three dimensions of build change activity, and calcu-
late them on a monthly basis. Table 4.3 describes the metrics that we consider and
provides our rationale for selecting them. The build commit proportion is normalized
in order to control for overall system activity. We do not normalize build commit size

nor build churn volume in order to simplify interpretation of the results. We use size

54 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

Low-level Abstraction Frame Dependency
gso—
c
o
E
[}
kS
‘= 20
)
o
o
=
s}
©
—
810—
[}
o
IS
>
Z
T T T
0- I I I I I I I I I I
Ant Jam Makefile Rake SCons Autotools CMake Maven Bundler Ivy
(a) Software forges.
o
z 8
a o
g 8 7
@
Q o
N
g 8 4
o -
@
g 84
p=)
P
o —

Apache - Ant vs. Maven Debian - Make vs. Autotools GNU - Make vs. Autotools

(b) Software ecosystems.

Figure 4.6: [Empirical Study 1] Number of active periods (months) per repository in the
forges and ecosystems.

SECTION 4.4: BUILD MAINTENANCE

55

Table 4.3: [Empirical Study 1] Build maintenance activity metrics.

Metric

Description

Rationale

Build commit proportion

Build commit size

Build churn volume

The proportion of commits
that contain a change to a
build specification.

The median number of build
lines changed by a build com-
mit in a given period.

The total number of build lines
changed in a given period.

Frequently changing build sys-
tems are likely more difficult to
maintain.

Technologies that often require
large changes are likely more
difficult to maintain.

Frequently churning build sys-
tems are likely more difficult to

maintain.

(i.e., build commit size) and rate of change (i.e., build commit proportion and build
churn volume) metrics in lieu of change complexity ones because prior work suggests
that complexity tends to be highly correlated with size in both the source code [40] and
build system domains [67].

We consider the commits that contain a build change, including those that also
contain other changes, as build commits. We include commits that change the build
system as well as other parts of the system because any commit that changes the build
system is the result of some measure of build maintenance.

Since projects can migrate between technologies, we consider a technology active
in a repository for all months between (and including): (1) the month where commit
activity of files of its type first appear, and (2) the last month with commit activity of
a file of its type. To gain some insight into the maturity of the technology use in the
corpus, Figure 4.6 shows the distribution of commit activity (in number of months)
for a specific technology. The upper end of the boxes in Figure 4.6a indicates that
at least one quarter of the repositories with Ant, Make, Rake, SCons, Autotools,

CMake, Maven, and Ivy have at least 12 active months.

56 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

We focus our ecosystem studies on comparing Ant and Maven in Apache, and Make
and Autotools in Debian and GNU, since the ecosystems mostly converge on those
technologies. Figure 4.6b compares the distributions of active months in the studied
ecosystems. Figure 4.6b shows that we study several mature Apache projects, with
a median active month count of 35 (Maven) and 41 (Ant). The GNU and Debian

ecosystems have longer tails, dating back to 1988 and 1993 respectively.

Our analysis treats each technology independently, e.g., if a repository uses both
make and SCons, we calculate separate values for the metrics in Table 4.3 for make and
SCons. We then measure the distribution of metric values for each technology and we
rank these distributions to identify the build technologies with the highest or lowest
values using Tukey HSD tests (o« = 0.01). We transform the commit proportion using
arcsin(/z), and build commit size and build churn volume using In(z + 1) to make the
distribution of variances more comparable among the groups (cf. Tukey HSD test as-
sumptions). Since there are two main technologies used in each of the studied ecosys-
tems, we use Mann-Whitney U tests [13] instead of Tukey HSD tests to compare them

(a = 0.01).

Figure 4.7 shows the distributions of metric values in the forges. To ensure that
each repository is equally considered in our analysis, we select the median value for
each metric from each repository. We complement our median-based analysis by per-
forming a longitudinal analysis of each metric in the forges. We examine the ranks of
each technology as reported by the Tukey HSD tests when applied to each metric on
a monthly basis. The ranks are in decreasing order, i.e., the technology that has the
highest metric values appears in rank one. Figures illustrating the monthly trends are

provided in Appendix B.

SECTION 4.4: BUILD MAINTENANCE 57

Observation 4 — Maven requires the most build maintenance activity. Maven
tends to require a larger proportion of monthly commits than low-level technologies
do. Figure 4.7a shows that the Maven distribution has the highest median value. Anal-
ysis of twelve months of activity shows that Maven maintains the top Tukey HSD rank
(see Appendix B).

Figure 4.7a suggest and the Tukey HSD test confirm that the median Autotools build
commit proportion tends to be lower than that of the other technologies in the ab-
straction, low-level, and dependency management categories. Furthermore, Autotools
never appears in the top three ranks of the 12-month Tukey analysis, while CMake and
Bundler never appear lower than the third rank (see Appendix B). We observe that of
the 34,963 forge projects that use Autotools, 7,438 (21%) only implement the configu-
ration step using Autotools while using make to implement the construction step. In
this case, Autotools cannot be fairly compared to tools being used to implement com-
plete build systems. After filtering away repositories that use both Autotools and hand-
written make specifications, the Autotools distribution grows to similar proportions as
the CMake one. Ivy also ranks near the bottom, but is frequently used in tandem with
Ant. When these technologies are grouped together, the distribution grows to propor-
tions similar to Maven.

Figure 4.7b shows that there is much more parity in the distributions of build change
sizes than of build commit proportion. We observe that Jam, Ant, and CMake stand out
as requiring larger changes than the other technologies in the median analysis of Fig-
ure 4.7b, while Maven and SCons make more frequent appearances in the top three

ranks of the monthly analysis (see Appendix B).

0.4+

o
w
1

Build commit proportion
o o
= N
L L

0.0+

Low-level Abstraction Frame Dependency Low-level Abstraction Frame Dependency
60~
[N
N
7]
[N
240+
<
e
o
=]
5
0-
1 1 1 1 1 1 1 1 1 1 1
nt Jam Makeflle Rake SCons Autotools CMake ~ Maven Bundler Ivy t Jam Makeflle Rake SCons Autotools CMake Maven Bundler lvy
(a) Build commit proportion. (b) Build change size.
Low-level Abstraction Frame Dependency
2200 -
€
=]
o
>
IS
=
<
5}
=100~
=
'” é é

nt

Jam Makeflle Rake

(c) Build churn volume.

1
SCons

1 1
Autotools CMake

1 1 1
Maven Bundler Ivy

Figure 4.7: [Empirical Study 1] Median build commit proportion, size, and churn in the studied forges.

89

HOI0H)) AD0TONHOA |, A1Ing : YALdVH)

SECTION 4.4: BUILD MAINTENANCE 59

Figure 4.7c shows that the median build churn volume for framework-driven spec-
ifications is higher than that of the other technologies. Tukey HSD tests of the median
samples confirm that the Maven rates are the highest, followed by CMake, and then
SCons. Tukey HSD 12-month analysis complements the median results, with Maven
and SCons never appearing below the second rank (see B). CMake only drops to the
third rank in the seventh month, appearing in the top two ranks for all other months.

Corroborating our findings in the software forges, Figure 4.8a shows that Maven
tends to require a larger proportion of monthly build changes than Ant in the Apache
ecosystem. Indeed, while Figure 4.8b suggests that Maven commits tend to be smaller
than Ant commits in the Apache ecosystem, Figure 4.8c shows that on a monthly basis,
Maven still induces more churn than Ant in the Apache ecosystem. Mann-Whitney U
tests confirm that the reported differences are significant.

On the other hand, although Autotools requires a larger proportion of project com-
mits in both the Debian and GNU ecosystems, make changes tend to induce more
churn. Mann-Whitney U tests confirm that the GNU churn volume differences are sig-

nificant, however Debian results are inconclusive.

Framework-driven technologies like Maven tend to have a higher build commit pro-
portion and induce more build churn than low-level or abstraction-based technolo-
gies (Observation 4). While modern build technologies provide additional features,
development teams adopting them should be aware of potentially higher mainte-
nance overhead.

Discussion

While the sizes of Jam and SCons changes are noteworthy, in addition to the tendency

of being used in larger systems (Observation 2), they are also low-level technologies,

Build commit proportion

1.0

0.8

0.6
|

0.4

Build change size
50 100 150 200 250 300

0.0
0

Apache - Ant vs. Maven Debian - Make vs. Autotools GNU - Make vs. Autotools Apache - Ant vs. Maven Debian - Make vs. Autotools GNU - Make vs. Autotools

(a) Build commit proportion. (b) Build commit sizes.

Build churn volume
20 40 60 80 100
|

0
|

Apache - Ant vs. Maven Debian — Make vs. Autotools GNU - Make vs. Autotools

(c) Build churn volume.

Figure 4.8: [Empirical Study 1] Median build commit proportion, size, and churn in the studied ecosystems.

09

HOIOH)) AODOTONHOA]J, AdT1INg 7 441dVH))

SECTION 4.4: BUILD MAINTENANCE

61

Table 4.4: [Empirical Study 1] Build maintenance overhead metrics.

Metric

Description

Rationale

Source-build coupling The logical coupling (Equa-

Build author ratio

tion 4.1) between source code
and build system changes.

The logical coupling (Equa-
tion 4.1) between source code
and build system authors.

High source-build coupling in-
dicates that developers often
need to provide accompanying
build changes with their code
changes, which may be dis-
tracting and costly in terms of
context switching.

High build author ratios sug-
gest that a large proportion of
source code developers are im-

pacted by build maintenance.

and are therefore expected to be more verbose than the other technologies. Ant and
Maven change sizes may be inflated because of the verbose nature of the XML markup [62].
The verbosity of CMake changes is surprising, since CMake is an abstraction-based

technology — a quality that one would expect to decrease change size.

As described in the discussion of Section 4.3, the AOO team has remarked that the
feature for expressing pattern-based build dependencies available in the popular GNU
variant of make was missing in CMake. Hence, pattern-based dependencies need to be
repeated several times using CMake. Furthermore, when a change needs to be made, it
will need to be repeated several times, which may explain the inflation of CMake build

sizes we observe.

62 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

(RQ4) Does build technology choice correlate with the overhead on

source code development?

Similar to our prior work [70], we select metrics that measure build maintenance over-

head using logical coupling [38], which is calculated as shown below:

Support(source N build)

LC(source = build) = Support(source)

(4.1)

Note that Support(X) in Equation (4.1) is the number of commits that satisfy the

clause X.

Table 4.4 describes the metrics we consider and provides our rationale for select-
ing them. Similar to RQ3, we calculate each metric on a monthly basis. Source-build
coupling is calculated independently for each technology used in each repository, e.g.,

LC(source = Ant) and LC(source = Maven).

Note thatin order to calculate the build author ratio, we need to identify the original
author of each change. A common practice in open source development is to restrict
VCS write access to a set of core developers [16]. Many authors send their changes to
the core developers for their consideration. After engaging in a review process, the core
developer will either discard the changes or commit them to the VCS. Note that modern
VCSs allows committers to record the original author’s name, distinguishing the roles of
author and committer. We use the original author name that is recorded in the studied
Git repositories as the developer responsible for a change. Thus, insofar as developers
use this modern VCS feature to distinguish between authors and committers, our build

author ratio analysis does not lose the original authorship information.

SECTION 4.4: BUILD MAINTENANCE 63

Figure 4.9 shows the distribution of median source-build coupling and build au-
thor ratio measures in the forge repositories. In the same vein as RQ3, we apply the
Tukey HSD test to the software forge data and the Mann-Whitney U test to the software
ecosystems data to detect significant differences among the resulting distributions. We
again apply the arcsin(,/z) to the source-build coupling and build author ratio prior to
applying the Tukey HSD test to make the distribution of variances more comparable
among the groups (cf. Tukey HSD test assumptions). We again complement our me-

dian analysis with a monthly analysis of the Tukey ranks in Appendix B.

Observation 5 — Maven changes tend to be tightly coupled to source code changes.
Figure 4.9a shows that Maven changes tend to be tightly coupled with source code
changes. A Tukey HSD test ranks Maven in the top rank, followed by Rake, and then
make. The monthly Tukey analysis shows that Maven also appears alone in the top rank
for the twelve analyzed months (see Appendix B). This is surprising because one would

expect that Maven’s framework-driven behaviour would reduce the source-build cou-
pling.

Figure 4.9b shows that the Maven changes tend to be more evenly dispersed among
developers than changes of other technologies are. Tukey HSD tests confirm that a
larger proportion of developers for Maven projects make build changes than develop-
ers using the other technologies. The median Maven build author ratio is 65%, indi-
cating that in half of the studied Maven repositories, at least 65% of the source code
authors also make build changes. Maven and SCons require the largest proportion of
developers, with Tukey HSD tests ranking Maven and SCons in the top two ranks con-

sistently throughout the twelve analyzed months (see Appendix B).

Turning to the software ecosystems, Figure 4.10a shows that Maven and Autotools

64 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

Low-level Abstraction Frame Dependency

0.25-

0.20 -

o

[

o
1

o

=

o
1

Logical coupling

0.05 -+

0.00 — [] i !

I I I I I I I I I I
Ant Jam Makefile Rake SCons Autotools CMake Maven Bundler Ivy

(a) Source-build coupling.

Low—level Abstraction Frame Dependency
1.00 ‘ ‘ |

0.75 -

0.50 -

Build author ratio

0.25

T]

I I I I I I I I I I
Ant Jam Makefile Rake SCons Autotools CMake Maven Bundler vy

(b) Build author ratio.

Figure 4.9: [Empirical Study 1] Median source-build coupling and build author ratios
in the studied forges.

SECTION 4.4: BUILD MAINTENANCE 65

o
S
© _
o
(2]
c
= © _|
=] o
o
(8]
g =
g S
o
|
N
o
o _|
o
I I I
Apache - Ant vs. Maven Debian — Make vs. Autotools GNU - Make vs. Autotools
(a) Source-build coupling.
Q
S
«© _|
o
8
S o |
5 IS
<
5
© <
e} o
=
m
N
o
e _|
o

Apache - Ant vs. Maven Debian - Make vs. Autotools GNU - Make vs. Autotools

(b) Build author ratio.

Figure 4.10: [Empirical Study 1] Median source-build coupling and build author ratios
in the studied ecosystems.

66 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

tend to be more tightly coupled to source changes than Ant and make. Furthermore,
Figure 4.10b shows that Maven and Autotools changes tend to be more evenly dispersed
among developers than Ant and Make changes. Mann-Whitney U tests confirm that

these differences are significant.

The finding that is most consistent across the software forges and ecosystems is
that Maven changes tends to be tightly coupled to source code changes. To that end, a
larger proportion of the development team tends to become involved in maintaining

the Maven specifications.

Observation 6 — Build change more often co-occurs with source change than with-
out. Figure 4.11 shows the distributions of build commit sizes and proportions of
source-coupled (and non-coupled) build changes in the software forges. Irrespective
of technology, source-coupled build changes tend to induce more build churn than
non-coupled ones do, indicating that the build system changes most in tandem with

changes in the source code.

Mann-Whitney U tests of the coupled and non-coupled build changes for each
technology separately confirm that, as suggested by Figure 4.11a, source-coupled build
changes tend to be larger than non-coupled ones. Furthermore, higher-level build
technologies such as Maven and CMake have the largest source-coupled changes. A
Tukey HSD test of the source-coupled changes of each technology indicates that Maven
and CMake source-coupled changes are indeed the largest, however they are indistin-
guishable from each other. Furthermore, the proportions of build changes that are
accompanied with source changes shown in Figure 4.11b indicate that, with the excep-
tion of Maven, build changes tend to occur more frequently with source changes than

without.

SECTION 4.4: BUILD MAINTENANCE 67

Ant Jam | |Makefile|| Rake SCons | Autotools | CMake | | Maven ||Bundler Ivy

80 -

o]
o
1

Build commit size
D
o
1

N
o
1

Hi0_ Bk b,

(a) Size of build changes when coupled with (C) or not coupled with (NC) source code changes.

Low—level Abstraction Frame Dependency

=
o
1

_‘_1

o
o0
1

o
D
|

Proportion of coupled build commits
>
1

o
[N
1

I I I I I I I I I I
Ant Jam Makefile Rake SCons Autotools CMake Maven Bundler Ivy

(b) Proportion of build changes that are accompanied with source code changes.

Figure 4.11: [Empirical Study 1] Comparison of coupled and not coupled build changes.

68 CHAPTER 4: BUuiLD TECHNOLOGY CHOICE
Android
0.20 —
< 0.09 — o
g S
S = 015+
g 2
©0.06 1 5
S ©
'g» '% 0.10
- o
0.03 —
0.05
1 1 1 I I I
2006 2008 2010 2006 2008 2010
0.25
o o
< 0.20 §
2
—_ 3
§ o015+ <
k] a
0.10
T T T
2000 2004 2008
PostgreSQL
020 (] 1.00 —
b
0.15 I]
2 N ! i % 0.75 4
§ :' o 11‘ [}l S
50109 ' oaly g\ ! \ ° £
= Woe i e ! 2 0.50 -
g L |‘1I 1'1,1 fo ?ﬁ::\’l l\;} 3.:.:11 é’
S 0.05 | ! y 0 . WETIL 2
B J
" W H '&' 4 P}‘ }' }11!4 l,!-\!hl.r " 0.25
0004 4 ¥ | f *
1 1 1 1 1
1996 2000 2004 2008 2012 1996
KDE KDE
Iy 1004 4
04— ! !
1 I?
=2 1 20754 1
So3- # g g %“
5 1 5 Iyg A
E HESET W 5
© 0.2 = A T I 1 W
g Aalah 4 = v Aif i 2 - Mo s
3 0.1- % * #A mﬂ’ﬁ,‘h a 0.25 = = 1 9 w\ﬂ
e "ol o
0.0 bl 0.00 -uﬂh'
1 1 1 1 1 1 1 1
2000 2004 2008 2012 2000 2004 2008 2012

Figure 4.12: [Empirical Study 1] Monthly source-build coupling rate (left) and monthly
build author ratio (right) in Android (make), GNOME (Autotools), PostgreSQL (Auto-
tools), and KDE (Autotools in grey, CMake in black).

SECTION 4.4: BUILD MAINTENANCE 69

Observation 7 — Coupling tends to decrease over time. Interestingly, we find that
framework-driven and abstraction-based technologies do not have lower source-build
coupling rates than low-level technologies. In fact, Maven build changes in the forges
and Apache projects are more tightly coupled to source code changes than Ant build
changes are. Moreover, the maintenance of framework-driven specifications typically

impacts a larger proportion of developers.

To study the stability of build overhead on source maintenance activities, we ana-
lyze how source-build coupling and build author ratio evolve. We analyze stability in
the large-scale projects, since the longitudinal analysis required would be infeasible for
the number of repositories in the forges and ecosystems. We focus our analysis on the
most active build technologies of each large-scale project. Table 4.1 shows that make is
the most active technology used in Android, while Autotools is used by GNOME and
PostgreSQL, and KDE uses CMake. PostgreSQL also uses make, but we omit the trend
because it is quite similar to the Autotools trend and clutters the figure. KDE used Au-
totools prior to their migration to CMake [100], hence we study trends with respect to

both technologies.

Figure 4.12 shows that source-build coupling tends to decrease over time. Regres-
sion lines highlight the decreasing GNOME and PostgreSQL trends. Conversely, An-
droid coupling trends are increasing. However, early Android development months
had coupling rates below 0.05, so it is not surprising that the rate has grown to levels

that are more comparable to other make projects.

The decreasing trends in build author ratio in Figure 4.12 suggest that as projects
age, they adopt a concentrated build maintenance style, where a small team produces

most of the build changes. Initially, the GNOME project had months where up to 74%

70 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

of the developers submitted build changes, while recently, the trend decreased to 39%.
Similarly, PostgreSQL build changes were initially quite dispersed, peaking in late 1998
when every active developer submitted a build change. Recently, the trend has dropped

as low as 10%.

Framework-driven and abstraction-based build specification changes tend to be
more tightly coupled to source code (Observation 5), impact a larger proportion
of developers (Observation 5), and induce more churn (Observation 6) than low-
level build specification changes. Yet, as large-scale projects age, source-build cou-
pling tends to drop (Observation 7) and specialized build maintenance teams tend
to emerge. Likely due to inflated source-build coupling rates, changes to framework-
driven technologies tend to be more evenly dispersed among developers. When se-
lecting build technologies, teams should consider whether this dispersion of build
changes is tolerable.

Programming Language Centric Technology Analysis

We have shown that framework-driven build technologies trigger the most build activ-
ity (Observation 4) and tend to be more tightly coupled to source code changes than
the other build technologies (Observation 5). However, in Section 4.3, we observed
that build technology choices are often constrained by the programming languages
that are used (Observation 3). For example, Maven is a Java-specific build technology,
and hence requires additional effort to build C projects. To provide a more practical
perspective, we need to compare build technologies within the scope of each program-
ming language. We do so using the software forges, where the most diversity in build
technology adoption was observed (cf. Section 4.3).

We first categorize the technologies typically used by a programming language by

examining Figure 4.5. In doing so, we produce the below mapping:

Java — Ant, Ivy, Maven

SECTION 4.4: BUILD MAINTENANCE 71

C, C++, Objective-C — make, Autotools, SCons, CMake

Ruby — Rake, Bundler

Next, we label each repository by examining the programming languages that are
used. Note that a repository may use several programming languages, and hence may
be labeled several times. Just as we did in our study of programming languages in Sec-
tion 4.3, we indicate that a repository uses a programming language if more than 10%
of its source files are implemented using that language. Finally, we calculate the build
commit proportion and source-build coupling (Equation (4.1)) metrics of each labelled
repository to compare the use of build technologies for each programming language

separately.

Language-Specific Build Commit Proportion

Observation 8 — External dependency management specifications require plenty
of maintenance. Figure 4.13 shows the monthly build commit proportion for each
group of programming languages. Figure 4.13a confirms that Maven specifications do
indeed change most frequently among the build technology choices for Java programs.
Tukey HSD tests confirm that the differences are statistically significant. Again, Ivy and
Ant appear to require the least amount of change, however they are often used in tan-
dem with each other. When combined, the distribution grows to proportions similar
to Maven. However, a Mann-Whitney U test indicates that Maven specifications still
change more frequently than combined Ant and Ivy specifications do, suggesting that
Ant with Ivy may be a more cost-effective alternative than Maven for Java projects that

express external dependencies (from the point of view of build maintenance).

72 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

Java Ruby
0.3+
5 S
£04- =
2’ 2
o S
5 Soa-
= £
£ 5
8 0.2 o
i) i)
% = 0.1-
m m
0.0+ — - ! 0.0- !
I I I I I
Ant Ivy Maven Rake Bundler
(a) Java (b) Ruby
© C++ ObjC

©
w
1

o
=
1

Build commit proportion
o
1

0.0 - T T T T I I T T T

]]]]]]]]]]]]
Make SCons Auto CMake Make SCons Auto CMake Make SCons Auto CMake

(c) C family

Figure 4.13: [Empirical Study 1] Build commit proportion in the studied forges classified
by source languages used.

SECTION 4.4: BUILD MAINTENANCE 73

Java Ruby
0.20
0.2 -
g .80.15
g 2
S o
c—g 8 0.10 -
0.1 - 2
S 3
0.05
0.0+ I T | |
I I I 0.00 I i
Ant Ivy Maven Rake Bundler
(a) Java (b) Ruby
c C++ objC
0.3
(@]
=
E_O.Z -
>
o
o
IS
L
(@]
So1-
0.0 - | | | T | | | T | | |

I I I I I I I I I I I I
Make SCons Auto CMake Make SCons Auto CMake Make SCons Auto CMake

(c) C family

Figure 4.14: [Empirical Study 1] Source-build coupling in the studied forges classified
by source languages used.

74 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

As shown in Figures 4.13a and 4.13b, the specifications that denote external project
dependencies (i.e., Ivy and Bundler) have similar commit proportion as (if not higher
than) the specifications that define build behaviour (i.e., Ant and Rake). This indicates
that for Java and Ruby systems, a large amount of build maintenance activity is gener-

ated by external rather than internal dependency management specifications.

Language-Specific Source-Build Coupling

Figure 4.14 shows the source-build coupling between build technologies and program-
ming languages. Figure 4.14a shows that similar to the overall coupling in Figure 4.9a,
Maven is tightly coupled to Java code. This reinforces Observation 5, suggesting that

Maven changes are indeed tightly coupled with source code.

While Figure 4.13c shows that CMake specifications have a higher commit propor-
tion than the other C family technologies, Figure 4.14c shows that CMake has the lowest
median coupling rate for C and Objective C. This finding suggests that C and Objective

C projects can reduce source-build coupling by migrating to CMake.

External dependency management accounts for much of the build maintenance ac-
tivity in Java and Ruby repositories (Observation 8). Indeed, Maven specifications
tend to be tightly coupled to Java source code. CMake tends to be loosely coupled with
C family source code changes. Since Ant with Ivy tends to change less frequently than
Maven and offers a comparable feature set, it is an option that Java project teams
should consider. Furthermore, C and Objective-C projects should consider CMalke,
since CMake repositories tend to have lower source-build coupling rates than the
other C and Objective-C repositories.

SECTION 4.5: BUuiLD TECHNOLOGY MIGRATION 75

Discussion

Surprisingly, we find that use of Maven is often accompanied with (1) higher build
maintenance activity rates (Observation 4), (2) tighter coupling between source code
and build system changes (Observation 5), and (3) a higher dispersion rate of changes
among team members (Observation 5). We assert that these rate, size, and authorship
measurements of build changes capture relevant dimensions of build maintenance.
However, the build system is a means to improve overall maintenance team productiv-
ity. In other words, the increases in build maintenance that we observe in Maven may
actually be a net benefit to the development team if Maven offers additional features
that accelerate the development process. We plan to investigate the complex interplay

between build and overall maintenance effort in future work.

4.5 Build Technology Migration

In this section, we study whether build technology migration eases the burden of build

maintenance by addressing RQ5.

(RQ5) Does build technology migration reduce the amount of build

maintenance?

Arecent trend suggests that projects are migrating towards CMake''?[63] and Maven."

Hence, we focus our migration study on these technologies. Specifically, we compare

Uhttp://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.
html

Phttp://lists.kde.org/?1=kde-core-devel&m=95953244511288&w=4

Bhttp://lists.jboss.org/pipermail/hibernate-dev/2007-May/002075 . html

http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html
http://www.lenzg.net/archives/291-Building-MySQL-Server-with-CMake-on-LinuxUnix.html
http://lists.kde.org/?l=kde-core-devel&m=95953244511288&w=4
http://lists.jboss.org/pipermail/hibernate-dev/2007-May/002075.html

76 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

median monthly churn rate, source-build coupling, and build author ratios pre- and
post-migration using Wilcoxon signed rank tests (o = 0.01). We use Wilcoxon signed
rank tests instead of Mann-Whitney U tests because we have paired observations, i.e.,

the same project pre- and post-migration.

We automatically detect repositories that have migrated to CMake or Maven tech-
nologies by checking if CMake or Maven specifications appear in the repository at least
one period after another technology. Our approach detects 89 ecosystem project mi-
grations (=~ 2%) and 7,225 forge project migrations (=~ 4%). While prior work has stud-
ied build technology migration (e.g., Suvorov et al. [100]), the focus has generally been
on migration in a few large projects. To the best of our knowledge, this is the first build

migration study to focus on a large collection of migrations.

Observation 9 — Build technology migration often pays off. Figure 4.15 shows that,
despite Maven projects typically having higher source-build coupling rates (Observa-
tion 5), migration from Ant to Maven tends to have little impact on churn rate or source-
build coupling. In the projects that have migrated, the median monthly churn rate and
source-build coupling rate of Maven is almost identical to those of Ant (Figures 4.15a
and 4.15b). Also contrary to Observation 5, we find that the build author ratio tends
to drop as projects migrate from Ant to Maven (Figure 4.15c). Wilcoxon signed rank
tests of build author ratio confirm that the results are significant, while churn rate and

source-build coupling results are inconclusive.

When projects migrate from make or Autotools to CMake, the source-build coupling
also tends to decrease, implying that a migration to CMake eases the burden of build
maintenance. Similar to Maven, Figure 4.15c indicates that teams tend to adopt a more

concentrated build maintenance style after migrating to CMake. Wilcoxon signed rank

SECTION 4.5: BUuiLD TECHNOLOGY MIGRATION 77

tests confirm that the decreases in source-build coupling and build author ratios are
statistically significant.

Complementing our software forge findings, Figure 4.16a shows that the median
monthly churn rate in the studied ecosystems is rarely impacted by migration projects.
Figure 4.16b shows that again source-build coupling tends to drop after a migration
to CMake, however is rarely impacted by migration to Maven. Wilcoxon signed rank
tests confirm that the CMake migration results in Debian and GNU ecosystems are
statistically significant, however the Maven results in Apache are inconclusive. The
Wilcoxon signed rank tests also indicate that drops in build author ratios in the studied

ecosystems are statistically significant.

Migration in large-scale projects

In our study of software forges and ecosystems, we find that build author ratios and
source-build coupling tend to decrease. This suggests that technology migration is
typically accompanied by a shift of build maintenance from developers to a more spe-
cialized build maintenance team. Fewer developers are responsible for build mainte-
nance, freeing them up to focus on making source code changes.

It is unclear whether the decrease in source-build coupling and increase in build
team specialization are the result of the migration, perhaps due to the awareness of
build maintenance issues raised during migration, or simply due to the trends that we
observed as a project ages (Observation 7). To investigate this, we performed a longi-
tudinal study of the large-scale migration from Autotools to CMake in KDE.

Coupling trends for KDE in Figure 4.12 are decreasing for both Autotools and CMake.

Build change size

40 60 80 100

20

DS S

Ant to Maven Make/Autotools to CMake

(a) Build churn rates.

Logical coupling

1.0

02 04 06 08

0.0

Ant to Maven Make/Autotools to CMake

(b) Logical coupling.

04 06 08 1.0
| |

Build author ratio

0.2

0.0

Ant to Maven

Make/Autotools to CMake

(c) Build author ratio.

Figure 4.15: [Empirical Study 1] Build technology migration in the studied forges

8L

HOIOH)) AODOTONHOA]J, AdT1INg 7 441dVH))

Build change size

100

40 60

20

S]
g -
2
g <
5 S
- N
o
o
=1
T T T T
Ant to Maven Make/Autotools to CMake Ant to Maven Make/Autotools to CMake
(a) Build churn rates. (b) Logical coupling.

04 06 08 1.0
| |

Build author ratio

0.2

0.0

Ant to Maven Make/Autotools to CMake

(c) Build author ratio.

Figure 4.16: [Empirical Study 1] Build technology migration in the studied ecosystems

NOILVYOIN AD0TONHOH T, ATINg ¢’y NOLLOIS

6L

80 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

After the early development periods in 1997, Autotools follows a slowly decreasing cou-
pling trend from 1998-2004. In 2005, the coupling slowly rises back to 0.1 again, suggest-
ing thatit has stabilized. The appearance of the black line in late 2004 indicates that im-
plementation of the new KDE CMake build system has begun. From late 2004 to early
2006, the experimental KDE CMake build system rarely requires coupled changes with
the source code, since the Autotools build system is still the official one. The switchover
period when the CMake build system became the official one is indicated by the steep
slope upwards in CMake and downwards in Autotools in early 2006. There is a brief
period when the coupling trend is increasing until it peaks at 0.15 in 2007, but after this
the trend begins decreasing again, dipping as low as 0.05 in 2011. The trend does in-
crease again near the end of 2011, which coincides with the KDE team preparing for
their 4.8 release. As the KDE project entered 2012, the coupling dropped again to 0.06.
The CMake migration has reduced the source-build coupling from a roughly stable 0.1

to 0.05.

Figure 4.12 shows decreasing trends in the KDE build author ratio for both Autotools
and CMake build systems. After an early period of dispersed changes, and a trend of
growth from 1998 to 1999, a decreasing trend in Autotools authorship begins in 2000. In
2004, the KDE Autotools trend levels off at roughly 50%. After an early growth period in

2007, the KDE CMake authorship drops as low as 24%.

While changes in monthly build churn rates and source-build coupling prior to and
post-migration were inconclusive at times, build author ratio tends to decrease, in-
dicating that more specialized build maintenance teams tend to emerge when per-
forming migrations. The dedication of build experts that we observe during build
technology migration can defer build maintenance to a dedicated team, which may
help reduce the impact of build maintenance that other software developers must

pay.

SECTION 4.6: THREATS TO VALIDITY 81

4.6 Threats to Validity

We now discuss the threats to the validity of our empirical study.

4.6.1 Construct Validity

We assume that developers submit related changes using one commit, although our
prior work has shown that this may not always be the case [70]. There is awell-documented
lack of well-linked data [15, 88] that prevents us from grouping related commits to-
gether. Regardless, our analysis draws on comparisons among repositories, not on the

absolute values of the metrics.

Our authorship and change analyses rely on the commit data that is recorded in the
studied Git repositories. Git repository data may have been imported from other VCS
tools that do not: (a) track atomic commits (e.g., CVS), or (b) differentiate between
committers and authors (e.g., SVN). In such cases, we rely on the heuristics that are
used to recover that information by Git import tools. For example, atomic commits
may be approximated using the sliding time window approach [114], which considers
all commits that are recorded by one author within a time window (e.g., 300 seconds)

as one atomic commit.

Abstraction-based technologies are used to generate low-level specifications. We
assume that developers do not commit the generated files, and that projects with com-
mits containing low-level specifications prepared the changes by hand. This assump-

tion may not always hold, creating noise in our dataset. However, if this noise were

82 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

heavily influencing our conclusions, we would expect inflated results from the low-
level technologies, while we observe that framework-based and abstraction-based tech-

nologies tend to induce more build maintenance activity.

4.6.2 Internal Validity

We assert that by studying varying trends in the recorded version history of projects
using different build technologies, we measure characteristics of build maintenance
that are build technology-specific. It may be that the phenomena that we observe are a
property of the development cultures of the studied hosts. It may also be that the obser-
vations are purely coincidental. However, the large-scale nature of our study of 177,039
repositories spread across four software forges, three software ecosystems, and four
large-scale projects, as well as the consistency of our observations across this dataset

reduces the likelihood that our observations are purely coincidental.

Counting the number of changes (or the number of lines changed) may not truly
reflect the complexity of those changes. For example, while more numerous, Maven
changes may be trivial to implement when compared to make changes. Moreover, the
reliability of the build system may also impact not only the build maintenance effort,
but also the overall development as well. For example, make-based build systems may
be more prone to dependency errors, whereas modern tools automate much of the
internal dependency management. As a result, broken builds and other build-related
problems may occur more frequently and/or may cause more damage (by slowing build-
related feedback for development teams) using traditional make-based systems. We

plan to investigate these and other topics in future work.

SECTION 4.7: CHAPTER SUMMARY 83

4.6.3 Reliability Validity

We use a modified version of the Github Linguist tool™

to conservatively classify files
as source or build files. We have made our extended version available online.”> While
our classification tool is lightweight enough to iterate over all of the changes in our

large corpus, we may miss files that are build or source related that do not conform to

filename conventions.

4.6.4 External Validity

Although we study a large corpus of 177,039 repositories, we focus on a limited number
of forges, ecosystems, and projects. Also, we only study open source repositories. As
such, our results may not generalize to other open source or proprietary repository
hosts. We plan to address this in future work.

There are hundreds of build technologies, and of these, we selected a small sub-
set for study. Our findings are entirely bound to the studied technologies. However,
the build technologies that we selected for study cover a considerable portion of the

repositories in the corpus.

4.7 Chapter Summary

Build systems enable modern development practices such as continuous integration
and continuous delivery. However, they require a substantial investment of mainte-

nance effort to remain correct as source files, features, and supported platforms are

Yhttps://github.com/github/linguist/
Bhttp://sailhome.cs.queensu.ca/replication/shane/PhD/

https://github.com/github/linguist/
http://sailhome.cs.queensu.ca/replication/shane/PhD/

84 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

added and removed. Build maintenance is a nuisance for practitioners, who often re-
fer to it as a “tax.”

A wide variety of technologies are available to enable development teams to imple-
ment build systems.'® Although it is of paramount importance for researchers and tool
developers, little is known about which build technologies are broadly adopted and
whether technology choice is associated with build maintenance activity.

In this chapter, we study the relationship between build technology selection and
build maintenance to help practitioners make more informed build technology choices
and narrow the scope of future research. Specifically, we set out to address the follow-

ing question:

Central Question: Is there a relationship between build technology choice and
build maintenance activity?

In performing a large-scale study of 177,039 open source repositories spread across
four forges, three ecosystems, and four large projects, we make the following observa-

tions according to three themes of study:

Build Technology Adoption: Although many projects continue to use traditional tech-
nologies like make, language-specific technologies like Rake have recently sur-
passed them in terms of market share. Furthermore, there is indeed a strong
relationship between the programming languages used to implement a system
and the build technology used to assemble it. Although researchers and service
providers should continue to focus on older build technologies like make that still
account for a large portion of the market share, more modern build technologies

are beginning to gain popularity and should also be considered for study.

Bhttp://en.wikipedia.org/wiki/List_of_build_automation_software

http://en.wikipedia.org/wiki/List_of_build_automation_software

SECTION 4.7: CHAPTER SUMMARY 85

Knowing this, development service providers can tailor their solutions to fit their
target development demographic more appropriately. For example, cloud-based
build infrastructure service providers like Travis-CI'” can tailor their solutions to
provide “first-class” service for the more popular, language-specific build tech-

nologies in order to stay ahead of the trend.

Build Maintenance: Surprisingly, we find that the modern, framework-driven and de-
pendency management technologies tend to induce more churn and be more
tightly coupled to source code than low-level and abstraction-based technolo-
gies do. Furthermore, we find that much of the Java and Ruby build maintenance
effort is spent on external rather than internal dependency management. Yet, ir-
respective of technology choice, as projects age, the source-build coupling tends

to decrease and they tend to adopt a concentrated build maintenance style.

There appear to be additional maintenance activities associated with more mod-
ern build technologies, suggesting that while they provide additional features,
there is a risk associated with adopting them that development teams should
be aware of. Likely due to an inflated source-build coupling rate, changes to
framework-driven technologies tend to be more evenly dispersed among devel-
opers. Development teams should consider whether this wide dispersion of build

changes among the team is an appropriate fit for their development process.

Build Technology Migration: Most build technology migration projects successfully
reduce the impact that build maintenance has on developers by shifting build
maintenance work from typical developers onto a smaller, dedicated team of

build maintainers.

Yhttp://travis-ci.org/

http://travis-ci.org/

86 CHAPTER 4: BuiLD TECHNOLOGY CHOICE

4.7.1 Concluding Remarks

The focus of this chapter is on build maintenance from a “macro” perspective without
studying the contents of the build specifications. Just as source code files can contain
quality issues, we suspect that build specifications may also suffer from similar quality
issues. To that end, in the next chapter, we set out to study duplication (a.k.a., cloning),

a common source code anti-pattern, in build specifications.

CHAPTER 5

Cloning in Build Specifications

CENTRAL QUESTION

How much cloning is typical of build
systems? How can cloning be avoided?

An earlier version of the work in this chap-
ter appears in Proceedings of the 36th Inter-
national Conference on Software Engineering
(ICSE 2014), Software Engineering In Practice
track (SEIP) [73]

5.1 Introduction

To reap the most benefit, build systems must be carefully maintained to ensure that
deliverables are assembled correctly. Since build systems tend to grow in terms of size
and complexity as they age [4, 67], they also tend to become more difficult to maintain.
Indeed, as Munich Re (a large reinsurance company) has shortened development cy-

cles to yield more frequent releases, maintainers have noticed that change requests for

87

88 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

the build system have increased in frequency and difficulty. The increased cost of build
maintenance motivated management to contact CQSE (a software quality consultancy
group) to investigate the root cause and propose methods of reducing the cost of build

maintenance.

Through assessment of the Munich Re build system, we note that cloning (i.e., du-
plication) of build logic can contribute to an increase in frequency and difficulty of
build maintenance. Munich Re maintains roughly 30 custom business information
systems implemented using C#, which share a common build system that exploits sim-
ilarities among the applications. However, over the years, the build system has grown
to roughly 1.1 million lines of build logic. Maintenance of the build system has been
subcontracted to an external supplier who has allocated a team of three developers to
the task. Since clones are scattered throughout the build system, build changes often
need to be repeated in as many as 30 locations. Defects may linger in the build system

if changes are not propagated to all of the required clones.

Despite the perils of build logic cloning, it is not well understood. Hence, although
build maintainers tend to agree that cloning is problematic, selecting a more main-
tainable solution is non-trivial. For example, it is not clear whether build logic cloning
can be avoided, i.e., cloning may be an innate property of build systems. Moreover, it
may be that certain technologies are more prone to cloning, which would suggest that
migration to a less clone-prone technology could provide some relief. We, therefore,

set out to address the following question:

Central Question: How much cloning is typical of build systems? How can cloning
be avoided?

To that end, we collect and analyze a benchmark comprising 3,872 open source

SECTION 5.1: INTRODUCTION 89

build systems from Apache, GNU, Sourceforge, and Github. Through analysis of the

benchmark, we address five research questions and two themes:

5.1.1

Deriving Baseline Values

In order to ground a notion of build cloning rates empirically, we quantitatively analyze

the benchmark, addressing the following three research questions:

(RQD

(RQ2)

(RQ3)

How much cloning is typical of build systems?
Motivation: Little is known about build logic cloning. Hence, we are interested

in first exploring what typical cloning rates are within the scope of build systems.

Results: Although cloning rates in build systems are typically higher than those
of other software artifacts, there are build systems with little cloning, indicating

that there are measures one can take to reduce build logic cloning.

Does technology choice influence cloning in build systems?

Motivation: There are numerous build technologies, each with its own nuances.
Abetter understanding of the influence that technology choice has on build sys-
tem quality metrics like cloning will allow practitioners to make more informed

build technology choices.

Results: The more recent CMake (C/C++) and Maven (Java) technologies tend
to be more prone to cloning than the older Autotools (C/C++) and Ant (Java)

ones.

Do benchmark-derived cloning thresholds vary among build technologies?
Motivation: If technology-specific cloning benchmarks vary considerably, a sin-

gle technology-independent benchmark would set a target that is unreasonably

90

CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

low for clone-prone technologies, and too lax for clone-resistant technologies.

Results: We use thresholds derived from quantiles in our benchmark to iden-
tify build systems with abnormal cloning characteristics. Technology-specific
thresholds vary most for Java build systems with abnormally low amounts of
cloning, and between CMake/-Autotools and Ant/Maven for build systems with

abnormally high amounts of cloning.

5.1.2 Understanding Cloned Information

The build system describes up to five interdependent steps (cf. Chapter 2). Build speci-

fications describe how each step must be performed. It is not clear which of these steps

are most susceptible to cloning. Through qualitative inspection of build logic clones,

we address the following two research questions:

(RQ4)

(RQ5)

What type of information is typically cloned in build specifications?
Motivation: We set out to better understand what steps of the build process
tend to be cloned in each build technology with the intent to discover if cloning

rates are affected by limitations of the technology itself or a lack of skill in ap-
plying it.
Results: The more recent technologies are more susceptible to cloning of con-

figuration details like API dependencies, while the older technologies are more

susceptible to cloning of lower-level build logic.

How do build systems with few clones achieve low clone rates?

Motivation: We compare clone-prone and clone-resistant build systems to elu-

cidate differences in cloning practices.

SECTION 5.2: BACKGROUND AND DEFINITIONS 91

Results: Build systems with little cloning leverage reuse mechanisms beyond
those offered by build technologies themselves, suggesting that existing reuse
mechanisms offered by build technologies are insufficient for avoiding build

logic cloning.

Chapter organization. The remainder of this chapter is organized as follows. Sec-
tion 5.2 provides background detail and definitions used throughout the chapter. Sec-
tion 5.3 describes the case of build logic cloning at Munich Re. Section 5.4 describes
the design of our empirical study. Sections 5.5 and 5.6 present our findings with re-
spect to our five research questions. Section 5.7 discloses the threats to the validity of

our empirical study. Finally, Section 5.8 draws conclusions.

5.2 Background and Definitions

Clones are duplicated regions in software artifacts, typically created by copying and
pasting. Clones tend to hinder maintenance, since changes to an artifact region often
need to be performed consistently to all of its clones. Clone detection tools search
for clones in software artifacts to support the maintenance of software artifacts that
contain clones.

There are various types of clones used in research and practice [57, 94]. To the best
of our knowledge, this is the first study to explore build logic cloning. Hence, for our
measurements, we focus on Type I clones, i.e., exact copies ignoring the variations in
whitespace and comments, and leave the exploration of higher level clone types to fu-

ture work. We measure the extent of build logic cloning using:

Clone Coverage — The proportion of build logic lines that are cloned at least once

92 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

in the build system. Values range between 0 (i.e., no detected clones) and 1 (i.e.,

each build logic line is cloned at least once).

Blow Up — The degree of inflation in build system size with respect to a hypothetical

ActualSize

* ReduncancyFreeSize L. Hence’

build system that does not contain any clones, i.e.
a blow up value of 0 indicates that the system is not inflated by cloning, while

values above 0 indicate the degree of inflation due to cloning.

5.3 Build Logic Cloning in Industry

This section provides a motivational example to illustrate the reasons and impact of
excessive build logic cloning. First, however, we provide a brief background on cloning,

and the metrics that we use to measure its extent.

5.3.1 Clone-Based Build System Design

Most Munich Re business applications use a shared company-wide build infrastruc-
ture based on Microsoft Team Foundation Server (TFS) specified using MSBuild. Each
business application has different build specifications for each build configuration (e.g.,
debug and release) and each application release (e.g., 2013.1 and 2013.2). For example,
one business application has six build specifications representing debug and release
configurations for its 2013.1, 2013.2, and 2013.3 releases.

These MSBuild specifications enhance the default TFS build process with unit test-
ing, continuous code quality analysis, and packaging in preparation for automated
deployment to testing, pre-production, and production environments. Build speci-

fications range between 1,500-8,000 lines of build logic per file, with an average size of

SEcTION 5.3: BUuiLD LoGic CLONING IN INDUSTRY 93

3,800. The Munich Re build system currently contains more than 1.1 million lines of
build logic spread across 295 build specifications.

To add a new release or a new application to the build system, the build specifica-
tions of a stable application are duplicated and customized. In the simplest case, the
application name, as well as the application-specific directories and source file lists
need to be customized. More complex applications have unique packaging require-
ments or need special interaction with the TFES. Yet, since the core build logic remains
unchanged, build specifications are largely the same. Since new releases and new ap-
plications must be added to the build system regularly, one can easily see how the Mu-

nich Re build system has grown to the size it is today.

5.3.2 Clone-Based Build System Maintenance

The effort required to maintain the Munich Re build system has steadily increased
over the years. It now requires three full-time employees whose sole responsibility is
to maintain the build system. These build maintainers are responsible for configur-
ing new application releases, adding new applications to the build system, fixing build
system defects, and adding new build system features.

Even with this dedicated team of build maintainers, defects fixes and new features
take a long time to complete. In fact, due to time pressure, some build system changes
are never completely propagated to all build specifications. For example, a build main-
tainer recently added the ContinueOnError flag (which prevents the build from failing)
to one of three specifications that uninstall the same application. It was not until one
week later that the flag was applied to the second of the three specifications. The flag

has not yet been applied to a third instance.

9 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

Prolonged fixes and inconsistent changes are an often-observed clone-related prob-
lem in source code, too [48]. Itis a novel observation, however, that build specifications

are affected by these problems as well.

5.3.3 Shortcomings of the Clone-Based Build System Design

The clone-based build system design has been perceived by build maintainers as one
of the fundamental causes of the build maintenance difficulties at Munich Re. Through
discussions with the build maintainers, they report that: “You have to alter 15 occur-
rences [of a defect] and you have to be really careful not to introduce new [defects]” and
“With over 270 or more versions [of a build specification], the [build system] is simply
not maintainable anymore.”

Indeed, with a minimum clone length of twenty lines, clone detection results in-
dicate that the Munich Re build system has a clone coverage of 94.4% and a blow up
0f 1,023% (clone detector configuration details are found in Section 5.4). With a min-
imum clone length of five lines, clone coverage and blow up values increase to 99.1%
and 2,335% respectively. In other words, the Munich Re build system: (1) is over 23 times
larger than it would be without cloning, and (2) only contains roughly 50,000 unique
lines of build logic.

Cloning between build specifications has also lead to dead build features. These
features were copied when a specification was duplicated, but are not used during the
build. This further inflates maintenance effort and increases the likelihood of introduc-
ing defects during maintenance, since one must first recognize whether a build feature

is active or not before making modifications.

Fr— == === F=@® ~ 1

3
| Construct Meaningful Clone Analyze and

! | RO ' orcsent Results | Quantile Plots
S —" — o = = = =y Metrics

Apache
(1_) I Selected () I Suitable I Clone Threshold I GNU Clone Extent I el 2 -
Retrieve Sources Clean and Process Systems Dy i Analysi 2|
Github I % systems.

Raw Data I Apache

[Raw Data | Apache |
. Filter
Sample }—) GNU ——l—){ o File Type H Unsuitable l—> GNU
[S

Large corpus

I
[
Sourceforge -I*l Abnormal | I

|

of software | - Clone System

systems — o - - Github — - — — - Github [DB PR | | | oetection I Build Phase
Sourceforge Sourceforge Clones l Histogram

I Random I Ant I Cloned I § =l -

Sample Information S 5Stog

I i I Maven Analysis I ® 878 3z 8

— — — — — — — Autotools -— — — — me
CMake

Figure 5.1: [Empirical Study 2] Overview of our data extraction and analysis approach.

XMISNAN] NI ONINOT) OI90T aTINg :£'G NOLLOAS

<6

96 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

Table 5.1: [Empirical Study 2] Overview of the studied systems.
Ant Maven Autotools CMake Total

Apache 51 56 18 3 128
Github 114 321 521 220 1,176
GNU 15 0 243 12 270
Sourceforge 593 125 1,517 63 2,298
Total 773 502 2,299 298 3,872
#w/ Clones 664 484 943 162 2,253
% w/ Clones 86% 96% 41% 54% 58%

5.4 Empirical Study Design

In this section, we describe our benchmark collection and analysis approach. Similar
to Chapter 4, our approach to extracting and analyzing the build logic cloning bench-
mark is structured using the four steps suggested by Mockus for analyzing software
repositories [76]. Figure 5.1 provides an overview of our approach. We describe each

step in the approach below.

5.4.1 Retrieve Raw Data

It is important that our benchmark contains a large sample of build systems in order
to improve confidence in the conclusions that we draw. Hence, we select a sample of
3,872 build systems from the large corpus of open source systems of varying size, scope,
and domain collected by Mockus [77]. We describe the corpus of build systems used in

this study and explain our extraction and analysis approaches below.

SECTION 5.4: EMPIRICAL STUDY DESIGN 97

5.4.1.1 Sample selection

The sample of build systems was obtained from four sources described in Table 5.1.
The Apache Software Foundation provides organizational, legal, and financial support
for a broad range of open source software systems. Savannah (GNU) is the software
forge for people committed to free software. Github and Sourceforge are also popular
software forges.

We select the build systems of Java and C/C++ systems for our benchmark, since
they are among the most broadly adopted programming languages in our corpus [77].
We further narrow our study by selecting the two most frequently used build technolo-
gies for each studied language. As shown in Chapter 4, in our corpus, C/C++ systems
use GNU Autotools and CMake most frequently, and Ant and Maven are used most
frequently to specify Java build systems. We extract the latest version of each software
system that meets our selection criteria from the large corpus.

The GNU Autotools and CMake technologies are abstraction-based (cf. Chapter 4),
and thus, are used to generate low-level build specifications (i.e., Makefiles). We con-
figure our clone detection tool to scan the high-level abstractions (e.g., configure.ac,
Makefile.am), rather than the automatically generated build specifications.

Figure 5.2 provides an overview of the benchmark by plotting the number of clones
detected against size of the build system using hexbin plots [19]. Hexbin plots are scat-
terplots that represent several data points with hexagon-shaped bins. The darker the
shade of the hexagon, the more data points that fall within the bin. The plot is loga-
rithmically scaled in all dimensions to lessen the influence of outliers.

The relationship between number of clones and build system size is roughly linear

on the log scale and quadratic on the linear scale. The hexagons in Figure 5.2 tend to

98 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

Autotools CMake Ant Maven

Project
Count

1000 -
100

10

=
o
1

Number of Clones

(=] o o o
o o o o
— o — o

— —

10000
10000
100
1000
10000
100
1000
10000

Lines of Build Logic

Figure 5.2: [Empirical Study 2] Number of clones detected vs. build system size (in lines
of build logic).

appear in a positive upward diagonal direction. Similarly, the hexagons tend to deepen
in shade along an upward diagonal trend in the Java build systems. This suggests that

as a build system grows, so too does its proneness to cloning.

5.4.2 Clean and Process Raw Data

Prior to addressing our research questions, we must first ensure the extracted systems

are suitable for analysis. This process is divided into two steps.

5.4.2.1 File type classification

Again, similar to Chapter 4, we cannot apply the semi-automatic file type classification
of our prior work due to the large-scale nature of this corpus [70]. To address this, we
conservatively identify build files based on filename conventions (cf. Table 4.2). Al-
though our approach may miss some build specifications that do not follow filename

conventions, the approach is lightweight enough to be applied to all files in the corpus.

SECTION 5.4: EMPIRICAL STUDY DESIGN 99

5.4.2.2 Filter unsuitable systems

Software incubators such as Github and Sourceforge often contain systems that have
not yet reached maturity. Neitsch et al. conjecture that IDE support for building soft-
ware is sufficient for small systems [86]. Indeed, Smith suggests that build system main-
tenance does not become a problem until a system ages, requiring more configurabil-
ity to expand market presence [99]. To reduce noise in the benchmark, we filter away

systems with fewer than five build specification files or 100 lines of build logic.

5.4.3 Construct Meaningful Measures

Next, we apply clone detection to the surviving build systems using ConQAT [27]. Then,
metric thresholds are derived from the benchmark. Finally, a random sample of clones

are selected for detailed analysis.

5.4.3.1 Clone detection

The ConQAT clone detector reads all files of a system that match the pattern of the spec-
ified build technology from Table 4.2 into memory. The detection algorithm is config-
ured to be line-based with varying minimum clone lengths of 5, 10, 15, and 20 lines. To
handle file formatting differences, we trim the leading and trailing white space of each
line. We omit empty lines and comments, since they do not have an impact on the
build process. We also omit closing XML tags, since XML-based build specifications
are more verbose. Although not strictly necessary for our analyses in this chapter, con-
trolling for XML verbosity helps to make XML and non-XML build logic cloning results
more comparable. In this study, we consider only Type I clones. For example, when

the minimum clone length is set to five, clones must share at least five consecutive

100 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

non-empty lines after applying the normalization described above.

5.4.3.2 Threshold calculation

Thresholds are used to identify entities with metric values that warrant further investi-
gation. For example, build specifications with a blow up value above two may be worth
inspection. Yet it is non-trivial to select effective thresholds that pinpoint abnormal
entities while retaining low false positive and false negative rates. There are various
threshold derivation techniques that can gauge a variable with unknown properties
empirically. In order to address RQ3, we adopt the quantile-based technique suggested
by Alves et al. [9], since (as they point out) other threshold derivation techniques (such
as deviation analysis) often make invalid assumptions about the dataset (e.g., normally
distributed), or require carefully tuned input parameters (e.g., number of clusters for

clustering techniques).

Alves et al. suggest that values that fall above the 70, 80™, and 90" percentiles are
abnormal to a moderately high, high, and very high degree respectively. We extend
this concept by arguing that values that fall below the 30™, 20", and 10™ percentiles
are abnormal to a moderately low, low, and very low degree respectively. Values that

appear at quantile boundaries are considered thresholds.

5.4.3.3 Random sample selection

To address RQ4, we need to select a representative sample of clones of each studied
technology for deeper analysis. We randomly select a sample of clones large enough to

achieve a 95% confidence level and a 5% confidence interval.

SECTION 5.4: EMPIRICAL STUDY DESIGN 101

5.4.4 Analyze and Present Results

Finally, we use the derived thresholds to detect and analyze build systems with abnor-

mal amounts of cloning.

5.4.4.1 Clone extent analysis

We use quantile plots to indicate whether the amount of cloning in a system is abnor-
mal. These plots show the cumulative proportion of systems that have clone coverage

and blow up metrics below a given value.

5.4.4.2 Abnormal system detection

To better understand good and bad cloning practices, we analyze the most and the
least clone-prone systems. We first identify common cloning pitfalls of the most clone-
prone systems. Then, we analyze the least clone-prone systems to understand how

these pitfalls can be avoided.

5.4.4.3 Cloned information analysis

We manually analyze the information cloned in a random sample of clones for each
studied technology (RQ4), and all of the clones in the highly clone-prone build systems
(RQ5). To address RQ4, we assess each clone to determine which of the five build steps
(cf. Chapter 2) are impacted.

The configuration step can be broken down into three subcategories. Dependency
probing checks for the existence of an appropriate version of a third-party dependency
(e.g., build tools, APIs). Dependency resolution probes for, downloads, and deploys

third-party dependencies in a local cache in preparation for use in later build steps.

102 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

Tool configuration selects the necessary options to prepare tools for use in later build
steps (e.g., compiler flags).

The construction step comprises two subcategories. Build either describes: (1) in-
ternal source dependencies (e.g., foo . o should be compiled before linkingitinto foo . so),
or (2) how input files are translated into output files (e.g., gcc should be executed on
foo.c to produce foo.o). Filesystem logic handles the creation of output directories,
or implements so-called “clean” targets that remove intermediate and output files to
force the build system to start from scratch.

The certification step most often comprises Unit testinglogic that configures, com-
piles, or executes unit tests. Similarly, Packaginglogic describes how deliverables should
be bundled together for end user consumption.

The deployment step not only comprises Installation logic that describes how de-
liverables are deployed on a target machine, but also Executionlogic that describes how

deployed deliverables should be executed in testing environments.

5.5 Deriving Baseline Values

In order to ground our intuition about the extent of build cloning, we perform a quan-

titative analysis of the benchmark with respect to RQ1-RQ3.

(RQ1) How much cloning is typical of build systems?

In order to address RQ1, we analyze the distributions of clone coverage and blow up in

the benchmark using boxplots.

Apache Github GNU Sourceforge Apache Github GNU Sourceforge
1.004 :
E . .
Q e :
2 0.751 Minimum 1. : Minimum
5 Length ! : Length
2 a5 : 5
S}
O 050 E310 B310
0:) E315 EB15
S 2l E320 E320
oo
0.00
Ant Maven Ant Maven Ant Ant Maven Ant Maven Ant Ant Maven
(a) Clone coverage (Java) (b) Blow up (Java)
Apache Github GNU Sourceforge 05 Apache Github GNU Sourceforge
EEM. : I ' . : .. R
E
© 061 : Piae 0.4+ L .
2 . i i e Minimum vl . Minimum
= H e Length o i HEIN . N Length
g : A 03 : :
3 04 i e =5 > " - -5
o N E310 3 HR E310
© i E315 m 0.2- : E315
5 I £320 by £320
O 0.2 i | l R
B 01- i
5 l
J] . 00- HI' .
Autotools CMake Autotools CMake Autotools CMake Autotools CMake Autotools CMake Autotools CMake Autotools CMake Autotools CMake
(c) Clone coverage (C/C++) (d) Blow up (C/C++)

Figure 5.3: [Empirical Study 2] Cloning metrics gathered from the studied systems. Note: scales differ among the
plots.

SHNTVA ANITASVY ONIATIA(] :S°S NOLLOES

0]

104 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

In general, build logic clones tend to be small. Figure 5.3 shows that clone cov-
erage and blow up values decrease drastically when the minimum clone length is set
to ten or higher, indicating that many of build specification clones cover five to nine
lines. This is consistent with clones in other software artifacts, where short clones are

also more frequent than long ones [47, 49].

Manual analysis of randomly selected clones with a minimum length of five reveals
few false positives. Hence, to simplify the remaining analyses, we only discuss the re-

sults with respect to a minimum length of five.

Cloning is more prevalent in Java build systems than many other software ar-
tifacts. Although it is not abnormal for legacy COBOL systems to have cloning rates
of 80% [79], prior work shows that many large software systems contain 7%-23% du-
plicated code [11, 56, 60], with rare cases reaching 59% [31]. Requirements documents
have an average clone coverage of 14%, with one reported case of 72% [47]. Conversely,
our benchmark values indicate that a clone coverage of 50% occurs rather frequently
for Java build systems. Figure 5.3a shows that the studied Maven build systems have a
median clone coverage ranging between 47%-50%. While Ant build systems have me-
dians below 50%, the top of the box (indicating the 75" percentile) extends beyond
50% for Github, GNU, and Sourceforge build systems, indicating that more than one

quarter of Ant build systems have clone coverage values that exceed 50%.

On the other hand, cloning in C/C++ build systems is less prevalent. Figure 5.3c
shows that the median clone coverage for Autotools build systems only exceeds 0 in
the Apache organization, indicating that half of the studied Autotools build systems in
the Github, GNU, and Sourceforge organizations do not contain any clones. In fact,

Table 5.1 shows that while 86%-96% of the studied Java build systems contain clones,

SECTION 5.5: DERIVING BASELINE VALUES 105

only 41%-54% of C/C++ build systems do. Furthermore, Figure 5.3c shows that 75"
percentile of C/C++ build systems does not exceed 30% clone coverage.

While the magnitude of the observed C/C++ build clone coverage values pale in
comparison to the observed Java ones, there are still many C/C++ build systems that
have plenty of clones. For example, Figure 5.3c shows that 25% of Autotools build sys-
tems in Apache have a clone coverage between 27%-66%. In addition, 25% of CMake

build systems in Sourceforge have a clone coverage between 21%-48%.

Java build systems often have 50% clone coverage, rates that have only been observed
in legacy systems or in extreme cases when studying other software artifacts. While
cloning in C/C++ build systems is less pervasive, there are still several systems that
have a substantial number of clones.

(RQ2) Does technology choice influence cloning in build systems?

To address RQ2, we compare the distributions of Figure 5.3.

For Java systems, cloning is more prominent when using the more recent Maven
technology than Ant. Figures 5.3a and 5.3b show that Maven build systems tend to
have higher clone coverage and blow up values than Ant ones do. Mann-Whitney U-
tests (an alternative to the Student t-test with greater resiliency to non-normal distri-
butions) confirm that the differences in clone coverage and blow up are statistically
significant (p < 0.01) in Apache, Github, and Sourceforge. Table 5.1 shows that none of
the studied GNU systems use Maven, so no comparison can be made.

For C/C++ systems, cloning is more prominent when using the more recent
CMake build technology than Autotools. Although Figure 5.2 indicates that there
are more clones in Autotools than CMake build systems, clone coverage and blow up

statistics tend to favour CMake. First, Figure 5.3c shows that clones tend to cover more

106 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

1.00 - Abnormality
. Very high
High
0.75 - Moderately high
Normal

Moderately low

Clone Coverage
o
al
o
1

Technology
0.25 - —— Ant
-4 Autotools
- CMake

—+ Maven

0.00 5

0.00 0.25 0.50 0.75 1.00
Proportion of Systems

(a) Clone coverage

10.0 Abnormality

. Very high
High
Moderately high
Normal
Moderately low

Blow Up (log scale)

Technology
—— Ant

-4 Autotools
-®- CMake
—+ Maven

0.00 0.25 050 0.75 1.00
Proportion of Systems

(b) Blow up

Figure 5.4: [Empirical Study 2] Quantile plots of system-level cloning metrics.

SECTION 5.5: DERIVING BASELINE VALUES 107

CMake lines than Autotools ones do. Second, Figure 5.3d shows that CMake clones
tend to inflate build systems more than Autotools clones do. Indeed, with a minimum
clone length of five, the median clone coverage and blow up of CMake exceeds that of
Autotools in Github, GNU, and Sourceforge.

Mann-Whitney U-tests confirm that the differences in clone coverage and blow up
are statistically significant (p < 0.01) in GNU and Sourceforge, however they cannot
confirm a statistically significant difference in Github (p = 0.06). Furthermore, al-
though the median for Autotools build systems exceeds that of CMake in Apache, Ta-
ble 5.1 shows that our sample of three CMake systems in Apache is too small for sta-
tistical comparisons. In general, CMake build systems tend to be covered and inflated

more by cloning than Autotools ones are.

The more recent CMake (C/C++) and Maven (Java) build technologies tend to be
more prone to cloning than the older Autotools (C/C++) and Ant (Java) ones are.

(RQ3) Do benchmark-derived cloning thresholds vary among build

technologies?

To address RQ3, Figure 5.4 shows the clone coverage and blow up quantile plots derived
from our benchmark. We discuss the differences in thresholds for the studied Java and
C/C++ technologies below.

Maven build systems have much higher thresholds for low values than Ant ones
do. Complementing our RQ2 findings, Figure 5.4 shows that normal cloning rates in
Maven are higher than those of Ant. In fact, Figure 5.4a shows that Maven build systems
with a clone coverage below 52%, 47%, or 39% are considered moderately low to very

low in our benchmark. On the other hand, Ant build systems with a clone coverage of

108 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

36%, 25%, or 15% are considered low. Similarly, Figure 5.4b shows that blow up values
of 56%, 45%, and 33% are also considered low for Maven build systems, while values
of 28%, 18%, and 9% are considered low for Ant build systems. In other words, clone
coverage and blow up values up to and exceeding the 30” percentile of Ant would still
be beneath the 10 percentile of Maven build systems.

On the other hand, there is very little difference between the low thresholds of C/C++
build systems. Figure 5.4 shows that the CMake and Autotools clone coverage and blow
up thresholds differ at most by four percentage points.

High thresholds are similar between Ant and Maven, and between Autotools
and CMake. Figure 5.4a shows that the high clone coverage thresholds for Java build
systems differ by two percentage points at the 70", 80", and 90" percentiles. C/C++
systems differ by four to eight percentage points.

Similarly, Figure 5.4b shows that blow up thresholds at the 70, 80", and 90" per-
centiles of the C/C++ build systems differ by four to seven percentage points. However,
blow up thresholds of the studied Java build systems cover a broader range of 10 to 31
percentage points. The largest difference in blow up thresholds for Java build systems
(31 percentage points) is at the 90" percentile, and is likely due to extreme blow up
values in outlier systems.

Munich Re build system is indeed unusual. Regardless of the technology, clone
coverage or blow up values of the same magnitude as Munich Re are not observed be-
neath the 90 percentile. Hence, our intuition about the Munich Re build system is

empirically confirmed by the benchmark.

Technology-specific thresholds vary most for Java build systems with abnormally
low amounts of cloning, and between CMake/Autotools and Ant/Maven for build
systems with abnormally high amounts of cloning.

SECTION 5.6: UNDERSTANDING CLONED INFORMATION 109

5.6 Understanding Cloned Information

While our quantitative analysis of Section 5.5 can be used to identify build systems with
abnormal amounts of cloning, it does not help us to understand how cloning can be
avoided (without migrating to a different technology). To address this, we perform a
qualitative inspection of build logic clones. In this section, we present the results of

this analysis with respect to RQ4 and RQ5.

(RQ4) What type of information is typically cloned in build specifi-

cations?

In order to address RQ4, we need to analyze a representative sample of clones in each
studied technology. As the total number of clones is very large, and there was no au-
tomatic means of determining the build step of the clone, we sampled the clones for
manual inspection. We obtain the proportion estimates that are within 5% bounds of

the actual proportion with 95% confidence level using the sample size calculation of

22p(1—p)
0.052

= , where p is the proportion we want to estimate and z = 1.96. Since we
did not know the proportion in advance, we use p = 0.5. We, further, correct for the
finite population of clones to obtain 382 Ant, 382 Maven, 379 Autotools, and 349 CMake
clones. Table 5.2 shows the proportion of randomly selected clones that are associated
with each build subcategory.

Cloning focus shifts from construction to configuration in Maven. Table 5.2
shows that the majority of Ant clones impact the construction step (64%). 47% of clones

are associated with the build category and 32% with the filesystem category. The next

most frequently cloned step (configuration) appears in half as many clones (32%).

110 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

Table 5.2: [Empirical Study 2] A manual analysis of the clones that pertain to each sub-
category in a statistically representative subsample (95% confidence level; +5% confi-
dence interval). Phase totals are not the sum of each subcategory because a clone may
pertain to many subcategories.

Clone Counts Ant Maven || Autotools CMake
All clones 56,521 71,543 23,723 3,746
Sample size (95% =+ 5%) 382 382 378 349
Phase Subcategory Ant Maven || Autotools CMake
o Deps. Probing 3% 0% 1% 8%
= Deps. Resolution 1% 54% 0% 4%
S Tool Configuration | 29% 32% 21% 32%
Phase Total 32% 79% 22% 40%
&% Build 47% 16% 48% 65%
g Filesystem 32% 1% 19% 1%
© Phase Total 64% 17% 56% 66%
Cert. Unit Testing 12% 4% 13% 11%
Pkg. Packaging 25% 21% 21% 2%
— Installation 8% 1% 9% 7%
& Execution 3% 0% 0% 0%
a Phase Total 0% 1% 9% 7%

Many of these construction clones replicate entire Ant targets that create or delete
temporary output directories or compile Java source code. Since a single invocation
of the Java compiler will automatically resolve dependencies between input source
files [29], Ant targets that compile Java code often invoke the Java compiler specifying
all impacted Java files as inputs using wildcards. Hence, the compile target is generic,
and often cloned in several Ant specifications.

While construction accounts for many of the clones in Ant build systems (64%),
most Maven clones impact configuration (79%). The next most frequently cloned step
(packaging) appears in less than a third as many clones (21%).

We observed that many of the Maven clones replicate third-party dependency lists

or plugin configuration among subsystems. While this ensures that each subsystem

SECTION 5.6: UNDERSTANDING CLONED INFORMATION 111

can be built independently of the others, it imposes a heavy load on maintainers, who
will need to update several pom.xml files in order to modify third-party dependency

lists or update plugin configurations.

Construction is the most heavily cloned build step in C/C++ build systems. Ta-
ble 5.2 shows that the build subcategory represents 48% and 65% of Autotools and
CMake clones respectively. The filesystem category is also detected in 19% of Autotools
and 1% of CMake clones. All in all, the construction step accounts for 56% of Autotools

clones and 66% of CMake clones.

While the Autotools construction step is most frequently cloned (56%), Table 5.2
shows that packaging details are also cloned often (21%). Yet packaging details are
rarely cloned in CMake (2%). Many of these Autotools packaging clones have to do with
repetition of data file lists among subsystems. Since Autotools build specifications gen-
erate recursive make build systems, variables are not shared among subsystems [74]. Al-
though Autotools offers developers an include directive, we have observed that rather
than place shared variables in a header-like file, developers often clone variables that
have a shared scope. Similar to Maven, where dependency lists and plugin configura-
tion were replicated, developers likely duplicate shared variables to facilitate subsys-

tem independence. However, this makes system-wide changes more difficult.

Conversely, we observe that CMake packaging details are rarely cloned. We observe
that developers leverage built-in CPack functionality of CMake [65], where packaging
details are typically specified in a single location: CPackConfig. cmake. This eliminates

the need to replicate packaging details in subsystem specifications.

There are more configuration clones in the more recent build technologies. Ta-

ble 5.2 shows that there are more than twice as many configuration clones in Maven

112 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

<!-- Define references to files containing common targets -->
<I!DOCTYPE project [

<!ENTITY modules-common SYSTEM "../modules-common.ent">
1>

<project name="bea" default="all">
<!-- Include the file containing common targets. -->
&modules -common ;

</project>

Listing 5.1: [Empirical Study 2] Using XML entity expansion to import common build
code in the Keel system.

build systems (79%) than Ant ones (32%). Similarly, there are almost twice as many con-
figuration clones in CMake (40%) than there are in Autotools (22%). In Section 5.5, we
report that these more recent technologies are more prone to cloning (RQ2). The shift
of cloning tendencies towards configuration likely contributes to the inflated cloning

values we observe in the more recent technologies.

Configuration details are cloned more often in the more recent CMake and Maven
build technologies. For Java build systems, Maven clones favour the configuration
step, while Ant clones (and clones in C/C++ builds) favour construction. CMake
packaging support (CPack) helps to reduce cloning in the packaging step.

(RQ5) How do build systems with few clones achieve low clone rates?

To address RQ5, we analyze clones in the systems with the lowest and highest cloning
rates for each studied technology.

Much Java build cloning can be avoided by exploiting the underlying XML rep-
resentation. We observe that entire files are duplicated in the Ant and Maven systems

with the highest clone coverage. In these cases, development teams duplicate existing

SECTION 5.6: UNDERSTANDING CLONED INFORMATION 113

build specifications to rapidly develop new subsystems. However, developers have re-
ferred to maintaining such build systems fraught with clones as a “nightmare” (cf. Sec-
tion 5.3). Defect fixes or updates to dependency lists, tool configuration, and packaging
details must be carefully replicated among the clones to ensure that builds continue to

assemble deliverables correctly.

On the other hand, we have observed that in addition to abstraction mechanisms
provided by Ant and Maven (e.g., the include and import tasks), XML-based build sys-
tems avoid cloning by leveraging the underlying XML representation. In prior work, we
note that the JBoss build system leverages XML entity expansion in Ant to implement
a framework-driven build system referred to as “buildmagic” [67]. Indeed, Listing 5.1
shows how one can use XML entity expansion to avoid duplicating shared build code
in subsystem build specifications. We also find that the Ant test suite includes regres-
sion tests to ensure that entity expansion continues to work, suggesting that it is not a

workaround, but instead is intentionally supported functionality.

Many C/C++ build logic clones can be avoided by duplicating templates auto-
matically when building. Many of the studied C/C++ systems provide development
APIs. As such, they ship examples of how to use various API functionality with their
deliverables. These examples include accompanying build specifications. However,
in the C/C++ systems with the highest clone coverage, we find that many of these ex-
ample build specifications are file clones of each other, which poses maintainability

problems.

One of the studied systems with a low clone coverage avoids these clones by dupli-

cating and specializing template build specification automatically using shell scripts

114 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

during the construction step. Using this approach, cloning shared build code in exam-

ple build specifications can be avoided.

XML entity expansion can be used to avoid cloning shared build code in Java build
systems. Cloning of build logic shipped with API usage examples can be avoided by
automatically deriving specifications at build-time.

5.7 Threats to Validity

We now discuss the threats to the validity of our analysis.

5.7.1 Construct Validity

Our clone detection tool is configured to only detect Type I (exact) clones. Since we do
not detect Type II, III, or IV clones, our cloning results should be interpreted as lower

bounds rather than exact values.

Our code detection tool is not to confined to the boundaries of coding constructs
within build specifications. As such, not all clones that are detected by our approach
are refactorable. To mitigate the noise of non-refactorable clones, we set the minimum
clone length to be 5, 10, 15, and 20 lines. Nonetheless, an analysis of build logic clones
that is confined to the boundaries of coding constructs would make for interesting fu-

ture work.

SECTION 5.7: THREATS TO VALIDITY 115

5.7.2 Internal Validity

We assume that large values of cloning metrics suggest maintenance problems illus-
trated in our Munich Re example. Yet, recent research suggests that despite the in-
herent maintainability issues, cloning may not always be harmful [51, 92]. Nonethe-
less, we find that developers complained about maintainability problems in the heavily
cloned build system at Munich Re, suggesting that excessive cloning makes build sys-
tem maintenance more difficult. Furthermore, prior work shows that unintentional

inconsistent changes do occur in large industrial systems [48].

Similar to Chapter 4, we conservatively detect build specifications using filename
conventions. Although our classification tool is lightweight enough to iterate over all
files in our large corpus, we may miss files that are build-related that do not conform

to filename conventions.

5.7.3 External Validity

Although our benchmark covers a large corpus of 3,872 systems, a limited number of
open source organizations are covered. As such, our results may not generalize to other
open source or even proprietary build systems. However, since any build system needs
to implement the steps outlined in Chapter 2, we believe that our benchmark is a sound
starting point. We plan to extend our benchmark to include proprietary systems in

future work.

There are hundreds of build technologies and of these, we only include four in our

benchmark. Our findings are entirely bound to the studied technologies. On the other

116 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

hand, Chapter 4 shows that the technologies that we have selected are quite popu-
lar in open source organizations. Furthermore, Ant shares many similarities with MS-
Build. Specifications for both technologies are expressed using abstract targets and
tasks specified in an XML format. Hence, we suspect that the characteristics of cloning
we observed in Ant will also appear in MSBuild systems. We plan to inspect this suspi-

cion by expanding the scope of our benchmark to include MSBuild in future work.

5.8 Chapter Summary

Build systems play a crucial role in software development. They tend to grow in terms
of complexity as a software project ages [4, 67]. When build system complexity grows
unwieldy, build maintenance becomes difficult, and development teams refactor build
systems to restore order.

In order to determine if and where build refactoring should be applied, CQSE per-
forms quality assessments of build systems. In this chapter, we discuss how a bench-
mark of build logic clones can empirically ground metrics used in these assessments.

Specifically, we focus on the following central questions:

Central Question: How much cloning is typical of build systems? How can cloning
be avoided?

Through analysis of the benchmark of 3,872 open source systems, we make the fol-

lowing observations:

* 50% clone coverage rates, which have only been recorded in rare cases in other

software artifacts [31], frequently occur in Java build systems.

* The more recent CMake and Maven build technologies tend to be more prone to

SECTION 5.8: CHAPTER SUMMARY 117

cloning, especially of configuration details like API dependencies, than the older

Autotools and Ant technologies respectively.

» While build logic cloning can be difficult to avoid, it is not a necessity, i.e., we

have observed build systems with little cloning using each studied technology.

» Templating and inclusion mechanisms beyond those provided by build tech-
nologies are employed to reduce build logic cloning, suggesting that the mecha-

nisms provided by build technologies are insufficient.

5.8.1 Refactoring to Reduce Cloning at Munich Re

The benchmark-derived thresholds confirm that the clone-based build system design
at Munich Re is unusual. Munich Re has decided to restructure the build system. To fa-
cilitate this, we are creating reusable build logic components that can be shared among
build specifications (without cloning).

The analysis we performed in this chapter helped us in designing the solution. First,
to work around the limitations of the MSBuild abstraction mechanisms, we adopt a
practice that we observed in C/C++ build systems, where common build logic is stored
in a template that is copied and specialized automatically during an initial step in the
build process. Second, similar to Maven build systems, our solution divides the core
build logic that drives the different build steps into individual plugins that enable au-
tomated testing, packaging, and deployment.

However, the new build solution also requires a more structured change process.
Since changes to shared build components affect all build specifications that rely on

them, they must be more carefully maintained than the prior clone-based solution was.

118 CHAPTER 5: CLONING IN BUILD SPECIFICATIONS

To this end, Munich Re has created a dedicated test bed in which build component
changes can be evaluated before they are deployed to production builds. Furthermore,
we are creating a dashboard that displays nightly clone detection results as an early-

warning system against proliferation of cloning in the new build system.

5.8.2 Concluding Remarks

In Chapter 4 and this one, we have explored the overhead introduced by the mainte-
nance of the build system from a high-level in a large sample of systems. To gain a
clearer perspective of the drivers of build co-change, in the next chapter, we analyze a

sample of four large software systems in detail.

CHAPTER 6

Drivers of Build Co-Change

CENTRAL QUESTION

Can build changes be fully explained
using characteristics of co-changed
source and test code files?

An earlier version of the work in this chap-
ter appears in Proceedings of the 30th Inter-
national Conference on Software Maintenance
and Evolution (ICSME 2014) [68]

6.1 Introduction

The complex build systems of large software systems require regular maintenance in
order to continue functioning correctly. Our prior work shows that, from release to re-
lease, source code and build system tend to co-evolve [4, 67], i.e., changes to the source
code can induce changes in the build system, and vice versa. Indeed, up to 27% of

source code changes require accompanying changes to the build system [70].

119

120 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

It is difficult for developers to identify the code changes that require accompany-
ing build system changes. Indeed, Seo et al. show that 30%-37% of builds triggered by
Google developers on their local copies of the source code are broken, with neglected

build maintenance being the most commonly detected root cause [95].

Iflocal build breakage is not fixed before changes are committed to upstream repos-
itories, then their team as a whole will be negatively impacted. For example, Kwan et
al. find that 31% (60/191) of the studied IBM team builds were broken [59]. Furthermore,
Hassan and Zhang find that 15% (209/1,429) of the studied IBM certification builds (i.e.,
builds that the development team believed were ready for testing) were broken [42].
Kerzazi et al. estimate that between 893-2,133 man-hours are wasted due to a build
breakage rate 0of19% in a large industrial system [52]. These broken team builds prevent
quality assurance teams from reproducing and testing actively developed versions of

a system in a timely fashion, slowing development progress and the release process.

In order to avoid these costly build breakages, we set out study the code changes
that require accompanying changes to the build system. Specifically, we explore the

following central question:

Central Question: Can build changes be fully explained using characteristics of co-
changed source and test code files?

To address this question, we construct random forest classifiers using language-
agnostic and language-aware characteristics of source and test code changes to un-
derstand when build changes are required. Through an empirical study of the Mozilla
system (primarily implemented using C++), and three Java systems, we address the fol-

lowing three research questions:

SECTION 6.1: INTRODUCTION 121

(RQ1) How often are build changes accompanied by source/test code changes?
Motivation: If the majority of work items containing build changes do not con-
tain accompanying source or test code changes, then code change character-
istics would make poor indicators of build change. Hence, before building our

classifiers, we want to know how frequently build and source/test code co-change.

Results: Although a minority of the source/test code changes require accom-
panying build changes (4%-26%), the majority of build changes co-occur with

source/test code changes (53%-88%).

(RQ2) Can weaccurately explain when build co-changes are necessary using code change
characteristics?
Motivation: Prior work has shown that classifiers can be built to accurately ex-
plain phenomena in software engineering [42, 46, 54, 93, 96]. We conjecture that
such classifiers can be built to accurately explain when a build co-change is nec-

essary using code change characteristics.

Results: Yes, our classifiers can explain the source and test code changes that
require accompanying build changes with an AUC of 0.60-0.88. Our Java classi-
fiers are less accurate than the C++ classifiers (AUC of 0.60-0.78 vs. 0.88) because

75% (+10%) of Java build changes are not related to changes to system structure.

(RQ3) What are the most influential code change characteristics for explaining build
co-changes?
Motivation: Knowing which code change characteristics are influential indica-
tors of build change could help practitioners to identify code changes that re-

quire accompanying build changes.

122 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

Results: Our Mozilla (C++) classifiers derive much of their explanatory power
from indicators of structural changes like adding new source files. On the other
hand, since Java build co-changes rarely coincide with these structural changes,
our Java classifiers derive most of their explanatory power from the historical co-
change tendencies of the modified files and deeper code change characteristics

like the addition or removal of import statements that reference non-core APIs.

Chapter organization. The remainder of the chapter is organized as follows. Sec-
tion 6.2 describes our empirical study design, while Sections 6.3 and 6.4 present the
results. Section 6.5 discloses the threats to the validity of our study. Finally, Section 6.6

draws conclusions.

6.2 Empirical Study Design

In this section, we describe the studied systems, and present our data extraction and

analysis approaches.

6.2.1 Studied Systems

In order to address our research questions, we study one large system primarily imple-
mented using C++ and three systems primarily implemented using Java. The studied
systems are of different sizes and domains in order to combat potential bias in our
conclusions. More importantly, the studied systems record co-change data at the work
item level (see below), which is a critical precondition for our co-change analysis. The
scarcity of carefully recorded work item data in practice prevents us from analyzing a

larger sample of systems.

Table 6.1: [Empirical Study 3] Characteristics of the studied projects.

Project Mozilla Eclipse-core Lucene Jazz
Domain Internet Suite IDE Search Indexing Library IDE
Timeframe 1998 — 2010 2001- 2010 2010 - 2013 2007 — 2008
Project Files 123,175 5,490 18,811 67,357
Source Files (#, % of total) 43,952 35% 2,391 43% 8,879 47% 45,275 67%
Test Files (#, % of total) 30,835 25% 1,211 22% 4,898 26% 14,738 22%
Build Files (#, % of total) 10,709 9% 477 9% 421 2% 5,967 9%
Other Files (#, % of total) 37,679 31% 1,411 26% 4,613 25% 1,377 2%
Transactions 210,400 6,391 9,856 36,557
Work Items 55,199 2,452 3,280 11,611
Transactions with Work Items 79,242 38% 4,092 64% 6,046 61% 22,485 62%
Source Work Items (#, % work items) 45,815 83% 2,130 87% 2,553 78% 9,869 85%
Test Work Items (#, % work items) 9,383 17% 765 31% 2,084 64% 2,786 24%
Build Work Items (#, % work items) 14,477 26% 427 17% 443 14% 608 5%
Other Work Items (#, % work items) 5,275 10% 165 7% 254 8% 973 8%
Source-Build Co-Change Work Items (#, % source, % build) 12,450 27%, 86% 350 16%,82% | 194 6%, 44% 437 4%, 72%
Test-Build Co-Change Work Items (#, % test, % build) 4,198 45%,29% || 154 20%,36% | 183 9%, 41% 219 8%, 36%
Source- or Test-Build Co-Change Work Items (#, % source and test) | 12,698 26% 382 17% 234 7% 468 4%
Build without Source or Test Work Items (#, % build) 1,779 12% 82 19% 209 47% 140 23%
Data Extraction (DE) Data Analysis (DA)
[Repeated 10 times for cross-validation]
(DE1) T - (DA 1)
Patch Extraction ransactions (DE3) (DE 4) — Corpus Cgr:asf:;gz;n Random (DA2)
(DE 2) Transaction [Work Item li—— Forest Classifier Results
File Type @ Summarizer Aggregation Testing Classifier Evaluation
Classification Corpus

Figure 6.1: [Empirical Study 3] An overview of our data extraction and analysis approaches.

NOISH(] AANLS TVOIHIdINY :Z'9 NOILDAS

ecl

124 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

Table 6.1 provides an overview of the studied systems. Mozilla is a suite of internet
tools including the Firefox web browser. Eclipse is an Integrated Development Envi-
ronment (IDE), of which we studied the core subsystem. Lucene is a library offering
common search indexing functionality. IBM Jazz™!' is a proprietary next-generation

IDE.

6.2.2 Data Extraction

Software projects evolve through continual change in the source code, test code, build
system, and other artifacts. Changes to a file are often collected in file patches that
show the differences between subsequent revisions of a single file. These file patches
are typically logged in a VCS. In addition to logging file patches, modern VCSs track
transactions (a.k.a., atomic commits), i.e., collections of file patches that authors com-
mit together.

A work item is a development task such as fixing a bug, adding a new feature, or
restructuring an existing feature. Several transactions may be required to complete a
work item, since developers from different teams may need to collaborate. Work items
are often logged in an Issue Tracking System (ITS) like Bugzilla or IBM Jazz and branded
with a unique identifier. This ID helps to identify the transactions that are associated
with a work item.

We extract work item data from each of the studied systems in order to address our
research questions. Figure 6.1 provides an overview of our approach, for which the data
extraction component is broken down into four steps. We briefly describe each step of

our data extraction approach below.

"http://www.jazz.net. IBM and Jazz are trademarks of IBM Corporation in the US, other coun-
tries, or both.

http://www.jazz.net

SECTION 6.2: EMPIRICAL STUDY DESIGN 125

(DE 1) Patch Extraction

After gathering the VCS archives for each studied project, we extract all transactions as
well as authorship, timestamps, and commit message metadata. Although the studied
systems use different VCSs (i.e., Git and Mercurial), we wrote scripts to extract transac-

tions and metadata in a common format.

(DE 2) File Type Classification

In order to assess whether a transaction (and hence, a work item) impacts the build
system, we use the file type classification process from our prior work [70], which tags
each file in a project history as either a source, test, or build file. Build system files
include helper scripts, as well as construction and configuration layer specifications
(such as make or ant files). Source code files implement software logic. Test code files

contain automated tests that check the software for regressions.

The file type classification process was semi-automatic. Table 6.1 lists the num-
ber of files classified under each category for the studied systems. Most files could
be classified using filename conventions, e.g., file extensions. However, many exten-
sions were ambiguous, e.g., . xm1. After classifying unambiguous file types, the remain-
ing files were manually classified. For example, of the 123,175 Mozilla files, approxi-
mately 20,000 files remained unclassified after all known filename conventions were
exhausted. Through manual inspection, we found project-specific extension types that
could be classified automatically, further reducing the number of unclassified files to

roughly 5,000. The remaining 5,000 or so files were manually classified.

126 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

Table 6.2: [Empirical Study 3] A taxonomy of the studied language-agnostic code
change characteristics. Each is measured once for source code and once for test code.

Attribute Type Definition Rationale
Name
File added Boolean | True if a given work item adds | Adding new source files changes the filesystem layout of
new source or test files. the codebase, which may require accompanying build
changes to include the new file.
File deleted Boolean | True if a given work item | Deleting old source files changes the filesystem layout

deletes old source or test files. | of the codebase, which may require accompanying build
changes to disregard the dead file.

File renamed | Boolean | True if a given work item re- | Renaming a source file alters the filesystem layout of the
names source or test files. codebase, invalidating prior dependencies while creat-
ing new ones, which may require accompanying build
changes.

File modified | Boolean | True ifa given workitem modi- | With the exception of the special language-specific cases
fies existing source or test files. | (see below), modification of source code should rarelyre-
quire build changes, since modifications do not alter the
structure of a system.

Prior build | Numeric | We compute the proportions | Historical co-change tendencies may provide insight
co-changes* of prior work items that were | into future co-change trends.

build co-changing for each of
the source and test files in a
given work item. We select the
maximum proportion of the
work item’s changed files.
Number of | Numeric | The number of source and test | Changes that impact more files may be more likely to re-
files* files that were involved in a | quire accompanying build changes.

given work item.

* Could not be calculated for Jazz due to privacy concerns.

(DE 3) Transaction summarizer

Next, we produce transaction summaries for all transactions that contain source, test,
and/or build file changes, which consist of: (1) measured characteristics that describe
the code change, and (2) a boolean value noting whether or not at least one build file
was changed. A summary of the measured code change characteristics and the ratio-

nale for their use is given in Tables 6.2 and 6.3.

(DE 4) Work item aggregation

Our prior work has shown that transactions are too fine-grained to accurately depict

development tasks [70]. It may take several transactions to resolve a work item. In

SECTION 6.2: EMPIRICAL STUDY DESIGN

127

Table 6.3: [Empirical Study 3] A taxonomy of the studied language-aware code change
characteristics. Each is measured once for source code and once for test code.

Attribute Name | Type Definition Rationale
Changed depen- | Boolean | True if a given work item adds or | Dependency changes may need
dencies removes dependencies on other | to propagate to the build system.
code through #include prepro-
cessor directives for C++ code or
import statements in Java code.
Added/removed | Boolean | True if the dependency being: (1) | Adding or removing dependen-
dependencies added does not appear in any | cies indicates that a new depen-
other source or test file, or (2) re- | dency may have been introduced
moved has been completely re- | or an old one relaxed. Such
moved from all source and test | changes mayneed to propagate to
files. the build system.
Added/removed | Boolean | True if the conditions listed for | Adding or removing dependen-
non-core de- Added/removed dependencies | cieson corelanguage APIs will not
pendencies are satisfied by a dependency that | have an impact on the build pro-
is not part of the core language | cess, and hence may introduce
APL noise in the Added/removed de-
pendencies metric.
Changed con- | Boolean | Trueifagiven workitem addsnew | Conditional compilation is often
ditional com- or removes old #if[n][def] prepro- | used to control platform- or
pilation (C++ cessor directives. feature-specific functionality in
only) the source or test code. The con-
ditions for these blocks of code
often depend on configuration
layer settings.

such cases, build changes often appear in different transactions than the correspond-
ing source or test code changes. To avoid missing cases of co-change, we group trans-
actions that address the same work item together by examining the transaction commit

messages for work item IDs.

Bias Assessment

As shown in Table 6.1, the aggregation to work items is lossy, since it relies heavily on
developer behaviour to link transactions to work items. Overall, 38%-64% of the trans-

actions can be connected to work items. The lack of well-linked work item data is a

128 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

known problem [15, 88]. Hence, we first evaluate whether the lossy nature of work item
aggregation introduces bias in our dataset. We are primarily concerned with two types

of bias:

1. Time periods in project history may be missing due to the lossy nature of work

item aggregation, i.e., we only have work item data for certain time periods.

2. Work item linkage may be a property of project experience [15], i.e., experienced
developers might be more likely to provide the links to work items in their com-

mits.

To study the extent of these biases, we compare the number of transactions per
month to the number of work items per month and study how these measures evolve
over time. We also compare developer contributions in terms of the number of trans-
actions and work items. Figure 6.2 visualizes these distributions using beanplots [50].
Beanplots are boxplots in which the vertical curves summarize the distributions of dif-
ferent datasets. The horizontal black lines indicate the median values. Due to differ-
ences in scale, we separate the Java beanplots (Figure 6.2b) from the Mozilla one (Fig-
ure 6.2c).

Figures 6.2a and 6.2b show that Eclipse-core, Lucene, and Jazz share highly sym-
metrical beanplots, indicating that transactions and work items share similar temporal
and developer contribution characteristics. The median lines in Jazz and Lucene are
almost identical, while the median of the work items is higher than that of the trans-
actions in the Eclipse-core project. The slight difference in medians indicates that the
work item granularity introduces minimal skew with respect to the transaction data.

The asymmetrical nature of the Mozilla plot in Figure 6.2a shows that there is skew

introduced, i.e., very few transactions could be linked to work items in the initial Mozilla

SECTION 6.2: EMPIRICAL STUDY DESIGN 129

100 120
I I

80

Time period (Monthly)
60
|

40

Ites

Mozilla Eclipse Lucene Jazz

(a) Monthly changes

100 150
1 1
400 600
\ \

Author ID
Author ID

50
1
200
\

o I

T T T Mozilla
Eclipse Lucene Jazz

(b) Changes made by each developer (c) Changes made by
each developer

Figure 6.2: [Empirical Study 3] Comparison of the time and developer distribution of
transactions (black) and work items (grey).

130 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

development months. Once the practice of recording the work item ID in the commit
message was more firmly established, the symmetry of the beanplot increases, indi-
cating that the temporal characteristics between the two datasets are similar from that
point on. To resolve this, we removed the initial 12 development months of Mozilla
prior to performing our case study. Figure 6.2c shows that this filtering also makes the
distribution of Mozilla developer contributions less skewed, i.e., the bias in our data

has been controlled.

6.2.3 Data Analysis

Figure 6.1 provides an overview of our data analysis approach. The work items are split
into training and testing corpora. Classifiers are constructed using the training corpus,
and their performance is evaluated on work items in the testing corpus. We briefly

describe each step in our analysis below.

(DA 1) Classifier Construction

We use the random forest technique to construct classifiers (one for each studied sys-
tem) that explain when build changes are necessary. The random forest technique con-
structs a large number of decision trees at training time [17]. Each node in a decision
tree is split using a random subset of all of the attributes. Performing this random split
ensures that all of the trees have a low correlation between them [17]. Since each tree
in the forest may report a different outcome, the final class of a work item is decided by
aggregating the votes from all trees and deciding whether the final score is higher than

a chosen threshold.

SECTION 6.2: EMPIRICAL STUDY DESIGN 131

(DA 2) Classifier Evaluation

To evaluate the performance of a classifier, we use it to classify work items in a testing
corpus and compare its deduction to the known result. To obtain the testing corpus
and evaluate the performance of our classifiers, we use tenfold cross-validation. Cross-
validation splits the data into ten equal parts, using nine parts for the training corpus,
setting aside one for the testing corpus. The process is repeated ten times, using a dif-
ferent part for the testing corpus each time.

Table 6.4 shows the confusion matrix constructed based on the cross-validation
classification results. The performance of the decision tree is measured in terms of

recall, precision, F-measure, and AUC. We describe each metric below.

Recall: Of all known build co-changing work items, how many were classified as

a

such, i.e., prn

* Precision: Of the work items that are classified as build co-changing, how many

a
a+tc’

actually did co-change, i.e.,

precision-recall
precision+recall *

e F-measure: The harmonic mean of precision and recall, i.e., 2 -

e Area Under the Curve (AUC): The area under the curve that plots true posi-
tive rate (.1;) against the false positive rate (_;), for various values of the cho-
sen threshold used to determine whether a work item is classified as build co-
changing. Values of AUC range between 0 (worst classifier performance) and 1

(best classifier performance).

We first construct classifiers using only the language-agnostic characteristics from

Table 6.2. We then add language-aware characteristics of Table 6.3 to the classifiers.

132 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

Table 6.4: [Empirical Study 3] An example confusion matrix.

Classified As

Actual Category | Change No Change
Change a b
No Change Cc d

Handling imbalanced categories

Table 6.1 shows that build co-changing work items are the minority category (4%-26%).
Classifiers tend to favour the majority category, since it offers more explanatory power,
i.e., classification of “no build change needed” will likely be more accurate than clas-
sification of “build change needed.” To combat the bias of imbalanced categories, we
re-balance the training corpus to improve minority category performance [12, 46]. Re-

balancing is not applied to the testing corpus.

We chose to re-balance the data using a re-sampling technique, which removes
samples from the majority category (under-sampling) and repeats samples in the mi-
nority category (over-sampling). We chose to re-sample rather than apply other re-
balancing techniques like re-weighing (i.e., assigning more weight to correctly classi-
fied minority items) because we found that re-sampling yielded slightly better results,

which is consistent with findings reported in the literature [34, 46].

Re-sampling is performed with a given bias 3 towards equally distributed cate-
gories (5 = 1). No re-sampling is performed when 5 = 0. Values between 0 < 5 <
1 vary between unmodified categories and equally distributed categories. We report

findings for different values of 3.

SECTION 6.3: MoziLLA CASE STUDY RESULTS (C++) 133

6.3 Mozilla Case Study Results (C++)

In this section, we present the results of our Mozilla case study with respect to our three
research questions. For each research question, we present our approach for address-

ing it followed by the results that we observe.

(RQ1) How often are build changes accompanied by source/test code

changes?

Approach

We measure the rate of build and source/test co-change as a percentage of all build
changes. Specifically, we report the percentage of build-changing work items that also

contain source or test code changes.

Results

Most Mozilla build changes co-occur with source or test code. While Table 6.1 shows
that Mozilla build co-change is the minority category with respect to all source and test
changes (27%), source/test co-change is the majority category with respect to all build
changes.

Indeed, 86% of Mozilla build-changing work items also change source code, and
29% also change test code. Altogether, 88% of Mozilla build changes co-occur with

source/test code changes.

Table 6.5: [Empirical Study 3] The median of the recall, precision, F-measure, and AUC values of the ten classifiers
constructed at re-sampling bias () levels of 0, optimal, and 1. The first row shows the raw values while the second
row shows the improvement of adding language-specific characteristics to language-agnostic classifiers.

Mozilla Eclipse-core Lucene Jazz

Bias (5) | 0.0 0.40 1.0 0.0 0.59 1.0 0.0 0.73 1.0 0.0 0.32 1.0
Recall 0.57 0.63 0.67 0.30 0.39 0.43 0.14 0.31 0.39 0.24 0.31 0.40
+0.05 +0.00 -0.02 +0.01 +0.00 +0.01 | +0.03 -0.05 +0.00 +0.04 +0.08~ +0.15-

Precision 0.74 0.63 0.53 0.50 0.39 0.34 0.38 0.31 0.33 0.36 0.31 0.24
+0.06-- +0.10--- +0.15~- | +0.09- +0.07-- +0.09~ | +0.09 +0.11-~ +0.14--- | -0.12 -0.06 -0.13
F-meastre 0.64 0.63 0.60 0.37 0.39 0.38 0.20 0.31 0.36 0.29 0.31 0.30
+0.05-= +0.06-=- +0.10-~ || +0.02 +0.02 +0.05- | +0.04 +0.05- +0.10-~ | +0.1 +0.05 +0.0

AUC 0.86 0.88 0.88 0.68 0.69 0.68 0.75 0.78 0.79 0.61 0.60 0.59
+0.03--- +0.04--~ +0.05-+ || +0.02 +0.03- +0.04- | +0.09-~ +0.07-- +0.10-~ | +0.05-~ +0.03- +0.04~

Statistical significance of the improvement achieved through language-specific characteristics (One-tailed Mann-Whitney U-test):
=p < 0.05; =~ p < 0.01; = p < 0.001

Vel

IONVHD)-0D) A1INg 40 SYIATM(] :9 YALdAVH))

SECTION 6.3: MoziLLA CASE STUDY RESULTS (C++) 135

Co-occurrence alone does not indicate that there is a causal relationship between
build changes and source/test changes. However, the inflated rates of co-occurrence
that we observe suggest that there is likely information in these co-changes that we
can leverage to better understand the types of source and test changes that require

accompanying build changes.

While build co-changing work items are the minority category with respect to all
source and test changes, sourceltest co-changing work items are the vast majority of
all build changes in Mozilla. This suggests that source and test change characteris-
tics may help to explain when build changes are necessary.

(RQ2) Can we accurately explain when build co-changes are neces-

sary using code change characteristics?

Approach

Table 6.5 shows performance values with g = 0, 1, 6, where 6 is the value where recall
and precision values are equal. We refer to § as the optimal /3 value, since we value
precision (are build co-change classifications reliable?) and recall (are we finding all of

the build co-changes?) equally.

Results

Our Mozilla classifiers vastly outperform random classifiers. The source- or test-
build co-change work items row of Table 6.1 shows that arandom classifier would achieve
0.26 precision at best. Table 6.5 shows that our Mozilla classifiers more than double the
precision of random classifiers, achieving a recall and precision of 0.63 (8 =). More-

over, since the AUC metric is designed such that a random classifier would achieve an

136 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

AUC of 0.5, Table 6.5 shows that our Mozilla classifier outperforms a random classifier
by 0.38, achieving an AUC of 0.88.

Language-aware characteristics improve classifier performance. Table 6.5 shows
that when language-aware characteristics are added to our classifiers, the overall per-
formance improves. Indeed, despite slight decreases in recall, the precision, F-measure,
and AUC values improve. To test whether the observed improvement is statistically
significant, we performed one-tailed Mann-Whitney U-tests (o = 0.05). Test results
indicate that the improvements in precision, F-measure, and AUC are statistically sig-

nificant.

Using language-aware metrics, we can improve Mozilla classifier performance,
achieving an AUC of 0.88.

(RQ3) What are the most influential code change characteristics for

explaining build co-changes?
Approach

To study the most influential code change characteristics in our random forest classi-
fiers, we compute Breiman’s variable importance score [17] for each studied character-
istic. The larger the score, the greater the importance of the code change characteristic.

Figure 6.3 shows the variable importance scores for the studied code change char-
acteristic in each of the ten folds using boxplots. Since analysis of variable importance
scores at § = 0 and S = 1 show similar trends, Figure 6.3 shows only the variable

importance scores for the classifier trained with 5 = 6 to reduce clutter.

Mozilla Eclipse—core Lucene Jazz
g
o
(] .
0 0.10 -
O
(8]
: = i $
5 =
=3 e
£ 0.054 - $ $ E $
£ - T S|
> — —é_._ e == ——
0.00 — —_— —— A
I I
éééééééé 966€>€>ééb¢> 6béé€>6ééé ééééééébe
& 6 c,\ \ (\ A e O 9 \ <\ 2 e 2 c, \ (\ / e '\ \ \ (\
50\ 'g’ (6 (g"o (QQ'QQ’ éc‘0 (0‘0 »;8 G(e. ,‘6 « Gexéo%\)@\o 60\)\ ’g’ 0(6 (6 « 66{26’; o (60 60\)\ ’\6?;)&0,;6 «6 ‘08 Ge\éeQ
W o SRS A o
K CCJP(\%‘\O\ o‘\/c?"\o 0‘\/2"@ $o<‘/

Figure 6.3: [Empirical Study 3] Variable importance scores for the studied code change characteristics (3 = 6).

(++7) SIINSTY AANLS ASV") VIIIZOJA :£'9 NOLLOHES

LEl

138 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

Results

Source and test changes that modify the structure of a system and prior build co-
change are important explanatory factors of build changes in Mozilla. Figure 6.3
shows that activities that alter the structure of a system like adding/deleting source
code and adding/removing non-core libraries through #include statements are among
the most important variables used by the Mozilla classifiers. Furthermore, prior build
co-change is also an important indicator of future build co-changes. While renaming
operations also modify the structure of a system, their low importance scores are likely

due to the relative infrequency of rename operations in the Mozilla VCS history.

Our Mozilla classifiers derive much of their explanatory power from frequently oc-
curring structural changes like adding source files, as well as historical co-change
tendencies.

Discussion

While our classifiers perform well for Mozilla in general, we wondered whether the
nature of the programming languages used in a subsystem (i.e., top-level directory)
will have an impact on classifier performance. While Mozilla primarily consists of C++
code, it also contains subsystems implemented using several other programming lan-
guages (e.g., Javascript and PHP). To evaluate our conjecture, we construct and analyze

directory-specific Mozilla classifiers.

Approach

In order to study classifier performance on a subsystem basis, we mark each work item

with a listing of directories that are impacted by source and test changes within the

SECTION 6.3: MoziLLA CASE STUDY RESULTS (C++) 139

work item. We then build classifiers for each directory separately. We ignore directories
with fewer than 50 work items because we want our tenfold cross validation approach

to test on at least five work items (10% of 50 work items).

Results

As we suspected, Mozilla classifier performance is the weakest in subsystems pri-
marily implemented using web technologies. We find that most Mozilla subsystems
have classifier performance that exceeds 0.7 AUC. However, the Mozilla webtools sub-
system has subpar classifier performance when compared to the other subsystems
(0.31-0.45 AUC). We observe similar weak classifier performance in the test subdirecto-
ries of the js subsystem. The code in these subsystems is written using web technolo-
gies, such as Javascript for testing the Mozilla Javascript engine, and PHP and Perl CGI
for implementing tools like Bugzilla. Web technologies differ in terms of build tool-
ing from the C++ code for which our classifiers perform well. While C++ code must be
compiled and linked by the build system, the web code must only be tested, packaged,
and deployed. We constructed special classifiers that detect the PHP require keyword
as a dependency change, but it did not improve performance. The changes that induce
build changes for web technologies are less code-related, and are thus more difficult

to explain.

While coarse-grained file modifications and dependency information explain build
changes in C++ subsystems reasonably well, they do not explain build changes in
subsystems with web application code.

140 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

6.4 Java Case Study Results

Our findings in Section 6.3 show that since Mozilla build changes are frequently accom-
panied by source and test changes (RQ1), we can derive information from the source
and test changes to accurately explain when build changes are necessary (RQ2). This
confirms common wisdom among C/C++ developers. However, we find that the pro-
gramming languages used in a subsystem seem to influence the performance of our
classifiers, i.e., it is harder to explain build changes in the subsystems that are imple-
mented using web technologies than those implemented using C++. Furthermore, our
prior work has shown that there are differences in the evolution of Java and C build sys-
tems, likely due to the built-in dependency management performed by the Java com-
piler [67].

To further investigate whether those environment changes have an impact on our
co-change classifiers, we replicate our Mozilla case study on three Java systems. In this
section, we present the results of our Java case study with respect to our three research
questions. Since we use the same approaches that were presented in Section 6.3, we

only discuss the results that we observe with respect to each research question below.

(RQ1) How often are build changes accompanied by source/test code

changes?

Similar to Mozilla, Java build systems frequently co-change with source or test
code. Table 6.1 shows that between 44% (Lucene) and 82% (Eclipse-core) of Java work
items that contain build changes also change source code. Furthermore, between 36%

(Jazz, Eclipse-core) and 41% (Lucene) of work items that change the build also change

SECTION 6.4: Java CASE STUDY RESULTS 141

test code. Altogether, between 53% (Lucene) and 81% (Eclipse-core) of Java build changes

co-occur with source or test changes.

Similar to C++ build systems, most Java build changes are accompanied by source
or test changes, suggesting that Java source and test change characteristics may also
help to explain when Java build changes are necessary.

(RQ2) Can we accurately explain when build co-changes are neces-

sary using code change characteristics?

Similar to Mozilla, our Java classifiers outperform random classifiers. Table 6.5
shows that Eclipse-core, Lucene, and Jazz classifiers achieve recall and precision of
0.31-0.39 (8 = #) and AUC values of 0.60-0.78. Our classifiers for Java systems out-
perform random classifiers by a minimum factor of two, since random classifiers are
theoretically constrained to a precision of achieve between 0.04 (Jazz) and 0.16 (Eclipse-
core).

We achieve the lowest performance in our Jazz classifiers. Unfortunately, the prior
build co-changes and number of files characteristics could not be calculated for Jazz
due to limitations of the provided dataset. We suspect that adding these metrics would
bring the Jazz classifier performance up to match the performance of the other Java
case studies.

Similar to Mozilla, language-aware characteristics improve classifier performance,
especially in terms of precision and AUC. Table 6.5 shows that the AUC of our Java clas-
sifiers improves by 0.03-0.07 when language-aware characteristics are added (5 =).
Mann-Whitney U tests indicate that these AUC improvements are significant.

On the other hand, our Java classifiers under-perform with respect to our Mozilla

142 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

Table 6.6: [Empirical Study 3] Categories of identified Eclipse-core build changes with
a 95% confidence level and a confidence interval of 3 10%.

Category Task Total # % | # correctly
classified

System structure Refactorings 19 | 25% 8
Build maintenance Build tool configuration 15 | 20% 0
Build defects 6| 8% 0

Add platform support 12 | 16% 2

Release engineering | Packaging fixes 12 | 16% 3
Library versioning 8| 11% 0

Test maintenance Test infrastructure 3| 4% 0

classifier. The difference in performance is substantial — a reduction of roughly 33%
in most of the performance metrics. We hypothesize that such a consistent difference
in the performance of Mozilla and the Java classifiers is related to fundamental dif-
ferences in the C++ and Java compile and link tools. For example, when using a C++
compiler, developers often rely on external build tools like make to manage dependen-
cies amongst source files, while Java compilers automatically resolve these dependen-
cies [29]. Since Java compilers are more intelligent in this regard, build changes are

rarely required to track file-level dependencies.

To evaluate our hypothesis, we selected a representative sample of work items for
manual analysis, since the full set of work items is too large to study entirely. Similar

to Chapter 5, we obtain proportion estimates that are within 10% bounds of the actual

22p(1—p)
0.12

proportion with a 95% confidence level, we use a sample size of s = , where p

is the proportion that we want to estimate and z = 1.96. Since we did not know the

proportion in advance, we use p = 0.5. We further correct for the finite population of

S
s—1
1+ 382

build co-changing work items in Eclipse-core (i.e., 382, see Table 6.1) using ss =
to obtain a sample size of 77. Table 6.6 shows the percentage of randomly selected work

items that are associated with each change category.

SECTION 6.4: Java CASE STUDY RESULTS 143

The majority of Eclipse-core build changes are unrelated to the structure of the
system. Table 6.6 shows that release engineering tasks (e.g., expanding platform sup-
port) and build maintenance tasks (e.g., compiler flag settings) account for 43% + 10%
and 28% =+ 10% of build change respectively, a larger portion than structural changes
(25% £ 10%). Indeed, 75% + 10% of the studied build-changing work items were unre-
lated to the structure of the system (i.e., build maintenance, release engineering, and

test maintenance).

For example, we studied a defect (ID 226462) where Eclipse was crashing when op-
erating in a specific environment. The source code was fixed to prevent the crash, how-
ever the assigned developer discovered that a particular compiler warning could have
notified the team of the issue prior to release. The work item fix included the build
change to enable the compiler warning to prevent regression. Our classifiers fail to ex-
plain these sorts of build changes that do not directly link to source code changes, and
in general, most source code changes in the Java systems do not require accompany-
ing build changes (see Table 6.1). Hence, the factors that drive Java build change are
more elusive and difficult to isolate based on code change characteristics alone, which
might provide an additional difficulty for developers to realize when they need to make

a build system change.

Furthermore, alarge proportion of source/build co-change requires expertise from
different team roles. For example, the source code maintenance tasks require devel-
oper expertise, while release engineering and build maintenance tasks require release
engineering expertise. This finding complements those of Wolf et al., who find that

team communication is a powerful predictor of build outcome [108].

Nonetheless, our Java classifiers can explain the build changes that are relevant

144 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

to a developer. Indeed, Table 6.6 shows that 8 of the 19 work items that alter system
structure were identified by our Eclipse-core classifier. In contrast, our classifiers only
identified 5 of the 32 release engineering work items and no build or test maintenance
work items. Since our classifiers are based on code change characteristics, they cannot
assist release engineers, build maintainers, or quality assurance personnel. We plan to

expand the scope of our classifiers to assist these practitioners in future work.

Our Java classifiers outperform random classifiers, achieving an AUC of 0.60-0.78.
Yet, they under-perform with respect to the Mozilla classifier (0.88 AUC), since Java
build co-changes are mostly related to release engineering activities rather than be-
ing purely code-based.

(RQ3) What are the most influential code change characteristics for
explaining build co-changes?

Source and test changes that alter system structure are not good indicators of build
changes in studied Java systems. Figure 6.3 shows that source code modifications that
do not alter the structure of a system (i.e., Source/Test modified) are more important
indicators of build changes in the Java systems than those that do. This finding comple-
ments Table 6.6, indicating that structural changes are not very important indicators of
build change in Java systems. The relative infrequency of structural co-change for the
Java build systems is likely due to the Java compiler’s built-in support for dependency
resolution.

Since structural co-changes are of little value for our Java classifiers, these clas-
sifiers need to derive co-change indications from other code change characteris-
tics. Figure 6.3 shows that adding or removing non-core dependencies (heuristically

flagged by changes to Java import statements) helps to fill the void left by the missing

SECTION 6.5: THREATS TO VALIDITY 145

structural cues. Although omitted from Figure 6.3 due to space constraints, the less de-
tailed versions of the dependency characteristic (see Table 6.3) have lower variable im-
portance scores, suggesting that narrowing the scope of the dependency characteristic
to only detect non-core API changes improves its performance in our classifiers. Fur-
thermore, the prior build co-changes characteristic is the most important indicator of
build co-change in our Eclipse-core and Lucene classifiers. Prior build co-changes also
plays an important role in our Mozilla classifiers, indicating that historical co-change

tendencies are consistent indicators of future build co-changes.

Since Java build changes rarely coincide with changes to the structure of a system,
Java build changes are more effectively explained by historical co-change tendencies
and changes to non-core Java APl import statements.

6.5 Threats to Validity

We now discuss threats to the validity of our empirical study.

6.5.1 Construct Validity

We make an implicit assumption that the collected data is correct, i.e., in the data
used to build our classifiers, developers always commit related source, test, and build
changes under the same work item when necessary. On the other hand, our work item
data is robust enough to handle cases where developers did forget to change the build
in the same transaction as a corresponding code change.

Our bias analysis in Section 6.2 shows that work item aggregation skews the devel-
oper contributions in Mozilla. To combat this bias, we remove the skewed early devel-

opment period from the dataset prior to performing our case studies.

146 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

6.5.2 Internal Validity

We use code change characteristics to explain build changes because most of the build
changes coincide with code changes. We selected metrics that cover a wide range of
change characteristics that we felt would induce build changes. However, other metrics
that we have overlooked may also improve the performance of our classifiers.

Although source and build code may appear together in a co-change, there may
be no causal link between the changes. Indeed, as Grant et al. point out, many co-
changes are entirely coincidental [39]. While these coincidental co-changes introduce
noise into our analyses, our classifiers are still robust enough to provide a meaningful
amount of explanatory power, with AUC values ranging from 0.60-0.88.

Our file classification approach is subject to the authors’ opinion and may not be
100% accurate. The authors used their best judgement to classify files that could not
be automatically classified using filename conventions. The authors rely on their prior
experience with build systems to classify files that may have fit several categories [3, 4,
66, 67, 70]. We have also used this classification approach in our prior work [70] and

made the classified files available online? to aid in future research.

6.5.3 External Validity

Despite the difficulty of collecting linked work item data, we study four software sys-
tems. However, our sample size may limit the generalizability of our results. To combat
this limitation, we study systems of different sizes and domains. Moreover, we augment
our study of three open source systems with the proprietary IBM Jazz system.

We suspect that the differences in the C++ and Java build change classifiers are due

Zhttp://sailhome.cs.queensu.ca/replication/shane/PhD/

http://sailhome.cs.queensu.ca/replication/shane/PhD/

SECTION 6.6: CHAPTER SUMMARY 147

to differences in the dependency support of C++ and Java build tools. However, there
are likely several confounding factors that we could not control for in such a small sam-
ple. For example, we observed variability in the performance of the three studied Java
systems. Thus, the differences that we observe among C++ and Java systems may sim-
ply be due to natural variability among the systems rather than indicative of differences
between the C++ and Java build systems. While deeper manual analysis seems to sup-
port the latter case, further replication of our results in other (particularly C++) systems

could prove fruitful.

6.6 Chapter Summary

Build systems age in tandem with the software systems that they are tasked with build-
ing. Changes in source and test code often require accompanying changes in the build
system. Developers may not be aware of changes that require build maintenance, since
build systems are large and complex. Neglecting such build changes can cause build
breakages that slow development progress, or worse can cause the build system to pro-
duce incorrect deliverables, impacting end users. Hence, we set out to answer this

question:

Central Question: Can build changes be fully explained using characteristics of co-
changed source and test code files?

Through an empirical study of four large software systems, we found that the an-

Swer is no:

» While 4%-26% of work items that change source/test code also change the build

system, 53%-88% of build-changing work items also contain source/test changes,

148 CHAPTER 6: DRIVERS OF BUuiLD CO-CHANGE

suggesting that there is a strong co-change relationship between the build system

and source/test code.

* Our Mozilla build co-change classifiers achieve an AUC of 0.88, with these co-
changes being most effectively indicated by structural changes to a system and

historical build co-change tendencies of the modified files.

* However, classifier performance suffers in systems composed of Java and web ap-
plication code due to a shift in the usage and design of build technology from re-
quiring build changes for structural code changes (e.g., adding a file) to enabling
cross-disciplinary activities related to release engineering and general build main-

tenance.

Our results suggest that there are differences in the way that the maintenance of the
build system materializes in systems primarily implemented using different program-

ming languages (i.e., C++ and Java).

6.6.1 Concluding Remarks

In the past three chapters, we have focused on the overhead introduced by the mainte-
nance of the build system. In the following chapter, we turn our attention to the over-

head introduced by the execution of the build system.

CHAPTER 7

Build Hotspots

CENTRAL QUESTION

Which files should development teams
optimize first to improve build per-
formance the most? Which proper-
ties of hotspot files should develop-
ment teams focus optimization effort
on?

An earlier version of the work in this chapter
appears in the Springer Journal of Automated
Software Engineering [69]

7.1 Introduction

Build systems specify how source code, libraries, and data files are transformed into de-
liverables, such as executables that are ready for deployment. Build tools (e.g., make [35])

orchestrate thousands of order-dependent commands, such as those that compile and

149

150 CHAPTER 7: BuiLD HOTSPOTS

test source code, to ensure that deliverables are rebuilt correctly. Such a build tool
needs to be executed every time developers modify source code, and want to test or
deploy the new version of the system on their machine. Similarly, continuous integra-
tion and release engineering infrastructures on build servers rely on a fast build system

to provide a quick feedback loop.

Since large software systems are made up of thousands of files that contain mil-
lions of lines of code, executing a full build can be prohibitively expensive, often taking
hours, if not days to complete. For example, builds of the Firefox web browser for the
Windows operating system take more than 2.5 hours on dedicated build machines.' In
arecent survey of 250 C++ developers, more than 60% of respondents report that build
speeds are a significant issue.” Indeed, while developers wait for build tools to execute
the set of commands necessary to synchronize source code with deliverables, they are
effectively idle [45].

To avoid incurring such a large build performance penalty for each build performed
by a developer, build tools such as make [35] provide incremental builds, i.e., builds
that calculate and execute the minimal set of commands necessary to synchronize the
built deliverables with any changes made to the source code. Humble and Farley sug-
gest that incrementally building and testing a change to the source code should take
no more than 1.5 minutes [45]. Developers have even scrutinized 5-minute long incre-

mental build processes,” calling the process “abysmally slow.”*

Again, the slower the
incremental build process, the longer the idle period, frustrating developers and slow-

ing down development progress.

'http://tbpl.mozilla.org/
2http://mathiasdm.com/2014/01/24/a-c-questionnaire-on-build-speed-the-results-are-in/
Shttps://bugs.webkit.org/show_bug.cgi?id=32921
“https://bugs.webkit.org/show_bug.cgi?id=33556

http://tbpl.mozilla.org/
http://mathiasdm.com/2014/01/24/a-c-questionnaire-on-build-speed-the-results-are-in/
https://bugs.webkit.org/show_bug.cgi?id=32921
https://bugs.webkit.org/show_bug.cgi?id=33556

SECTION 7.1: INTRODUCTION 151

To assess build performance bottlenecks in the real world, we asked developers of
the GLib and PostgreSQL systems to list the files that slowed them down the most when
rebuilding them incrementally. While the reported bottlenecks were often the files that
triggered a relatively long rebuild process (since many source code files depend on
them), paradoxically, there were other files that took a longer time to rebuild, but were
not pointed out by the developers. Many of these slower files were not perceived to be
build bottlenecks because they rarely changed over time (and hence, rarely needed to
be rebuilt by the developers). Indeed, although often overlooked by build optimization
approaches, the frequency of change that a file undergoes influences how developers
perceive build performance issues. Indeed, we set out to answer the following ques-

tion:

Central Question: Which files should development teams optimize first to improve
build performance the most? Which properties of hotspot files should development
teams focus optimization effort on?

In order to address this central question, we make two main contributions:

1. We propose an approach to detect hotspots by analyzing the build dependency
graph and the change history of a system (Section 7.3). We evaluate our approach
by simulating the build time improvement of build hotspots for a developer by
using historical data (Section 7.5). We find that optimization of the files identified
by the hotspot approach would lower the total future rebuild cost more than op-
timization of the files that trigger the slowest rebuild processes, change the most

frequently, or are used the most throughout the codebase.

2. We study the characteristics of build hotspots in the studied systems (Section 7.6).

We find that logistic regression models can explain 32%-57% of the identified

152 CHAPTER 7: BuiLD HOTSPOTS

build hotspots using the architectural and code properties of files. Furthermore,
our GLib and Qt models identify hotspot-prone subsystems that would benefit

most from architectural refinement.

Chapter organization. The remainder of this chapter is organized as follows. Sec-
tion 7.2 describes incremental builds and build hotspots in more detail. Section 7.3
presents the hotspot detection approach. Section 7.4 describes the setup of our empir-
ical study of four open source systems. Section 7.5 presents the results of our simula-
tion experiment. Section 7.6 presents the results of our study of the characteristics of
build hotspots. Section 7.7 discloses the threats to the validity of our empirical study.

Finally, Section 7.8 draws our conclusions.

7.2 Build Hotspots

7.2.1 Incremental Builds

Developers who make source code changes would like to quickly produce modified
deliverables in order to test their changes. Hence, the cornerstone feature of a build
system is the incremental build, which can reduce the cost of a full build dramatically.
After performing a full build that produces initial copies of the necessary deliverables,
incremental builds only execute the commands necessary to update the deliverables
(“build targets”) impacted by source code changes.

For example, consider the build dependency graph depicted in Figure 7.1a, which
represents the dependencies in the make specification of Figure 7.1b. The all node

in the graph is phony, i.e., a node used to group deliverables together into abstract

SECTION 7.2: BUuiLD HOTSPOTS 153

build phases rather than to represent a file in the filesystem. The full build will ex-
ecute four compilation commands (recipe 4) to produce build targets dell_main.o,
utill.o,util2.o,and del2_main.o, as well as an archive command (recipe 3) to pro-
ducelibrary.a, and finally, two link commands (recipes1and 2) to producedeliverablel
and deliverable2. If dell_main.c is modified after a full build has been performed,
an incremental build only needs to recompile del1_main.oandre-linkdeliverablel.
As software systems (and build dependency graphs) grow, the minimizing behaviour

of incremental builds saves developers time.

7.2.2 Build Hotspots

Although incremental builds tend to save time, changes to header files often trigger
slow rebuild processes [61]. For example, Figure 7.1a shows that changes to 1ibrary.h
will trigger the equivalent of a full build, since all four . c files reference 1ibrary.h, and
will thus need to be recompiled when it changes. In turn, library.a will be re-archived

and the two deliverables will be re-linked.

To better understand how developers are impacted by such build performance bot-
tlenecks (e.g., files that trigger slow rebuild processes), we asked the three most active
contributors to GLib and PostgreSQL (two long-lived and rapidly evolving open source
systems) to pick five files that they believe slow them down the most when rebuild-
ing. Surprisingly, the files that were reported as bottlenecks were not the ones with the
worst raw build performance. In fact, of the bottlenecks reported by the three devel-
opers, the files with the worst performance appear 61* (GLib) and 3274 (PostgreSQL)
in the lists of files ordered by actual rebuild cost (i.e., the time taken to incrementally

build the system after a change to one of those files). Indeed, the respondents seemed

154 CHAPTER 7: BuiLD HOTSPOTS

Legend
- i T Compile

deliverable1 deliverable2

library.a Archive

4 R

del1_main.o utill.o util2.o del2_main.o

Y Y

\ deI1_main.c/ \ del2_main.c/

(a) Build dependency graph.

Link

Abstract

> > >

CC = gcc
LIBTOOL = 1libtool

.PHONY: all
all: deliverablel deliverable2

deliverablel: dell_main.o library.a
$(CC) -0 $@ $~ # recipe 1

deliverable2: del2_main.o library.a
$(CC) -0 $@ $~ # recipe 2

library.a: utill.o util2.o
$ (LIBTOOL) -static -o $@ $~ # recipe 3

%.o: %.c library.h
$(CC) -c $< # recipe 4

(b) make implementation

Figure 7.1: [Empirical Study 4] An illustrative build dependency graph and its make im-
plementation.

SECTION 7.2: BUuiLD HOTSPOTS 155

Lo ——
Edit 9 Commit Upstream
VCS
Developer A
Developer A edits hotspot and needs to wait
for the long incremental rebuild process in
A's local copy of the source code.
Update

)
4 2L

Developer B Developer C Developer D

-

Developers B, C, and D also need to wait for the long incremental rebuild process
of the edited hotspot file after updating their local copies of the source code.

Figure 7.2: [Empirical Study 4] An example scenario of the impact that a header file
hotspot can have on a development team.

to have most of their build performance issues with files that we measured to be rel-
atively fast to rebuild. When asked why they did not select the slower files, one GLib

developer responded: “because none of these [files] change often.”

At first glance, this insight might seem counterintuitive. However, consider the sce-
nario depicted in Figure 7.2 with a build hotspot and a team of four developers: A, B,
C, and D. First, changing the hotspot file impacts the original developer. For example,
if developer A modifies H, the change would trigger the slow rebuild process of H in
A’s copy of the source code. Next, the change to the hotspot impacts other team mem-

bers. When developers B, C, and D update their copies of the source code and receive

156 CHAPTER 7: BuiLD HOTSPOTS

A's change to H, it will also trigger the slow rebuild process of H on their machines.
Based on this insight, this chapter analyzes whether the build hotspots (i.e., files
that not only trigger long rebuild processes, but also tend to change frequently) are bet-
ter indicators of files that will slow the rebuild process in the future, and hence should
be optimized now to save developers time. In order to understand how such reduc-
tion of rebuild cost can be achieved, we use logistic regression models to study action-
able factors that impact build hotspot likelihood. Such factors correspond to common
source code (e.g., file fan-in) and code layout properties (e.g., the subsystem that a
file belongs to). Of course, making fewer changes to the code is not a feasible option
for reducing build activity, since after all, the software needs to evolve to implement

changing requirements.

7.3 Hotspot Analysis Approach

In order to identify build hotspots, we analyze the Build Dependency Graph (BDG)
and the change history of a software system. Figure 7.3 provides an overview of our ap-
proach, which is divided into the three steps that are described below. In this section,
we describe our approach in abstract terms, while details of the prototype implemen-

tation used in our case studies are provided in Section 7.4.

7.3.1 Dependency Graph Construction

We first extract the build dependency graph of the main build target of a software sys-
tem (e.g., all in Figure 7.1a), which is a directed acyclic graph BDG = (T, D) with the

following properties:

SECTION 7.3: HOTSPOT ANALYSIS APPROACH 157

(1) 0 , 2
Dependency () Rebuild Costs (3) S
Rebuild Cost 2| .,
Graph Calculation Hotspot R
. S —— i % Rebuild
Construction Dep. Graph Version Control Detection o

Quadrant Plot

System
Figure 7.3: [Empirical Study 4] Overview of our hotspot analysis approach.

* Graph nodes represent build targets T" = Ty U T},, where T is the set of concrete
files produced or consumed by the build process, 7, is the set of phony targets in

the build process, and 7y N T}, = .

 Directed edges denote dependencies d(¢,t') € D from target ¢ to target ¢’. A de-
pendency exists between targets ¢ and ¢’ if ¢ must be updated when ¢’ changes.

Figure 7.1a shows an example BDG.

7.3.2 Rebuild Cost Calculation

In order to calculate the rebuild cost of a source file, we build a costmap CM = (D,, C)

with the following properties:

* The set of BDG dependencies D = D, U D, where D, is the set of d(¢,?') with
recipes (i.e., build commands that must execute in order to update t when ¢’ changes),

D, is the set of d(t,t") used to order dependencies (i.e., dependencies without

recipes), and D, N D, = {.

 There is a cost C(d(t,t")) associated with each d(¢,t") € D,, which is used to give
a weight to each directed edge. This cost may be measured in terms of number

of triggered commands, elapsed time, etc.

158 CHAPTER 7: BuiLD HOTSPOTS

e C'M contains an entry that maps each d(¢,t') € D, to its cost C(d(t,t)).

The rebuild cost of a source file then is calculated by combining the file’s dependen-
cies in the BDG with the edge costs from the CM. The process is split into four steps as

described below.

7.3.2.1 Detect Source Files

Using the BDG, we detect the set of sourcefiles S = {s € T | |in(s)| > OA|out(s)| = 0},
where in(s) = {d(t,s) € D} (i.e., dependencies that must be regenerated when s
changes) and out(s) = {d(s,t) € D} (i.e.,, dependencies that regenerate s), and | X|
is the cardinality of the set X. In other words, S is the set of non-generated files (no

outgoing edges) that are the initial inputs for the main build target.

7.3.2.2 Detect Triggered Edges

For each source file node s € S, we identify the set of edges £/(s) that will be triggered
should s change by selecting all edges that transitively depend on s in the BDG. In
other words, we perform a transitive closure of d(s,t) on the BDG, and filter away

edges that are not present in the BDG.

7.3.2.3 Filter Duplicate Edges

Since the same recipe may be attached to multiple outgoing edges of a given build tar-
get ¢, we count each such recipe only once by filtering out all but one of the correspond-
ing edges d(t,t') from F(s). We apply this filter to all dependencies d(t,t') € E(s) to
obtain E’(s).

SECTION 7.3: HOTSPOT ANALYSIS APPROACH 159

For example, Figure 7.1a shows that when either utill.o or util2.o is updated,
library.a must be re-archived. The make implementation in Figure A.la shows that
in such a case, the re-archiving of 1ibrary . a only needs to be performed once. In this
case, we would filter the edge between library.a and util2.o out of E(s) to obtain

E'(s).

7.3.2.4 Aggregate Cost of Triggered Edges

Finally, to calculate the rebuild cost of a source file s, we begin by looking up each edge
d(t,t') € E'(s) in the CM. Any edge that appears in £’(s), but does not appear in CM
(e.g., d(t,t') € D,) is assumed to have no cost. The rebuild cost is then calculated by

summing up the costs of the edges in F’(s) that were found in the CM.

7.3.3 Hotspot Detection

Software systems evolve through continual change in the source code, build system,
and other artifacts. Changes to files are logged in a Version Control System (VCS), such
as Git. To identify hotspots, we need to calculate the rate of change of each source
file, i.e., the number of revisions of the file that are recorded in the VCS, then plot this
against the rebuild cost for each file. Similar to Khombh et al. [53], we divide the plot

into four quadrants:

Inactive — Files that rarely change and that trigger quick rebuild processes. Optimiz-

ing the build for these files is unnecessary.

High churn — Files that frequently change, but trigger quick rebuild processes. These
files are low-yield build optimization candidates because although they endure

heavy maintenance, they do not cost much to rebuild.

160 CHAPTER 7: BuiLD HOTSPOTS

Table 7.1: [Empirical Study 4] Characteristics of the studied systems. For each studied
system, we extract two years of historical data just prior to the release dates.

GLib PostgreSQL Qt Ruby
Domain Development library DBMS Ul framework Programminglanguage
Build Technology Autotools Autoconf, make QMake Autoconf, make
Version 2.36.0 9.2.4 5.0.2 1.9.3
Release Date 2013-03-25 2013-04-04 2013-07-03 2011-10-31
System Size (kSLOC) 401 658 5,132 1,098
#BDG Nodes 3,375 4,637 38,235 1,560
#BDG Edges 121,710 59,676 2,752,226 6,240

Slow build — Files that rarely change, but trigger slow rebuild processes. These files

are low-yield build optimization candidates.

Hotspot — Files that frequently change and trigger slow rebuild processes. These files

are high-yield build optimization candidates.

The quadrant thresholds can be dynamically configured to suit the needs of the
development team. Initially, thresholds may be selected using intuition, however later
on, nonfunctional requirements could specify a maximum rebuild cost according to a

system’s common rate of file change.

7.4 Empirical Study Design

We perform a case study on four open source systems in order to: (1) evaluate our
build hotspot detection approach, and (2) study the characteristics of real-world build
hotspots. Hence, our case study is divided into two sections accordingly, which we

motivate below:

Evaluation of our hotspot detection approach (Section 7.5) — Since rebuild cost, rate

of change, and impact on other files individually can also be used to prioritize

SECTION 7.4: EMPIRICAL STUDY DESIGN 161

files for build optimization, we want to evaluate whether the hotspot heuristic

truly identifies the most costly files.

Analysis of build hotspot characteristics (Section 7.6) — Since code changes are re-
quired to address defects or add new features, one cannot simply avoid changing
the code. Instead, build optimization effort must focus on controllable proper-
ties that influence build hotspot likelihood. Hence, we set out to study the rela-

tionship between controllable source file properties and hotspot likelihood.

The remainder of this section introduces the studied systems, provides additional
detail about our implementation of the hotspot detection approach proposed in Sec-
tion 7.3, and compares the build performance of header files to other files in the studied

systems.

7.4.1 Studied Systems

We select four long-lived, rapidly evolving open source systems in order to perform our
case study. We select systems of different sizes and domains to combat potential bias
in our conclusions. Table 7.1 provides an overview of the studied systems.

GLibis a core library used in several GNOME applications.” PostgreSQL is an object-
relational database system.® Qris a cross-platform application and user interface frame-
work whose development is supported by the Digia corporation, however welcomes
contributions from the community-at-large.” Ruby is an open source programming

language.®

Shttps://developer.gnome.org/glib/
Shttp://www.postgresql.org/
"http://qt.digia.com/
Shttps://www.ruby-lang.org/

https://developer.gnome.org/glib/
http://www.postgresql.org/
http://qt.digia.com/
https://www.ruby-lang.org/

162 CHAPTER 7: BuiLD HOTSPOTS

The studied systems use different build technologies (e.g., GNU Autotools and QMake).
However, each studied build technology eventually generates make specifications from
higher level build specifications. The choice of studying make-based build systems is
not a coincidence, since such build systems are the de facto standard for C/C++-based

software projects (cf. Chapter 4), which are the projects that typically use header files.

7.4.2 Implementation Details

7.4.2.1 Dependency Graph Construction and Rebuild Cost Calculation

We first perform a full build of each studied system on the Linux x64 platform with
GNU make tracing enabled to generate the necessary trace logs. Such a trace log care-
fully records all of the decisions made by the build tool (e.g., is input file X newer than
output file Y?). The generated trace is then fed to the MAKAO tool [3], which parses it
to produce the BDG and CM. Finally, we implemented the four steps of Section 7.3.2 in
a script and applied it to the BDG and CM to calculate the rebuild cost of each source

codefiles € S.

7.4.2.2 Edge Weight Metric

To give the edge weighing function C(d(t,t')) a meaningful concrete value, we use
elapsed time, i.e., the time spent executing build recipes. For this, we measure the time
consumed by each recipe during a full build by instrumenting the shell spawned by
the build tool for each recipe’s execution. Since varying load on our experimental ma-
chines may influence the elapsed time measurements, we repeated the full build pro-
cess (from scratch) ten times and select the median elapsed time for each recipe.

After ten repetitions, we find that the standard deviation of the elapsed time for

SECTION 7.4: EMPIRICAL STUDY DESIGN 163

any given command does not exceed 0.5 seconds and the median standard deviation
among the ten repetitions does not exceed 0.02 seconds. Thus, the variability in the

elapsed time consumed by a recipe will not skew our results severely.

7.4.2.3 Quadrant Threshold Selection

For the purposes of our case study, we use 90 seconds as the threshold for rebuild cost,
since Humble and Farley suggest this as an upper-bound on the time spent on an in-
cremental build [45]. For the rate of change threshold, we select the median number
of revisions across all files of a system. Furthermore, to reduce the impact that outliers
have on the quadrant plots, we apply the logarithm on both rebuild cost and rate of
change values. We normalize rebuild cost and rate of change by dividing each loga-
rithmic value by the maximum so that the quadrant plots of different systems can be

compared.

7.4.3 Preliminary Analysis of Header File Build Performance

Prior to performing our case studies, we first perform a preliminary analysis to eval-
uate whether header files are the source of the most problematic build hotspots in
the studied systems. Indeed, while prior work has focused on header file optimiza-
tion [24, 111, 112], it is unclear whether they are truly the largest build hotspots. Since
header files represent interfaces (which ought to be more stable over time), they may
not necessarily change as frequently as regular source code files. It is conceivable that
core implementation files that change often and generate a substantial amount of link-

time build activity may also be hotspots that are worthy of optimization effort [61].

164 CHAPTER 7: BuiLD HOTSPOTS

B i
8 4
£ £
= ik © A
=}
3 B4 -_g < o
o o
o~
1 T T T T T T T T 1 T T T T T T T
0 50 100 150 200 250 300 350 0 100 200 300 400 500 600
File ID File ID
(a) GLib headers (b) GLib others
3
2 1 ® 1
z -)
[} L © +q
£ 84 £
[=
= =
a 3 3 ~
© T T T T T T © T T T T T T
0 100 200 300 400 500 0 200 400 600 800 1000
File ID File ID
(c) PostgreSQL headers (d) PostgreSQL others
- o
g
.8 —
© S L o5
" s
[(=
=) =)
2 8| 2 8
&
© T T T T T © T T T T T T
0 1000 2000 3000 4000 0 2000 4000 6000 8000 12000
File ID File ID
(e) Qt headers (f) Qt others
©
KO’ 4
<
z g o
E o | E ® 7
E® =
29 T o
S5 N7 =1
o o
S 1 -
© T T T T T T © T T T T T T
0 10 20 30 40 50 60 0 50 100 150 200 250
File ID File ID
(g) Ruby headers (h) Ruby others

Figure 7.4: [Empirical Study 4] The rebuild cost of the header and other (primarily
source) files in the studied systems.

SECTION 7.4: EMPIRICAL STUDY DESIGN 165

o
3
a
o
3
o

o
N
a

File Revisions (Normalized)
&
o
&

P
o
Q
N
©
€
£
[=]
Z
£
20,50
o
K2
3
@
2
iy
I+

0.25 0.50 0.75
Rebuild Cost (Normalized)

(a) GLib (b) PostgreSQL

0.25 0.50 0.75
Rebuild Cost (Normalized)

o
3
al
o
3
al

o
N
a

File Revisions (Normalized)
g
o
&

File RevisiorLs (Normalized)
&
o

0.75
ed)

0.25 0.50 075
Rebuild Cost (Normalized)

0.25 0.50
Rebuild Cost (Normaliz
() Qt (d) Ruby

Figure 7.5: [Empirical Study 4] Quadrant plot of rate of change and rebuild cost.
Hotspots are shown in the top-right (red) quadrant. The shaded circles indicate header
files, while plus (+) symbols indicate non-header files. Non-header file hotspots are cir-
cled in red.

166 CHAPTER 7: BuiLD HOTSPOTS

7.4.3.1 Approach

Figure 7.4 plots the rebuild cost of each source file s € S in increasing order for each
of the studied systems. The figures in the column on the left show the rebuild costs
of header files, while the figures in the column on the right show the rebuild costs of
the other source files in each of the studied systems. In addition, we show quadrant
plots of the rebuild costs versus the number of revisions of each source file s € S in

Figure 7.5.

7.4.3.2 Results

Figure 7.4 shows that, as expected, almost all header files trigger a longer rebuild
process than other file types do. This is primarily because when a header file is
changed, all files that #include it must be recompiled. The majority of GLib header
files trigger rebuild processes of more than 60 seconds (Figure 7.4a). Several Qt header
files trigger rebuild processes of more than 15 minutes (900 seconds), with extreme
cases reaching over two hours (Figure 7.4e). In all of the studied systems, the median
rebuild cost for header files is at least 10 times larger than the median rebuild cost for
the other types of files. Our findings support the argument of Yu ez al. [111], that (false)
dependencies in header files can indeed substantially slow down the build process.

Interestingly, header files are not the only source of spikes in rebuild cost. Fig-
ures 7.4b, 7.4f and 7.4h show that a small set of other files can trigger rebuild processes
of several seconds. Many of these files are . c files, for which one would normally ex-
pect that several subsequent linker commands may be triggered by updating the object
code, however only one compile command should be triggered.

Deeper inspection of the GLib system shows that 89 . c files in GLib in fact trigger

SECTION 7.4: EMPIRICAL STUDY DESIGN 167

multiple compile commands. We found that 1 of the 89 . c files is imported through
the preprocessor into several . c files, similar to a header file. Hence, changes to the
imported . c file trigger compile commands for each . c file that includes the file. An-
other 4 of the 89 multi-compiling . c files contain test code that is linked into several
test executables. However, each test binary requires the object code of the common
files to be generated with different compiler flag settings, which means that the same
.c file must be compiled once for each compiler flag setting. The remaining 84 of the
89 multi-compiling . c files are used to implement a source code generator. The gen-
erator produces code that is linked to several test executables. When any of the code
generator source files are changed, the tool must be rebuilt, then the generated code
must be reproduced, recompiled, and re-linked to the test executables. The GLib code
generator is an example of a “build code robot,” as was identified for GCC by Tu and

Godfrey [104].

Figures 7.4g and 7.4h show that the Ruby project has no file that exceeds the 90-
second threshold that we selected for header file hotspots. This is likely due to the size
of the system and its build dependency graph, which, as shown in Table 7.1, has al-
most an order of magnitude fewer edges than the next smallest system (PostgreSQL).
Although Ruby may be free of 90-second header file hotspots, developers of such a
small system may be accustomed to a very quick rebuild cycle, and may have a lower
threshold for frustration. In a study of time delay, Fischer et al. find that user satisfac-
tion degrades linearly as delay increases from 0-10 seconds [36]. We, therefore, set the

threshold for Ruby hotspots to 10 seconds for the remainder of the chapter.

Non-header files do not generate enough build activity to be of concern for hotspot

detection. Figure 7.5 shows the source files that land in each of the four quadrants.

168 CHAPTER 7: BuiLD HOTSPOTS

Header files are plotted using shaded circles, while other files are plotted using plus
(+) signs. Files that land on quadrant borders are conservatively mapped to the lower
quadrant.

The quadrant plots in Figure 7.5 show that only two non-header file appear in the
hotspot quadrant. The firstis a Bison grammar file parse. y in the Ruby system. Chang-
ing the grammar file causes both an implementation and a header file to be regener-
ated, which in turn triggers several recompilations. The second non-header file hotspot
is a Qt file qgtdeclarative/tests/auto/shared/util.cpp, which contains the test-
ing utility code that causes several test binaries to be re-linked. Although each change
to the test utility implementation triggers a rebuild process of 159 seconds, Figure 7.4e
shows that there are several Qt header files that, when they change, trigger rebuild pro-

cesses that take hours.

Although some implementation files take a long time to rebuild, the median rebuild
cost for header files is at least ten times larger than the median rebuild cost for the
other types of files. While our hotspot detection approach is generic enough to be
applied to any source file, since the overwhelming majority of hotspots are header
files, the remainder of this chapter focuses on header file hotspots.

7.5 Evaluation of the Hotspot Detection Approach

Since we find in Section 7.4.3 that header files dominate the hotspot quadrant for the
studied systems, we focus on header file hotspotsthroughout the remainder of the chap-
ter.

While our quadrant plots can identify header file hotspots, it is not clear whether
build optimization effort that is focused on such hotspots would yield a larger reduc-

tion in future build cost than other hotspot detection approaches. In this section, we

SECTION 7.5: EVALUATION OF THE HOTSPOT DETECTION APPROACH 169

= (2)
Trammg Select Files for
corpus Optimization

-
(1) > | |
VCS Extract Historical Data eal (e
Studied
Y release Y TCI Curves

.
r 3)

Testing > Calculate Total Cost

corpus Improvement (TCI)

Figure 7.6: [Empirical Study 4] Overview of our simulation exercise.

discuss a case study that we have performed in order to evaluate our hotspot heuristic.

7.5.1 Approach

In order to evaluate our hotspot heuristic, we compare the decrease in future rebuild
cost when prioritizing files for build optimization using the header file hotspot heuris-

tic to the decrease in future rebuild cost when using heuristics based on the following:

Individual rebuild cost — Header files that trigger slow rebuild processes are likely to

be costly.
Rate of change — Header files that are changing frequently are likely to be costly.

File fan-in — Prior header file optimization approaches focus on header files that have
the highest file fan-in [111, 112], i.e., number of modules that use the functional-
ity defined or declared in the header. These approaches implicitly assume that

header files with the highest file fan-in trigger the most build activity.

In order to perform this comparison, we perform a simulation exercise using two

years of historical data from each studied system, which we divide into training and

170 CHAPTER 7: BuiLD HOTSPOTS

testing corpora. Figure 7.6 provides an overview of the steps in our simulation exercise.

We describe each step in the simulation below.

7.5.1.1 Extract Historical Data

We allocate the year of historical data just prior to the studied releases shown in Ta-
ble 7.1 to the testing corpus. Then, we allocate the year prior to the testing corpus to
the training corpus. We do so because we want to evaluate the approaches on a time
period where we are sure that developers would be rebuilding the system frequently.
The period leading up to a release is guaranteed to require frequent rebuilds due to
active development.

The build cost and build changes are calculated differently. Build change is mea-
sured twice — once in the training corpus, and again in the testing corpus. This makes
the data representative for changes in each corpus. On the other hand, we measure
rebuild cost on the actual release instead of on an intermediate version released in be-
tween the training and testing period. We do so out of convenience, since measuring
rebuild cost and extracting the build dependency graph requires a buildable version
of the whole system, whereas intermediate versions more often than not are broken
in several subsystems (especially in large systems like Qt). Although our evaluation
hence combines rebuild cost measurements with change data that is one year older, in

practice the mismatch is quite limited, as shown by our results.

7.5.1.2 Select Files for Optimization

For each of the four approaches, we identify the top NV header files that should be op-

timized for build speed based on analysis of the training corpus. Depending on the

SECTION 7.5: EVALUATION OF THE HOTSPOT DETECTION APPROACH 171

heuristic, the top N corresponds to the header files that occupy the hotspot quadrant
(I), or the N files with the highest individual rebuild cost (/,), rate of change (l.), or file

fan-in ({4).

7.5.1.3 Calculate Total Cost Improvement (TCI)

To evaluate the impact of improving the top /V header files in the testing corpus sug-
gested by a particular heuristic calculated in the training corpus, we calculate the Total
Cost Improvement (TCI). This is the percentage of reduction in the Total Rebuild Cost
(TRC, i.e., the sum of the rebuild cost of all header files h and all changes in the testing
corpus) that would be achieved when replaying all required builds of the testing corpus
if the individual rebuild costs of each header file in [, [,, ., or [(i.e., the top /N header
files of each of the four approaches) were reduced by 10%° prior to entering the testing
corpus.

For example, we first calculate the total rebuild cost in the testing corpus, and then,
if a particular heuristic suggests that we optimize header files A, B, and C based on the
training corpus, we recalculate the hypothetical total rebuild cost assuming that the

individual rebuild costs of header files A, B, and C were reduced by 10%. Then, the TCI

TRCyetuai— TR Chypmhetical

for the heuristic is calculated as: TCI = TRC o

. Note that in this chapter,
we consider a reduction of 10% in individual build cost, independent of specific ap-
proaches (e.g., refactorings) that can be used to obtain a 10% reduction [24].

Figure 7.7 compares the TCI of /3, [, l., and [; for each of the studied systems. These
curves are cumulative, meaning that, for instance, the TCI shown for file #2 in each
curve is the TCI in which the top two files (#1 and #2) have been improved. To determine

the value of IV, we select IV header files such that [;, contains a list of all of the header

9The simulation was repeated for 20% and 50% improvements, which yielded similar results.

172 CHAPTER 7: BuiLD HOTSPOTS

O5%- O5%-
= =
54%7 ‘54%7
= S
L3%- C30-
o o
Q. Q.
2% E2%-
1) /i 1)
O 1044 ~ Hotspot Q104-
Ul% A sePueI? ((::r(])st Ol%
—_— & Rate 0 ange —_
8 | -+ Fan-in 8 |
'90% IEO%
0 20 40 60 0 5 10 15
File ID File ID
(a) GLib (b) PostgreSQL
5 ST | — -
= =) .
) R /./
87.5%’ %6%’
IS S
g g .
B5.0%1 B 49%- .
o o
E E
gz.s%f QZ%’
O O
*_go 0% *_QOO/
00.0%-+ o 0%-
= 0 200 400 600 F e 2 4 6
File ID File ID
(c) Qt (d) Ruby

Figure 7.7: [Empirical Study 4] Cumulative curves comparing the four approaches for
selecting header files for build performance optimization. The Total Cost Improve-
ment (TCI) measures the reduction of time spent rebuilding in the future (testing cor-
pus) when the performance of the selected header files are improved by 10%.

files that occupy the hotspot quadrant.

7.5.2 Results

The TCI of the hotspot heuristic exceeds the TCI of files with the highest individual
rebuild cost, rate of change, or file fan-in. Indeed, Figure 7.7 shows that the TCI of

l;, exceeds those of [, [, and [in three of the four studied systems. In the Ruby system,

SECTION 7.5: EVALUATION OF THE HOTSPOT DETECTION APPROACH 173

simply ordering files by their change frequency yields the highest TCI. Individual re-
build cost does not help to select the files that will yield a high TCI because most Ruby

header files rebuild quickly (cf. Section 7.4).

We performed a Kruskal-Wallis rank sum test to check whether there is a statistically
significant difference between the TCI values of /3, [,, [y and [. (o = 0.05). The test re-
sults for the GLib, PostgreSQL, and Qt systems show that the differences in TCI are sig-
nificant (p < 0.05), indicating that the hotspot analysis selects more costly header files
than just considering the file fan-in, the individual rebuild cost, or the rate of change
of a header file separately. In the case of Ruby, a Wilcoxon signed rank test indicates

that the hotspot analysis (/) performs significantly worse than the rate of change (/.).

Figure 7.7 shows that Qt achieves the largest TCI rates, with /;, reaching a peak of
9.3% and /, reaching 8.7%. Note that TCI values in this simulation are theoretically
constrained to a maximum of 10%, since this is the amount that the individual rebuild
cost of the selected header files were improved by. Moreover, TCI values of 8.7% and
9.3% equate to a total rebuild cost savings of 8.4 and 8.9 days respectively — on average,
a savings of 3.3 and 3.7 minutes of rebuild cost per change. GLib and PostgreSQL both
achieve maximum TCI values of 4.9%, which equate to a savings of 49.0 and 7.4 min-
utes, or 4.0 and 1.4 seconds per change respectively. Although Ruby achieves a high TCI
value of 7.6% by optimizing the most frequently changing files, due to the rapid speed
of the Ruby build process, this only equates to a total savings of 38.7 seconds or 0.16
seconds per change. Large and complex systems like Qt can really lower rebuild costs

with carefully focused build optimization.

The hotspot heuristic tends to select more costly header files that yield a higher to-
tal cost improvement than other header file selection heuristics, especially in larger
systems with more complex build dependency graphs.

174 CHAPTER 7: BuiLD HOTSPOTS

7.5.3 Discussion

Itisimportant to note that TCI is an under-approximation for the true total rebuild cost
for two reasons. First, TCI assumes that each change will only be rebuilt once, when
in reality, a build will run several times by the developer making the change, and by
the other developers of the system. Since the number of times a build was executed
for a particular change is not typically recorded, we assume the minimum case (i.e.,
just once). Second, TCI assumes that rebuild cost improvements to header files are
independent, i.e., by improving the rebuild cost of a header file A, we do not improve
the rebuild cost of another header file B in our simulation. In reality, due to overlapping
dependencies, this assumption likely will not hold. In both cases, our reported TCI

values correspond to a lower bound of the actual TCI.

7.6 Hotspot Characteristic Analysis

To help practitioners avoid creating header file hotspots or find opportunities for refac-
toring, we analyze whether header file properties offer any explanatory power for hotspot
likelihood. To do so, we build logistic regression models and measure the effect that
each property has on hotspot likelihood.

When selecting explanatory variables for our models, we discarded change frequency,
since itis not an actionable factor, i.e., changes that fix defects and add features cannot
be avoided. Instead, build optimization effort must focus on reducing the rebuild cost
of a header file by either: (1) shrinking the set of triggered edges E’(s), or (2) reduc-
ing the complexity of the header file itself (to reduce its individual compilation time).

The latter suggests that header file size and complexity metrics should be added to our

SECTION 7.6: HOTSPOT CHARACTERISTIC ANALYSIS 175

models, while the former suggests that we should consider code layout as well.

7.6.1 Approach

We build logistic regression modelsto check for a relationship between header file prop-
erties and hotspot likelihood. A logistic regression model will predict a binary outcome
variable (whether or not a header file appears in the hotspot quadrant of Figure 7.5)
based on the values of a given set of explanatory variables.

Table 7.2 lists the code content and layout properties that we considered, and pro-
vides our rationale for selecting them. Each metric is measured using the released ver-
sions of the studied systems presented in Table 7.1. Code layout metrics are derived
from the pathname of each source file. Directory and file fan-in are calculated based
on code dependency information extracted using the Understand static code analysis
tool."” Source lines of code are counted using the SLOCCount tool."! Number of in-
cludes is calculated using common UNIX tools to select #include lines that refer to
files within each software system.

Since our goal is to understand the relationship between the explanatory variables
(code layout and content properties) and the dependent variable (hotspot likelihood),
which is similar to prior work of Mockus et al. [78] and others [20, 97], we adopt a similar
model construction approach. Moreover, since we do not intend to use the models for
prediction, but rather for explanation, we do not split the datasets into training and
testing corpora as was done in Section 7.5, but rather build models using both years of
the historical data together. To lessen the impact of skew, we log-transform the SLOC,

number of includes, depth, and file and directory fan-in variables. We build models for

Ohttp://www.scitools.com/index. php
Uhttp://www.dwheeler.com/sloccount/

http://www.scitools.com/index.php
http://www.dwheeler.com/sloccount/

176

CHAPTER 7: BuiLD HOTSPOTS

Table 7.2: [Empirical Study 4] Source code properties used to build logistic regression
models that explain header file hotspot likelihood.

Property | Description Rationale

Subsystem | The top-level direc- | Certain subsystems have a more central
tory in the path of a | role and thus may be more susceptible
header file. to header file hotspots.

Depth The number of | Since header files that appear in deeper
subdirectories in | directory paths are likely more special-

- the header file’s | ized and hence impact fewer deliver-
= path relative to the | ables than header files at shallower di-
E’ top directory of the | rectory paths, they likely have a smaller
2 system. impact on the build process, and are
S thus less likely to be hotspots.

Directory | The number of | Header files with code dependencies

fan-in other directories | that are more broadly used throughout
whose source files | the codebase are likely to have a higher
refer to code within | rebuild cost, and thus are more likely to
this header file. be hotspots.

File fan-in | The number of | The more source files that rely on a
other source files | header file, the more likely it is to be a
referring to code | hotspot.
within this header

2 file.

& | Source Non-whitespace, Larger header files are more likely

S | lines of | non-comment hotspots.

-qcs; code lines.

O | Number of | The number of | Yu et al suggest that including sev-

includes distinct imported | eral interface files bloats the build pro-

interface files, | cess [111]. Hence, we suspect that im-
ie., #include | porting many other header files will in-
statements. crease hotspot likelihood.

SECTION 7.6: HOTSPOT CHARACTERISTIC ANALYSIS 177

each studied system separately.

7.6.1.1 Data Preparation and Model Construction

We check for variables that are highly correlated with one another prior to building our
models, and also check for variables that introduce multicollinearity into preliminary
models. We use Spearman rank correlation (p) to check for highly correlated variables
instead of other types of correlation (e.g., Pearson) because rank correlation does not
require normally distributed data. After constructing preliminary models, we check
them for multicollinearity using the Variance Inflation Factor (VIF) score. A VIF score
is calculated for each explanatory variable used by a preliminary model. A VIF score
of one indicates that no collinearity is introduced by the variable, while values greater
than one indicate the ratio of inflation in the variance explained due to collinearity. As
suggested by Fox [37], we select a VIF score threshold of five. Neither correlation nor
VIF analysis identified any variables that are problematic for our models (|p| > 0.6 or
VIF > b).

Finally, to decide whether an explanatory variable is a significant contributor to the
fit of our models, we perform drop-one tests [21] using the implementation provided
by the core stats package of R [91]. The test measures the impact of an explanatory
variable on the model by measuring the deviance explained (i.e., the percentage of de-
viance that the model covers) of models consisting of: (1) all explanatory variables (the
full model), and (2) all explanatory variables except for the one under test (the dropped
model). A x? likelihood ratio test is applied to the resulting values to indicate whether
each explanatory variable improves the deviance explained by the full model to a sta-

tistically significant degree (o« = 0.05). We discard those variables that do not improve

178 CHAPTER 7: BuiLD HOTSPOTS

the deviance explained by a significant amount.

7.6.1.2 Model Analysis

In order to compare the effect that each statistically significant header file property
has on hotspot likelihood, we extend the approach of Cataldo et al. [20]. First, a typical
header file is imitated by setting all explanatory numeric variables to their median val-
ues and categorical/binary values to their mode (most frequently occurring) category.
The model is then applied to the typical header file to calculate its predicted probability,
i.e., the likelihood that the typical header file is a hotspot, which we call the Standard
Median Model (SMM). One by one, we then modify each explanatory variable of the

typical header file in one of two ways:

Numeric variable — We add one standard deviation to the median value and recal-

culate the predicted probability.

Categorical/binary variable — The predicted probability is recalculated for each cat-

egory except for the mode.

The recalculated predicted probabilities are referred to as the Increased Median
Model (IMM) values. Note that the SMM is a fixed value while IMM is calculated for
each explanatory variable. The Effect Size E'S of an explanatory variable X is then

calculated as:

_ IMM(X) — SMM

ES(X) SMM

(7.1)

Variables can have positive or negative ES values indicating an increase or decrease

in hotspot likelihood relative to SMM respectively. The farther the value of ES(X) is

SECTION 7.6: HOTSPOT CHARACTERISTIC ANALYSIS 179

Table 7.3: [Empirical Study 4] Logistic regression model statistics for the larger studied
systems (i.e., GLib and Qt). Deviance Explained (DE) indicates how well the model
explains the build hotspot data. A DEmeasures the impact of dropping a variable from
the model, while ES(X') measures the effect size (see equation 7.1), i.e., the impact of
explanatory variables on model prediction.

GLib Qt
Deviance explained | 57% Deviance explained | 49%
Metric Subdir. ADE ES(X) | Metric Subdir. ADE ES(X)
gio 28% T gtwebkit 23%+
g tests 291 g gtimageformats -0.69
8 gmodule 4.73 8 qtactiveqt -0.52
> build 49.94 > qtsvg -0.07
§ i 158.62 § qtdoc 0.43
gobject >1,000 gtgraphicaleffects 0.43
glib >1,000 gtscript (+7 others) >1,000
Depth o Depth 5%+~ -0.58
Directory fan-in 1%- 411 Directory fan-in 1%+ 0.98
File fan-in 5%-- 110 File fan-in 13%--- 2.53
SLOC 1%- 0.39 SLOC 1%+~ 0.44
Includes o Includes 1%+ -1.0

T Mode values of categorical variables are part of the SMM calculation and hence can-
not be calculated using IMM.
Statistical significance of explanatory power according to Drop One analysis:

op > 0.05-p < 0.05 - p < 0.01; ~ p < 0.001

from zero, the larger the impact that X has on our models. For example, an E'S value

of 0.51 means that the IMM is 51% higher than the SMM.

7.6.2 Results

Tables 7.3 and 7.4 shows that our complete models achieve between 32% (Ruby)
and 57% (GLib) deviance explained. Ourmodels could be likely improved by adding
additional header file properties, or even properties extracted from the build system.
However, we believe that these models provide a sound starting point for explaining

header file hotspot likelihood.

180 CHAPTER 7: BuiLD HOTSPOTS

Table 7.4: [Empirical Study 4] Logistic regression model statistics for the smaller stud-
ied systems (i.e., PostgreSQL and Ruby). Deviance Explained (DE) indicates how well
the model explains the build hotspot data. ADE measures the impact of dropping a
variable from the model, while ES(X) measures the effect size (see equation 7.1), i.e.,

the impact of explanatory variables on model prediction.

PostgreSQL Ruby
Deviance explained 47% 32%
Metric ADE ES(X) | ADE ES(X)
Subsystem o o
Depth o o
Directory fan-in o o
File fan-in 47%+~ 8.75 32%+++ 3.38
SLOC o o
Includes o o

T Mode values of categorical variables are part of the
SMM calculation and hence cannot be calculated
using IMM.
Statistical significance of explanatory power ac-
cording to Drop One analysis:

op > 0.05;-p < 0.05 p < 0.01; = p < 0.001

Tables 7.3 and 7.4 also shows the change in deviance explained reported by the
drop-one test (ADE) for each variable. The ADE measures the percentage of the de-
viance explained by the model that can only be explained by a particular variable. Since
multiple variables may explain the same header file hotspots, the ADE values do not

sum up to the total deviance explained by the full model.

In the larger studied systems, header file hotspots are more closely related to code
layout than to the content of a file. Table 7.3 shows that there is a drop in deviance
explained of 28% and 23% in the GLib and Qt systems respectively when the subsystem
explanatory variable is excluded from the model. Furthermore, although the impact

is small, directory fan-in explains a statistically significant amount of deviance in the

GLib and Qt systems. On the other hand, in those systems, file size and number of

SECTION 7.6: HOTSPOT CHARACTERISTIC ANALYSIS 181

includes offer little explanatory power, and although GLib and Qt models without file
fan-in drop in explanatory power by 5% and 13% respectively, the decrease is smaller
than that of the subsystem variable. Hence, most of the explanatory power of the GLib

and Qt models is derived from code layout properties, such as the subsystem of a file.

Filesystem depth provides additional explanatory power (5%) in Qt, which is the
largest studied system. The negative effect size indicates that as we move deeper into
the filesystem hierarchy, hotspot likelihood decreases, suggesting that more central
header files (located at shallower filesystem locations) are more prone to build per-

formance issues.

On the other hand, for the smaller systems, code layout properties offer little hotspot
explanatory power. Table 7.4 shows that the subsystem variable does not contribute
a significant amount of explanatory power to the PostgreSQL and Ruby models. More-
over, despite the fact that 93% of the PostgreSQL hotspots reside in the include sub-
system, this corresponds to 79% of all PostgreSQL header files, making this a less dis-

tinguishing variable.

Furthermore, filesystem depth is not a significant contributor to our PostgreSQL
and Ruby models. The vast majority of hotspots in the PostgreSQL and Ruby systems
are found in their include and top directory subsystems respectively, which do not
have complex subdirectory structures within them. On the other hand, hotspots are
more evenly distributed among subsystems in the Qt system, and hence the depth met-

ric provides additional explanatory power there.

File fan-in provides all of the explanatory power in the smaller studied systems.

Although file fan-in provides a significant amount of explanatory power to all of the

182 CHAPTER 7: BuiLD HOTSPOTS

models, file fan-in impacts the performance of the smaller PostgreSQL and Ruby sys-
tem models the most. File fan-in calculates the source files that are directly depending
on the functionality provided within the header file. In this sense, file fan-in provides
an optimistic (minimal) perspective of dependencies among code files. In smaller sys-
tems, this optimistic perspective is sufficient, whereas in larger systems with many
subsystems (and a complex interplay between them) where architectural decay has
introduced false dependencies among files [111], file fan-in no longer accurately esti-
mates the actual set of build dependencies. Spearman rank correlation tests indicate
that there is a stronger correlation between the file fan-in and individual rebuild cost
of header files in the smaller studied systems (pposigresor. = 0.87, prupy = 0.62) than in
the larger ones (pg; = 0.28, pgriy = 0.48). Indeed, in larger systems with a more com-
plex interplay between system components, most of the files including a header file
will likely be other header files. Since this additional layer of header file indirection in-
troduces an additional set of unpredictable, but necessary compile dependencies, file

fan-in by itself tends to lose its hotspot explanatory power as systems grow.

Yet, even in the smaller PostgreSQL and Ruby systems where file fan-in provides
all of the explanatory power, it does not provide a highly accurate estimate of hotspot
likelihood. The reason for this discrepancy is twofold. First, while file fan-in provides
an optimistic estimate of the compile commands that would be required should the
header file change, it can offer little information about the link commands that would
be required. For example, two header files with an identical amount of file fan-in may
trigger very different amounts of link activity, which would greatly impact the rebuild
cost of the header files. Second, being a metric that is calculated based at the code

level, file fan-in cannot estimate how frequently a header file will change.

SECTION 7.7: LIMITATIONS AND THREATS TO VALIDITY 183

Our models explain 32%-57% of identified hotspots. Architectural properties offer
much of the explanatory power in the larger systems, suggesting that as systems
grow, header file hotspots have more to do with code layout than with code content
properties like file fan-in.

7.6.3 Discussion

The explanatory power of the code layout metrics indicates that there are areas of the
larger studied systems that are especially susceptible to header file hotspots (Table 7.3).
Although our regression models seem to suggest that one should simply redistribute
header files from subsystems with high hotspotlikelihood to the subsystems with lower
hotspotlikelihood, such a course of action is impractical. Instead, our results should be
interpreted as pinpointing the problematic subsystems that would benefit most from
architectural refinement, such as a focused refactoring impetus. Moreover, the im-
pact that code metrics have on our regression models suggests that optimization of
the header files in the hotspot-prone subsystems will yield better results if the focus of
such optimization is on the reduction of file fan-in, rather than of header file size or

the number of includes.

7.7 Limitations and Threats to Validity

In this section, we discuss the limitations and the threats to the validity of our study.

184 CHAPTER 7: BuiLD HOTSPOTS

7.7.1 Limitations

Our approach focuses on the detection and prioritization of header file hotspots, but
does not suggest automatic hotspot refactorings. In this respect, our approach is sim-
ilar to defect prediction, which is used to focus quality assurance effort on the most
defect-prone modules. Furthermore, automatically proposing fixes for hotspots re-
quires domain-specific expertise. For example, an automatically generated build de-
pendency graph refactoring may fix hotspots in theory, but in practice may require an
infeasibly complex restructuring of the system, reducing other desirable properties of
a software system like understandability and maintainability. Further work is needed

to find a balance between these forces.

An experienced developer may have an intuition about which header files are hotspots,
but such a view would be coloured by his or her individual perspective. Moreover,
our hotspot detection approach provides automated support to ground developers’
intuition with data and through routine reapplication of our approach, a development

team can monitor improvement or deterioration of hotspots over time.

7.7.2 Construct Validity

Since build systems evolve [4, 67], the BDG itself will change as a software system ages,
which may cause the rebuild cost of each file to fluctuate. For simplicity sake, our
simulation experiment in Section 7.5 projects a constant build cost for each change.
Nonetheless, our technique is lightweight enough to recalculate rebuild costs after each

change to the build system.

SECTION 7.7: LIMITATIONS AND THREATS TO VALIDITY 185

7.7.3 Internal Validity

Since one can only execute a build system for a concrete configuration, we only study
a single configuration for each studied system. Unfortunately, once a target configura-
tion is selected, areas of the code that are not related to the selected software features
will not be exercised by the build process. For example, since we focus on the Linux
environment, Windows-specific code will be omitted during the build process. A static
analysis of build specifications, such as that of Tamrawi et al. [101] could be used to de-
rive BDGs (and could easily be plugged into our approach), however appropriate edge
weights need to be defined and calculated for them.

The header file hotspot heuristic assumes that header files that have a high rebuild
cost only become build performance problems when they change frequently. Poor
build performance in infrequently changing header files still poses a lingering threat
to build performance. However, the approach allows practitioners to configure the

hotspot quadrant thresholds to match their build performance requirements.

7.7.4 External Validity

We focus our case study on four open source systems, which threatens the generaliz-
ability of our case study results. However, we studied a variety of systems with different
sizes and domain to combat potential bias.

The build systems of the studied systems rely on make specifications, which may
bias our case study results towards such technologies. However, our approach is ag-
nostic of the underlying build system, operating on a build dependency graph, which

can be extracted from any build system. Furthermore, our study focuses on header file

186 CHAPTER 7: BuiLD HOTSPOTS

hotspots, which are a property of C/C++ systems for which make-based build systems
are the de facto standard (c¢f. Chapter 4).

The thresholds that we selected for the quadrant plots threaten the reliability of
our case study results. Use of different thresholds will produce different quadrants, and
thus, different header file hotspots. However, we believe that our selected elapsed time
thresholds are representative, since the values were derived from the literature [36, 45].
Moreover, we use the median for the rate of change threshold — a metric that is resilient

to outliers.

7.8 Chapter Summary

Developers rely on the build system to produce testable deliverables in a timely fash-
ion. A fast build system is at the heart of modern software development. However,
software systems are large and complex, often being composed of thousands of source
code files that must be carefully translated into deliverables in a timely fashion by the
build system. As software projects age, their build systems tend to grow in size and
complexity, making build profiling and performance analysis challenging.

In this chapter, we propose an approach for pinpointing build hotspots by ana-
lyzing the build dependency graph and the change history of a software system. Our
approach can be used to prioritize build optimization effort, allowing teams to focus
effort on the files that will deliver the most value in return. The empirical study of this

chapter sets out to explore the following question:

Central Question: Which files should development teams optimize first to improve
build performance the most? Which properties of hotspot files should development
teams focus optimization effort on?

SECTION 7.8: CHAPTER SUMMARY 187

Through a case study on four open source systems, we show that:

e The build hotspot approach highlights header files that, if optimized, yield more
improvement in the future total rebuild cost than just the header files that trigger
the slowest rebuild processes, change the most frequently, or are used the most

throughout the codebase (Section 7.5).

* Regression models are capable of explaining between 32%-57% of the detected

hotspots using code layout and content properties of the header files (Section 7.6).

* Inlarge projects, build optimization benefits more from architectural refinement

than from acting on code properties like header file fan-in alone (Section 7.6).

CHAPTER 8

Conclusions and Future Work

Key CONCEPT

The benefits provided by the build sys-
tem come at a cost — build systems in-

troduce overhead on the software de-
velopment process.

The software build system has long been at the heart of the software development
process. The rapid pace at which modern software is developed has raised the profile
of the build system. A quick and robust build system has become critical infrastructure

that organizations need in order to keep pace with market competitors.

On the other hand, the benefits provided by the build system come at a cost —
build systems introduce overhead on the software development process. In this thesis,
we empirically study the software development overhead introduced by the mainte-
nance and execution of build systems. In the remainder of this section, we outline the

contributions of this thesis and lay out promising avenues for future research.

188

SECTION 8.1: CONTRIBUTIONS AND FINDINGS 189

8.1 Contributions and Findings

The overarching goal of this thesis is to better understand the factors that influence the
overhead introduced by the build system. To do so, we leverage data stored in software

repositories and within the build system itself. Broadly speaking, we find that:

Thesis Statement: The overhead introduced by the build system is an important
issue that development teams need to manage. Historical data extracted from soft-
ware repositories and facts extracted from the build system itself can inform organi-
zational decisions that aim to mitigate this overhead.

We investigate the overhead introduced by build systems in four empirical studies.

Below, we reiterate the main findings of this thesis:

1. Build Technology Choice: Although modern technologies like Maven provide
additional features that older technologies like make do not, they tend to require
additional maintenance activity that teams should be aware of when making tech-

nology choices (Chapter 4).

2. Cloning in Build Specifications: Build cloning is a commonly used solution
to build system maintenance problems. Typical cloning rates in build systems
are much higher than those of other software artifacts (Chapter 5). Nonethe-
less, there are commonly-adopted patterns of build system implementation that
leverage creative means of abstraction that can keep build cloning rates under

control.

3. Drivers of Build Co-Change: Accurate classifiers can be trained to identify the
source and test code changes that will require accompanying build changes (Chap-

ter 6). These classifiers are especially accurate for changes to C/C++ code.

190 CHAPTER 8: CONCLUSIONS AND FUTURE WORK

4. Identifying and Understanding Build Hotspots: We propose an approach to
detect build hotspots, i.e., files that rebuild slowly and change often (Chapter 7).
Through a simulation exercise, we demonstrate that if these hotspot files were
optimized, they would yield more improvement in time spent building than op-
timizing the files that rebuild the slowest, change the most frequently, or are used
the most throughout the codebase. Moreover, logistic regression models can
accurately explain the incidence of build hotspots using only code and layout
properties of files (Chapter 7). Furthermore, in large systems, build optimiza-
tion would benefit more from focusing on architectural refinement than acting

on code properties like fan-in.

Surprisingly, we find that the more modern build technologies tend to require addi-
tional maintenance activity (Chapter 4) and tend be more prone to cloning (Chapter 5)
than the older studied technologies. At first glance, this may seem like a grim observa-
tion. However, we believe that this indicates that the additional features provided by
more modern technologies are not free of cost. Organizations should consider these
additional costs when determining which build technologies are appropriate for their

software systems.

8.2 Opportunities for Future Research

Although we believe that this thesis has made a positive contribution toward under-
standing the overhead introduced by build systems, there is plenty of room for future

research. Below, we outline several promising avenues for future work.

SECTION 8.2: OPPORTUNITIES FOR FUTURE RESEARCH 191

8.2.1 The Impact of Cloning on Build Maintenance

While we have seen the shortcomings of a clone-based build system design at Mu-
nich Re, we do not know to what extent it can be generalized. For example, it could
be that different types of build specification information have differences in change-
proneness. Clones in some areas (e.g. construction) could be more problematic than
in others (e.g. configuration). Analysis of the evolution of clones in build systems could

help to further our knowledge.

8.2.2 Understanding Build Co-Change

Our findings in Chapter 6 suggest that most C++ build changes and at least the code-
related Java build changes can indeed be predicted using characteristics of correspond-
ing changes to source and test code. However, we find that much more of the build
co-change in Java and web-driven code tends to be related to other roles in the de-
velopment process (e.g., release engineering, quality assurance). Hence, to improve
the performance of our co-change classifiers for release engineers, build maintainers,
and quality assurance personnel, future work should explore metrics related to build

structure and platform configuration.

8.2.3 Combining Hotspot Detection with Automated Refactoring

Our approach focuses on the detection and prioritization of header file hotspots, but
does not suggest automatic hotspot refactorings. In this respect, our approach is sim-

ilar to defect prediction, which is used to focus quality assurance effort on the most

192 CHAPTER 8: CONCLUSIONS AND FUTURE WORK

defect-prone modules. Automatically proposing fixes for hotspots may require domain-
specific expertise. For example, an automatically generated build dependency graph
refactoring may fix hotspots in theory, but in practice may require an infeasibly com-
plex restructuring of the system, reducing other properties of a software system like
comprehension and maintenance. Further work is needed to find a balance between

these forces.

8.2.4 Build Parallelism Bottlenecks

As the speed of computer processors stagnate, developers rely more and more on par-
allel processing in order to optimize software system performance. The same is true for
build processes, which increasingly rely on distributed and parallel build architectures
in order to improve build performance. Yet the speedup achieved by parallel build pro-
cesses is limited by the dependency structure of the system being constructed. Thus,
files in the build process may act like bottlenecks that slow the build process down. In
future work, we plan to analyze the graph of dependencies described by the build sys-
tem in order to identify bottlenecks that prevent parallel builds from achieving larger

speedups.

8.2.5 Enhancing Software Analyses using Build Data

While this thesis has focused on the various ways that the build system introduces over-
head on the software development process, the build system contains plenty of useful
information that researchers can leverage to complement analyses of software systems.
For example, in recent work, we mine traces of build executions to identify potential

software licensing violations [106]. The potential violations identified by our approach

SECTION 8.2: OPPORTUNITIES FOR FUTURE RESEARCH 193

are of immense practical value, generating rapid reactionary measures in several open
source systems.

The data contained in the build system can also be used to enhance other types
of software analysis. For example, impact analysis of defects is of growing importance
in the field of software defect prediction. The build system can be used to aid in im-
pact analysis by not only identifying the deliverables that are impacted by a defect, but
also by identifying the impacted configurations of the software (e.g., Windows vs. Mac
OS X). The intuition behind this approach would be that a defect that impacts many
deliverables in many configurations has a higher impact than one that impacts few

deliverables and configurations.

Bibliography

(1]

(6]

B. Adams, S. Bellomo, C. Bird, T. Marshall-Keim, E Khomh, and K. Moir. The
Practice and Future of Release Engineering: A Roundtable with Three Release

Engineers. IEEE Software, 32(2):42-49, 2015. (Cited on page 2)

B. Adams, C. Bird, E Khomh, and K. Moir. 1st International Workshop on Release
Engineering. In Proc. of the 35th Int’l Conf. on Software Engineering (ICSE), pages

1545-1546, 2013. (Cited on page 2)

B. Adams, K. De Schutter, H. Tromp, and W. Meuter. Design recovery and main-
tenance of build systems. In Proc. of the 23rd Int’l Conf. on Software Maintenance

(ICSM), pages 114-123, 2007. (Cited on pages 21, 146, and 162)

B. Adams, K. D. Schutter, H. Tromp, and W. D. Meuter. The Evolution of the Linux
Build System. Electronic Communications of the ECEASST, 8, 2008. (Cited on

pages 5, 24, 30, 87, 116, 119, 146, and 184)

R. Adams, W. Tichy, and A. Weinert. The Cost of Selective Recompilation and En-
vironment Processing. Transactions On Software Engineering and Methodology

(TOSEM), 3(1):3-28, January 1994. (Cited on page 27)

J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen. Fault Localization for Build Code
194

BIBLIOGRAPHY 195

Errors in Makefiles. In Proc. of the 36th Int’l Conf. on Software Engineering (ICSE),

pages 600-601, 2014. (Cited on page 21)

J. Al-Kofahi, H. V. Nguyen, and T. N. Nguyen. Fault Localization for Make-Based
Build Crashes. In Proc. of the 30th Int’l Conf. on Software Maintenance and Evo-

lution (ICSME), pages 526-530, 2014. (Cited on page 21)

]J. M. Al-Kofahi, H. V. Nguyen, A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. De-
tecting Semantic Changes in Makefile Build Code. In Proc. of the 28th Int’l Conf.

on Software Maintenance (ICSM), pages 150-159, 2012. (Cited on page 21)

T. L. Alves, C. Ypma, and J. Visser. Deriving Metric Thresholds from Benchmark
Data. In Proc. of the 26th Int’l Conf. on Software Maintenance (ICSM), pages 1-10,

2010. (Cited on page 100)

J. Anvik, L. Hiew, and G. C. Murphy. Coping with an Open Bug Repository. In
Proc. of the OOPSLA workshop on Eclipse technology eXchange, pages 35-39, 2005.

(Cited on page 1)

B. S. Baker. On Finding Duplication and Near-Duplication in Large Software Sys-
tems. In Proc. of the 2nd Working Conf. on Reverse Engineering (WCRE), pages

86-95,1995. (Cited on page 104)

R. Barandela, J. Sanchez, V. Garcia, and E Ferri. Learning from Imbalanced sets
through resampling and weighting. In Proc. of the Ist Iberian Conf. on Pattern

Recognition and Image Analysis (IbPRIA), 2003. (Cited on page 132)

D. E Bauer. Constructing Confidence Sets Using Rank Statistics. Journal of the

American Statistical Association, 67(339):687-690, 1972. (Cited on page 56)

196

BIBLIOGRAPHY

(14]

[15]

[16]

(18]

T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. Variability Modeling
in the Real: A Perspective from the Operating Systems Domain. In Proc. of the
25th Int’l Conf. on Automated Software Engineering (ASE), 2010. (Cited on page

23)

C. Bird, A. Bachmann, E. Aune, J. Dufty, A. Bernstein, V. Filkov, and P. Devanbu.
Fair and Balanced? Bias in Bug-Fix Datasets. In Proc. of the 7th joint meeting of the
European Software Engineering Conf. and the Symposium on the Foundations of

Software Engineering (ESEC/FSE), pages 121-130, 2009. (Cited on pages 81 and 128)

C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu. The
Promises and Perils of Mining Git. In Proc. of the 6th Working Conf. on Mining

Software Repositories (MSR), 2009. (Cited on page 62)

L. Breiman. Random Forests. Machine Learning, 45(1):5-32, 2001. (Cited on pages

130 and 136)

]. Buffenbarger. Adding Automatic Dependency Processing to Makefile-Based
Build Systems with Amake. In Proc. of the Ist Int’'l Workshop on RELease ENGi-

neering (RELENG), pages 1-4, 2013. (Cited on page 21)

D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. Scatterplot Ma-
trix Techniques for Large N. Journal of the Amarican Statistical Association,

82(398):424-436, 1987. (Cited on page 97)

M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb. Software Dependencies,
Work Dependencies, and Their Impact on Failures. Transactions on Software En-

gineering (TSE), 35(6):864-878, 2009. (Cited on pages 175 and 178)

BIBLIOGRAPHY 197

(21]

(25]

(26]

(27]

(28]

J. M. Chambers and T. J. Hastie, editors. Statistical Models in S, chapter 4.

Wadsworth and Brooks/Cole, 1992. (Cited on page 177)

P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.

Addison-Wesley, 2002. (Cited on page 23)

W. Cunningham. The WyCash Portfolio Management System. In Addendum to
the Proc. of the 7th Conf. on Object-Oriented Programming Systems, Languages,

and Applications (OOPSLA), pages 29-30, 1992. (Cited on page 26)

H. Dayani-Fard, Y. Yu, J. Mylopoulos, and P. Andritsos. Improving the Build Archi-
tecture of Legacy C/C++ Software Systems. In Proc. of the 8th Int’l Conf. on Fun-
damental Approaches to Software Engineering (FASE), pages 96-110, 2005. (Cited

on pages 27, 163, and 171)

M. de Jonge. Decoupling source trees into build-level components. In J. Bosch
and C. Krueger, editors, Proc of the 8th Int’l Conf. on Software Reuse (ICSR), vol-

ume 3107 of LNCS, pages 215-231. Springer-Verlag, July 2004. (Cited on page 23)

M. de Jonge. Build-level components. Transactions on Software Engineering

(TSE), 31(7):588-600, 2005. (Cited on page 23)

E Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M. y Parareda, and
M. Pizka. Tool Support for Continuous Quality Control. IEEE Software, 25(5):60—

67, 2008. (Cited on page 99)

C. Dietrich, R. Tartler, W. Schroder-Preikschat, and D. Lohmann. A Robust Ap-

proach for Variability Extraction from the Linux Build System. In Proc. of the 16th

198

BIBLIOGRAPHY

[29]

(30]

(32]

(33]

Int’l Software Product Line Conference (SPLC), pages 21-30, 2012. (Cited on page

24)

M. Dmitriev. Language-Specific Make Technology for the Java Programming Lan-
guage. In Proc. of the 17th Conf. on Object-Oriented Programming, Systems, Lan-

guages & Applications (OOPSLA). ACM, 2002. (Cited on pages 110 and 142)

]J. Downs, B. Plimmer, and J. G. Hosking. Ambient Awareness of Build Status in
Collocated Software Teams. In Proc. of the 34th Int’l Conf. on Software Engineer-

ing (ICSE), pages 507-517, 2012. (Cited on page 25)

S. Ducasse, M. Rieger, and S. Demeyer. A Language Independent Approach for
Detecting Duplicated Code. In Proc. of the 15th Int’l Conf. on Software Mainte-

nance (ICSM), 1999. (Cited on pages 104 and 116)

P. M. Duvall, S. Matyas, and A. Glover. Continuous Integration: Improving Soft-

ware Quality and Reducing Risk. Pearson Education, 2007. (Cited on page 2)

C. Elsner, D. Lohmann, and W. Schrdoder-Preikschat. An Infrastructure for Com-
posing Build Systems of Software Product Lines. In Proc. of the 15th Int’l Software
Product Line Conference (SPLC), volume 2, pages 18:1-18:8, 2011. (Cited on page

23)

[34] A. Estabrooks and N. Japkowicz. A mixture-of-experts framework for learning

[35]

from imbalanced data sets. In Proc. of the 4th Int. Conf. on Advances in Intelligent

Data Analysis (IDA), pages 34-43, 2001. (Cited on page 132)

S. Feldman. Make - a program for maintaining computer programs. Software -

BIBLIOGRAPHY 199

(36]

[37]

(38]

[39]

(40]

Practice and Experience, 9(4):255-265,1979. (Cited on pages 14, 22, 27, 32, 149, 150,

and 210)

A.R.H.Fischer, EJ.]J. Blommaert, and C.J. H. Midden. Monitoring and evaluation
of time delay. Int’l Journal of Human-Computer Interaction, 19(2):163-180, 2005.

(Cited on pages 167 and 186)

J. Fox. Applied Regression Analysis and Generalized Linear Models. Sage Publica-

tions, 2™ edition, 2008. (Cited on page 177)

H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on product
release history. In Proc. of the 14th Int’l Conf. on Software Maintenance (ICSM),

pages 190-198, 1998. (Cited on page 62)

S. Grant, J. R. Cordy, and D. B. Skillicorn. Reverse Engineering Co-maintenance
Relationships Using Conceptual Analysis of Source Code. In Proc. of the 18th
Working Conf. on Reverse Engineering (WCRE), pages 87-91, 2011. (Cited on page

146)

T. L. Graves, A. E Karr, J. S. Marron, and H. Siy. Predicting Fault Incidence using
Software Change History. Transactions on Software Engineering (TSE), 26(7):653—

661, 2000. (Cited on page 55)

R. Hardt and E. V. Munson. Ant Build Maintence with Formiga. In Proc. of the 1st
Int’l Workshop on RELease ENGineering (RELENG), pages 13-16, 2013. (Cited on

page 21)

200

BIBLIOGRAPHY

[42] A.E.Hassan and K. Zhang. Using Decision Trees to Predict the Certification Re-

[44]

sult of a Build. In Proc. of the 21st Int’l Conf. on Automated Software Engineering

(ASE), pages 189-198, 2006. (Cited on pages 7, 25, 26, 120, and 121)

I. Herraiz, G. Robles, J. Gonzalez-Barahona, A. Capiluppi, and J. Ramil. Com-
parison between SLOCs and number of files as size metrics for software evolu-
tion analysis. In Proc. of the 10th European Conf. on Software Maintenance and

Reengineering (CSMR), pages 213-221, 2006. (Cited on page 47)

L. Hochstein and Y. Jiao. The cost of the build tax in scientific software. In Proc.
of the 5th International Symposium on Empirical Software Engineering and Mea-

surement (ESEM), pages 384-387, 2011. (Cited on pages 5 and 33)

[45] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation. Addison-Wesley, 2010. (Cited on pages

2,18, 27, 42,150, 163, and 186)

[46] W.Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and A. E. Hassan. Should I con-

[47]

(48]

tribute to this discussion? In Proc. of the 7th working conf. on Mining Software

Repositories (MSR), 2010. (Cited on pages 121 and 132)

E.Juergens, E Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz, S. Wagner, C. Do-
mann, and J. Streit. Can Clone Detection Support Quality Assessments of Re-
quirements Specifications? In Proc. of the 32nd Int’l Conf. on Software Engineer-

ing (ICSE), volume 2, pages 79-88, 2010. (Cited on page 104)

E.Juergens, E Deissenboeck, B. Hummel, and S. Wagner. Do Code Clones Matter?

BIBLIOGRAPHY 201

[49]

[50]

[51]

[52]

[53]

[54]

In Proc. of the 31st Int’l Conf. on Software Engineering (ICSE), pages 485-495, 20009.

(Cited on pages 6, 24, 94, and 115)

T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multilinguistic Token-Based
Code Clone Detection System for Large Scale Source Code. Transactions on Soft-

ware Engineering (TSE), 28(7):654-670, 2002. (Cited on page 104)

P. Kampstra. Beanplot: A boxplot alternative for visual comparison of distribu-
tions. Journal of Statistical Software, Code Snippets, 28(1):1-9, 2008. (Cited on

page 128)

C.J. Kasper and M. W. Godfrey. “Cloning considered harmful” considered harm-
ful: patterns of cloning in software. Empirical Software Engineering, 13(6):645—

692, 2008. (Cited on pages 24, 25, and 115)

N. Kerzazi, E Khomh, and B. Adams. Why do Automated Builds Break? An Empir-
ical Study. In Proc. of the 30th Int’l Conf. on Software Maintenance and Evolution

(ICSME), pages 41-50, 2014. (Cited on pages 25 and 120)

E Khombh, B. Chan, Y. Zou, and A. E. Hassan. An Entropy Evaluation Approach
for Triaging Field Crashes: A Case Study of Mozilla Firefox. In Proc. of the 18th
Working Conf. on Reverse Engineering (WCRE), pages 261-270, 2011. (Cited on

page 159)

P. Knab, M. Pinzger, and A. Bernstein. Predicting Defect Densities in Source Code
Files with Decision Tree Learners. In Proc. of the 3rd Int’l Workshop on Mining

Software Repositories (MSR), pages 119-125, 2006. (Cited on page 121)

202

BIBLIOGRAPHY

[55] A.Koenig. Patterns and antipatterns, pages 383-389. Cambridge University, 1998.

[59]

[60]

(Cited on page 6)

K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and M. Bernstein. Pattern
Matching for Clone and Concept Detection. Automated Software Engineering,

3(1-2):77-108, 1996. (Cited on page 104)

R. Koschke. Survey of research on software clones. In Duplication, Redundancy,
and Similarity in Software. Dagstuhl Seminar Proceedings, 2007. (Cited on pages

24 and 91)

G. Kumfert and T. Epperly. Software in the DOE: The Hidden Overhead of “The
Build”. Technical Report UCRL-ID-147343, Lawrence Livermore National Labo-

ratory, CA, USA, 2002. (Cited on page 5)

I. Kwan, A. Schroter, and D. Damian. Does Socio-Technical Congruence Have An
Effect on Software Build Success? A Study of Coordination in a Software Project?
Transactions on Software Engineering (TSE), 37(3):307-324, May/June 2011. (Cited

on pages 25 and 120)

B. Lagué, D. Proulx, E. M. Merlo, J. Mayrand, and J. Hudepohl. Assessing the
Benefits of Incorporating Function Clone Detection in a Development Process.
In Proc. of the 13th Int’'l Conf. on Software Maintenance (ICSM), pages 314-321,

1997. (Cited on page 104)

[61] J.Lakos. Large-Scale C++ Software Design. Addison-Wesley, 1996. (Cited on pages

153 and 163)

BIBLIOGRAPHY 203

[62]

[63]

(64]

[66]

R. Lawrence. The space efficience of XML. Information and Software Technology

(IST), 46(11):753-759, 2004. (Cited on page 61)

Linden Labs. CMake. http://wiki.secondlife.com/wiki/CMake, July 2010.

Last viewed: 20-Aug-2010. (Cited on page 75)

D. H. Martin, J. R. Cordy, B. Adams, and G. Antoniol. Make It Simple — An Empir-
ical Analysis of GNU Make Feature Use in Open Source Projects. In Proc. of the
23rd Int’'l Conf. on Program Comprehension (ICPC), 2015. To appear. (Cited on

page 21)

K. Martin and B. Hoffman. Mastering CMake, 5th Edition. Kitware Inc., Clifton

Park, NY, USA, 2009. (Cited on page 111)

S. McIntosh, B. Adams, and A. E. Hassan. The Evolution of ANT Build Systems.
In Proc. of the 7th Working Conf. on Mining Software Repositories (MSR), pages

42-51, 2010. (Cited on pages 5 and 146)

S. McIntosh, B. Adams, and A. E. Hassan. The evolution of Java build systems.
Empirical Software Engineering, 17(4-5):578-608, August 2012. (Cited on pages 5,

30, 55, 87, 113, 116, 119, 140, 146, and 184)

S. MclIntosh, B. Adams, M. Nagappan, and A. E. Hassan. Mining Co-Change In-
formation to Understand when Build Changes are Necessary. In Proc. of the 30th
Int’l Conf. on Software Maintenance and Evolution (ICSME), pages 241-250, 2014.

(Cited on page 119)

http://wiki.secondlife.com/wiki/CMake

204

BIBLIOGRAPHY

(69]

[70]

[72]

[73]

[74]

S. McIntosh, B. Adams, M. Nagappan, and A. E. Hassan. Identifying and Under-
standing Header File Hotspots in C/C++ Build Processes. Automated Software

Engineering, In press, 2015. (Cited on page 149)

S. McIntosh, B. Adams, T. H. D. Nguyen, Y. Kamei, and A. E. Hassan. An Empirical
Study of Build Maintenance Effort. In Proc. of the 33rd Int’l Conf. on Software
Engineering (ICSE), pages 141-150, 2011. (Cited on pages 3, 5, 28, 30, 34, 39, 62, 81,

98, 119, 125, 126, and 146)

S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The Impact of Code Review
Coverage and Code Review Participation on Software Quality: A Case Study of the
QT, VIK, and ITK Projects. In Proc. of the 11th Working Conf. on Mining Software

Repositories (MSR), pages 192-201, 2014. (Cited on page 18)

S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. E. Hassan. A Large-
Scale Empirical Study of the Relationship between Build Technology and Build

Maintenance. Empirical Software Engineering, In press, 2015. (Cited on page 30)

S. McIntosh, M. Poehlmann, E. Juergens, A. Mockus, B. Adams, A. E. Hassan,
B. Haupt, and C. Wagner. Collecting and Leveraging a Benchmark of Build System
Clones to Aid in Quality Assessments. In Proc. of the 36th Int’l Conf. on Software

Engineering (ICSE), pages 115-124, 2014. (Cited on page 87)

P. Miller. Recursive make considered harmful. In Australian Unix User Group

Neuwsletter, volume 19, pages 14-25,1998. (Cited on pages 24, 32, 53, and 111)

R. G. Miller. Simultaneous Statistical Inference. Springer, 1981. (Cited on page

47)

BIBLIOGRAPHY 205

[76]

[77]

[79]

(80]

(81]

(82]

A. Mockus. Software support tools and experimental work. In Proc. of the Int’l
Conf. on Empirical Software Engineering Issues: Critical Assessment and Future

Directions, pages 91-99, 2007. (Cited on pages 35 and 96)

A. Mockus. Amassing and indexing a large sample of version control systems:
Towards the census of public source code history. In Proc. of the 6th Working
Conf. on Mining Software Repositories (MSR), pages 11-20, 2009. (Cited on pages

23, 36, 96, and 97)

A. Mockus. Organizational Volatility and its Effects on Software Defects. In Proc.
of the 18th Symposium on the Foundations of Software Engineering (FSE), pages

117-126, 2010. (Cited on page 175)

A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software Quality
Analysis by Code Clones in Industrial Legacy Software. In Proc. of the 8th Int’l

Symposium on Software Metrics, pages 87-94, 2002. (Cited on page 104)

]J. D. Morgenthaler, M. Gridney, R. Sauciuc, and S. Bhansali. Searching for Build
Debt: Experiences Managing Technical Debt at Google. In Proc. of the 3rd Int’l
Workshop on Managing Technical Debt (MTD), pages 1-6, 2012. (Cited on page

26)

S. Nadi, T. Berger, C. Késtner, and K. Czarnecki. Mining Configuration Con-
straints: Static Analyses and Empirical Results. In Proc. of the 36th Int’l Conf.

on Software Engineering (ICSE), pages 140-151, 2014. (Cited on page 24)

S. Nadi, C. Dietrich, R. Tartler, R. C. Holt, and D. Lohmann. Linux Variability

Anomalies: What Causes Them and How Do They Get Fixed? In Proc. of the 10th

206

BIBLIOGRAPHY

(83]

(84]

(85]

(86]

(88]

Working Conf. on Mining Software Repositories (MSR), pages 111-120, 2013. (Cited

on page 26)

S. Nadi and R. Holt. Make it or Break it: Mining Anomalies in Linux Kbuild. In
Proc. of the 18th Working Conf. on Reverse Engineering (WCRE), pages 315-324,

2011. (Cited on page 21)

S. Nadi and R. Holt. Mining Kbuild to Detect Variability Anomalies in Linux.
In Proc. of the 16th European Conf. on Software Maintenance and Reengineering

(CSMR), pages 107-116, 2012. (Cited on page 21)

S. Nadi and R. Holt. The Linux kernel: a case study of build system variability.
Journal of Software: Evolution and Practice (JSEP), 26(8):730-746, 2014. (Cited on

page 21)

A. Neitsch, K. Wong, and M. W. Godfrey. Build System Issues in Multilanguage
Software. In Proc. of the 28th Int’l Conf. on Software Maintenance, pages 140-149,

2012. (Cited on pages 2, 21, 25, and 99)

G. V. Neville-Neal. Kode vicious: System changes and side effects. Communica-

tions of the ACM, 52(4):25-26, April 2009. (Cited on page 2)

T. H. D. Nguyen, B. Adams, and A. E. Hassan. A Case Study of Bias in Bug-Fix
Datasets. In Proc. of the 17th Working Conf. on Reverse Engineering (WCRE), pages

259-268, 2010. (Cited on pages 81 and 128)

L. Passos, J. Guo, L. Teixeira, K. Czarnecki, A. Wasowski, and P. Borba. Coevolution

of Variability Models and Related Artifacts: A Case Study from the Linux Kernel.

BIBLIOGRAPHY 207

[90]

[92]

In Proc. of the 17th Software Product Line Conference (SPLC), pages 91-100, 2013.

(Cited on page 24)

S. Phillips, T. Zimmermann, and C. Bird. Understanding and Improving Software
Build Teams. In Proc. of the 36th Int’l Conf. on Software Engineering (ICSE), pages

735-744, 2014. (Cited on page 5)

R Core Team. R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria, 2013. (Cited on page 177)

E Rahman, C. Bird, and P. Devanbu. Clones: what is that smell? Empirical Soft-

ware Engineering, 17(4-5):503-530, 2012. (Cited on pages 24 and 115)

[93] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall. Mining Software Evolution

[94]

[95]

to Predict Refactoring. In Proc. of the Ist Int’l Symposium on Empirical Software

Engineering and Measurement (ESEM), pages 354-363, 2007. (Cited on page 121)

C.K.Royand]. R. Cordy. A survey on software clone detection research. Technical

Report 541, Queen’s University at Kingston, 2007. (Cited on pages 24 and 91)

H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge. Programmers’
Build Errors: A Case Study (at Google). In Proc. of the 36th Int’l Conf. on Software

Engineering (ICSE), pages 724-734, 2014. (Cited on pages 25, 26, 27, and 120)

E. Shihab, A. Thara, Y. Kamei, W. M. Ibrahim, M. Ohira, B. Adams, A. E. Hassan,
and K. ichi Matsumoto. Predicting Re-opened Bugs: A Case Study on the Eclipse
Project. In Proc. of the 17th Working Conf. on Reverse Engineering (WCRE), pages

249-258, 2010. (Cited on page 121)

208

BIBLIOGRAPHY

[97]

(98]

[99]

(100]

(101]

E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E. Hassan. Understanding
the Impact of Code and Process Metrics on Post-Release Defects: A Case Study
on the Eclipse Project. In Proc. of the 4th Int’l Symposium on Empirical Software

Engineering and Measurement (ESEM), pages 1-10, 2010. (Cited on page 175)

M. Shridhar, B. Adams, and E Khomh. A Qualitative Analysis of Software Build
System Changes and Build Ownership Styles. In Proc. of the 8th Int’l Symposium
on Empirical Software Engineering and Measurement (ESEM), pages 29:1-29:10,

2014. (Cited on page 26)

P. Smith. Software Build Systems: Principles and Experience. Addison-Wesley, 1st

edition, March 2011. (Cited on pages 2, 14, 21, 22, and 99)

R. Suvorov, M. Nagappan, A. E. Hassan, Y. Zou, and B. Adams. An Empirical Study
of Build System Migrations in Practice: Case Studies on KDE and the Linux Ker-
nel. In Proc. of the 28th Int’l Conf. on Software Maintenance (ICSM), pages 160-169,

2012. (Cited on pages 5, 22, 24, 31, 34, 69, and 76)

A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. Nguyen. Build Code Analysis
with Symbolic Evaluation. In Proc. of the 34th Int’l Conf. on Software Engineering

(ICSE), pages 650-660, 2012. (Cited on pages 21 and 185)

(102] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen. SYMake: A Build

Code Analysis and Refactoring Tool for Makefiles. In Proc. of the 27th Int’l Conf.
on Automated Software Engineering (ASE), pages 366-369, 2012. (Cited on page

21)

BIBLIOGRAPHY 209

(103]

(104]

[105]

(106]

(107]

(108]

[109]

A.Telea and L. Voinea. A Tool for Optimizing the Build Performance of Large Soft-
ware Code Bases. In Proc. of the 12th European Conf. on Software Maintenance

and Reengineering (CSMR), pages 323-325, 2008. (Cited on page 27)

Q. Tu and M. W. Godfrey. The Build-Time Software Architecture View. In Proc. of
the 17th Int’l Conf. on Software Maintenance (ICSM), pages 398-407, 2001. (Cited

on pages 23 and 167)

H. Unphon. Making Use of Architecture throughout the Software Life Cycle - How
the Build Hierarchy can Facilitate Product Line Development. In Proc. of the 4th
Int’l Workshop on SHAring and Reusing architectural Knowledge (SHARK), pages

41-48, 2009. (Cited on page 23)

S. van der Burg, E. Dolstra, S. McIntosh, J. Davies, D. M. German, and A. Hemel.
Tracing Software Build Processes to Uncover License Compliance Inconsisten-
cies. In Proc. of the 29th Int’l Conf. on Automated Software Engineering (ASE),

pages 731-741, 2014. (Cited on page 192)

T. van der Storm. Backtracking Incremental Continuous Integration. In Proc.
of the 12th European Conf. on Software Maintenance and Reengineering (CSMR),

pages 233-242, 2008. (Cited on page 25)

T. Wolf, A. Schréter, D. Damian, and T. Nguyen. Predicting build failures using so-
cial network analysis on developer communication. In Proc. of the 31st Int’l Conf.
on Software Engineering (ICSE), pages 1-11, Washington, DC, USA, 2009. (Cited

on page 143)

X. Xia, X. Zhou, D. Lo, and X. Zhao. An Empirical Study of Bugs in Software Build

210

APPENDIX 8: BIBLIOGRAPHY

(110]

[111]

(112]

(113]

(114]

Systems. In Proc. of the 13th Int’l Conf. on Quality Software (QSIC), pages 200-203,

2013. (Cited on page 21)

X. Xia, X. Zhou, D. Lo, X. Zhao, and Y. Wang. An Empirical Study of Bugs in
Software Build System. [EICE Transactions on Information and Systems, E97-

D(7):1769-1780, 2014. (Cited on page 21)

Y. Yu, H. Dayani-Fard, and J. Mylopoulos. Removing False Code Dependencies to
Speedup Software Build Processes. In Proc. of the 13th IBM Centre for Advanced
Studies Conference (CASCON), pages 343-352, 2003. (Cited on pages 27, 163, 166,

169, 176, and 182)

Y. Yu, H. Dayani-Fard, J. Mylopoulos, and P. Andritsos. Reducing Build Time
Through Precompilations for Evolving Large Software. In Proc. of the 21st Int’]l
Conf. on Software Maintenance (ICSM), pages 59-68, 2005. (Cited on pages 27,

163, and 169)

E. Zadok. Overhauling Amd for the 00s: A Case Study of GNU Autotools. In Proc.
of the FREENIX Track on the USENIX Technical Conf., pages 287-297. USENIX As-

sociation, 2002. (Cited on page 22)

T. Zimmermann and P. Weissgerber. Preprocessing CVS Data for Fine-Grained
Analysis. In Proc. of the 1st Int’l Workshop on Mining Software Repositories (MSR),

pages 2-6, 2004. (Cited on page 81)

APPENDIX A

Build Technology Examples

In this appendix, we briefly describe how each of the studied technologies can be used

to specify a simple build system.

A.l Low-Level

Figure A.1 provides working examples of the five studied low-level build technologies.

A.1l.1 Make

One of the earliest build technologies on record is Feldman’s make tool [35], which auto-
matically synchronizes program sources with deliverables. Make specifications outline
target-dependency-recipe tuples. Targets specify files created by a recipe, i.e., a shell
script that is executed when the target either: (1) does not exist, or (2) is older than one
or more of its dependencies, i.e., a list of other files and targets.

The make specification snippet in Figure A.1a describes three target-dependency-
recipe tuples. Lines 2, 4, and 7 list targets to the left of the colons and dependency lists

to the right. Recipes are specified for the main.o and example targets on lines 5 and

211

212

APPENDIX A: BUiLD TECHNOLOGY EXAMPLES

rule LinkRule {

<project name="example">

Depends $(1) : $(2) ;
N <target name="compile">
Link $(1) : $(2) ; <j§vac P
i destdir="classes"
R : srcdir="src"
actions Link { includes="#**/%. java"
.PHONY: all gcc -o $(1) $(2) />
all: example s </target>
example: main.o rule CompileRule { <t t
gcc -o example main.o Depends $(1) : $(2) ; ::i:="link"
Compile $(1) : $(2) ; depends="compile"
main.o: main.c s S
gcc -c main.c <jar
actions Compile { jarfile="example. jar"
(a) Make gee -¢ -0 $(1) $(2) basedir="classes"
} />
< >
LinkRule example : main.o ; </ i;é:s:z
CompileRule main.o : main.c ; proj
(b) Jam (C) Ant
env = Environment (CXX = "g++")
: => [:
srcs = Split("main.cc) task :default [:utest]
. _ . _ task :utest do
objects env.0Object (source srcs) ruby utest.rb
t = env.Program(target="example", source=objects) end

Default (t)

(d) SCons

(e) Rake

Figure A.1: Example low-level technology specifications.

8. Line 1 of Figure A.la specifies that the all target is phony, representing an abstract

phase in the build process rather than a concrete file in the filesystem.

A.l.2 Jam

Jam provides a more procedural-style structure for target-dependency-recipe tuples.
Figure A.1b shows how rules (the equivalent of make tuples) can be specified (lines 1-4
and 10-13). Dependencies are expressed by invoking the built-in Depends rule on lines
2and 11. Jam actions (the equivalent of make recipes) for C compilation and object code

linking are defined on lines 6-8 and 15-17 respectively.

SecTION A.l: LOW-LEVEL 213

A.l.3 Ant

Antborrows the (phony) target-dependency-recipe concept frommake, however all Ant
targets are abstract. When an Ant target is triggered, a list of specified fasks (the equiv-
alent of make recipes) are invoked. Ant tasks execute Java code rather than shell scripts

to synchronize sources with deliverables.

Figure A.1c shows an Ant specification that describes two targets, i.e., compile (lines
2-8) and 1ink (lines 10-18). The compile target invokes the javac task (lines 3-7), which
executes the javac compiler. The 1ink target invokes the jar task (lines 14-17), which
executes the jar command. The dependency between the 1ink and compile targets

is expressed on line 12 using the depends target attribute.

A.1.4 SCons

SCons provides several advanced build system features (e.g., implicit dependency track-
ing for header files in popular programming languages) and allows maintainers to write
highly portable build specifications using Python. Line 7 of Figure A.1d shows how a bi-
nary example can be assembled from object code. Line 5 shows how object code can
be generated using SCons built-in support for C++ compilation. Environmental set-
tings (e.g., compilers, linkers, and flags) are automatically detected, however parame-
ters passed to the Environment () function call will override the detected settings, as

shown on line 1.

214 APPENDIX A: BUiLD TECHNOLOGY EXAMPLES

AC_INIT([examplel, [1.0])

AM_INIT_AUTOMAKE cmake_minimum_required (VERSION 2.6)
AC_PROG_CC bin_PROGRAMS = example project (Example)

AC_CONFIG_HEADERS ([config.hl) example_SOURCES = main.c

AC_CONFIG_FILES ([Makefilel) add_executable (example main.cc)
AC_OUTPUT (b) Autotools (Au-

CMak
(a) Autotools (Autoconf) tomake) (c) CMake

Figure A.2: Example abstraction-based technology specifications.

A.1l.5 Rake

Rake is a modern build tool with advanced support for building Ruby applications.
Similar to SCons, Rake specifications are written in a high-level scripting language (i.e.,
Ruby), to give build maintainers the power to express complex relationships and trans-
formations in a highly portable language. Similar to Ant, Rake tfasks (the equivalent of
targets in make) are abstract.

The example snippet in Figure A.le shows how a unit testing task utest can be spec-
ified (lines 3-5). Line 4 describes the recipe that is executed when utest is triggered.

Line 1 specifies that the default target depends upon the utest target.

A.2 Abstraction-Based

Figure A.2 provides working examples of the two studied abstraction-based technolo-

gies (cf. Section 2.2.2).

A.2.1 Autotools

GNU Autotools specifications describe external and internal dependencies, config-
urable compile-time features, and platform requirements. These specifications are

parsed to generate make specifications that satisfy the described constraints.

SECTION A.3: FRAMEWORK-DRIVEN 215

Autotools is actually a large collection of build tools that work together to generate
build systems according to specifications. Two of the most commonly used tools are
autoconf and automake, for which we provide example specifications in Figures A.2a
and A.2b respectively. Lines 1 and 2 of Figure A.2a initialize the autoconf environment,
specifying that our project name is example version 1.0 and that automake is also nec-
essary. Line 3 specifies an environment dependency on a C compiler, while lines 4
and 5 request that the configuration step store preprocessor directives in a file named
config.h, and store the build system implementation in a file called Makefile. Line 1
of Figure A.2b specifies that a deliverable called example should be constructed during
the build process and that it should be deployed in the bin directory. Line 2 states that

main.c is a source file that should be compiled and linked into the example binary.

A.2.2 CMake

Similar to Autotools, CMake abstractions can be used to generate make specifications,
but can also generate Microsoft Visual Studio and Apple Xcode project files. Figure A.2c
specifies that a build system should be generated to produce a binary called exampleby
compiling and linkingmain. cc (line 4) as a part of a project called Example (line 2). Line

1 denotes that CMake version 2.6 (or later) should be used to parse the specification.

A.3 Framework-Driven

Below we describe the studied Maven framework-driven technology (cf. Section 2.2.3).

216

APPENDIX A: BUiLD TECHNOLOGY EXAMPLES

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>

an.example.application

</groupld>
<artifactId>example</artifactId>
<packaging>jar</packaging>
<version>1.0</version>
<name >example </name >

<ivy-module version="2.0">
<info
organisation="example"
module="application"

<build> />
<plug1n§ > <dependencies>
<plugin> <dependency
<groupld>) org="junit"
org.apache.maven.plugins name="junit"
</groupld> rev="3.8.1"
<artifactId> />

maven-compiler -plugin
</artifactId>
<version>2.3.2</version>
<configuration>

<source>1.5</source> (b) IVY

<target>1.7</target>
</configuration>

</dependencies>
</ivy-module>

</plugin>
</plugins>
</bu§1351n source "https://rubygems.org"
<dependencies> . W e .
<dependency > gem ”rake ; r-10.0.f
gem "rspec", "2.13.0

<groupId>junit</groupIld>
<artifactId>junit</artifactId>

<version>3.8.1</version> (C) Bundler

</dependency >
</dependencies>
</project>

(a) Maven

Figure A.3: Example Framework-driven and dependency management technology
specifications.

A.3.1 Maven

Maven assumes that source and test files are placed in defaultlocations and that projects
adhere to a typical Java dependency policy, unless otherwise specified. If projects abide
by the conventions, Maven can infer build behaviour automatically without any ex-
plicit specification. For example, Figure A.3a does not specify a location for source or
output files. Convention specifies that source and unit test code appear under

src/main/java and src/test/java, respectively.
Lines10-18 of Figure A.3a show how the Maven convention can be overridden through

configuration. The Java compiler is instructed to operate in Java 1.5 source mode (line

15), and generate bytecode that is compatible with the Java 1.7 runtime environment

SECTION A.4: DEPENDENCY MANAGEMENT 217

(line 16).

A.4 Dependency Management

Figure A.3 provides working examples of dependency management in Maven and the

two studied dependency management technologies (cf. Section 2.2.4).

A.4.1 Maven

In addition to providing a framework-driven build environment, Maven doubles as a
dependency management technology. Lines 22-26 of Figure A.3a provide an example

dependency declaration on the JUnit tool, version 3.8.1.

A4.2 Ivy

Ivy provides dependency management features that are most notably leveraged by Ant.
Figure A.3b shows an Ivy specification for the same JUnit dependency as depicted in

Figure A.3a.

A.4.3 Bundler

Bundler provides packaging and dependency management for Ruby applications. Line
1 of Figure A.3c specifies that bundler should download gems, i.e., Ruby packages, from
the given host. Lines 2 and 3 specify dependencies on Rake version 10.0.3 (at least) and

rspec version 2.13.0 (exact).

APPENDIX B

Additional Figures

B.1 Build Technology Choice

We perform longitudinal analyses of the Tukey HSD ranks for each metric in the forges
to complement our median-based analyses in Chapter 4. Figures B.1 and B.2 show only
the first twelve months of history and the top three ranks to improve the readability of

the figures. Unfiltered figures are available online.!

lhttp://sailhome.cs.queensu.ca/replication/shane/PhD/

218

http://sailhome.cs.queensu.ca/replication/shane/PhD/

Rank

Rt R R e

|

_—— -

et TR S

R e 14 v ¢
Build Technology AR
—— Ant R
-/ Autotools
-+ Bundler

- % CMake
- lvy

Rank
N
1

-%- Jam
—#- Makefile
—¥ Maven
4 Rake
+ SCons

4 5

6 7
Month number

T
8

! ! "\
! !

e S T S . W SR
v S
! ! \ \
SN .

i
i

(a) Build commit proportion.

Rank

D . (i S e
1y " B \
1\ §

Month number

(c) Build churn volume.

=
o -
-
©
=
S}
P
N
P —
IS

6 7
Month number

(b) Build change size.

Build Technology
—— Ant

-/~ Autotools
-+ Bundler
<% CMake
-©- vy

-% Jam

-#- Makefile
—¥ Maven
- Rake

+- SCons

Build Technology
—— Ant

-/~ Autotools
-+ Bundler
- CMake
o= lvy

-%- Jam

-#- Makefile
—% Maven
@ Rake

+- SCons

Figure B.1: Monthly build commit proportion, sizes, and churn volume in the studied forges.

'9 NOLLDHS

0I0H)) AD0TONHOA [, aling

61¢

220 APPENDIX B: ADDITIONAL FIGURES

I B e i i e 3

Rank
N
1
#
1
]
X
+
%
g
%
1
1
*
|
*
1
|
X
]

]
%
]
*
1
1
X
+

' L : AN \ AR

dF \ . . ak .
3{ 8 F X é-—--b—e—% It o—& F X

1
i1 2 3 4 5 6 7 8 9 10 11 12
Month number

(a) Logical coupling.

Rank
N
1

Month number

(b) Build author ratio.

Build Technology
—— Ant

-4- Autotools
-+ Bundler
-3 CMake
-/ lvy

-7+ Jam

-#- Makefile
-k Maven
-4 Rake

-+ SCons

Build Technology
—— Ant

-/~ Autotools
-+ Bundler
- CMake
= lvy

-%+ Jam

-~ Makefile
-k Maven
-4+ Rake

-+ SCons

Figure B.2: Monthly source-build coupling and build author ratios in the studied forges.

	Abstract
	Related Publications
	Acknowledgments
	Statement of Originality
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Thesis Overview
	Thesis Contributions
	Thesis Organization

	Background and Definitions
	An Overview of the Typical Build Process
	Build Technology Paradigms
	The Central Role of the Build System
	Chapter Summary

	Related Research
	Maintenance Overhead
	Execution Overhead
	Chapter Summary

	Build Technology Choice
	Introduction
	Empirical Study Design
	Build Technology Adoption
	Build Maintenance
	Build Technology Migration
	Threats to Validity
	Chapter Summary

	Cloning in Build Specifications
	Introduction
	Background and Definitions
	Build Logic Cloning in Industry
	Empirical Study Design
	Deriving Baseline Values
	Understanding Cloned Information
	Threats to Validity
	Chapter Summary

	Drivers of Build Co-Change
	Introduction
	Empirical Study Design
	Mozilla Case Study Results (C++)
	Java Case Study Results
	Threats to Validity
	Chapter Summary

	Build Hotspots
	Introduction
	Build Hotspots
	Hotspot Analysis Approach
	Empirical Study Design
	Evaluation of the Hotspot Detection Approach
	Hotspot Characteristic Analysis
	Limitations and Threats to Validity
	Chapter Summary

	Conclusions and Future Work
	Contributions and Findings
	Opportunities for Future Research

	Build Technology Examples
	Low-Level
	Abstraction-Based
	Framework-Driven
	Dependency Management

	Additional Figures
	Build Technology Choice

