
Quantifying, Characterizing, and Mitigating

the Ghost Commit Problem When

Identifying Fix-Inducing Changes

Christophe Rezk

Department of Electrical & Computer Engineering

McGill University, Montréal

April 15, 2021

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of

Electrical Engineering

©2021 Christophe Rezk

i

Abstract

The approach proposed by Śliwerski, Zimmermann, and Zeller (SZZ) for identifying fix-

inducing changes traces backwards from a commit that fixes a defect to those commits

that are implicated in the fix. This approach is at the heart of studies of characteristics of

fix-inducing changes, as well as the popular Just-in-Time (JIT) variant of defect prediction.

However, some types of commits are invisible to the SZZ approach. We refer to these invisible

commits as “Ghost Commits.” In this thesis, we set out to define, quantify, characterize,

and mitigate ghost commits that impact the SZZ algorithm during its mapping (i.e., linking

defect-fixing commits to those commits that are implicated by the fix) and filtering (i.e.,

removing improbable fix-inducing commits from the set of implicated commits) phases. We

mine the version control repositories of 14 open source Apache projects for instances of

mapping-phase and filtering-phase ghost commits. We find that (1) 5.66%–11.72% of defect-

fixing commits only add lines, and thus, cannot be mapped back to implicated commits;

(2) 1.05%–4.60% of the studied commits only remove lines, and thus, cannot be implicated

in future fixes; and (3) that no implicated commits survive the filtering process of 0.35%–

Abstract ii

14.49% defect-fixing commits. Qualitative analysis of ghost commits reveals that 46.5% of

142 addition-only defect-fixing commits add checks (e.g., null-ness or emptiness checks), while

39.7% of 307 removal-only commits clean up (unused) code. Our results suggest that the

next generation of SZZ improvements should be language-aware to connect ghost commits

to implicated and defect-fixing commits. Based on our observations, we discuss promising

directions for mitigation strategies to address each type of ghost commit. Moreover, we

implement mitigation strategies for addition-only commits and evaluate those strategies with

respect to a baseline approach. The results indicate that our strategies achieve a precision

of 0.753, improving the precision of implicated commits by 39.5 percentage points.

iii

Abrégé

L’approche proposée par Śliwerski, Zimmermann, et Zeller (SZZ) pour identifier les

changements de code qui induisent des corrections trace à l’envers d’un commit qui corrige

un défaut pour trouver des commits qui sont impliqués dans cette correction. Cette

approche est au cœur des études de caractéristiques des changements qui induisent des

corrections, ainsi que la variante populaire de prédiction des défauts “Just in Time” (JIT).

Cependant, certains types de commits sont invisibles à l’approche SZZ. Nous nous référons

à ces commits comme des commits fantôme: “Ghost Commits”. Dans cette thèse, nous

cherchons à définir, quantifier, caractériser et atténuer les commits fantômes qui affectent

l’algorithme SZZ pendant sa phase de traçage (c.-à-d., lier les commits de correction des

défauts aux commits impliqués par le correctif) et sa phase de filtrage (c.-à-d. supprimer

les commits qui sont peu susceptibles d’être a l’origine de la faute corrigée, parmi

l’ensemble des commits impliqués). Nous explorons les dépôts de contrôle de version de 14

projets Apache open source pour identifier des instances de commits fantômes lors des

phases de traçage et de filtrage. Nous constatons que (1) 5,66%–11,72% des commits de

Abrégé iv

correction de défaut n’ajoutent que des lignes, et ne peuvent donc pas être mappés aux

commits impliqués ; (2) 1,05%–4,60% des commits étudiés ne suppriment que des lignes, et

ne peuvent donc pas être impliqués dans des corrections futures ; et (3) qu’aucun commit

impliqué ne survit au processus de filtrage de 0,35%–14,49% de commits de correction de

défaut. Une analyse qualitative des commits fantômes révèle que 46,5% des 142 commits

de correction de défaut ajoutent des contrôles (par exemple, des contrôles de nullité ou de

vide), tandis que 39,7% des 307 commits de suppression nettoient le code (inutilisé). Nos

résultats suggèrent que la prochaine génération d’améliorations SZZ devrait tenir compte

des spécificités des langages de programmation pour connecter les commits fantômes aux

commits impliqués et commits corrigeant les défauts. Sur la base de nos observations, nous

discutons des orientations prometteuses pour les stratégies d’atténuation pour traiter

chaque type de commit fantôme. De plus, nous mettons en œuvre des stratégies

d’atténuation pour les commits d’ajout seulement et nous les évaluons comparés à une

approche de base. Les résultats indiquent que nos stratégies atteignent une précision de

0,753, améliorant la précision de l’identification des commits impliqués de 39,5 points de

pourcentage.

v

Acknowledgements

First and foremost, I would like to express my thanks and gratitude to my supervisor, Dr.

Shane McIntosh for his unwavering support of my research and for his guidance and patience

over the course of my degree. I extend my thanks to Dr. Foutse Khomh for reviewing this

thesis.

I wouldn’t have been able to accomplish this without my parents. Thank you for your

unconditional love and support throughout my life.

I’m grateful to all of the Software Rebels at the lab, Farida El Zanaty, Ray Wen, Keheliya

Gallaba, and Noam Rabbani, for the “great” coffee, conversations, and comradeship.

Last but not least, thank you to all my friends for the words of encouragement over the

years. Special thanks to Wei-Di for his help with the French translation.

vi

Related Publications

An earlier version of the work in this thesis is under review after a major revision in the

IEEE Transactions on Software Engineering:

The Ghost Commit Problem When Identifying Fix-Inducing Changes: An Empirical Study

of Apache Projects. Christophe Rezk, Yasutaka Kamei, and Shane McIntosh. IEEE

Transactions on Software Engineering (TSE), Major Revision Under Review (TSE-2020-

07-0289.R1).

vii

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Thesis Overview . 3

1.3 Thesis Contributions . 5

1.4 Thesis Organization . 7

2 Background 9

2.1 Identifying Defect-Fixing Commits . 11

2.1.1 (I 1) Merge Issues & Conflicts . 11

2.1.2 Ghost Commit 0 (GC 0) . 12

2.2 Mapping . 12

2.2.1 (M 1) Map Defect-Fixing Commits to Implicated Changes 13

2.2.2 Mapping Ghost 1 (MG 1) . 13

2.2.3 Mapping Ghost 2 (MG 2) . 14

Contents viii

2.3 Filtering . 15

2.3.1 (F 1) Apply Issue Report Date Filter 17

2.3.2 (F 2) Apply Content Filters . 17

2.3.3 (F 3) Apply Suspiciousness Filters . 17

2.3.4 Filtering Ghost (FG) . 18

2.4 Chapter Summary . 18

3 Related Work 19

3.1 Fix-Inducing Changes . 19

3.2 Limitations of the SZZ Approach . 21

3.3 Chapter Summary . 22

4 Quantification and Characterization 24

4.1 Corpus of Software Projects . 26

4.2 Data Extraction . 29

4.2.1 (DE 1) Extract Issue Properties . 29

4.2.2 (DE 2) Extract Commit Properties 29

4.2.3 (DE 3) Remove Non-Code Changes 30

4.3 Data Analysis . 30

4.3.1 (DA 1) Analyze GC Frequency . 30

4.3.2 (DA 2) Analyze GC Root Cause . 31

Contents ix

4.4 Defect Fixes with No Implicated Commits (MG 1) 32

4.4.1 Quantification . 32

4.4.2 Characterization . 33

4.5 Commits that Cannot be Mapped to Fixes (MG 2) 34

4.5.1 Quantification . 34

4.5.2 Characterization . 34

4.6 Defect-Fixing Commits with No Implicated Commits That Survive Filtering

(FG) . 38

4.6.1 Quantification . 38

4.6.2 Characterization . 39

4.7 Chapter Summary . 40

5 Mitigation 41

5.1 Mitigation Analysis . 42

5.1.1 (M 1) Apply Data Flow Analysis . 42

5.1.2 (M 2) Apply Baseline Approach . 43

5.1.3 (M 3) Perform Comparative Analysis 43

5.1.4 (M 4) Perform Precision Analysis . 44

5.2 Maintenance Type Analysis . 44

5.2.1 (MT 1) Perform Maintenance Type Analysis 44

5.3 MG 1 Mitigation Strategies . 45

Contents x

5.3.1 Check . 45

5.3.2 New Entity . 47

5.3.3 Configuration . 48

5.3.4 Override . 49

5.3.5 Logging . 51

5.3.6 Expanding Class . 52

5.4 MG 1 Mitigation Strategies Evaluation . 53

5.4.1 Comparative Analysis . 53

5.4.2 Precision Analysis . 54

5.5 MG 1 Maintenance Type Analysis Evaluation 55

5.6 Chapter Summary . 55

6 Threats to Validity 57

6.1 Construct Validity: . 57

6.2 Internal Validity . 58

6.3 External Validity . 59

7 Conclusion 60

7.1 Contributions and Findings . 60

7.2 Opportunities for Future Research . 62

7.2.1 Promising Directions for Future Work on MG 2 62

xi

7.2.2 Promising Directions for Future Work on FG 63

7.2.3 Mitigation Strategies as SZZ Filters 63

xii

List of Figures

1.1 An overview of the scope of this thesis. 4

2.1 An overview of the phases of the SZZ approach. Mapping Ghosts (MG 1,

MG 2) are identified in the Mapping phase, while Filtering Ghosts (FG) are

identified in the Filtering phase. These phases are described in Sections 2.1–2.3. 10

2.2 An example of a Mapping Ghost 1. Defect-fixing commit 4adc8e4 from the

ActiveMQ project. 13

2.3 An example of a Mapping Ghost 2. Commit c10e8d2 from the Hbase project. 14

4.1 An overview of the Quantification and Characterization phases of our case

study: extracting the data needed for SZZ, applying SZZ, and analyzing the

ghost commits detected. These phases are described in Section 4.2 and

Section 4.3. 27

4.2 An example of a FG. 38

5.1 The mitigation and maintenance type analyses performed for MG 1 commits 42

xiii

List of Tables

2.1 An overview of commonly applied SZZ filters. 16

3.1 An overview of past work addressing SZZ Limitations. 23

4.1 An overview of the subject projects and Ghost Commits’ frequency. 25

4.2 The categories of MG 1. Percentages are of the overall sample unless indented

to indicate category values. Definitions appear in Section 4.4.2. 32

4.3 The categories of MG 2. Percentages are of the overall sample unless indented

to indicate category values. Definitions appear in Section 4.5.2. 35

4.4 The filtering ghosts removed by each step of the filtering process. 38

1

Chapter 1

Introduction

Over the lifetime of evolving software projects, defects are inadvertently introduced during

initial development [1], refactoring [2], or when fixing other defects [3]. Identifying changes

that are likely to induce future fixes could save developers’ time and effort. Additionally,

deepening our understanding of these fix-inducing changes and recognizing recurring patterns

can help teams to anticipate when changes are likely to induce fixes in the future.

The approach proposed by Śliwerski, Zimmermann, and Zeller (SZZ) for identifying

fix-inducing changes [4] mines Version Control Systems (VCSs) and Issue Tracking Systems

(ITSs) to trace a defect-fixing change back to potential fix-inducing changes that are

implicated in the fix. The SZZ approach starts by identifying defect-fixing commits by

matching a bug report from the ITS to the commit that fixes it. Defect-fixing commits are

then mapped to implicated changes by extracting the set of removed lines and tracing them

1. Introduction 2

through the VCS to the commit(s) that last modified them. Finally, potential fix-inducing

commits are filtered to eliminate those that should not be implicated in the fix (e.g.,

implicated changes that appeared after the defect creation date). The surviving implicated

commits are labelled as fix-inducing commits [4].

1.1 Problem Statement

While the SZZ approach plays a pivotal role in understanding and predicting fix-inducing

changes, it is not without limitations. At its core, the SZZ approach relies on heuristics to

handle noisy software repository data; however, there are commits that these heuristics

cannot detect. We refer to these invisible commits as ghost commits, which impact (at

least) two phases of the SZZ approach. First, Mapping Ghosts are commits that cannot be

detected when connecting defect-fixing commits to potential fix-inducing ones. Second,

Filtering Ghosts are defect-fixing commits for which no fix-inducing change survives the

filtering phase.

Thesis statement: Ghost commits are an important source of potential noise for

SZZ-based analyses. Should they be prevalent, SZZ-based analyses may yield misleading

conclusions. Mitigation strategies that exploit data flow analysis can improve the accuracy

of SZZ approaches.

1. Introduction 3

Through empirical analyses, this thesis sets out to better understand (1) the gravity and

nature of the ghost commit problem; and (2) the effectiveness of strategies that mitigate the

incidences of ghost commits. The first goal is achieved through quantitative and qualitative

lenses of analysis that quantify and characterize the ghost commit problem in 14 open-

source systems from the Apache Software Foundation (ASF). To tackle the second goal, we

propose data flow extensions to the SZZ approach that are informed by our quantification

and characterization of ghost commits. We benchmark the performance of these approaches

against a literature-inspired baseline [5] in a manually curated data set.

1.2 Thesis Overview

Figure 1.1 provides an overview of the scope of this thesis. To begin, we provide the necessary

background material for our topic (blue squares).

Chapter 2: Background

Before discussing the limitations of the SZZ algorithm, we provide readers with the

background knowledge and definitions of terms used throughout the thesis.

Chapter 3: Related Work

To situate this thesis with respect to the literature, we present an overview of prior

research in the field and explain what differentiates this thesis from prior research.

Following that, we shift our attention to the main body of the thesis (green squares in

1. Introduction 4

The Ghost Commit problem when identifying fix-inducing changes

Background

Chapter 2:
Background

Chapter 3:
Related Work

Empirical
Studies

Chapter 4:
Quantifying and
characterizing
ghost commits

Chapter 5:
Mitigating ghost

commits

Potential
Outcomes

SZZ-generated
data sets of higher
quality that yield

more robust
insights

Understanding the
gravity and nature

of the ghost commit
problem "in the

wild"

Research Topic

Figure 1.1: An overview of the scope of this thesis.

Figure 1.1). We address current limitations in the mapping and filtering phases of the SZZ

algorithm by investigating the prevalence and nature of ghost commits.

Chapter 4: Quantification and Characterization

To understand the prevalence of ghost commits in defect-fix datasets, we conduct an

empirical study of 14 open source projects from the Apache Software Foundation. We

quantify the occurrence of ghost commits in these projects, and characterize ghost

commits using an open coding [6] based method, which yields a taxonomy of ghost

commit properties.

Chapter 5: Mitigation

1. Introduction 5

We propose data flow-based strategies to mitigate the occurrence of the most frequently

occurring type of ghost commit. We evaluate these strategies against a syntax-based

baseline approach [5], which applies SZZ to the lines within the closest surrounding code

block, by comparing how often both approaches implicate the same commit. Moreover,

we manually analyze the implicated commits of both approaches to assess whether

they truly could have been fix inducing. Finally, we study the type of maintenance

activity performed by these ghost commits by classifying them according to Swanson’s

taxonomy [7].

1.3 Thesis Contributions

We group the contributions of this thesis by ghost commit type (Chapter 4) and by the

results of our mitigation and maintenance type analyses (Chapter 5). This thesis shows

that:

• Mapping Ghost 1 (MG 1): Defect-fixing commits with no implicated

commits

– Quantification: 5.66%–11.72% of defect-fixing commits in the subject systems only

add lines, with a median of 7.64%.

– Characterization: MG 1 most often contain new Checks (44.6%), i.e., new if

conditions or try-catch blocks. Often, such checks were omitted by prior

1. Introduction 6

changes, which ideally would have been implicated in the corresponding fixes.

• Mapping Ghost 2 (MG 2): Commits that cannot be implicated in future

fixes

– Quantification: 1.05%–4.60% of commits in the subject systems contain line

removals only, with a median of 2.68%.

– Characterization: Cleanup of unnecessary code is the most frequently occurring

reason (39.7%) for MG 2. Such cleanup activities are not risk-free. For example,

the infamous left-pad incident,1 which caused numerous Node.js applications to

fail was caused by the removal of code.

• Filtering Ghost (FG): Defect-fixing commits with no implicated commits

that survive filtering (FG)

– Quantification: 0.35%–14.49% of defect-fixing commits in the subject systems are

FG, with a median of 5.46%.

– Characterization: FG commits are most often related to the issue report date

filter (35%). Deeper analysis suggests that the date filter is too aggressive because

follow-up fixes are often linked to the same issue ID as the initial work.

• Mitigation
1https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

1. Introduction 7

– Comparative Analysis: Both our approach and the baseline implicate identical

commits 21.1% of the time and share at least one commonly implicated commit

in 73.2% of the remaining cases.

– Precision Analysis: The precision of the Control Flow approach is 0.753, while

the precision of the baseline approach is 0.358. Indeed, the data flow approach is

likely more precise because it avoids implicated benign lines that appear within

the surrounding code block.

• Maintenance Type

The vast majority (92.4%) of MG 1 commits are corrective, while 5.7% are adaptive,

and 2.1% are perfective.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides an overview of the

SZZ approach and illustrates the ghost commit problem. Chapter 3 situates and differentiates

our work with respect to the literature. Chapter 4 describes the design of our empirical

study for the quantification and characterization of ghost commits and presents our results.

Chapter 5 describes the design of our mitigation and maintenance analyses of ghost commits

and presents our results. Chapter 6 discusses the threats to the validity of our empirical

study. Finally, Chapter 7 draws conclusions and discusses promising directions for future

1. Introduction 8

work.

9

Chapter 2

Background

In this chapter, we present the stages of the SZZ approach and how ghost commits can

impact SZZ-based analyses. Figure 2.1 contains an overview of the SZZ approach, which (i)

merges issues and commits to identify defect-fixing commits (Section 2.1); (ii) maps defect-

fixing commits back to prior changes that are implicated by the fix (Section 2.2); and (iii)

applies a series of filters to remove implicated changes that are unlikely to have induced the

fix (Section 2.3).

2. Background 102. Background 102. Background 10

(I 1)
Merge Issues

& Commits SZZ Input
Data

Commits
Identifying Defect-Fixing

Mapping

(M 1)
Map Bug-

Fixing
Commits to
Implicated
Changes

SZZ
Mapped

Data

Filtering

(F 1)
Apply Issue
Report Date

Filter

(F 2)
Apply

Content
Filters

(F 3)
Apply

Suspiciousness
Filters

SZZ
Filtered
Data 1

SZZ
Filtered
Data 2

MG 1,2 FGGC 0

Figure 2.1: An overview of the phases of the SZZ approach. Mapping Ghosts (MG 1, MG 2) are identified in
the Mapping phase, while Filtering Ghosts (FG) are identified in the Filtering phase. These phases are described
in Sections 2.1–2.3.

2. Background 11

2.1 Identifying Defect-Fixing Commits

The first stage identifies which commits in the Version Control System (VCS) are defect

fixing. The assumption being that the occurrence of a fix implies the existence of a defect

prior to the fix.

2.1.1 (I 1) Merge Issues & Conflicts

Issue reports in the Issue Tracking System (ITS) track the development activity backlog for

a project. These reports contain rich (meta)data about development tasks, including a Type

field, which may be “Defect” or “Enhancement,” for example.

In a nutshell, commits that are linked to issue reports of type “Defect” are considered

to be defect fixing. Unfortunately, the links between VCS and ITS entries are not explicitly

enforced by either tool by default. Recent integrated toolsets, such as GitLab, offer

workflows1 that enforce linking between issues and commits; however, for projects that

have not fully adopted a toolset like GitLab, it is a common practice for developers to

manually record links between commits and issue reports in commit messages. For

example, commit ae90791 from the Pig project includes the message “PIG-5118 Script

fails with Invalid dag containing 0 vertices rohini” to indicate that the commit is associated

with the issue report PIG-5118. Thus, to identify defect-fixing commits, one must identify

the VCS-ITS linkage practices of the subject systems, then recover the VCS-ITS links
1https://docs.gitlab.com/ee/topics/gitlab_flow.html

https://docs.gitlab.com/ee/topics/gitlab_flow.html

2. Background 12

using repository mining scripts.

2.1.2 Ghost Commit 0 (GC 0)

Only the VCS commits that have a recovered link to an ITS record of type “Defect” are

included in the SZZ data set. Since link recording practices are rarely enforced, developers

may omit necessary links without receiving a warning from the VCS or ITS. Thus, SZZ

implementations may miss defect-fixing commits where links were omitted. We refer to such

missing defect-fixing commits as Ghost Commit 0 (GC 0).

GC 0 has been defined and studied in prior work [8–10]. Bird et al. [8] report that linkage

bias in datasets compromises the validity of software models built using those datasets.

Nguyen et al. [9] find that linkage bias in datasets exists even when strict guidelines are

enforced on the development process. Wu et al. [10] propose Relink, a VCS-ITS link recovery

tool to rebuild missing links and mitigate linkage bias. Given that GC 0 is already well

understood, we do not investigate it further in this thesis.

2.2 Mapping

After VCS-ITS links have been recovered, commits that are implicated in defect-fixing

commits can be identified. This mapping step produces a database, which stores links

between defect-fixing and potential fix-inducing commits.

2. Background 13

Figure 2.2: An example of a Mapping Ghost 1. Defect-fixing commit 4adc8e4 from the
ActiveMQ project.

2.2.1 (M 1) Map Defect-Fixing Commits to Implicated Changes

For each defect-fixing commit, its removed lines are selected using the diff command. Next,

the parent commit(s) of each removed line are identified using the blame command. Note

that modifying a line registers as a removal and an addition. Thus, analyzing removed lines

covers cases when code is removed or modified.

2.2.2 Mapping Ghost 1 (MG 1)

The SZZ approach maps defect-fixing commits to fix-inducing commits by locating the most

recent commit to change the lines that were removed by the fixing commit [4]. However,

since the mapping step traces lines that previously existed, defect-fixing commits that do not

remove or modify lines cannot be mapped to implicated commits. In theory, a defect-fixing

commit may be entirely comprised of line additions; yet these these commits may have been

induced by prior changes. Hence, gaining a better understanding of defect fixes that only

add lines is important for those who adopt the SZZ approach.

2. Background 14

Figure 2.3: An example of a Mapping Ghost 2. Commit c10e8d2 from the Hbase project.

We refer to defect-fixing commits that do not remove or modify lines as Mapping Ghost

type 1 (MG 1). For example, Figure 2.2 shows that commit 4adc8e42 from the ActiveMQ

project fixes a defect by interrupting the socketHandlerThread to cleanly shut down an

embedded broker.

2.2.3 Mapping Ghost 2 (MG 2)

Commits that only remove lines cannot be implicated by SZZ through invoking the blame

command in future defect-fixing activity, since no lines remain in the codebase to which

future activities can be mapped. In reality, these commits may be fix-inducing, since the

removal of an incorrect line (or set of lines) can wreak havoc on a software system. Studying

the frequency and characteristics of removal-only commits will show the magnitude of their

potential impact on SZZ-based analyses. We refer to commits that do not add any new lines

of code as Mapping Ghost type 2 (MG 2). For example, Figure 2.3 shows that in commit
2https://github.com/apache/activemq/commit/4adc8e4/

https://github.com/apache/activemq/commit/4adc8e4/

2. Background 15

c10e8d23 from the Hbase project, the removal of the createWriterInTmp method may lead

to a defect fix in the future.

2.3 Filtering

Next, a series of filters are applied to remove commits that could not or are unlikely to have

led to the future fix. This filtering stage reduces the sets of implicated commits to those

that are likely to be fix inducing. In this stage, there may be defect-fixing commits for which

all potentially fix-inducing commits are filtered out. Since these defect-fixing commits are

not associated with any fix-inducing commits, it is important for those who adopt SZZ in

research and practice to better understand their frequency and characteristics.

Table 2.1 provides an overview of six commonly applied SZZ filters. Below, we describe

each filter in detail.

3https://github.com/apache/hbase/commit/c10e8d2/

https://github.com/apache/hbase/commit/c10e8d2/

2. Background 162. Background 162. Background 16

Shorthand Name Description Rationale
f1 Issue Report Date Filter commits made after Commits made after a defect are

a defect was reported unlikely to lead to a defect
f2 Comments Filter Filter comment-only commits Non-code changes cannot lead to defects
f3 Whitespace Filter Filter whitespace-only commits Non-code changes cannot lead to defects
f4 Size Filter Filter large commits greater Large commits are likely to be

than 100 files or 10,000 lines routine maintenance
f5 Suspiciousness Filter 1 Filter commits that fix many defects One commit is unlikely to fix

so many defects
f6 Suspiciousness Filter 2 Filter commits that induce many defects One commit is unlikely to lead

to so many defects

Table 2.1: An overview of commonly applied SZZ filters.

2. Background 17

2.3.1 (F 1) Apply Issue Report Date Filter

Implicated commits that appear after a defect has been reported are unlikely to have induced

the fix. To mitigate such noise, researchers apply filters to discard such implicated commits

(f1) [4]. To do so, we use the --after:<date> flag of the blame command, where <date> is

the defect creation date. However, if no modifications were made to a line after the specified

date, the ∧ character is prepended to the output.

2.3.2 (F 2) Apply Content Filters

To mitigate such noise, researchers apply content filters to ignore implicated commits that

update comments (f2) or whitespace (f3) [11].

Routine maintenance updates often modify a large number of files or lines of code (e.g.,

updates to coding style). Such commits are another source of noise in SZZ data. To mitigate

the impact of this, researchers often filter out large commits. For example, McIntosh and

Kamei [12] filter out commits that change more than 100 files or 10,000 lines (f4).

2.3.3 (F 3) Apply Suspiciousness Filters

Developers routinely address issues one at a time, which is why multiple issues being fixed

by a single commit is suspicious. Similarly, a commit that induces a large number of future

fixes is suspicious, since it is unlikely that one change would be so problematic.

To filter out these suspicious commits, da Costa et al. [1] propose a framework. Their

2. Background 18

implementation of the framework for Apache projects uses the project-specific thresholds of

the upper Median Absolute Deviation (MAD) [13] of the number of issues that a commit

fixes (f5) and the upper MAD of the number of fixes a change induces (f6).

2.3.4 Filtering Ghost (FG)

It is possible that, for a given defect-fixing commit, no implicated commits survive the

filtering stages (f1–f6). We refer to these defect-fixing commits as Filtering Ghosts (FGs).

FGs are problematic because no implicated commits can be associated with them. Thus,

models that are trained using SZZ data will not be able to identify the commits that induce

them.

2.4 Chapter Summary

While this chapter describes the basic SZZ approach and defines the ghost commits of interest

for this thesis, it is not yet clear how this work contributes to the literature in the area.

Therefore, the next chapter situates this work with respect to prior studies of fix-inducing

changes and the algorithms used to identify them.

19

Chapter 3

Related Work

Fix-inducing changes have been the subject of considerable research. Since teams have

limited resources, identifying changes are likely to be buggy can help with time and effort

allocation. The SZZ approach [4] plays a crucial role in such allocation efforts. In this

chapter, we present the related work on fix-inducing changes and the limitations of SZZ.

3.1 Fix-Inducing Changes

The SZZ approach has been used to study properties of fix-inducing changes in several

settings. For example, the seminal paper [4] used SZZ to study the day of the week when

fix-inducing changes tended to appear. Eyolfson et al. [14] used SZZ to study the hour of

the day when fix-inducing changes tended to appear. SZZ has also been used to detect and

characterize defect-fix patterns [15], to study how long defects survive [16,17], and to study

3. Related Work 20

the links between fix-inducing changes and (a) code authorship [18], (b) code clones [19],

and (c) faulty defect fixes [20].

SZZ is also at the core of Just-In-Time defect prediction, a term coined by Kamei et

al. [21], which describes a popular variant of change-level defect prediction. Mockus and

Weiss [22] used various change properties to predict risky code changes at Bell Labs. Kim

et al. [23] and Kamei et al. [21] expanded upon the set of metrics, including those that

were computed using VCS and ITS data, and analyzed a broader set of projects, including

swaths of open source and proprietary projects. Kononenko et al. [24] further expanded upon

the metric set to include code reviewing data. JIT defect prediction has been deployed in

industrial settings at Cisco [25], Blackberry [26], and Avaya [22] to name a few.

In recent years, as improvements to machine learning technology have appeared, JIT

defect prediction has also been improved. To address the cold-start problem for software

analytics, Kamei et al. [27] studied the efficacy of cross-project JIT defect prediction. Yang

et al. [28] propose Deeper, which uses deep learning techniques to train JIT models.

While the prior work has made important contributions, it is built upon the underlying

SZZ approach, which classifies changes as fix-inducing or clean. In this thesis, we focus on

risks to the completeness of SZZ data, quantifying and characterizing that risk in 14 open

source ASF projects.

3. Related Work 21

3.2 Limitations of the SZZ Approach

This thesis is not the first to propose improvements to the SZZ approach. Table 3.1 presents

an overview of past work studying SZZ limitations and improvements.

Kim et al. [11] introduced an improvement to SZZ that uses annotation graphs as opposed

to the annotate (i.e., blame) command. Moreover, the approach filters out style changes.

Williams and Spacco [29, 30] proposed adding weights to the SZZ mapping technique, as

well as using the DiffJ1 tool to disregard formatting changes when comparing code files.

Neto et al. [31] proposed an SZZ implementation that ignores refactoring changes, since

those are unlikely to introduce defects. Contributing to this line of work, we propose several

language-aware improvements to SZZ (see Chapter 5) to improve the completeness (recall)

of SZZ-generated data.

Past work has also raised concerns about the risks of modelling defect data using SZZ.

For example, da Costa et al. [1] evaluated several variants of the SZZ approach using

suspiciousness filters based on the earliest defect appearance, the future impact of a change,

and the realism of defect introduction. This work differs from that of da Costa et al. in

that we focus on increasing the recall of SZZ data by defining ghost commits and studying

strategies to capture them.

Rosa et al. [32] use Natural Language Processing (NLP) to identify defect-fixing commits

where defect-inducing commits are directly referenced and introduce a “developer-informed”
1http://www.incava.org/projects/diffj

http://www.incava.org/projects/diffj

3. Related Work 22

oracle that can be used to evaluate SZZ variants. Whereas Rosa et al. set out to evaluate

how existing SZZ signals measure up with respect to developer-informed data, we set out to

investigate commit data that is currently overlooked by SZZ.

Rodriguez-Perez et al. [33–35] introduce the concept of extrinsic defects to describe defects

that should not have an implicated code change. There is an interesting interplay between

the extrinsic/intrinsic classification proposed by Rodriguez-Perez et al. [35], which focuses

on the nature of the defects being fixed, and the ghost commit concept we propose in this

work, which focuses on the commits that currently slip through the mapping and filtering

stages of the SZZ algorithm. We study the relationship between extrinsic/intrinsic defects

and ghost commits in Chapter 5.

3.3 Chapter Summary

In this chapter, we first present an overview of the literature on fix-inducing changes,

demonstrating that it is a topic that has been extensively studied. Following that, we

outline related work that has addressed the limitations of the SZZ approach and highlight

how this thesis differs from it. In the next chapter, we address our first two research

objectives: the quantification and characterization of ghost commits.

3. Related Work 233. Related Work 233. Related Work 23

Publication SZZ Limitation Addressed Contribution
Kim et al. [11] Non-semantic changes are identified as defect-fixing Use an automated approach with annotation graphs
Williams and Spacco [29] Annotation graphs are imprecise at tracking lines Use a weighted line mapping approach to track unique lines

Non-semantic changes are inaccurately identified Use the DiffJ tool to ignore only non-semantic changes
Neto et al. [31] Refactoring changes are flagged as defect-inducing Introduce a refactoring-aware SZZ implementation
Da Costa et al. [1] Techniques to evaluate SZZ-generated data are limited Introduce a framework to evaluate SZZ-generated data
Perez et al. [33–35] Not all defects are introduced by a specific commit Introduce an approach to explore different causes of defects
Rosa et al. [32] Evaluations of SZZ implementations are unreliable Introduce a developer-informed oracle for the evaluation of SZZ variants
This thesis Certain (ghost) commits are overlooked by SZZ Quantify, characterize, and mitigate ghost commits

Table 3.1: An overview of past work addressing SZZ Limitations.

24

Chapter 4

Quantification and Characterization

The goal of this thesis is to better understand the extent to which the ghost commit problem

impacts SZZ data of real software projects, and what mitigation strategies might be useful.

In working towards these goals, we formulate three concrete research objectives. This chapter

addresses the first two objectives:

Objective 1: Quantification. Our first objective is to measure how often ghost commits

occur. While Chapter 2 defines ghost commits, it is unclear if they occur often enough

to be of concern for users of SZZ.

Objective 2: Characterization. Our second objective is to study the properties of ghost

commits. Specific development activities may be disproportionately responsible for

generating ghost commits. Knowing these tendencies may help researchers to propose

solutions and practitioners to avoid generating ghost commits.

4. Quantification and Characterization 25

Project Size Commits Issues Linkage MG 1 MG 2 FG
(LOC) Issues

Commits
(%) (%) (%)

ActiveMQ 0.087 mil 9,945 5,138 51.66% 7.55% 2.35% 5.58%
Ambari 3.8 mil 23,901 23,346 97.68% 7.73% 1.55% 13.59%
Camel 2.6 mil 31,726 17,072 53.81% 9.44% 2.14% 6.64%
Cayenne 0.563 mil 5,897 3,248 55.08% 5.91% 2.70% 5.43%
Derby 1.4 mil 8,180 6,791 83.02% 7.74% 4.60% 9.41%
Hbase 1.3 mil 14,099 12,701 90.08% 7.42% 2.18% 6.43%
Hive 2.6 mil 12,548 12,132 96.68% 9.23% 1.67% 14.49%
Jackrabbit 4.3 mil 8,517 5,563 65.32% 7.33% 3.36% 0.35%
Karaf 0.281 mil 7,042 4,689 66.59% 10.45% 1.80% 1.77%
OpenJPA 0.837 mil 4,861 3,231 66.47% 6.56% 1.72% 9.02%
Pig 0.581 mil 3,152 2,932 93.02% 8.57% 1.05% 5.49%
Qpid 0.246 mil 14,181 7,659 54.01% 7.42% 3.56% 2.13%
Sling 1.1 mil 21,668 12,168 56.16% 5.66% 2.38% 1.34%
Thrift 0.466 mil 5,305 3,340 62.96% 11.72% 2.68% 1.06%
Mean 1.4 mil 12,216 8,572 70.90% 8.05% 2.41% 5.25%
Median 997 K 9,231 6,177 65.89% 7.64% 2.68% 5.46%

Table 4.1: An overview of the subject projects and Ghost Commits’ frequency.

To tackle these objectives, we conduct an empirical study of repository data from open

source projects. Figure 4.1 provides an overview of our study approach for Objectives 1

and 2. In the following sections, we present our rationale for selecting our subject projects

(Section 4.1), as well as our approaches to data extraction and analysis (Sections 4.2 and 4.3).

Following that, we present the results of our quantification and characterization analysis for

MG 1 (Section 4.4), MG 2 (Section 4.5), and FG (Section 4.6).

4. Quantification and Characterization 26

4.1 Corpus of Software Projects

We study 14 projects from the Apache Software Foundation (ASF). Similar to Munaiah et

al. [36], we identify criteria that must be satisfied by our subject projects.

Criterion 1: Replicability. We want to ensure that our study can be replicated (and

extended) by researchers. To reduce barriers to access of the raw data, we select

subject projects whose software repositories (VCS, ITS) are freely and openly available

for download. To further enable replicability, we have made our data extraction and

analysis scripts publicly available.1

Criterion 2: System Size and Activity. We want to study large, actively maintained

projects, since such projects stand to benefit the most from SZZ analyses.

Criterion 3: VCS-ITS Linkage. Like all SZZ-based studies, a key concern is the quality

of the links between commits (VCS) and issue reports (ITS). Thus, we select software

projects where a large proportion of commits are explicitly linked to issue reports.

1http://doi.org/10.5281/zenodo.4558395

http://doi.org/10.5281/zenodo.4558395

4. Quantification and Characterization 274. Quantification and Characterization 274. Quantification and Characterization 27

SZZ Output
Data

(DA 1)
Analyze GC
Frequency

(DA 2)
Analyze GC
Root Cause

GC Freq
MG 1 7.64%
MG 2 2.68%
FG 1 5.46%

Ghost Commit
 Categories

Issue
Tracking
System

Apache
OS Projects

Data Extraction

(DE 1)
Extract Issue

Properties

Version
Control
System

(DE 2)
Extract
Commit

Properties

IssueID Type RepDate ...
1
2
...

CommitID IssueID Date ...
1
2
...

(SZZ)
Apply SZZ
Algorithm

SZZ Data Analysis

(DE 3)
Remove non-
code changes

MG 1,2

FG

Figure 4.1: An overview of the Quantification and Characterization phases of our case study: extracting the
data needed for SZZ, applying SZZ, and analyzing the ghost commits detected. These phases are described in
Section 4.2 and Section 4.3.

4. Quantification and Characterization 28

To satisfy Criterion 1, we select projects from the Apache Software Foundation (ASF).

The ASF provides resources to support the development of software for the public good. The

VCS2 and ITS3 of Apache are publicly available. Selecting ASF projects for analysis satisfies

Munaiah et al.’s Community, Documentation, and License criteria for selecting engineered

software repositories for analysis.

To satisfy Criterion 2, we select 14 of the most actively developed ASF projects for

analysis. These 14 subject projects have been studied in prior work [1, 37]. Table 4.1

provides an overview of the 14 subject projects, and shows that the size of the projects

ranges between 0.087 MLOC and 4.3 MLOC. Satisfying Criterion 2 also satisfies Munaiah

et al.’s History criterion. Moreover, the selected ASF projects include unit tests (Munaiah

et al.’s Unit Tests criterion) and use a Cloudbees (Jenkins) instance to perform continuous

integration4 (Munaiah et al.’s CI criterion).

To ensure that Criterion 3 is satisfied, we study the VCS-ITS linkage practices of ASF

projects. We find that ASF developers tend to record the issue ID within commit messages

following a clear pattern. For example, below is the commit message that accompanies

commit ae90791 from the Apache Pig project:

“PIG-5118 Script fails with Invalid dag [...]”

2https://git.apache.org/
3https://issues.apache.org/
4https://builds.apache.org/

https://git.apache.org/
https://issues.apache.org/
https://builds.apache.org/

4. Quantification and Characterization 29

We use regular expressions to extract these issue ID references. Thus, we compute the

VCS-ITS linkage rate, i.e., the percentage of commits that are associated with issue reports.

Table 4.1 shows that we select a VCS-ITS linkage rate threshold of 50%. This threshold

helps to satisfy Munaiah et al.’s Issues criterion. A sensitivity analysis shows that a threshold

of 60% would result in five fewer projects, while a threshold of 40% would only add one

project. Thus, we believe that the impact of this threshold choice is minimal.

4.2 Data Extraction

4.2.1 (DE 1) Extract Issue Properties

The ASF uses the JIRA ITS. We use the JIRA REST API5 to extract the identifier (IssueID),

type (Type), and reported date (RepDate) for each referenced issue of the subject projects.

4.2.2 (DE 2) Extract Commit Properties

We first collect a copy of the Git VCS archive of each subject system. In the past, the ASF

used Subversion as its primary VCS,6 while providing read-only Git mirrors for convenience.

Nowadays, several Apache projects use Git as their primary VCS.

Next, we extract (meta) data about the commits that appear on the trunk branch. We

focus on the trunk branch because it is the main development branch in ASF projects.
5https://developer.atlassian.com/server/jira/platform/rest-apis/
6http://www.apache.org/dev/version-control.html

https://developer.atlassian.com/server/jira/platform/rest-apis/
http://www.apache.org/dev/version-control.html

4. Quantification and Characterization 30

For each commit on a trunk branch, we extract three key properties: (1) the CommitID;

(2) the commit message (to detect whether there is an IssueID encoded within it, and extract

it if it exists); and (3) the list of modified files.

4.2.3 (DE 3) Remove Non-Code Changes

Since we want to study defects in subject system behaviour, we focus our analysis on commits

to source code files. Thus, we filter out commits that only modify .txt, .xml, and CHANGELOG

files.

4.3 Data Analysis

4.3.1 (DA 1) Analyze GC Frequency

To analyze the frequency of each ghost type, we compute:

MG 1: The proportion of defect-fixing commits that only add lines of code.

MG 2: The proportion of removal-only commits among all of the commits.

FG: The proportion of defect-fixing commits whose fix-inducing commits are entirely

discarded by the filtering phase (FG).

4. Quantification and Characterization 31

4.3.2 (DA 2) Analyze GC Root Cause

We then set out to better understand the types of changes that are associated with each

type of ghost commit. To determine the types of changes that appear in ghost commits, we

apply an open coding approach [6] to classify examples of each type of ghost commit. Since

an understanding of the context of the studied system is required to code changes, we choose

to select one project from our corpus of studied projects to perform open coding on rather

than a broad sample of changes from several projects. We analyze a project with a “typical”

rate of ghost commits, i.e., a project with a rate close to the median rate in our corpus. To

obtain the categories used to categorize the MG, the thesis author independently classified

the MG, defined the taxonomy based on observed patterns, and shared this taxonomy with

a collaborator and the thesis supervisor, who provided feedback. To estimate the degree

of subjectiveness in our classification process, the collaborator independently classified the

same ghost commits using the revised taxonomy. We then use Cohen’s Kappa, a coefficient

that measures inter-rater reliability, to compute an agreement score between the codes of

the author and collaborator [38]. Finally, cases where coders disagreed were discussed in

a follow-up meeting until a consensus could be reached. In those meetings, the supervisor

would cast the tie-breaking vote if necessary.

4. Quantification and Characterization 32

Category Number Percentage
New Entity 6 4.2%

New Class 1 16.7%
New SubClass 4 66.7%
New Interface 1 16.7%

Check 66 46.5%
If Check 54 81.8%
Null Check 25 37.9%
Try/Catch Check 17 25.8%

Configuration 7 4.9%
Override 18 12.7%
Logging 12 8.5%
Expanding Class 64 45.1%

Table 4.2: The categories of MG 1. Percentages are of the overall sample unless indented
to indicate category values. Definitions appear in Section 4.4.2.

4.4 Defect Fixes with No Implicated Commits (MG 1)

In this section, we present the quantification and characterization results for MG 1.

4.4.1 Quantification

Mapping Ghost 1 is not uncommon among the studied projects. Table 4.1 shows that 5.66%–

11.72% of all defect-fixing commits are of type MG 1 (i.e., contain only added lines), with a

median of 7.64%. Current implementations of SZZ cannot map MG 1 defect-fixing commits

back to commits that are implicated in the fix.

4. Quantification and Characterization 33

4.4.2 Characterization

To gain insight into the characteristics of MG 1 defect fixes, we manually code changes

from the ActiveMQ project. We select ActiveMQ because its proportion of MG 1 fixes

is 7.55%, which is closest to the median value (7.64%). After the author and a collaborator

initially classified all 148 of the instances of MG 1 in ActiveMQ, we obtained an

agreement score of κ = 0.314, which is considered to be fair agreement. In our follow-up

meetings, several patterns of disagreements emerged, which were largely due to initial

misunderstandings of the classification types. After the meetings, the coders came to a

consensus on 145 commits, only requiring a tie-breaking vote for three commits. This

suggests that the true agreement score is much greater than the one reported above.

Table 4.2 provides an overview of the categories of MG 1 that we discovered. New

Entity changes involve either the addition of a New Class, New Subclass, or a New Interface.

Check changes consist of branching upon checking certain conditions using if statements,

try/catch statements, and/or assertions. We also record which of these changes are checks

for special values like null. Configuration changes are those that update settings, such as

changes to .properties files. Override changes involve overriding a method inherited from

a superclass in a subclass. Logging changes add or edit code being used to log execution

behaviour. Expanding Class changes add new functionality to an existing class.

Within our sample, we observe that Check-type changes occur the most. Of these, most

(81.8%) consisted of if branching statements. Most often, these commits would add a check

4. Quantification and Characterization 34

for null to improve the robustness of a method. For example, commit d92d3a8 fixes issue

AMQ-3782 by adding a check for null of reconnectTask.

4.5 Commits that Cannot be Mapped to Fixes (MG

2)

In this section, we present the quantification and characterization results for MG 2.

4.5.1 Quantification

Although MG 2 commits are less common than MG 1 commits, MG 2 commits still account

for a considerable proportion of the change activity. Table 4.1 shows that 1.05%–4.60% of

all commits are of type MG 2 (i.e., contain removed lines only), with a median of 2.68%.

Since MG 2 commits do not add lines that future changes can improve upon, current SZZ

implementations cannot implicate MG 2 commits in future fixes. Similar to MG 1, extensions

to the SZZ algorithm that enable implicating MG 2 commits would likely improve the recall

of the approach.

4.5.2 Characterization

To characterize MG 2 commits, we manually code commits from the Hbase project. We

select Hbase because its proportion of MG 2 commits is 2.18%, which is the closest to

4. Quantification and Characterization 35

Category Number Percentage
Cleanup 122 39.7%

Unused 38 31.4%
Unused Method 9 23.7%
Unused Configuration 4 10.5%
Unused Dependency 7 18.4%
Unused Class 9 23.7%
Unused Variable 9 23.7%

Redundant 4 3.3%
Duplicate 14 11.5%
Deprecated 8 6.6%
Renaming 3 2.5%
Refactoring 6 4.9%
Dead Code 3 2.5%
Entire File 46 37.7%

Undo 35 11.4%
Revert Entire Commit 14 40.0%
Partial Revert 21 60.0%

Update Settings 25 8.1%
Configuration 20 80.0%
Framework 5 20.0%

Logging 25 8.1%
Documentation 11 3.6%
Fix Race Condition 5 1.6%
Miscellaneous 84 27.4%

Table 4.3: The categories of MG 2. Percentages are of the overall sample unless indented
to indicate category values. Definitions appear in Section 4.5.2.

the median (2.68%). After the author and a collaborator independently classified all 307

instances of MG 2, the initial agreement score was κ = 0.567, which is considered to be

moderate agreement. During the follow-up meeting, all disagreements were resolved due to

clarifications without requiring a tie-breaking vote.

Table 4.3 provides an overview of the categories of MG 2. Cleanup changes remove

4. Quantification and Characterization 36

code that is not needed. As the name suggests, Deleting Entire File changes remove files

from the VCS. Unused changes remove artifacts and code elements that are unused. Other

types of Cleanup changes include Redundant, Duplicate, Deprecated, Renaming, Refactoring,

and Dead Code. These Cleanup changes may induce future fixes if they are too aggressive,

removing code that was still needed. Undo changes either Revert Entire Commits or Partially

Revert a commit. Revert Entire Commit changes are unlikely to be fix-inducing, since these

changes usually refer to undoing commits that were initially problematic. However, Partial

Revert changes may induce future fixes, since undoing part of a commit is likely done by

hand and may be prone to error. Updating Settings changes are the same as Configuration

changes described under MG 1. Logging and Documentation changes are unlikely to induce

future fixes, since they do not impact core system functionality. Race Condition changes,

such as attempts to resolve deadlocks, may induce future fixes due to incomplete or incorrect

fix attempts. We also consider Miscellaneous changes as unlikely to induce future fixes.

Table 4.3 shows that the largest proportion of MG 2 commits are Cleanup. Most often,

these commits remove code that is no longer needed. For example, commit e5123cc removes

the startCatalogJanitorChore method, which is believed to be unused.

Prior work [39, 40] studied revert commits in a variety of open source and proprietary

settings, reporting that 1%–5% of commits are revert commits. We find a larger proportion

(11.4%) of commits undo prior commits in our sample of MG 2 commits. We suspect

that this is because 60% of our undo commits are not explicitly labelled as reverted (i.e.,

4. Quantification and Characterization 37

they were not produced using the git revert command). Since the prior work focuses on

explicitly labelled revert commits, the most comparable figure in our study would be the

4.56% (= 40% × 11.4%) of MG 2 commits that Revert Entire Commits, which falls within

the range of prior work. This suggests that the scope of revert commits is broader than

previously analyzed. An analysis of non-explicit revert commits might be an interesting

direction for future work.

We observe that 1.95% of MG 2 commits are refactorings. This rate is similar to that of

Tufano et al. [41], who observed that only 1.8% (= 9%× 20%) of removed instances of code

smells were removed through refactorings.

We also observe that 9.4% of MG 2 commits remove entire classes and 9.4% of MG 2

type commits remove entire methods. In the context of removal of Self Admitted Technical

Debt (SATD), Zampetti et al. [42] found that on average, 30.2% and 14.0% of SATD is

removed by deleting entire classes and methods, respectively. We attribute this difference

in the rates of entire class and method removals to our differing study contexts (i.e., all

removal-only commits vs. SATD-removing commits). However, we believe that the results

are complementary enough to indicate that large removal operations occur frequently enough

to justify dedicated analysis approaches.

4. Quantification and Characterization 38

Bug Report
Created IC

Comment on
Bug Report BFC

Sep 3 Sep 19 Sep 23 Sep 25

Figure 4.2: An example of a FG.

No Filter Issue Date Filter Content Filters

Date (f1) Comments (f2) Whitespace (f3) Size (f4)
BFC BFC FG Drop % BFC FG Drop % BFC FG Drop % BFC FG Drop %

ActiveMQ 1,720 1,644 79.1% 1,644 0 1,628 16.67% 1,624 4.17%
Ambari 9,904 9,892 2.75% 9,887 1.14% 9,797 20.59% 9,467 75.51%
Camel 2,635 2,499 77.71% 2,499 0% 2,465 19.43% 2,460 2.86%
Cayenne 368 367 4.76% 364 14.29% 357 33.33% 347 47.62%
Derby 1,520 1,412 75.52% 1,412 0% 1,394 12.59% 1,377 11.89%
Hbase 4,181 4,010 63.57% 4,006 1.49% 3,980 15.38% 3,912 40.24%
Hive 4,631 4,622 1.34% 4,619 0.04% 4,592 4.02% 3,960 94.19%
Jackrabbit 1,112 1,110 50% 1,110 0% 1,109 25% 1,108 25%
Karaf 847 844 20% 844 0% 833 73.33% 832 6.67%
OpenJPA 776 716 85.71% 716 0% 711 7.14% 706 7.14%
Pig 1,057 1,012 77.59% 1,010 3.45% 1,006 6.9% 999 12.07%
Qpid 2,206 2,200 12.77% 2,198 4.26% 2,181 36.17% 2,159 46.81%
Sling 2,093 2,089 14.29% 2,087 7.14% 2,072 53.57% 2,065 25%
Thrift 1,226 1,225 7.69% 1,223 15.38% 1,216 53.85% 1,213 23.08%
Median 1,620 1,528 35% 1,528 0.59% 1,511 20.01% 1,500.5 24.04%

Table 4.4: The filtering ghosts removed by each step of the filtering process.

4.6 Defect-Fixing Commits with No Implicated

Commits That Survive Filtering (FG)

In this section, we present the quantification and characterization results for FG.

4.6.1 Quantification

Filtering Ghosts make up a considerable proportion of changes among the studied projects.

Table 4.1 shows that 0.35%–14.49% of defect-fixing commits are of type FG (i.e., have all

4. Quantification and Characterization 39

of their implicated fix-inducing commits filtered out), with a median of 5.46%. Current

implementations of the SZZ algorithm filter out all commits that are implicated by FG

defect-fixing commits. Extensions to the SZZ algorithm that enable pinpointing other fix-

inducing commits that could lead to FG defect fixes would again improve the recall of the

approach.

4.6.2 Characterization

To characterize FG commits, we compute how many FG defect fixes are being removed

by each filter f1–f4 (none of the FG commits in the studied projects are due to f5 or f6).

Table 4.4 shows that across all studied projects, the largest proportion of FG commits is due

to the date filter (f1), with a median of 35%.

To investigate why so many FG commits are being removed by the date filter, we

conduct a deeper inspection. We initially suspected that many of these FG would be due

to inconsistencies in time-keeping between the VCS and ITS; however, this was not the

case. Figure 4.2 provides an example of a FG (commit 3a356b5) from the Pig project.

The SZZ approach implicates one potential fix-inducing commit IC (f22c685) in the future

fix in commit BFC. However, the issue report that documents the defect (PIG-942) that is

associated with BFC was created on Sept. 3rd, while the potentially implicated commit IC

appeared later on Sept. 19th. Thus, IC is filtered out of the set of implicated commits for

BFC. However, a comment on the issue report from Sept. 23rd explains that the initial fix

4. Quantification and Characterization 40

attempt in commit IC contains problems that the later BFC commit addresses. In this

case, the comment points out that IC introduces the potential for a null pointer exception,

which is certainly a defect that matters for SZZ-based analyses.

4.7 Chapter Summary

In this chapter, we observe that 7.64% of defect-fixing commits only add lines (MG 1) and

that 46.5% of MG 1 within our sample add checks. We also find that 2.68% of defect-fixing

commits only remove lines (MG 2) and that 39.7% of MG 2 within our sample involve code

cleanup activities, such as removing unused or duplicate code. Finally, we find that 5.46%

of defect-fixing have no implicated commits that survive the filtering stage of SZZ.

Mapping and filtering ghosts are not uncommon in ASF projects. Future SZZ

implementations will likely benefit from mitigation of ghost commits. In the next chapter,

we present and evaluate our strategies for mitigating MG 1.

41

Chapter 5

Mitigation

In this chapter, we address our third research objective:

Objective 3: Mitigation. Our final objective is to propose strategies to mitigate the ghost

commit problem. Ideally, these will be extensions to the SZZ approach itself.

In the previous chapter, we demonstrated the extent to which ghost commits occur

and analyzed their characteristics. In the following sections, we present our approach to

applying our mitigation (Section 5.1) and maintenance type (Section 5.2) analyses, outlined

in Figure 5.1. Following that, we present the results of our mitigation and maintenance

type analyses for MG 1 commits (the most frequently occurring type of ghost commit) in

Section 5.3, as well as an evaluation of our strategies (Section 5.4) and maintenance type

analysis (Section 5.5).

5. Mitigation 42

MG 1
Sample

(M1)
Apply Control
Flow Analysis

Approach Prec
Control Flow 75.3%

Baseline 35.8%

Implicating

Control Flow
Implicated
Commits

(M3)
Perform

comparative
analysis

(M4)
Perform
precision
analysis

Baseline
Implicated
Commits

(M2)
Apply

Baseline
Approach

Identical 21.1%

Common 73.2%

(MT1)
Perform

maintenance
type analysis

Corrective 91.7%
Adaptive 5.6%

Perfective 2.8%

Figure 5.1: The mitigation and maintenance type analyses performed for MG 1 commits

5.1 Mitigation Analysis

5.1.1 (M 1) Apply Data Flow Analysis

For MG 1, we apply the mitigation strategy (see Section 5.3) to the added lines to identify

a list of lines to be mapped (and filtered) by SZZ. If the commit that last modified a line

is a refactoring change, we continue to trace backwards to find the commit that last made

a non-refactoring change to the line, following the RA-SZZ approach introduced by Neto et

al. [31].

We do not currently have an approach for handling breaking changes [43] (i.e., changes

that cannot be compiled); however, they did not present an issue for us in our analysis. We

suspect that this issue was not prevalent because we focus our analysis on recent changes.

Indeed, Tufano et al. find that breaking changes tend to be most prevalent in old commits,

5. Mitigation 43

where dependencies on old versions of libraries and tools may present issues.

5.1.2 (M 2) Apply Baseline Approach

The baseline approach we compare to is a modified version of A-SZZ, introduced by Sahal

and Tosun [5]. A-SZZ selects the lines between “the first left bracket above and the first right

bracket below” the added lines as a code block, then invokes the log command on all the

functional lines of the block (i.e., ignoring comments and whitespace) to implicate commits.

In cases where lines are added to two consecutive methods, we select the lines between the

two enclosing brackets. Otherwise, in rare cases where the syntactic A-SZZ definition of a

code block crosses method or loop boundaries while selecting lines, we instead consider the

block to be the first enclosing method or loop.

5.1.3 (M 3) Perform Comparative Analysis

After applying both the Data Flow and Baseline approaches, we compare the sets of

potentially bug-inducing commits implicated for each defect-fixing commit to count the

instances where both techniques yield the same results, and whether there are implicated

commits in common for the cases where they yielded different results.

5. Mitigation 44

5.1.4 (M 4) Perform Precision Analysis

For each pair of fix-inducing and defect-fixing commits from both approaches, we take a

deeper look at the fix-inducing commit to assess whether it should have been implicated

in the fix. Since we are not subject matter experts in the studied systems, we take a

conservative approach to labelling the implicated commits. We assume that implicated

commits are correctly labelled (i.e., true positives) unless it is evident that they could not

have contributed to the bug (i.e., false positives). We use this data to compute the precision

score (tp
tp+fp) for each technique. We exclude New Entity changes from this analysis due to

their inherent ambiguity.

5.2 Maintenance Type Analysis

5.2.1 (MT 1) Perform Maintenance Type Analysis

To better understand the types of maintenance being performed within ghost commits, and

to study the interplay between intrinsic/extrinsic defects [35] and ghost commits, we classify

our sample of MG 1 commits as corrective, adaptive, or perfective, according to the taxonomy

introduced by Swanson [7]. The taxonomy defines the maintenance types as follows:

(1) Corrective Maintenance rectifies a processing, performance, or implementation

failure.

5. Mitigation 45

(2) Adaptive Maintenance responds to changes in the data or processing environments.

(3) Perfective Maintenance improves non-functional properties (e.g., performance,

maintainability).

Corrective maintenance maps onto the concept of intrinsic defects, while adaptive and

perfective maintenance are likely due to extrinsic defects.

5.3 MG 1 Mitigation Strategies

Broadly speaking, the proposed mitigation strategies require language-aware extensions to

the SZZ approach. In this section, we describe our approach to mitigate each of the categories

of MG 1 from Table 4.2.

5.3.1 Check

For each Check-type MG 1 commit, we first locate the identifier being checked and identify

the line(s) that introduce or modify its value. For example, commit 4adc8e4 from the

ActiveMQ project adds a null-check for the socketHandlerThread identifier on lines 470–

473. Data flow analysis reveals that socketHandlerThread was introduced on line 451,

which we add to the list of lines to be processed by SZZ. In cases where the lines introducing

the variable are not in scope, we follow the A-SZZ approach, tracing the surrounding block.

A key limitation of the approach is its reliance upon a (heavyweight) data flow analysis

5. Mitigation 46

Algorithm 1 Null Check Mitigation
1: nullCheckV ariable = variable being null checked
2: range = additionLineNumber ± scanSize
3: linesToTrace = {}
4: enclosingBlock = lines between first { and first }
5: for line in range do
6: if line contains nullCheckV ariable then
7: Append line to linesToTrace
8: end if
9: end for

10: if linesToTrace is empty then
11: for line in enclosingBlock do
12: Append line to linesToTrace
13: end for
14: end if
15: return szz(linesToTrace)

rather than solely mining the software repositories. Semantic knowledge of the subject system

(i.e., a context-aware approach) is required when analyzing a change and deciding which

change introduced the identifier being checked, e.g., when blaming the method declaration

instead of lines surrounding the modified code. Different SZZ users may have different needs

depending on the cost of false negatives (i.e., the importance of mitigating ghosts) and false

positives (i.e., the rate of false alarms).

Maintenance type analysis reveals that all Check-type MG 1 commits are corrective,

which is not unexpected because the addition of a check implies addressing an intrinsic

defect due to the check being missing. Algorithm 1 outlines our mitigation strategy for null

checks, with a computational cost proportional to the breadth of the scanned area.

5. Mitigation 47

5.3.2 New Entity

Algorithm 2 New Entity Mitigation
1: refLineNumber = line referring to new entity
2: range = refLineNumber ± scanSize
3: linesToTrace = {}
4: for line in range do
5: Append line to linesToTrace
6: end for
7: return szz(linesToTrace)

We propose an SZZ-inspired sub-approach, where other classes, methods, and variables

which refer to the new entity are first mapped to the new entity through static analysis of

the source code and then filtered based on their likelihood of leading to a defect. SZZ could

then be applied to the filtered set of other entities to identify potential fix-inducing

changes. For example, commit f6a5c7b adds the class XBeanFileResolver to help convert

relative paths by verifying whether a provided path is a URL to an XBean file (boolean

isXBeanFile(String configUri)). Our proposal would apply SZZ to call sites of this

method. Algorithm 2 shows our mitigation strategy for New Entity changes, with a

computational cost proportional to the breadth of the scanned area.

While this direction is exciting, a key limitation of this mitigation strategy is that the

implementation requires an in-depth parse of the source code of a project. Current SZZ

implementations only rely on lightweight parses of project source code (e.g., to identify

irrelevant comment and whitespace changes). Adding this layer of complexity may be too

5. Mitigation 48

costly to justify the benefits for all projects; however, for projects where the implications of

false negatives are severe (e.g., safety-critical systems), it may be worthwhile.

Another, less immediately concerning limitation is that the solution does not account

for dynamic language features, such as reflection and dependency injection. Like any static

analysis, the proposed solution would inherit the classic static analysis limitations. Hybrid

static and dynamic analyses could be used to address these limitations, but would impose

an even higher analysis cost.

When manually exploring this strategy in our sample, we find that four of the six New

Entity commits also involve the addition of a check. In the example above, the new

XBeanFileResolver class is immediately used by an if check in the same commit, which

we can implicate using Algorithm 1. Maintenance type analysis reveals that five of the six

New Entity changes are corrective (intrinsic), while the remaining one is adaptive.

Approaches to mitigate extrinsic defects [35] are important for New Entity changes.

5.3.3 Configuration

For Configuration changes, we must convey an even deeper understanding of the context of

the change to the SZZ algorithm. For instance, an understanding of the properties being

updated and/or the external tool/framework being called is needed to implicate changes

in this category. To illustrate, consider commit 9c75fe7, which updates the JMSXUSER ID

message property so it appears when browsing the message via JMX. A deeper understanding

5. Mitigation 49

of the JMX API would be required to implicate fix-inducing commits for this defect-fixing

change.

This type of ghost commit requires deep investment in project-specific details, which may

not transfer to other projects. Indeed, Configuration changes can be so specific to a niche

that investigating them would require a complete understanding of the studied projects.

Complicating matters further, maintenance type analysis reveals that six of the seven

Configuration changes are adaptive. This suggests that the bulk of configuration fixes do

not have a commit to implicate. Given their relative infrequency and low rates of corrective

maintenance, we believe that mitigation of Configuration ghosts is unlikely to yield much

value.

5.3.4 Override

Algorithm 3 Override Mitigation
1: overriddenMethod = method being overridden
2: range = class hierarchy threshold
3: linesToTrace = {}
4: for class in range do
5: if class is superclass of overriddenMethod then
6: Append overridden method declaration to linesToTrace
7: end if
8: end for
9: return szz(linesToTrace)

We propose applying SZZ to the superclass variant of the method being overridden. For

example, commit 51ef021 addresses a defect by overriding the getPercentUsage() method,

5. Mitigation 50

which belongs to the StoreUsage subclass. Our proposal would apply SZZ to the superclass

variant from Usage. Algorithm 3 outlines our mitigation strategy for Override changes, with

a computational cost proportional to the depth of the class hierarchy being searched.

A key concern with this solution is how quickly the set of implicated commits may grow.

For complex hierarchies with several variants of an overridden method, the set of lines being

fed to SZZ may quickly grow, essentially trading a false negative problem for a false positive

one. To counter this, the range setting can constrain the search space.

In the example above, applying our strategy leads us to implicate commit 6d8e2c5, which

originally added getPercentUsage() in the superclass. The method was later overridden in

commit 51ef021 to add percentUsage = caclPercentUsage(), which refreshes the setting

when retrieved over JMX.

Ten of the eighteen Override changes also involve the addition of a check, where

Algorithm 1 applies. In the example above, a null check of store is added to the

overridden method.

Turning to the maintenance type, we find that six of the eight non-Check Override

changes are corrective, and the remaining two are perfective. This suggests that extrinsic

defects are not a large concern for Override ghost commits.

5. Mitigation 51

Algorithm 4 Logging Mitigation
1: loggingV ariable = variable being logged
2: range = loggingLineNumber ± scanSize
3: linesToTrace = {}
4: for line in range do
5: if line contains loggingV ariable then
6: Append line to linesToTrace
7: end if
8: end for
9: return szz(linesToTrace)

5.3.5 Logging

We propose applying data flow analysis to determine where the value being logged, or the

method containing the exception being logged, was last updated. Algorithm 4 outlines

our mitigation strategy for Logging changes, with a computational cost proportional to the

number of logging variables of interest and the breadth of the scanned area.

For example, commit 56bed30 adds a logging statement to log a start failure exception

LOG.trace("Error on start: ", e);. Applying our strategy to the catch statement

where e is caught implicates commit 082fdc5, where the catch block was added without

logging. Similar to Algorithm 1, Algorithm 4 increases the complexity of SZZ by increasing

the amount of static analysis required.

Ten of the twelve logging changes are contained within a Check change. In such cases,

we implicate commits using Algorithm 1, and consider them to be corrective (intrinsic).

5. Mitigation 52

5.3.6 Expanding Class

An initial attempt may implicate the commit that last updated the expanded class as

potentially fix inducing. For example, commit 24f73a5 adds the method testReceipts to

the StompTest class. The intuition behind our approach is that a limitation in the initial

implementation or last update to the class may be implicated in this future fix. Algorithm

5 outlines our mitigation strategy for Expanding Class changes, with a computational cost

proportional to the size of the expanded class.

Algorithm 5 Expanding Class Mitigation
1: linesToTrace = {}
2: for line within expandedClass do
3: if line last updated expandedClass then
4: Append line to linesToTrace
5: end if
6: end for
7: return szz(linesToTrace)

This approach is näıve, since the last change to a class may not be responsible for the

expansion. Yet this same limitation is at the core of SZZ, i.e., the last edit to a line may not

be truly responsible for introducing the defect [33].

We find that all studied Expanding Class changes are corrective. These changes fix

defects by adding functionality that should have been added when the surrounding block

was last updated. For example, commit 5f7a81f creates a copy of datasequence to fix a

race condition in the decompress method. We implicate commit 44bb9fb, which adds this

5. Mitigation 53

method without accounting for the race condition. Commit c391321 fixes a null pointer

exception by adding return statements, while commit 4d0e572 fixes a defect that is caused

by the doRecoverNextMessages method not breaking out loops by adding break statements.

What is striking about these examples is how distinct they are. An even finer grained analysis

may be needed to propose mitigation strategies for each of these changes.

5.4 MG 1 Mitigation Strategies Evaluation

5.4.1 Comparative Analysis

We find that data flow analysis implicated exactly the same commits as the baseline

approach [5] in 15 of the 71 MG 1 commits from the ActiveMQ project (21.1%). A deeper

examination of these implicated commits reveals that they mostly occur when the entire

enclosing method was last modified by the same commit. For example, commit f7c7993

adds an if-check if (from.equals(to)). Our control flow analysis blames line 192

containing the enclosing method declaration public static Converter

lookupConverter(Class from, Class to), while A-SZZ blames all the lines in the

method (192–206). In this case, the implicated commit is the same since the entire method

was added by the same commit (1802116).

In cases where the lines immediately surrounding the added lines were last modified

by different commits than the method/class declaration, the two techniques yield different

5. Mitigation 54

results. Yet at least one common commit is implicated by both techniques in 41 of the

remaining 56 cases (73.2%).

We are unable to implicate commits for non-Check New Entity changes and for 50%

of Override changes. Nonetheless, our data flow analysis also reveals that at least one

refactoring commit is incorrectly implicated as fix-inducing 46.5% of the time. This is due

to an inherent shortcoming of SZZ and stresses the importance of implementing an automated

Refactoring Aware SZZ implementation [31].

5.4.2 Precision Analysis

We find that our data flow analysis has a precision of 0.753, while A-SZZ has a precision

of 0.358. One reason for this difference in precision is the data flow approach’s ability

to implicate lines outside the code block immediately surrounding the added lines. For

example, commit d92d3a8 adds a null check for reconnectTask on lines 148–150. The data

flow approach traces line 129, which updates reconnectTask’s value. This line is outside

the try block surrounding the null check.

Another reason for the difference in precision is that the lines in the code block are

often unrelated to the defect being fixed. This results in a higher rate of false positives. For

example, in commit 4adc8e4 from the ActiveMQ project,

A context-aware, data flow based approach implicates commits more precisely than a purely

syntactic approach.

5. Mitigation 55

5.5 MG 1 Maintenance Type Analysis Evaluation

Across our sample, (92.4%) of MG 1 commits are corrective, while 5.7% are adaptive, and

2.1% are perfective. These observations share similarities with the recent work of Rodriguez-

Perez et al. [34], who found that the fixes for bugs are often extrinsic, i.e., do not have a

fix-inducing change. The fixes that we labeled as corrective maintenance are intrinsic in

nature, while perfective and adaptive maintenance are often extrinsic. This indicates that

7.6% of ghost commits are extrinsic in nature, which falls within the range of rates reported

by Rodriguez-Perez et al. [34].

5.6 Chapter Summary

In this chapter, we outline our strategies to mitigate the most frequently occurring type

of ghost commit: MG 1. We also investigate the relationship between ghost commits and

intrinsic/extrinsic bugs by classifying ghost commits as Corrective, Adaptive, or Perfective.

We find the majority (92.4%) of ghost commits to be corrective, suggesting that extrinsic

defects are not a large concern for ghost commits.

To evaluate our strategies, we compare them to a baseline approach (A-SZZ) when applied

to a sample from the ActiveMQ project, and find that while the exact same commits are

implicated 21.1% of the time, our approach outperforms the baseline by 39.5 percentage

points in terms of precision, promoting the use of a context-aware approach when implicating

5. Mitigation 56

commits.

57

Chapter 6

Threats to Validity

Like any empirical study, this thesis is subject to threats to its validity. In this chapter, we

discuss the threats to construct, internal, and external validity, as well as the steps that we

took to mitigate these threats.

6.1 Construct Validity:

Construct threats to validity are associated with how closely our measurements reflect what

we set out to measure. When linking VCS commits to ITS reports, we rely on developers

recording the issueID within the commit message. However, developers may mistype or omit

the issueID, which would introduce linkage bias [8] into our datasets. To mitigate the risk

of linkage bias, we select a sample of projects where the linkage rate exceeds 50%.

We characterize ghost commits using an open coding approach. Since we are not

6. Threats to Validity 58

developers of the studied projects, our understanding of the studied projects is limited.

This surface understanding of the projects could introduce misclassification in our results.

To mitigate this risk, the author and a collaborator independently coded the samples and a

consensus was reached for 97.9% of the MG 1 sample and 100% of the MG 2 sample. A tie

breaking vote was only needed for the remaining 2.1% of the MG 1 sample.

6.2 Internal Validity

Internal threats to validity emerge when alternative hypotheses may also explain our

observations. We argue that addition-only fixes (MG 1) and removal-only commits (MG 2)

present a risk for current SZZ implementations. However, it may be that these commits do

not account for enough data to be of practical consequence. On the other hand, we observe

that ghost commits account for a considerable proportion of the fixes and the commits in

the studied projects. Since their mitigation will improve the recall of SZZ approaches, the

relative importance of addressing the ghost commit problem may depend on the

importance of false negatives for the project(s) under analysis.

Developers may not create a new issue report for every defect. As we observed in our

analysis of the filtering ghosts (see Section 4.6, follow-up work (e.g., minor defects in an

initial patch) may be tacked onto the same issue ID as the initial commit. Future work

should investigate how the SZZ approach can account for these patterns of use of issue

trackers.

6. Threats to Validity 59

6.3 External Validity

External threats to validity are concerned with the generalizability of our results. We

studied 14 open source projects from the Apache Software Foundation. Since these projects

are primarily written in Java, our results may not generalize to other organizations or

programming languages. However, the studied projects are of varying sizes (0.087

MLOC–4.3 MLOC) and span multiple domains (e.g., database management systems,

content repositories).

60

Chapter 7

Conclusion

In this chapter, we conclude this thesis by summarizing its contributions and proposing

promising directions for future work in the area.

7.1 Contributions and Findings

Defects are introduced during software development. Identifying commits that are at risk

of inducing future fixes can help teams to allocate quality assurance effort more effectively.

To aid in identifying risky commits, the popular SZZ approach for identifying fix-inducing

commits is used; however, the SZZ approach is not without limitations. In this thesis, we

focus on three types of ghost commits, i.e., commits that cannot connect to or from other

commits. We conduct an empirical study of 14 Apache open source projects to quantify

and characterize these ghost commits, observing that they occur regularly and share several

7. Conclusion 61

common properties. We observe that:

• Ghost Commits are not rare in SZZ datasets: 7.64% (MG 1), 2.68% (MG 2), and

5.46% (FG).

• Adding checks and cleanup of unnecessary code are the most frequently occurring

reasons for MG1 and MG2 commits, respectively.

• The date filter of SZZ is the reason for 35% of FG commits. Closer inspection revealed

that, at least in the case of the ASF, the date filter is being applied too aggressively.

Based on that characterization, we propose and evaluate control flow based,

context-aware directions to improve upon the SZZ approach to mitigate MG 1 commits,

and compare them to a baseline approach. We find that the same commits are implicated

by both approaches 21.1% of the time, while the control flow approach outperforms the

baseline by 39.5 percentage points in terms of precision.

Finally, we investigate the relationship between MG 1 commits and intrinsic/extrinsic

bugs by performing a maintenance type analysis. We find that 92.4% of MG 1 commits are

related to corrective maintenance activities, which maps onto the concept of intrinsic bugs,

suggesting that extrinsic bugs are present at similar rates in ghost commits as they are in

other commits.

7. Conclusion 62

7.2 Opportunities for Future Research

In this section, we outline promising directions for future work. In particular, we focus on

how mitigation strategies for the other two ghost commit types (MG 2 and FG) might be

investigated, as well as how MG 1 mitigation strategies could be applied as SZZ filters.

7.2.1 Promising Directions for Future Work on MG 2

To implicate MG 2 commits in future fixes, we propose to track program elements that

were removed in a lookup table. This lookup table can be checked during the SZZ mapping

phase. If program elements that were removed are re-added later, the lookup table can map

defect-fixing commits to the commits where the elements were removed.

A key limitation of this approach is the cost of creating and traversing the lookup table;

however, we envision that a simple hash-like data structure could be efficient. Perhaps of

greater concern is the risk of false positives, when commits that reintroduce a program

element have done so as a coincidence rather than an intentional resurrection of the previous

code. To mitigate this risk, more heavyweight matching techniques (e.g., clone detection [44])

could be applied. This would increase the analysis cost (since entire program elements would

need to be tracked and not just the identifier), but would likely reduce the false positive rate.

7. Conclusion 63

7.2.2 Promising Directions for Future Work on FG

While in theory, the null pointer exception discussed in Section 4.6 and its fix should have

been tracked under an independent issue ID, in our experience, this reuse of issue IDs is

common developer behaviour. Indeed, Miura et al. [37] found that 5%–62% (median 29%)

of work items across 14 studied systems are composed of two or more commits. Moreover,

Park et al. [45] found that 22%–33% of resolved defects across three studied systems required

more than one fix attempt. Future SZZ extensions should take such behaviour into account

to mitigate filtering ghosts.

Such filtering ghosts happen due to the inherent limitations of SZZ. A potential strategy

to address multiple fix attempts being linked to a single issue ID would be to relax the date-

cutoff in the filtering stage of SZZ by specifying a date range, within which commits may

be implicated. This way, commits made after the bug report creation date, but discussed in

bug report comments may be considered. This approach would increase the total number

of commits to be analyzed, and thus further increases the complexity of applying SZZ. A

trade-off between the recall of SZZ and the resources needed to analyze the extra commits

could be explored by varying the threshold of the date range.

7.2.3 Mitigation Strategies as SZZ Filters

Another idea for future research is applying the MG 1 mitigation strategies introduced in this

thesis in the SZZ filtering stage. For example, if a commit that adds a check is implicated

7. Conclusion 64

by SZZ, applying the Check-type mitigation strategy to locate the identifier being added

could more accurately pinpoint where the defect was truly introduced. Similarly, the other

mitigation strategies could be applied as a series of filters to all commits implicated by SZZ.

It would be interesting to explore how applying ghost mitigation strategies could reduce the

amount of false positives generated by SZZ.

65

Bibliography

[1] D. A. D. Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and A. E. Hassan,

“A Framework for Evaluating the Results of the SZZ Approach for Identifying Bug-

Introducing Changes,” IEEE Transactions on Software Engineering, vol. 43, no. 7,

pp. 641–657, 2017.

[2] G. Bavota, B. D. Carluccio, A. D. Lucia, M. D. Penta, R. Oliveto, and O. Strollo,

“When Does a Refactoring Induce Bugs? An Empirical Study,” in Proceedings of the

12th International Working Conference on Source Code Analysis and Manipulation,

pp. 104–113, IEEE, 2012.

[3] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram, “How do Fixes

Become Bugs?,” in Proceedings of the 19th ACM SIGSOFT symposium and the 13th

European conference on Foundations of software engineering, pp. 26–36, 2011.

[4] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do Changes Induce Fixes?,” in

ACM Sigsoft Software Engineering Notes, vol. 30, pp. 1–5, ACM, 2005.

Bibliography 66

[5] E. Sahal and A. Tosun, “Identifying Bug-Inducing Changes for Code Additions,” in

Proceedings of the 12th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement, pp. 1–2, 2018.

[6] K. Charmaz, Constructing Grounded Theory. Sage, 2014.

[7] E. B. Swanson, “The Dimensions of Maintenance,” in Proceedings of the 2nd

international conference on Software engineering, pp. 492–497, 1976.

[8] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P. Devanbu,

“Fair and Balanced?: Bias in Bug-Fix Datasets,” in Proceedings of the 7th Joint Meeting

of the European Software Engineering Conference and the ACM SIGSOFT Symposium

on The Foundations of Software Engineering, pp. 121–130, ACM, 2009.

[9] T. H. Nguyen, B. Adams, and A. E. Hassan, “A Case Study of Bias in Bug-Fix

Datasets,” in Proceedings of the 17th Working Conference on Reverse Engineering,

pp. 259–268, IEEE, 2010.

[10] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: Recovering Links Between Bugs

and Changes,” in Proceedings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engineering, pp. 15–25, ACM, 2011.

Bibliography 67

[11] S. Kim, T. Zimmermann, K. Pan, and E. J. W. Jr, “Automatic Identification of Bug-

introducing Changes,” in Proceedings of the 21st IEEE/ACM International Conference

on Automated Software Engineering, pp. 81–90, IEEE, 2006.

[12] S. McIntosh and Y. Kamei, “Are Fix-Inducing Changes a Moving Target? A

Longitudinal Case Study of Just-in-Time Defect Prediction,” IEEE Transactions on

Software Engineering, pp. 412–428, 2017.

[13] D. C. Howell, “Median Absolute Deviation,” Encyclopedia of Statistics in Behavioral

Science, pp. 1193–1193, 2005.

[14] J. Eyolfson, L. Tan, and P. Lam, “Do Time of Day and Developer Experience Affect

Commit Bugginess?,” in Proceedings of the 8th Working Conference on Mining Software

Repositories, pp. 153–162, ACM, 2011.

[15] K. Pan, S. Kim, and E. J. Whitehead, “Toward an Understanding of Bug Fix Patterns,”

Empirical Software Engineering, vol. 14, no. 3, pp. 286–315, 2009.

[16] S. Kim and E. J. W. Jr, “How Long Did it Take to Fix Bugs?,” in Proceedings of the

International Workshop on Mining Software Repositories, pp. 173–174, ACM, 2006.

[17] G. Canfora, M. Ceccarelli, L. Cerulo, and M. D. Penta, “How Long Does a Bug

Survive? An Empirical Study,” in Proceedings of the 18th Working Conference on

Reverse Engineering, pp. 191–200, IEEE, 2011.

Bibliography 68

[18] F. Rahman and P. Devanbu, “Ownership, Experience and Defects: A Fine-Grained

Study of Authorship,” in Proceedings of the 33rd International Conference on Software

Engineering, pp. 491–500, ACM, 2011.

[19] F. Rahman, C. Bird, and P. Devanbu, “Clones: What is that Smell?,” Empirical

Software Engineering, vol. 17, no. 4-5, pp. 503–530, 2012.

[20] H. Yang, C. Wang, Q. Shi, Y. Feng, and Z. Chen, “Bug Inducing Analysis to Prevent

Fault Prone Bug Fixes.,” in Proceedings of the International Conference on Software

Engineering and Knowledge Engineering, pp. 620–625, 2014.

[21] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and

N. Ubayashi, “A Large-Scale Empirical Study of Just-in-Time Quality Assurance,”

IEEE Transactions on Software Engineering, vol. 39, no. 6, pp. 757–773, 2013.

[22] A. Mockus and D. M. Weiss, “Predicting Risk of Software Changes,” Bell Labs Technical

Journal, vol. 5, no. 2, pp. 169–180, 2000.

[23] S. Kim, E. J. W. Jr, and Y. Zhang, “Classifying software changes: Clean or buggy?,”

IEEE Transactions on Software Engineering, vol. 34, no. 2, pp. 181–196, 2008.

[24] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey, “Investigating

Code Review Quality: Do people and Participation Matter?,” in Proceedings of the

Bibliography 69

International Conference on Software Maintenance and Evolution, pp. 111–120, IEEE,

2015.

[25] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online Defect Prediction for Imbalanced

Data,” in Proceedings of the 37th IEEE International Conference on Software

Engineering, vol. 2, pp. 99–108, IEEE, 2015.

[26] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, “An Industrial Study on the

Risk of Software Changes,” in Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering, pp. 62–73, ACM, 2012.

[27] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi, and A. E. Hassan,

“Studying Just-In-Time Defect Prediction using Cross-Project Models,” Empirical

Software Engineering, vol. 21, no. 5, pp. 2072–2106, 2016.

[28] X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep Learning for Just-in-Time

Defect Prediction,” in Proceedings of the International Conference on Software Quality,

Reliability and Security, pp. 17–26, IEEE, 2015.

[29] C. C. Williams and J. W. Spacco, “SZZ Revisited: Verifying When Changes Induce

Fixes,” in Proceedings of the Workshop on Defects in Large Software Systems, pp. 32–

36, ACM, 2008.

Bibliography 70

[30] C. C. Williams and J. W. Spacco, “Branching and Merging in the Repository,” in

Proceedings of the International Working conference on Mining Software Repositories,

pp. 19–22, ACM, 2008.

[31] E. C. Neto, D. A. da Costa, and U. Kulesza, “The Impact of Refactoring Changes

on the SZZ Algorithm: An Empirical Study,” in Proceedings of the 25th International

Conference on Software Analysis, Evolution and Reengineering, pp. 380–390, IEEE,

2018.

[32] R. Giovanni, L. Pascarella, S. Scalabrino, R. Tufano, G. Bavota, M. Lanza, and

R. Oliveto, “Evaluating SZZ Implementations Through a Developer-informed Oracle,”

arXiv preprint arXiv:2102.03300, 2021.

[33] G. Rodŕıguez-Pérez, A. Zaidman, A. Serebrenik, G. Robles, and J. M. González-

Barahona, “What if a Bug has a Different Origin? Making Sense of Bugs Without an

Explicit Bug Introducing Change,” in Proceedings of the 12th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, pp. 1–4, 2018.

[34] G. Rodŕıguez-Pérez, G. Robles, A. Serebrenik, A. Zaidman, D. M. Germán, and

J. M. Gonzalez-Barahona, “How Bugs Are Born: A Model to Identify How Bugs Are

Introduced in Software Components,” Empirical Software Engineering, vol. 25, no. 2,

pp. 1294–1340, 2020.

Bibliography 71

[35] G. Rodŕıguez-Pérez, M. Nagappan, and G. Robles, “Watch out for Extrinsic Bugs! A

Case Study of their Impact in Just-In-Time Bug Prediction Models on the OpenStack

project,” IEEE Transactions on Software Engineering, 2020.

[36] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating Github for Engineered

Software Projects,” Empirical Software Engineering, vol. 22, no. 6, pp. 3219–3253, 2017.

[37] K. Miura, S. McIntosh, Y. Kamei, A. E. Hassan, and N. Ubayashi, “The Impact of

Task Granularity on Co-evolution Analyses,” in Proceedings of the 10th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement, pp. 47–

57, ACM, 2016.

[38] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educational and

Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960.

[39] M. Yan, X. Xia, D. Lo, A. E. Hassan, and S. Li, “Characterizing and Identifying

Reverted Commits,” Empirical Software Engineering, vol. 24, no. 4, pp. 2171–2208,

2019.

[40] J. Shimagaki, Y. Kamei, S. McIntosh, D. Pursehouse, and N. Ubayashi, “Why are

Commits being Reverted? A Comparative Study of Industrial and Open Source

Projects,” in Proc. of the Int’l Conf. on Software Maintenance and Evolution (ICSME),

pp. 301–311, 2016.

Bibliography 72

[41] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. D. Lucia, and

D. Poshyvanyk, “When and Why Your Code Starts to Smell Bad,” in 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, vol. 1, pp. 403–414,

IEEE, 2015.

[42] F. Zampetti, A. Serebrenik, and M. D. Penta, “Was Self-Admitted Technical Debt

Removal a Real Removal? An In-Depth Perspective,” in 2018 IEEE/ACM 15th

International Conference on Mining Software Repositories (MSR), pp. 526–536, IEEE,

2018.

[43] M. Tufano, F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, A. D. Lucia, and

D. Poshyvanyk, “There and Back Again: Can You Compile That Snapshot?,” Journal

of Software: Evolution and Process, vol. 29, no. 4, p. e1838, 2017.

[44] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone Detection

Using Abstract Syntax Trees,” in Proceedings. International Conference on Software

Maintenance (Cat. No. 98CB36272), pp. 368–377, 1998.

[45] J. Park, M. Kim, B. Ray, and D.-H. Bae, “An Empirical Study of Supplementary Bug

Fixes,” in 2012 9th IEEE Working Conference on Mining Software Repositories (MSR),

pp. 40–49, IEEE, 2012.

	Introduction
	Problem Statement
	Thesis Overview
	Thesis Contributions
	Thesis Organization

	Background
	Identifying Defect-Fixing Commits
	(I 1) Merge Issues & Conflicts
	Ghost Commit 0 (GC 0)

	Mapping
	(M 1) Map Defect-Fixing Commits to Implicated Changes
	Mapping Ghost 1 (MG 1)
	Mapping Ghost 2 (MG 2)

	Filtering
	(F 1) Apply Issue Report Date Filter
	(F 2) Apply Content Filters
	(F 3) Apply Suspiciousness Filters
	Filtering Ghost (FG)

	Chapter Summary

	Related Work
	Fix-Inducing Changes
	Limitations of the SZZ Approach
	Chapter Summary

	Quantification and Characterization
	Corpus of Software Projects
	Data Extraction
	(DE 1) Extract Issue Properties
	(DE 2) Extract Commit Properties
	(DE 3) Remove Non-Code Changes

	Data Analysis
	(DA 1) Analyze GC Frequency
	(DA 2) Analyze GC Root Cause

	Defect Fixes with No Implicated Commits (MG 1)
	Quantification
	Characterization

	Commits that Cannot be Mapped to Fixes (MG 2)
	Quantification
	Characterization

	Defect-Fixing Commits with No Implicated Commits That Survive Filtering (FG)
	Quantification
	Characterization

	Chapter Summary

	Mitigation
	Mitigation Analysis
	(M 1) Apply Data Flow Analysis
	(M 2) Apply Baseline Approach
	(M 3) Perform Comparative Analysis
	(M 4) Perform Precision Analysis

	Maintenance Type Analysis
	(MT 1) Perform Maintenance Type Analysis

	MG 1 Mitigation Strategies
	Check
	New Entity
	Configuration
	Override
	Logging
	Expanding Class

	MG 1 Mitigation Strategies Evaluation
	Comparative Analysis
	Precision Analysis

	MG 1 Maintenance Type Analysis Evaluation
	Chapter Summary

	Threats to Validity
	Construct Validity:
	Internal Validity
	External Validity

	Conclusion
	Contributions and Findings
	Opportunities for Future Research
	Promising Directions for Future Work on MG 2
	Promising Directions for Future Work on FG
	Mitigation Strategies as SZZ Filters

