Quantifying, Characterizing, and Mitigating the Ghost Commit Problem When Identifying Fix-Inducing Changes

Christophe Rezk

Department of Electrical & Computer Engineering
McGill University, Montréal

April 15, 2021

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Electrical Engineering

©2021 Christophe Rezk
Abstract

The approach proposed by Śliwerski, Zimmermann, and Zeller (SZZ) for identifying fix-inducing changes traces backwards from a commit that fixes a defect to those commits that are implicated in the fix. This approach is at the heart of studies of characteristics of fix-inducing changes, as well as the popular Just-in-Time (JIT) variant of defect prediction. However, some types of commits are invisible to the SZZ approach. We refer to these invisible commits as “Ghost Commits.” In this thesis, we set out to define, quantify, characterize, and mitigate ghost commits that impact the SZZ algorithm during its mapping (i.e., linking defect-fixing commits to those commits that are implicated by the fix) and filtering (i.e., removing improbable fix-inducing commits from the set of implicated commits) phases. We mine the version control repositories of 14 open source Apache projects for instances of mapping-phase and filtering-phase ghost commits. We find that (1) 5.66%–11.72% of defect-fixing commits only add lines, and thus, cannot be mapped back to implicated commits; (2) 1.05%–4.60% of the studied commits only remove lines, and thus, cannot be implicated in future fixes; and (3) that no implicated commits survive the filtering process of 0.35%–
Abstract

14.49% defect-fixing commits. Qualitative analysis of ghost commits reveals that 46.5% of 142 addition-only defect-fixing commits add checks (e.g., null-ness or emptiness checks), while 39.7% of 307 removal-only commits clean up (unused) code. Our results suggest that the next generation of SZZ improvements should be language-aware to connect ghost commits to implicated and defect-fixing commits. Based on our observations, we discuss promising directions for mitigation strategies to address each type of ghost commit. Moreover, we implement mitigation strategies for addition-only commits and evaluate those strategies with respect to a baseline approach. The results indicate that our strategies achieve a precision of 0.753, improving the precision of implicated commits by 39.5 percentage points.
Abrégé

L’approche proposée par Śliwerski, Zimmermann, et Zeller (SZZ) pour identifier les changements de code qui induisent des corrections trace à l’envers d’un commit qui corrige un défaut pour trouver des commits qui sont impliqués dans cette correction. Cette approche est au cœur des études de caractéristiques des changements qui induisent des corrections, ainsi que la variante populaire de prédiction des défauts “Just in Time” (JIT).

Cependant, certains types de commits sont invisibles à l’approche SZZ. Nous nous référerons à ces commits comme des commits fantôme: “Ghost Commits”. Dans cette thèse, nous cherchons à définir, quantifier, caractériser et atténuer les commits fantômes qui affectent l’algorithme SZZ pendant sa phase de traçage (c.-à-d., lier les commits de correction des défauts aux commits impliqués par le correctif) et sa phase de filtrage (c.-à-d. supprimer les commits qui sont peu susceptibles d’être à l’origine de la faute corrigée, parmi l’ensemble des commits impliqués). Nous explorons les dépôts de contrôle de version de 14 projets Apache open source pour identifier des instances de commits fantômes lors des phases de traçage et de filtrage. Nous constatons que (1) 5,66%–11,72% des commits de
correction de défaut n’ajoutent que des lignes, et ne peuvent donc pas être mappés aux commits impliqués ; (2) 1,05%–4,60% des commits étudiés ne suppriment que des lignes, et ne peuvent donc pas être impliqués dans des corrections futures ; et (3) qu’aucun commit impliqué ne survit au processus de filtrage de 0,35%–14,49% de commits de correction de défaut. Une analyse qualitative des commits fantômes révèle que 46,5% des 142 commits de correction de défaut ajoutent des contrôles (par exemple, des contrôles de nullité ou de vide), tandis que 39,7% des 307 commits de suppression nettoient le code (inutilisé). Nos résultats suggèrent que la prochaine génération d’améliorations SZZ devrait tenir compte des spécificités des langages de programmation pour connecter les commits fantômes aux commits impliqués et commits corrigeant les défauts. Sur la base de nos observations, nous discutons des orientations prometteuses pour les stratégies d’atténuation pour traiter chaque type de commit fantôme. De plus, nous mettons en œuvre des stratégies d’atténuation pour les commits d’ajout seulement et nous les évaluons comparés à une approche de base. Les résultats indiquent que nos stratégies atteignent une précision de 0,753, améliorant la précision de l’identification des commits impliqués de 39,5 points de pourcentage.
First and foremost, I would like to express my thanks and gratitude to my supervisor, Dr. Shane McIntosh for his unwavering support of my research and for his guidance and patience over the course of my degree. I extend my thanks to Dr. Foutse Khomh for reviewing this thesis.

I wouldn’t have been able to accomplish this without my parents. Thank you for your unconditional love and support throughout my life.

I’m grateful to all of the Software Rebels at the lab, Farida El Zanaty, Ray Wen, Keheliya Gallaba, and Noam Rabbani, for the “great” coffee, conversations, and comradeship.

Last but not least, thank you to all my friends for the words of encouragement over the years. Special thanks to Wei-Di for his help with the French translation.
Related Publications

An earlier version of the work in this thesis is under review after a major revision in the IEEE Transactions on Software Engineering:

Contents

1 Introduction 1

1.1 Problem Statement 2

1.2 Thesis Overview 3

1.3 Thesis Contributions 5

1.4 Thesis Organization 7

2 Background 9

2.1 Identifying Defect-Fixing Commits 11

2.1.1 (I 1) Merge Issues & Conflicts 11

2.1.2 Ghost Commit 0 (GC 0) 12

2.2 Mapping 12

2.2.1 (M 1) Map Defect-Fixing Commits to Implicated Changes 13

2.2.2 Mapping Ghost 1 (MG 1) 13

2.2.3 Mapping Ghost 2 (MG 2) 14
<table>
<thead>
<tr>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 Filtering</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1 (F 1) Apply Issue Report Date Filter</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2 (F 2) Apply Content Filters</td>
<td>17</td>
</tr>
<tr>
<td>2.3.3 (F 3) Apply Suspiciousness Filters</td>
<td>17</td>
</tr>
<tr>
<td>2.3.4 Filtering Ghost (FG)</td>
<td>18</td>
</tr>
<tr>
<td>2.4 Chapter Summary</td>
<td>18</td>
</tr>
<tr>
<td>3 Related Work</td>
<td>19</td>
</tr>
<tr>
<td>3.1 Fix-Inducing Changes</td>
<td>19</td>
</tr>
<tr>
<td>3.2 Limitations of the SZZ Approach</td>
<td>21</td>
</tr>
<tr>
<td>3.3 Chapter Summary</td>
<td>22</td>
</tr>
<tr>
<td>4 Quantification and Characterization</td>
<td>24</td>
</tr>
<tr>
<td>4.1 Corpus of Software Projects</td>
<td>26</td>
</tr>
<tr>
<td>4.2 Data Extraction</td>
<td>29</td>
</tr>
<tr>
<td>4.2.1 (DE 1) Extract Issue Properties</td>
<td>29</td>
</tr>
<tr>
<td>4.2.2 (DE 2) Extract Commit Properties</td>
<td>29</td>
</tr>
<tr>
<td>4.2.3 (DE 3) Remove Non-Code Changes</td>
<td>30</td>
</tr>
<tr>
<td>4.3 Data Analysis</td>
<td>30</td>
</tr>
<tr>
<td>4.3.1 (DA 1) Analyze GC Frequency</td>
<td>30</td>
</tr>
<tr>
<td>4.3.2 (DA 2) Analyze GC Root Cause</td>
<td>31</td>
</tr>
</tbody>
</table>
Contents

4.4 Defect Fixes with No Implicated Commits (MG 1) ... 32
 4.4.1 Quantification ... 32
 4.4.2 Characterization .. 33

4.5 Commits that Cannot be Mapped to Fixes (MG 2) 34
 4.5.1 Quantification ... 34
 4.5.2 Characterization .. 34

4.6 Defect-Fixing Commits with No Implicated Commits That Survive Filtering
 (FG) .. 38
 4.6.1 Quantification ... 38
 4.6.2 Characterization .. 39

4.7 Chapter Summary ... 40

5 Mitigation .. 41

 5.1 Mitigation Analysis .. 42
 5.1.1 (M 1) Apply Data Flow Analysis ... 42
 5.1.2 (M 2) Apply Baseline Approach .. 43
 5.1.3 (M 3) Perform Comparative Analysis ... 43
 5.1.4 (M 4) Perform Precision Analysis .. 44

 5.2 Maintenance Type Analysis .. 44
 5.2.1 (MT 1) Perform Maintenance Type Analysis 44

 5.3 MG 1 Mitigation Strategies ... 45
5.3.1 Check .. 45
5.3.2 New Entity .. 47
5.3.3 Configuration 48
5.3.4 Override ... 49
5.3.5 Logging .. 51
5.3.6 Expanding Class 52
5.4 MG 1 Mitigation Strategies Evaluation 53
 5.4.1 Comparative Analysis 53
 5.4.2 Precision Analysis 54
5.5 MG 1 Maintenance Type Analysis Evaluation 55
5.6 Chapter Summary 55

6 Threats to Validity .. 57
 6.1 Construct Validity: 57
 6.2 Internal Validity 58
 6.3 External Validity 59

7 Conclusion .. 60
 7.1 Contributions and Findings 60
 7.2 Opportunities for Future Research 62
 7.2.1 Promising Directions for Future Work on MG 2 . 62
7.2.2 Promising Directions for Future Work on FG 63
7.2.3 Mitigation Strategies as SZZ Filters 63
List of Figures

1.1 An overview of the scope of this thesis. ... 4

2.1 An overview of the phases of the SZZ approach. Mapping Ghosts (MG 1, MG 2) are identified in the Mapping phase, while Filtering Ghosts (FG) are identified in the Filtering phase. These phases are described in Sections 2.1–2.3. 10

2.2 An example of a Mapping Ghost 1. Defect-fixing commit 4adc8e4 from the ActiveMQ project. ... 13

2.3 An example of a Mapping Ghost 2. Commit c10e8d2 from the Hbase project. 14

4.1 An overview of the Quantification and Characterization phases of our case study: extracting the data needed for SZZ, applying SZZ, and analyzing the ghost commits detected. These phases are described in Section 4.2 and Section 4.3. ... 27

4.2 An example of a FG. ... 38

5.1 The mitigation and maintenance type analyses performed for MG 1 commits 42
List of Tables

2.1 An overview of commonly applied SZZ filters. 16

3.1 An overview of past work addressing SZZ Limitations. 23

4.1 An overview of the subject projects and Ghost Commits’ frequency. 25

4.2 The categories of MG 1. Percentages are of the overall sample unless indented
to indicate category values. Definitions appear in Section 4.4.2. 32

4.3 The categories of MG 2. Percentages are of the overall sample unless indented
to indicate category values. Definitions appear in Section 4.5.2. 35

4.4 The filtering ghosts removed by each step of the filtering process. 38
Chapter 1

Introduction

Over the lifetime of evolving software projects, defects are inadvertently introduced during initial development [1], refactoring [2], or when fixing other defects [3]. Identifying changes that are likely to induce future fixes could save developers’ time and effort. Additionally, deepening our understanding of these fix-inducing changes and recognizing recurring patterns can help teams to anticipate when changes are likely to induce fixes in the future.

The approach proposed by Śliwerski, Zimmermann, and Zeller (SZZ) for identifying fix-inducing changes [4] mines Version Control Systems (VCSs) and Issue Tracking Systems (ITSs) to trace a defect-fixing change back to potential fix-inducing changes that are implicated in the fix. The SZZ approach starts by identifying defect-fixing commits by matching a bug report from the ITS to the commit that fixes it. Defect-fixing commits are then mapped to implicated changes by extracting the set of removed lines and tracing them
through the VCS to the commit(s) that last modified them. Finally, potential fix-inducing commits are filtered to eliminate those that should not be implicated in the fix (e.g., implicated changes that appeared after the defect creation date). The surviving implicated commits are labelled as fix-inducing commits [4].

1.1 Problem Statement

While the SZZ approach plays a pivotal role in understanding and predicting fix-inducing changes, it is not without limitations. At its core, the SZZ approach relies on heuristics to handle noisy software repository data; however, there are commits that these heuristics cannot detect. We refer to these invisible commits as ghost commits, which impact (at least) two phases of the SZZ approach. First, Mapping Ghosts are commits that cannot be detected when connecting defect-fixing commits to potential fix-inducing ones. Second, Filtering Ghosts are defect-fixing commits for which no fix-inducing change survives the filtering phase.

| Thesis statement: | Ghost commits are an important source of potential noise for SZZ-based analyses. Should they be prevalent, SZZ-based analyses may yield misleading conclusions. Mitigation strategies that exploit data flow analysis can improve the accuracy of SZZ approaches. |
Through empirical analyses, this thesis sets out to better understand (1) the gravity and nature of the ghost commit problem; and (2) the effectiveness of strategies that mitigate the incidences of ghost commits. The first goal is achieved through quantitative and qualitative lenses of analysis that quantify and characterize the ghost commit problem in 14 open-source systems from the Apache Software Foundation (ASF). To tackle the second goal, we propose data flow extensions to the SZZ approach that are informed by our quantification and characterization of ghost commits. We benchmark the performance of these approaches against a literature-inspired baseline [5] in a manually curated data set.

1.2 Thesis Overview

Figure 1.1 provides an overview of the scope of this thesis. To begin, we provide the necessary background material for our topic (blue squares).

Chapter 2: Background

Before discussing the limitations of the SZZ algorithm, we provide readers with the background knowledge and definitions of terms used throughout the thesis.

Chapter 3: Related Work

To situate this thesis with respect to the literature, we present an overview of prior research in the field and explain what differentiates this thesis from prior research.

Following that, we shift our attention to the main body of the thesis (green squares in
The Ghost Commit problem when identifying fix-inducing changes

Background

Chapter 2: Background

Chapter 3: Related Work

Empirical Studies

Chapter 4: Quantifying and characterizing ghost commits

Chapter 5: Mitigating ghost commits

Potential Outcomes

Understanding the gravity and nature of the ghost commit problem "in the wild"

SZZ-generated data sets of higher quality that yield more robust insights

Figure 1.1: An overview of the scope of this thesis.

We address current limitations in the mapping and filtering phases of the SZZ algorithm by investigating the prevalence and nature of ghost commits.

Chapter 4: Quantification and Characterization

To understand the prevalence of ghost commits in defect-fix datasets, we conduct an empirical study of 14 open source projects from the Apache Software Foundation. We quantify the occurrence of ghost commits in these projects, and characterize ghost commits using an open coding [6] based method, which yields a taxonomy of ghost commit properties.

Chapter 5: Mitigation
We propose data flow-based strategies to mitigate the occurrence of the most frequently occurring type of ghost commit. We evaluate these strategies against a syntax-based baseline approach [5], which applies SZZ to the lines within the closest surrounding code block, by comparing how often both approaches implicate the same commit. Moreover, we manually analyze the implicated commits of both approaches to assess whether they truly could have been fix inducing. Finally, we study the type of maintenance activity performed by these ghost commits by classifying them according to Swanson’s taxonomy [7].

1.3 Thesis Contributions

We group the contributions of this thesis by ghost commit type (Chapter 4) and by the results of our mitigation and maintenance type analyses (Chapter 5). This thesis shows that:

- **Mapping Ghost 1 (MG 1):** Defect-fixing commits with no implicated commits

 - **Quantification:** 5.66%–11.72% of defect-fixing commits in the subject systems only add lines, with a median of 7.64%.

 - **Characterization:** MG 1 most often contain new Checks (44.6%), i.e., new if conditions or try-catch blocks. Often, such checks were omitted by prior
changes, which ideally would have been implicated in the corresponding fixes.

- **Mapping Ghost 2 (MG 2): Commits that cannot be implicated in future fixes**

 - **Quantification:** 1.05%–4.60% of commits in the subject systems contain line removals only, with a median of 2.68%.

 - **Characterization:** *Cleanup* of unnecessary code is the most frequently occurring reason (39.7%) for MG 2. Such cleanup activities are not risk-free. For example, the infamous left-pad incident,¹ which caused numerous Node.js applications to fail was caused by the removal of code.

- **Filtering Ghost (FG): Defect-fixing commits with no implicated commits that survive filtering (FG)**

 - **Quantification:** 0.35%–14.49% of defect-fixing commits in the subject systems are FG, with a median of 5.46%.

 - **Characterization:** FG commits are most often related to the issue report date filter (35%). Deeper analysis suggests that the date filter is too aggressive because follow-up fixes are often linked to the same issue ID as the initial work.

- **Mitigation**

 ¹[https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/]
1. Introduction

- **Comparative Analysis**: Both our approach and the baseline implicate identical commits 21.1% of the time and share at least one commonly implicated commit in 73.2% of the remaining cases.

- **Precision Analysis**: The precision of the Control Flow approach is 0.753, while the precision of the baseline approach is 0.358. Indeed, the data flow approach is likely more precise because it avoids implicated benign lines that appear within the surrounding code block.

- **Maintenance Type**

 The vast majority (92.4%) of MG 1 commits are corrective, while 5.7% are adaptive, and 2.1% are perfective.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides an overview of the SZZ approach and illustrates the ghost commit problem. Chapter 3 situates and differentiates our work with respect to the literature. Chapter 4 describes the design of our empirical study for the quantification and characterization of ghost commits and presents our results. Chapter 5 describes the design of our mitigation and maintenance analyses of ghost commits and presents our results. Chapter 6 discusses the threats to the validity of our empirical study. Finally, Chapter 7 draws conclusions and discusses promising directions for future
work.
Chapter 2

Background

In this chapter, we present the stages of the SZZ approach and how ghost commits can impact SZZ-based analyses. Figure 2.1 contains an overview of the SZZ approach, which (i) merges issues and commits to identify defect-fixing commits (Section 2.1); (ii) maps defect-fixing commits back to prior changes that are implicated by the fix (Section 2.2); and (iii) applies a series of filters to remove implicated changes that are unlikely to have induced the fix (Section 2.3).
2. Background

Figure 2.1: An overview of the phases of the SZZ approach. Mapping Ghosts (MG 1, MG 2) are identified in the Mapping phase, while Filtering Ghosts (FG) are identified in the Filtering phase. These phases are described in Sections 2.1–2.3.
2. Background

2.1 Identifying Defect-Fixing Commits

The first stage identifies which commits in the Version Control System (VCS) are defect fixing. The assumption being that the occurrence of a fix implies the existence of a defect prior to the fix.

2.1.1 (I 1) Merge Issues & Conflicts

Issue reports in the Issue Tracking System (ITS) track the development activity backlog for a project. These reports contain rich (meta)data about development tasks, including a Type field, which may be “Defect” or “Enhancement,” for example.

In a nutshell, commits that are linked to issue reports of type “Defect” are considered to be defect fixing. Unfortunately, the links between VCS and ITS entries are not explicitly enforced by either tool by default. Recent integrated toolsets, such as GitLab, offer workflows¹ that enforce linking between issues and commits; however, for projects that have not fully adopted a toolset like GitLab, it is a common practice for developers to manually record links between commits and issue reports in commit messages. For example, commit ae90791 from the Pig project includes the message “PIG-5118 Script fails with Invalid dag containing 0 vertices rohini” to indicate that the commit is associated with the issue report PIG-5118. Thus, to identify defect-fixing commits, one must identify the VCS-ITS linkage practices of the subject systems, then recover the VCS-ITS links

¹https://docs.gitlab.com/ee/topics/gitlab_flow.html
using repository mining scripts.

2. Background

2.1.2 Ghost Commit 0 (GC 0)

Only the VCS commits that have a recovered link to an ITS record of type “Defect” are included in the SZZ data set. Since link recording practices are rarely enforced, developers may omit necessary links without receiving a warning from the VCS or ITS. Thus, SZZ implementations may miss defect-fixing commits where links were omitted. We refer to such missing defect-fixing commits as Ghost Commit 0 (GC 0).

GC 0 has been defined and studied in prior work [8–10]. Bird et al. [8] report that linkage bias in datasets compromises the validity of software models built using those datasets. Nguyen et al. [9] find that linkage bias in datasets exists even when strict guidelines are enforced on the development process. Wu et al. [10] propose Relink, a VCS-ITS link recovery tool to rebuild missing links and mitigate linkage bias. Given that GC 0 is already well understood, we do not investigate it further in this thesis.

2.2 Mapping

After VCS-ITS links have been recovered, commits that are implicated in defect-fixing commits can be identified. This mapping step produces a database, which stores links between defect-fixing and potential fix-inducing commits.
2. Background

2.2.1 (M 1) Map Defect-Fixing Commits to Implicated Changes

For each defect-fixing commit, its removed lines are selected using the `diff` command. Next, the parent commit(s) of each removed line are identified using the `blame` command. Note that modifying a line registers as a removal and an addition. Thus, analyzing removed lines covers cases when code is removed or modified.

2.2.2 Mapping Ghost 1 (MG 1)

The SZZ approach maps defect-fixing commits to fix-inducing commits by locating the most recent commit to change the lines that were removed by the fixing commit [4]. However, since the mapping step traces lines that previously existed, defect-fixing commits that do not remove or modify lines cannot be mapped to implicated commits. In theory, a defect-fixing commit may be entirely comprised of line additions; yet these these commits may have been induced by prior changes. Hence, gaining a better understanding of defect fixes that only add lines is important for those who adopt the SZZ approach.

Figure 2.2: An example of a Mapping Ghost 1. Defect-fixing commit `4adc8e4` from the ActiveMQ project.

```plaintext
470     if (socketHandlerThread != null) {
471     socketHandlerThread.interrupt();
472     +    socketHandlerThread = null;
473     +    }
```
2. Background

We refer to defect-fixing commits that do not remove or modify lines as Mapping Ghost type 1 (MG 1). For example, Figure 2.2 shows that commit 4adc8e4\(^2\) from the ACTIVEMQ project fixes a defect by interrupting the `socketHandlerThread` to cleanly shut down an embedded broker.

2.2.3 Mapping Ghost 2 (MG 2)

Commits that only remove lines cannot be implicated by SZZ through invoking the `blame` command in future defect-fixing activity, since no lines remain in the codebase to which future activities can be mapped. In reality, these commits may be fix-inducing, since the removal of an incorrect line (or set of lines) can wreak havoc on a software system. Studying the frequency and characteristics of removal-only commits will show the magnitude of their potential impact on SZZ-based analyses. We refer to commits that do not add any new lines of code as Mapping Ghost type 2 (MG 2). For example, Figure 2.3 shows that in commit

\(^2\text{https://github.com/apache/activemq/commit/4adc8e4/}\)

Figure 2.3: An example of a Mapping Ghost 2. Commit c10e8d2 from the Hbase project.
c10e8d2 from the HBASE project, the removal of the `createWriterInTmp` method may lead to a defect fix in the future.

2.3 Filtering

Next, a series of filters are applied to remove commits that could not or are unlikely to have led to the future fix. This filtering stage reduces the sets of implicated commits to those that are likely to be fix inducing. In this stage, there may be defect-fixing commits for which all potentially fix-inducing commits are filtered out. Since these defect-fixing commits are not associated with any fix-inducing commits, it is important for those who adopt SZZ in research and practice to better understand their frequency and characteristics.

Table 2.1 provides an overview of six commonly applied SZZ filters. Below, we describe each filter in detail.

3https://github.com/apache/hbase/commit/c10e8d2/
2. Background

<table>
<thead>
<tr>
<th>Shorthand</th>
<th>Name</th>
<th>Description</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>Issue Report Date</td>
<td>Filter commits made after a defect was reported</td>
<td>Commits made after a defect are unlikely to lead to a defect</td>
</tr>
<tr>
<td>f_2</td>
<td>Comments Filter</td>
<td>Filter comment-only commits</td>
<td>Non-code changes cannot lead to defects</td>
</tr>
<tr>
<td>f_3</td>
<td>Whitespace Filter</td>
<td>Filter whitespace-only commits</td>
<td>Non-code changes cannot lead to defects</td>
</tr>
<tr>
<td>f_4</td>
<td>Size Filter</td>
<td>Filter large commits greater than 100 files or 10,000 lines</td>
<td>Large commits are likely to be routine maintenance</td>
</tr>
<tr>
<td>f_5</td>
<td>Suspiciousness Filter 1</td>
<td>Filter commits that fix many defects</td>
<td>One commit is unlikely to fix so many defects</td>
</tr>
<tr>
<td>f_6</td>
<td>Suspiciousness Filter 2</td>
<td>Filter commits that induce many defects</td>
<td>One commit is unlikely to lead to so many defects</td>
</tr>
</tbody>
</table>

Table 2.1: An overview of commonly applied SZZ filters.
2. Background

2.3.1 (F 1) Apply Issue Report Date Filter

Implicated commits that appear after a defect has been reported are unlikely to have induced the fix. To mitigate such noise, researchers apply filters to discard such implicated commits \((f_1) \) [4]. To do so, we use the \(--after:<date>\) flag of the `blame` command, where \(<date>\) is the defect creation date. However, if no modifications were made to a line after the specified date, the \(\wedge \) character is prepended to the output.

2.3.2 (F 2) Apply Content Filters

To mitigate such noise, researchers apply content filters to ignore implicated commits that update comments \((f_2) \) or whitespace \((f_3) \) [11].

Routine maintenance updates often modify a large number of files or lines of code (e.g., updates to coding style). Such commits are another source of noise in SZZ data. To mitigate the impact of this, researchers often filter out large commits. For example, McIntosh and Kamei [12] filter out commits that change more than 100 files or 10,000 lines \((f_4) \).

2.3.3 (F 3) Apply Suspiciousness Filters

Developers routinely address issues one at a time, which is why multiple issues being fixed by a single commit is suspicious. Similarly, a commit that induces a large number of future fixes is suspicious, since it is unlikely that one change would be so problematic.

To filter out these suspicious commits, da Costa et al. [1] propose a framework. Their
implementation of the framework for Apache projects uses the project-specific thresholds of
the upper Median Absolute Deviation (MAD) [13] of the number of issues that a commit
fixes (f_5) and the upper MAD of the number of fixes a change induces (f_6).

2.3.4 Filtering Ghost (FG)

It is possible that, for a given defect-fixing commit, no implicated commits survive the
filtering stages (f_1–f_6). We refer to these defect-fixing commits as Filtering Ghosts (FGs).
FGs are problematic because no implicated commits can be associated with them. Thus,
models that are trained using SZZ data will not be able to identify the commits that induce
them.

2.4 Chapter Summary

While this chapter describes the basic SZZ approach and defines the ghost commits of interest
for this thesis, it is not yet clear how this work contributes to the literature in the area.
Therefore, the next chapter situates this work with respect to prior studies of fix-inducing
changes and the algorithms used to identify them.
Chapter 3

Related Work

Fix-inducing changes have been the subject of considerable research. Since teams have limited resources, identifying changes are likely to be buggy can help with time and effort allocation. The SZZ approach [4] plays a crucial role in such allocation efforts. In this chapter, we present the related work on fix-inducing changes and the limitations of SZZ.

3.1 Fix-Inducing Changes

The SZZ approach has been used to study properties of fix-inducing changes in several settings. For example, the seminal paper [4] used SZZ to study the day of the week when fix-inducing changes tended to appear. Eyolfson et al. [14] used SZZ to study the hour of the day when fix-inducing changes tended to appear. SZZ has also been used to detect and characterize defect-fix patterns [15], to study how long defects survive [16,17], and to study
the links between fix-inducing changes and (a) code authorship [18], (b) code clones [19], and (c) faulty defect fixes [20].

SZZ is also at the core of Just-In-Time defect prediction, a term coined by Kamei et al. [21], which describes a popular variant of change-level defect prediction. Mockus and Weiss [22] used various change properties to predict risky code changes at Bell Labs. Kim et al. [23] and Kamei et al. [21] expanded upon the set of metrics, including those that were computed using VCS and ITS data, and analyzed a broader set of projects, including swaths of open source and proprietary projects. Kononenko et al. [24] further expanded upon the metric set to include code reviewing data. JIT defect prediction has been deployed in industrial settings at Cisco [25], Blackberry [26], and Avaya [22] to name a few.

In recent years, as improvements to machine learning technology have appeared, JIT defect prediction has also been improved. To address the cold-start problem for software analytics, Kamei et al. [27] studied the efficacy of cross-project JIT defect prediction. Yang et al. [28] propose Deeper, which uses deep learning techniques to train JIT models.

While the prior work has made important contributions, it is built upon the underlying SZZ approach, which classifies changes as fix-inducing or clean. In this thesis, we focus on risks to the completeness of SZZ data, quantifying and characterizing that risk in 14 open source ASF projects.
3. Related Work

3.2 Limitations of the SZZ Approach

This thesis is not the first to propose improvements to the SZZ approach. Table 3.1 presents an overview of past work studying SZZ limitations and improvements.

Kim et al. [11] introduced an improvement to SZZ that uses annotation graphs as opposed to the annotate (i.e., blame) command. Moreover, the approach filters out style changes. Williams and Spacco [29, 30] proposed adding weights to the SZZ mapping technique, as well as using the DiffJ\(^1\) tool to disregard formatting changes when comparing code files. Neto et al. [31] proposed an SZZ implementation that ignores refactoring changes, since those are unlikely to introduce defects. Contributing to this line of work, we propose several language-aware improvements to SZZ (see Chapter 5) to improve the completeness (recall) of SZZ-generated data.

Past work has also raised concerns about the risks of modelling defect data using SZZ. For example, da Costa et al. [1] evaluated several variants of the SZZ approach using suspiciousness filters based on the earliest defect appearance, the future impact of a change, and the realism of defect introduction. This work differs from that of da Costa et al. in that we focus on increasing the recall of SZZ data by defining ghost commits and studying strategies to capture them.

Rosa et al. [32] use Natural Language Processing (NLP) to identify defect-fixing commits where defect-inducing commits are directly referenced and introduce a “developer-informed”

\(^1\)http://www.incava.org/projects/diffj
oracle that can be used to evaluate SZZ variants. Whereas Rosa et al. set out to evaluate how existing SZZ signals measure up with respect to developer-informed data, we set out to investigate commit data that is currently overlooked by SZZ.

Rodriguez-Perez et al. [33–35] introduce the concept of extrinsic defects to describe defects that should not have an implicated code change. There is an interesting interplay between the extrinsic/intrinsic classification proposed by Rodriguez-Perez et al. [35], which focuses on the nature of the defects being fixed, and the ghost commit concept we propose in this work, which focuses on the commits that currently slip through the mapping and filtering stages of the SZZ algorithm. We study the relationship between extrinsic/intrinsic defects and ghost commits in Chapter 5.

3.3 Chapter Summary

In this chapter, we first present an overview of the literature on fix-inducing changes, demonstrating that it is a topic that has been extensively studied. Following that, we outline related work that has addressed the limitations of the SZZ approach and highlight how this thesis differs from it. In the next chapter, we address our first two research objectives: the quantification and characterization of ghost commits.
Table 3.1: An overview of past work addressing SZZ Limitations.

<table>
<thead>
<tr>
<th>Publication</th>
<th>SZZ Limitation Addressed</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim et al. [11]</td>
<td>Non-semantic changes are identified as defect-fixing</td>
<td>Use an automated approach with annotation graphs</td>
</tr>
<tr>
<td>Williams and Spacco [29]</td>
<td>Annotation graphs are imprecise at tracking lines</td>
<td>Use a weighted line mapping approach to track unique lines</td>
</tr>
<tr>
<td></td>
<td>Non-semantic changes are inaccurately identified</td>
<td>Use the DiffJ tool to ignore only non-semantic changes</td>
</tr>
<tr>
<td>Neto et al. [31]</td>
<td>Refactoring changes are flagged as defect-inducing</td>
<td>Introduce a refactoring-aware SZZ implementation</td>
</tr>
<tr>
<td>Da Costa et al. [1]</td>
<td>Techniques to evaluate SZZ-generated data are limited</td>
<td>Introduce a framework to evaluate SZZ-generated data</td>
</tr>
<tr>
<td>Perez et al. [33–35]</td>
<td>Not all defects are introduced by a specific commit</td>
<td>Introduce an approach to explore different causes of defects</td>
</tr>
<tr>
<td>Rosa et al. [32]</td>
<td>Evaluations of SZZ implementations are unreliable</td>
<td>Introduce a developer-informed oracle for the evaluation of SZZ variants</td>
</tr>
<tr>
<td>This thesis</td>
<td>Certain (ghost) commits are overlooked by SZZ</td>
<td>Quantify, characterize, and mitigate ghost commits</td>
</tr>
</tbody>
</table>
Chapter 4

Quantification and Characterization

The *goal* of this thesis is to better understand the extent to which the ghost commit problem impacts SZZ data of real software projects, and what mitigation strategies might be useful. In working towards these goals, we formulate three concrete *research objectives*. This chapter addresses the first two objectives:

Objective 1: Quantification. Our first objective is to measure how often ghost commits occur. While Chapter 2 defines ghost commits, it is unclear if they occur often enough to be of concern for users of SZZ.

Objective 2: Characterization. Our second objective is to study the properties of ghost commits. Specific development activities may be disproportionately responsible for generating ghost commits. Knowing these tendencies may help researchers to propose solutions and practitioners to avoid generating ghost commits.
4. Quantification and Characterization

<table>
<thead>
<tr>
<th>Project</th>
<th>Size (LOC)</th>
<th>Commits</th>
<th>Issues</th>
<th>Linkage Issues (%)</th>
<th>MG 1 (%)</th>
<th>MG 2 (%)</th>
<th>FG (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveMQ</td>
<td>0.087 mil</td>
<td>9,945</td>
<td>5,138</td>
<td>51.66%</td>
<td>7.55%</td>
<td>2.35%</td>
<td>5.58%</td>
</tr>
<tr>
<td>Ambari</td>
<td>3.8 mil</td>
<td>23,901</td>
<td>23,346</td>
<td>97.68%</td>
<td>7.73%</td>
<td>1.55%</td>
<td>13.59%</td>
</tr>
<tr>
<td>Camel</td>
<td>2.6 mil</td>
<td>31,726</td>
<td>17,072</td>
<td>53.81%</td>
<td>9.44%</td>
<td>2.14%</td>
<td>6.64%</td>
</tr>
<tr>
<td>Cayenne</td>
<td>0.563 mil</td>
<td>5,897</td>
<td>3,248</td>
<td>55.08%</td>
<td>5.91%</td>
<td>2.70%</td>
<td>5.43%</td>
</tr>
<tr>
<td>Derby</td>
<td>1.4 mil</td>
<td>8,180</td>
<td>6,791</td>
<td>83.02%</td>
<td>7.74%</td>
<td>4.60%</td>
<td>9.41%</td>
</tr>
<tr>
<td>Hbase</td>
<td>1.3 mil</td>
<td>14,099</td>
<td>12,701</td>
<td>90.08%</td>
<td>7.42%</td>
<td>2.18%</td>
<td>6.43%</td>
</tr>
<tr>
<td>Hive</td>
<td>2.6 mil</td>
<td>12,548</td>
<td>12,132</td>
<td>96.68%</td>
<td>9.23%</td>
<td>1.67%</td>
<td>14.49%</td>
</tr>
<tr>
<td>Jackrabbit</td>
<td>4.3 mil</td>
<td>8,517</td>
<td>5,563</td>
<td>65.32%</td>
<td>7.33%</td>
<td>3.36%</td>
<td>0.35%</td>
</tr>
<tr>
<td>Karaf</td>
<td>0.281 mil</td>
<td>7,042</td>
<td>4,689</td>
<td>66.59%</td>
<td>10.45%</td>
<td>1.80%</td>
<td>1.77%</td>
</tr>
<tr>
<td>OpenJPA</td>
<td>0.837 mil</td>
<td>4,861</td>
<td>3,231</td>
<td>66.47%</td>
<td>6.56%</td>
<td>1.72%</td>
<td>9.02%</td>
</tr>
<tr>
<td>Pig</td>
<td>0.581 mil</td>
<td>3,152</td>
<td>2,932</td>
<td>93.02%</td>
<td>8.57%</td>
<td>1.05%</td>
<td>5.49%</td>
</tr>
<tr>
<td>Qpid</td>
<td>0.246 mil</td>
<td>14,181</td>
<td>7,659</td>
<td>54.01%</td>
<td>7.42%</td>
<td>3.56%</td>
<td>2.13%</td>
</tr>
<tr>
<td>Sling</td>
<td>1.1 mil</td>
<td>21,668</td>
<td>12,168</td>
<td>56.16%</td>
<td>5.66%</td>
<td>2.38%</td>
<td>1.34%</td>
</tr>
<tr>
<td>Thrift</td>
<td>0.466 mil</td>
<td>5,305</td>
<td>3,340</td>
<td>62.96%</td>
<td>11.72%</td>
<td>2.68%</td>
<td>1.06%</td>
</tr>
<tr>
<td>Mean</td>
<td>1.4 mil</td>
<td>12,216</td>
<td>8,572</td>
<td>70.90%</td>
<td>8.05%</td>
<td>2.41%</td>
<td>5.25%</td>
</tr>
<tr>
<td>Median</td>
<td>997 K</td>
<td>9,231</td>
<td>6,177</td>
<td>65.89%</td>
<td>7.64%</td>
<td>2.68%</td>
<td>5.46%</td>
</tr>
</tbody>
</table>

Table 4.1: An overview of the subject projects and Ghost Commits’ frequency.

To tackle these objectives, we conduct an empirical study of repository data from open source projects. Figure 4.1 provides an overview of our study approach for Objectives 1 and 2. In the following sections, we present our rationale for selecting our subject projects (Section 4.1), as well as our approaches to data extraction and analysis (Sections 4.2 and 4.3). Following that, we present the results of our quantification and characterization analysis for MG 1 (Section 4.4), MG 2 (Section 4.5), and FG (Section 4.6).
4.1 Corpus of Software Projects

We study 14 projects from the Apache Software Foundation (ASF). Similar to Munaiah et al. [36], we identify criteria that must be satisfied by our subject projects.

Criterion 1: Replicability. We want to ensure that our study can be replicated (and extended) by researchers. To reduce barriers to access of the raw data, we select subject projects whose software repositories (VCS, ITS) are freely and openly available for download. To further enable replicability, we have made our data extraction and analysis scripts publicly available.\(^1\)

Criterion 2: System Size and Activity. We want to study large, actively maintained projects, since such projects stand to benefit the most from SZZ analyses.

Criterion 3: VCS-ITS Linkage. Like all SZZ-based studies, a key concern is the quality of the links between commits (VCS) and issue reports (ITS). Thus, we select software projects where a large proportion of commits are explicitly linked to issue reports.

\(^1\)http://doi.org/10.5281/zenodo.4558395
Figure 4.1: An overview of the Quantification and Characterization phases of our case study: extracting the data needed for SZZ, applying SZZ, and analyzing the ghost commits detected. These phases are described in Section 4.2 and Section 4.3.
To satisfy Criterion 1, we select projects from the Apache Software Foundation (ASF). The ASF provides resources to support the development of software for the public good. The VCS\(^2\) and ITS\(^3\) of Apache are publicly available. Selecting ASF projects for analysis satisfies Munaiah et al.'s Community, Documentation, and License criteria for selecting engineered software repositories for analysis.

To satisfy Criterion 2, we select 14 of the most actively developed ASF projects for analysis. These 14 subject projects have been studied in prior work [1, 37]. Table 4.1 provides an overview of the 14 subject projects, and shows that the size of the projects ranges between 0.087 MLOC and 4.3 MLOC. Satisfying Criterion 2 also satisfies Munaiah et al.'s History criterion. Moreover, the selected ASF projects include unit tests (Munaiah et al.'s Unit Tests criterion) and use a Cloudbees (Jenkins) instance to perform continuous integration\(^4\) (Munaiah et al.'s CI criterion).

To ensure that Criterion 3 is satisfied, we study the VCS-ITS linkage practices of ASF projects. We find that ASF developers tend to record the issue ID within commit messages following a clear pattern. For example, below is the commit message that accompanies commit ae90791 from the Apache Pig project:

“PIG-5118 Script fails with Invalid dag [...]”

\(^2\)https://git.apache.org/
\(^3\)https://issues.apache.org/
\(^4\)https://builds.apache.org/
We use regular expressions to extract these issue ID references. Thus, we compute the VCS-ITS linkage rate, i.e., the percentage of commits that are associated with issue reports.

Table 4.1 shows that we select a VCS-ITS linkage rate threshold of 50%. This threshold helps to satisfy Munaiah et al.’s Issues criterion. A sensitivity analysis shows that a threshold of 60% would result in five fewer projects, while a threshold of 40% would only add one project. Thus, we believe that the impact of this threshold choice is minimal.

4.2 Data Extraction

4.2.1 (DE 1) Extract Issue Properties

The ASF uses the JIRA ITS. We use the JIRA REST API\(^5\) to extract the identifier (IssueID), type (Type), and reported date (RepDate) for each referenced issue of the subject projects.

4.2.2 (DE 2) Extract Commit Properties

We first collect a copy of the Git VCS archive of each subject system. In the past, the ASF used Subversion as its primary VCS,\(^6\) while providing read-only Git mirrors for convenience. Nowadays, several Apache projects use Git as their primary VCS.

Next, we extract (meta) data about the commits that appear on the trunk branch. We focus on the trunk branch because it is the main development branch in ASF projects.

\(^5\)https://developer.atlassian.com/server/jira/platform/rest-apis/

\(^6\)http://www.apache.org/dev/version-control.html
For each commit on a trunk branch, we extract three key properties: (1) the CommitID; (2) the commit message (to detect whether there is an IssueID encoded within it, and extract it if it exists); and (3) the list of modified files.

4.2.3 (DE 3) Remove Non-Code Changes

Since we want to study defects in subject system behaviour, we focus our analysis on commits to source code files. Thus, we filter out commits that only modify .txt, .xml, and CHANGELOG files.

4.3 Data Analysis

4.3.1 (DA 1) Analyze GC Frequency

To analyze the frequency of each ghost type, we compute:

MG 1: The proportion of defect-fixing commits that only add lines of code.

MG 2: The proportion of removal-only commits among all of the commits.

FG: The proportion of defect-fixing commits whose fix-inducing commits are entirely discarded by the filtering phase (FG).
4. Quantification and Characterization

4.3.2 (DA 2) Analyze GC Root Cause

We then set out to better understand the types of changes that are associated with each type of ghost commit. To determine the types of changes that appear in ghost commits, we apply an open coding approach [6] to classify examples of each type of ghost commit. Since an understanding of the context of the studied system is required to code changes, we choose to select one project from our corpus of studied projects to perform open coding on rather than a broad sample of changes from several projects. We analyze a project with a “typical” rate of ghost commits, i.e., a project with a rate close to the median rate in our corpus. To obtain the categories used to categorize the MG, the thesis author independently classified the MG, defined the taxonomy based on observed patterns, and shared this taxonomy with a collaborator and the thesis supervisor, who provided feedback. To estimate the degree of subjectiveness in our classification process, the collaborator independently classified the same ghost commits using the revised taxonomy. We then use Cohen’s Kappa, a coefficient that measures inter-rater reliability, to compute an agreement score between the codes of the author and collaborator [38]. Finally, cases where coders disagreed were discussed in a follow-up meeting until a consensus could be reached. In those meetings, the supervisor would cast the tie-breaking vote if necessary.
Table 4.2: The categories of MG 1. Percentages are of the overall sample unless indented to indicate category values. Definitions appear in Section 4.4.2.

4.4 Defect Fixes with No Implicated Commits (MG 1)

In this section, we present the quantification and characterization results for MG 1.

4.4.1 Quantification

Mapping Ghost 1 is not uncommon among the studied projects. Table 4.1 shows that 5.66%–11.72% of all defect-fixing commits are of type MG 1 (i.e., contain only added lines), with a median of 7.64%. Current implementations of SZZ cannot map MG 1 defect-fixing commits back to commits that are implicated in the fix.
4.4.2 Characterization

To gain insight into the characteristics of MG 1 defect fixes, we manually code changes from the ActiveMQ project. We select ActiveMQ because its proportion of MG 1 fixes is 7.55%, which is closest to the median value (7.64%). After the author and a collaborator initially classified all 148 of the instances of MG 1 in ActiveMQ, we obtained an agreement score of $\kappa = 0.314$, which is considered to be fair agreement. In our follow-up meetings, several patterns of disagreements emerged, which were largely due to initial misunderstandings of the classification types. After the meetings, the coders came to a consensus on 145 commits, only requiring a tie-breaking vote for three commits. This suggests that the true agreement score is much greater than the one reported above.

Table 4.2 provides an overview of the categories of MG 1 that we discovered. New Entity changes involve either the addition of a New Class, New Subclass, or a New Interface. Check changes consist of branching upon checking certain conditions using if statements, try/catch statements, and/or assertions. We also record which of these changes are checks for special values like null. Configuration changes are those that update settings, such as changes to .properties files. Override changes involve overriding a method inherited from a superclass in a subclass. Logging changes add or edit code being used to log execution behaviour. Expanding Class changes add new functionality to an existing class.

Within our sample, we observe that Check-type changes occur the most. Of these, most (81.8%) consisted of if branching statements. Most often, these commits would add a check
for `null` to improve the robustness of a method. For example, commit d92d3a8 fixes issue AMQ-3782 by adding a check for `null` of `reconnectTask`.

4.5 Commits that Cannot be Mapped to Fixes (MG 2)

In this section, we present the quantification and characterization results for MG 2.

4.5.1 Quantification

Although MG 2 commits are less common than MG 1 commits, MG 2 commits still account for a considerable proportion of the change activity. Table 4.1 shows that 1.05%–4.60% of all commits are of type MG 2 (i.e., contain removed lines only), with a median of 2.68%.

Since MG 2 commits do not add lines that future changes can improve upon, current SZZ implementations cannot implicate MG 2 commits in future fixes. Similar to MG 1, extensions to the SZZ algorithm that enable implicating MG 2 commits would likely improve the recall of the approach.

4.5.2 Characterization

To characterize MG 2 commits, we manually code commits from the HBase project. We select HBase because its proportion of MG 2 commits is 2.18%, which is the closest to
Table 4.3: The categories of MG 2. Percentages are of the overall sample unless indented to indicate category values. Definitions appear in Section 4.5.2.

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleanup</td>
<td>122</td>
<td>39.7%</td>
</tr>
<tr>
<td>Unused</td>
<td>38</td>
<td>31.4%</td>
</tr>
<tr>
<td>Unused Method</td>
<td>9</td>
<td>23.7%</td>
</tr>
<tr>
<td>Unused Configuration</td>
<td>4</td>
<td>10.5%</td>
</tr>
<tr>
<td>Unused Dependency</td>
<td>7</td>
<td>18.4%</td>
</tr>
<tr>
<td>Unused Class</td>
<td>9</td>
<td>23.7%</td>
</tr>
<tr>
<td>Unused Variable</td>
<td>9</td>
<td>23.7%</td>
</tr>
<tr>
<td>Redundant</td>
<td>4</td>
<td>3.3%</td>
</tr>
<tr>
<td>Duplicate</td>
<td>14</td>
<td>11.5%</td>
</tr>
<tr>
<td>Deprecated</td>
<td>8</td>
<td>6.6%</td>
</tr>
<tr>
<td>Renaming</td>
<td>3</td>
<td>2.5%</td>
</tr>
<tr>
<td>Refactoring</td>
<td>6</td>
<td>4.9%</td>
</tr>
<tr>
<td>Dead Code</td>
<td>3</td>
<td>2.5%</td>
</tr>
<tr>
<td>Entire File</td>
<td>46</td>
<td>37.7%</td>
</tr>
<tr>
<td>Undo</td>
<td>35</td>
<td>11.4%</td>
</tr>
<tr>
<td>Revert Entire Commit</td>
<td>14</td>
<td>40.0%</td>
</tr>
<tr>
<td>Partial Revert</td>
<td>21</td>
<td>60.0%</td>
</tr>
<tr>
<td>Update Settings</td>
<td>25</td>
<td>8.1%</td>
</tr>
<tr>
<td>Configuration</td>
<td>20</td>
<td>80.0%</td>
</tr>
<tr>
<td>Framework</td>
<td>5</td>
<td>20.0%</td>
</tr>
<tr>
<td>Logging</td>
<td>25</td>
<td>8.1%</td>
</tr>
<tr>
<td>Documentation</td>
<td>11</td>
<td>3.6%</td>
</tr>
<tr>
<td>Fix Race Condition</td>
<td>5</td>
<td>1.6%</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>84</td>
<td>27.4%</td>
</tr>
</tbody>
</table>

The categories of MG 2. Percentages are of the overall sample unless indented to indicate category values. Definitions appear in Section 4.5.2.

After the author and a collaborator independently classified all 307 instances of MG 2, the initial agreement score was $\kappa = 0.567$, which is considered to be moderate agreement. During the follow-up meeting, all disagreements were resolved due to clarifications without requiring a tie-breaking vote.

Table 4.3 provides an overview of the categories of MG 2. **Cleanup** changes remove
code that is not needed. As the name suggests, *Deleting Entire File* changes remove files from the VCS. *Unused* changes remove artifacts and code elements that are unused. Other types of *Cleanup* changes include *Redundant, Duplicate, Deprecated, Renaming, Refactoring,* and *Dead Code.* These *Cleanup* changes may induce future fixes if they are too aggressive, removing code that was still needed. *Undo* changes either *Revert Entire Commits* or *Partially Revert* a commit. *Revert Entire Commit* changes are unlikely to be fix-inducing, since these changes usually refer to undoing commits that were initially problematic. However, *Partial Revert* changes may induce future fixes, since undoing part of a commit is likely done by hand and may be prone to error. *Updating Settings* changes are the same as *Configuration* changes described under MG 1. *Logging* and *Documentation* changes are unlikely to induce future fixes, since they do not impact core system functionality. *Race Condition* changes, such as attempts to resolve deadlocks, may induce future fixes due to incomplete or incorrect fix attempts. We also consider *Miscellaneous* changes as unlikely to induce future fixes.

Table 4.3 shows that the largest proportion of MG 2 commits are Cleanup. Most often, these commits remove code that is no longer needed. For example, commit e5123cc removes the `startCatalogJanitorChore` method, which is believed to be unused.

Prior work [39, 40] studied revert commits in a variety of open source and proprietary settings, reporting that 1%–5% of commits are revert commits. We find a larger proportion (11.4%) of commits undo prior commits in our sample of MG 2 commits. We suspect that this is because 60% of our undo commits are not explicitly labelled as reverted (i.e.,
they were not produced using the git revert command). Since the prior work focuses on explicitly labelled revert commits, the most comparable figure in our study would be the 4.56% (= 40% \times 1.14%) of MG 2 commits that Revert Entire Commits, which falls within the range of prior work. This suggests that the scope of revert commits is broader than previously analyzed. An analysis of non-explicit revert commits might be an interesting direction for future work.

We observe that 1.95% of MG 2 commits are refactorings. This rate is similar to that of Tufano et al. [41], who observed that only 1.8% (= 9\% \times 20\%) of removed instances of code smells were removed through refactorings.

We also observe that 9.4\% of MG 2 commits remove entire classes and 9.4\% of MG 2 type commits remove entire methods. In the context of removal of Self Admitted Technical Debt (SATD), Zampetti et al. [42] found that on average, 30.2\% and 14.0\% of SATD is removed by deleting entire classes and methods, respectively. We attribute this difference in the rates of entire class and method removals to our differing study contexts (i.e., all removal-only commits vs. SATD-removing commits). However, we believe that the results are complementary enough to indicate that large removal operations occur frequently enough to justify dedicated analysis approaches.
4. Quantification and Characterization

Figure 4.2: An example of a FG.

<table>
<thead>
<tr>
<th>No Filter</th>
<th>Issue Date Filter</th>
<th>Content Filters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Date (f_1)</td>
<td>Comments (f_2)</td>
</tr>
<tr>
<td>BFC</td>
<td>BFC FG Drop %</td>
<td>BFC FG Drop %</td>
</tr>
<tr>
<td>ActiveMQ</td>
<td>1,720 1,644 79.1%</td>
<td>1,644 0 1,628 16.67%</td>
</tr>
<tr>
<td>Ambari</td>
<td>9,904 9,892 2.75%</td>
<td>9,887 1.14% 9,797 20.59%</td>
</tr>
<tr>
<td>Camel</td>
<td>2,635 2,499 77.71%</td>
<td>2,499 0% 2,465 19.43%</td>
</tr>
<tr>
<td>Cayenne</td>
<td>308 307 4.76%</td>
<td>304 14.29% 357 33.33%</td>
</tr>
<tr>
<td>Derby</td>
<td>1,520 1,412 75.52%</td>
<td>1,412 0% 1,394 12.59%</td>
</tr>
<tr>
<td>HBase</td>
<td>4,181 4,010 63.57%</td>
<td>4,006 1.49% 3,980 15.38%</td>
</tr>
<tr>
<td>Hive</td>
<td>4,634 4,622 1.34%</td>
<td>4,619 0.04% 4,592 4.92%</td>
</tr>
<tr>
<td>Jackrabbit</td>
<td>1,112 1,110 50%</td>
<td>1,110 0% 1,109 25%</td>
</tr>
<tr>
<td>Karaf</td>
<td>847 844 20%</td>
<td>844 0% 833 33.33%</td>
</tr>
<tr>
<td>OpenJPA</td>
<td>776 716 85.71%</td>
<td>716 0% 711 7.14%</td>
</tr>
<tr>
<td>Pig</td>
<td>1,057 1,012 77.59%</td>
<td>1,010 3.45% 1,006 6.0%</td>
</tr>
<tr>
<td>QPID</td>
<td>2,206 2,200 12.77%</td>
<td>2,198 4.26% 2,181 36.17%</td>
</tr>
<tr>
<td>Sling</td>
<td>2,093 2,089 14.29%</td>
<td>2,087 7.14% 2,072 53.57%</td>
</tr>
<tr>
<td>Thrift</td>
<td>1,226 1,225 7.69%</td>
<td>1,223 15.38% 1,216 53.85%</td>
</tr>
<tr>
<td>Median</td>
<td>1,620 1,528 35%</td>
<td>1,528 0.59% 1,511 20.01%</td>
</tr>
</tbody>
</table>

Table 4.4: The filtering ghosts removed by each step of the filtering process.

4.6 Defect-Fixing Commits with No Implicated Commits That Survive Filtering (FG)

In this section, we present the quantification and characterization results for FG.

4.6.1 Quantification

Filtering Ghosts make up a considerable proportion of changes among the studied projects.

Table 4.1 shows that 0.35%–14.49% of defect-fixing commits are of type FG (i.e., have all
of their implicated fix-inducing commits filtered out), with a median of 5.46%. Current implementations of the SZZ algorithm filter out all commits that are implicated by FG defect-fixing commits. Extensions to the SZZ algorithm that enable pinpointing other fix-inducing commits that could lead to FG defect fixes would again improve the recall of the approach.

4.6.2 Characterization

To characterize FG commits, we compute how many FG defect fixes are being removed by each filter \(f_1 - f_4 \) (none of the FG commits in the studied projects are due to \(f_5 \) or \(f_6 \)). Table 4.4 shows that across all studied projects, the largest proportion of FG commits is due to the date filter \((f_1) \), with a median of 35%.

To investigate why so many FG commits are being removed by the date filter, we conduct a deeper inspection. We initially suspected that many of these FG would be due to inconsistencies in time-keeping between the VCS and ITS; however, this was not the case. Figure 4.2 provides an example of a FG (commit 3a356b5) from the Pig project. The SZZ approach implicates one potential fix-inducing commit IC \((f22c685) \) in the future fix in commit BFC. However, the issue report that documents the defect \((\text{PIG-942}) \) that is associated with BFC was created on Sept. 3rd, while the potentially implicated commit IC appeared later on Sept. 19th. Thus, IC is filtered out of the set of implicated commits for BFC. However, a comment on the issue report from Sept. 23rd explains that the initial fix
attempt in commit IC contains problems that the later BFC commit addresses. In this case, the comment points out that IC introduces the potential for a null pointer exception, which is certainly a defect that matters for SZZ-based analyses.

4.7 Chapter Summary

In this chapter, we observe that 7.64% of defect-fixing commits only add lines (MG 1) and that 46.5% of MG 1 within our sample add checks. We also find that 2.68% of defect-fixing commits only remove lines (MG 2) and that 39.7% of MG 2 within our sample involve code cleanup activities, such as removing unused or duplicate code. Finally, we find that 5.46% of defect-fixing have no implicated commits that survive the filtering stage of SZZ.

Mapping and filtering ghosts are not uncommon in ASF projects. Future SZZ implementations will likely benefit from mitigation of ghost commits. In the next chapter, we present and evaluate our strategies for mitigating MG 1.
Chapter 5

Mitigation

In this chapter, we address our third research objective:

Objective 3: Mitigation. Our final objective is to propose strategies to mitigate the ghost commit problem. Ideally, these will be extensions to the SZZ approach itself.

In the previous chapter, we demonstrated the extent to which ghost commits occur and analyzed their characteristics. In the following sections, we present our approach to applying our mitigation (Section 5.1) and maintenance type (Section 5.2) analyses, outlined in Figure 5.1. Following that, we present the results of our mitigation and maintenance type analyses for MG 1 commits (the most frequently occurring type of ghost commit) in Section 5.3, as well as an evaluation of our strategies (Section 5.4) and maintenance type analysis (Section 5.5).
Figure 5.1: The mitigation and maintenance type analyses performed for MG 1 commits

5.1 Mitigation Analysis

5.1.1 (M 1) Apply Data Flow Analysis

For MG 1, we apply the mitigation strategy (see Section 5.3) to the added lines to identify a list of lines to be mapped (and filtered) by SZZ. If the commit that last modified a line is a refactoring change, we continue to trace backwards to find the commit that last made a non-refactoring change to the line, following the RA-SZZ approach introduced by Neto et al. [31].

We do not currently have an approach for handling breaking changes [43] (i.e., changes that cannot be compiled); however, they did not present an issue for us in our analysis. We suspect that this issue was not prevalent because we focus our analysis on recent changes. Indeed, Tufano et al. find that breaking changes tend to be most prevalent in old commits,
where dependencies on old versions of libraries and tools may present issues.

5.1.2 (M 2) Apply Baseline Approach

The baseline approach we compare to is a modified version of A-SZZ, introduced by Sahal and Tosun [5]. A-SZZ selects the lines between “the first left bracket above and the first right bracket below” the added lines as a code block, then invokes the `log` command on all the functional lines of the block (i.e., ignoring comments and whitespace) to implicate commits. In cases where lines are added to two consecutive methods, we select the lines between the two enclosing brackets. Otherwise, in rare cases where the syntactic A-SZZ definition of a code block crosses method or loop boundaries while selecting lines, we instead consider the block to be the first enclosing method or loop.

5.1.3 (M 3) Perform Comparative Analysis

After applying both the Data Flow and Baseline approaches, we compare the sets of potentially bug-inducing commits implicated for each defect-fixing commit to count the instances where both techniques yield the same results, and whether there are implicated commits in common for the cases where they yielded different results.
5. Mitigation

5.1.4 (M 4) Perform Precision Analysis

For each pair of fix-inducing and defect-fixing commits from both approaches, we take a deeper look at the fix-inducing commit to assess whether it should have been implicated in the fix. Since we are not subject matter experts in the studied systems, we take a conservative approach to labelling the implicated commits. We assume that implicated commits are correctly labelled (i.e., true positives) unless it is evident that they could not have contributed to the bug (i.e., false positives). We use this data to compute the precision score \(\frac{tp}{tp+fp} \) for each technique. We exclude New Entity changes from this analysis due to their inherent ambiguity.

5.2 Maintenance Type Analysis

5.2.1 (MT 1) Perform Maintenance Type Analysis

To better understand the types of maintenance being performed within ghost commits, and to study the interplay between intrinsic/extrinsic defects [35] and ghost commits, we classify our sample of MG 1 commits as corrective, adaptive, or perfective, according to the taxonomy introduced by Swanson [7]. The taxonomy defines the maintenance types as follows:

(1) **Corrective Maintenance** rectifies a processing, performance, or implementation failure.
5. Mitigation

(2) **Adaptive Maintenance** responds to changes in the data or processing environments.

(3) **Perfective Maintenance** improves non-functional properties (e.g., performance, maintainability).

Corrective maintenance maps onto the concept of intrinsic defects, while adaptive and perfective maintenance are likely due to extrinsic defects.

5.3 MG 1 Mitigation Strategies

Broadly speaking, the proposed mitigation strategies require language-aware extensions to the SZZ approach. In this section, we describe our approach to mitigate each of the categories of MG 1 from Table 4.2.

5.3.1 Check

For each Check-type MG 1 commit, we first locate the identifier being checked and identify the line(s) that introduce or modify its value. For example, commit 4adc8e4 from the **ActiveMQ** project adds a null-check for the `socketHandlerThread` identifier on lines 470–473. Data flow analysis reveals that `socketHandlerThread` was introduced on line 451, which we add to the list of lines to be processed by SZZ. In cases where the lines introducing the variable are not in scope, we follow the A-SZZ approach, tracing the surrounding block.

A key limitation of the approach is its reliance upon a (heavyweight) data flow analysis
Algorithm 1 Null Check Mitigation

1: `nullCheckVariable` = variable being null checked
2: `range` = `additionLineNumber` ± `scanSize`
3: `linesToTrace` = `{}`
4: `enclosingBlock` = lines between first `{` and first `}`
5: for `line` in `range` do
6: if `line` contains `nullCheckVariable` then
7: Append `line` to `linesToTrace`
8: end if
9: end for
10: if `linesToTrace` is empty then
11: for `line` in `enclosingBlock` do
12: Append `line` to `linesToTrace`
13: end for
14: end if
15: return `szz(linesToTrace)`

rather than solely mining the software repositories. Semantic knowledge of the subject system (i.e., a context-aware approach) is required when analyzing a change and deciding which change introduced the identifier being checked, e.g., when blaming the method declaration instead of lines surrounding the modified code. Different SZZ users may have different needs depending on the cost of false negatives (i.e., the importance of mitigating ghosts) and false positives (i.e., the rate of false alarms).

Maintenance type analysis reveals that all `Check`-type MG 1 commits are corrective, which is not unexpected because the addition of a check implies addressing an intrinsic defect due to the check being missing. Algorithm 1 outlines our mitigation strategy for null checks, with a computational cost proportional to the breadth of the scanned area.
5. Mitigation

5.3.2 New Entity

Algorithm 2 New Entity Mitigation

1: $refLineNumber =$ line referring to new entity
2: $range = refLineNumber \pm scanSize$
3: $linesToTrace = \{}$
4: $\textbf{for line in range do}$
5: $\quad \text{Append line to linesToTrace}$
6: $\textbf{end for}$
7: $\textbf{return } szz(linesToTrace)$

We propose an SZZ-inspired sub-approach, where other classes, methods, and variables which refer to the new entity are first mapped to the new entity through static analysis of the source code and then filtered based on their likelihood of leading to a defect. SZZ could then be applied to the filtered set of other entities to identify potential fix-inducing changes. For example, commit f6a5c7b adds the class XBeanFileResolver to help convert relative paths by verifying whether a provided path is a URL to an XBean file (boolean isXBeanFile(String configUri)). Our proposal would apply SZZ to call sites of this method. Algorithm 2 shows our mitigation strategy for New Entity changes, with a computational cost proportional to the breadth of the scanned area.

While this direction is exciting, a key limitation of this mitigation strategy is that the implementation requires an in-depth parse of the source code of a project. Current SZZ implementations only rely on lightweight parses of project source code (e.g., to identify irrelevant comment and whitespace changes). Adding this layer of complexity may be too
costly to justify the benefits for all projects; however, for projects where the implications of false negatives are severe (e.g., safety-critical systems), it may be worthwhile.

Another, less immediately concerning limitation is that the solution does not account for dynamic language features, such as reflection and dependency injection. Like any static analysis, the proposed solution would inherit the classic static analysis limitations. Hybrid static and dynamic analyses could be used to address these limitations, but would impose an even higher analysis cost.

When manually exploring this strategy in our sample, we find that four of the six New Entity commits also involve the addition of a check. In the example above, the new \texttt{XBeanFileResolver} class is immediately used by an if check in the same commit, which we can implicate using Algorithm 1. Maintenance type analysis reveals that five of the six New Entity changes are corrective (intrinsic), while the remaining one is adaptive. Approaches to mitigate extrinsic defects [35] are important for New Entity changes.

5.3.3 Configuration

For \textit{Configuration} changes, we must convey an even deeper understanding of the context of the change to the SZZ algorithm. For instance, an understanding of the properties being updated and/or the external tool/framework being called is needed to implicate changes in this category. To illustrate, consider commit \texttt{9c75fe7}, which updates the \texttt{JMSXUSER.ID} message property so it appears when browsing the message via JMX. A deeper understanding
of the JMX API would be required to implicate fix-inducing commits for this defect-fixing change.

This type of ghost commit requires deep investment in project-specific details, which may not transfer to other projects. Indeed, *Configuration* changes can be so specific to a niche that investigating them would require a complete understanding of the studied projects.

Complicating matters further, maintenance type analysis reveals that six of the seven Configuration changes are adaptive. This suggests that the bulk of configuration fixes do not have a commit to implicate. Given their relative infrequency and low rates of corrective maintenance, we believe that mitigation of Configuration ghosts is unlikely to yield much value.

5.3.4 Override

Algorithm 3 Override Mitigation

1. overriddenMethod = method being overridden
2. range = class hierarchy threshold
3. linesToTrace = {}
4. for class in range do
5. if class is superclass of overriddenMethod then
6. Append overridden method declaration to linesToTrace
7. end if
8. end for
9. return szz(linesToTrace)

We propose applying SZZ to the superclass variant of the method being overridden. For example, commit 51ef021 addresses a defect by overriding the `getPercentUsage()` method,
which belongs to the StoreUsage subclass. Our proposal would apply SZZ to the superclass variant from Usage. Algorithm 3 outlines our mitigation strategy for Override changes, with a computational cost proportional to the depth of the class hierarchy being searched.

A key concern with this solution is how quickly the set of implicated commits may grow. For complex hierarchies with several variants of an overridden method, the set of lines being fed to SZZ may quickly grow, essentially trading a false negative problem for a false positive one. To counter this, the range setting can constrain the search space.

In the example above, applying our strategy leads us to implicate commit 6d8e2c5, which originally added getPercentUsage() in the superclass. The method was later overridden in commit 51ef021 to add percentUsage = cac1PercentUsage(), which refreshes the setting when retrieved over JMX.

Ten of the eighteen Override changes also involve the addition of a check, where Algorithm 1 applies. In the example above, a null check of store is added to the overridden method.

Turning to the maintenance type, we find that six of the eight non-Check Override changes are corrective, and the remaining two are perfective. This suggests that extrinsic defects are not a large concern for Override ghost commits.
5. Mitigation

Algorithm 4 Logging Mitigation

1: \textit{loggingVariable} = variable being logged
2: \textit{range} = \textit{loggingLineNumber} ± \textit{scanSize}
3: \textit{linesToTrace} = {}
4: \textbf{for line} in \textit{range} \textbf{do}
5: \quad \textbf{if} line contains \textit{loggingVariable} \textbf{then}
6: \quad \quad Append line to \textit{linesToTrace}
7: \quad \textbf{end if}
8: \textbf{end for}
9: \textbf{return} \textit{szz(linesToTrace)}

5.3.5 Logging

We propose applying data flow analysis to determine where the value being logged, or the method containing the exception being logged, was last updated. Algorithm 4 outlines our mitigation strategy for Logging changes, with a computational cost proportional to the number of logging variables of interest and the breadth of the scanned area.

For example, commit 56bed30 adds a logging statement to log a start failure exception \texttt{LOG.trace("Error on start: ", e);} . Applying our strategy to the catch statement where \texttt{e} is caught implicates commit 082fdc5, where the catch block was added without logging. Similar to Algorithm 1, Algorithm 4 increases the complexity of SZZ by increasing the amount of static analysis required.

Ten of the twelve logging changes are contained within a \textit{Check} change. In such cases, we implicate commits using Algorithm 1, and consider them to be corrective (intrinsic).
5. Mitigation

5.3.6 Expanding Class

An initial attempt may implicate the commit that last updated the expanded class as potentially fix inducing. For example, commit 24f73a5 adds the method `testReceipts` to the `StompTest` class. The intuition behind our approach is that a limitation in the initial implementation or last update to the class may be implicated in this future fix. Algorithm 5 outlines our mitigation strategy for Expanding Class changes, with a computational cost proportional to the size of the expanded class.

Algorithm 5 Expanding Class Mitigation

```plaintext
1: linesToTrace = {}
2: for line within expandedClass do
3:     if line last updated expandedClass then
4:         Append line to linesToTrace
5:     end if
6: end for
7: return szz(linesToTrace)
```

This approach is naïve, since the last change to a class may not be responsible for the expansion. Yet this same limitation is at the core of SZZ, i.e., the last edit to a line may not be truly responsible for introducing the defect [33].

We find that all studied Expanding Class changes are corrective. These changes fix defects by adding functionality that should have been added when the surrounding block was last updated. For example, commit 5f7a81f creates a copy of `datasequence` to fix a race condition in the `decompress` method. We implicate commit 44bb9fb, which adds this
method without accounting for the race condition. Commit c391321 fixes a null pointer exception by adding return statements, while commit 4d0e572 fixes a defect that is caused by the doRecoverNextMessages method not breaking out loops by adding break statements. What is striking about these examples is how distinct they are. An even finer grained analysis may be needed to propose mitigation strategies for each of these changes.

5.4 MG 1 Mitigation Strategies Evaluation

5.4.1 Comparative Analysis

We find that data flow analysis implicated exactly the same commits as the baseline approach [5] in 15 of the 71 MG 1 commits from the ActiveMQ project (21.1%). A deeper examination of these implicated commits reveals that they mostly occur when the entire enclosing method was last modified by the same commit. For example, commit f7c7993 adds an if-check if (from.equals(to)). Our control flow analysis blames line 192 containing the enclosing method declaration public static Converter lookupConverter(Class from, Class to), while A-SZZ blames all the lines in the method (192–206). In this case, the implicated commit is the same since the entire method was added by the same commit (1802116).

In cases where the lines immediately surrounding the added lines were last modified by different commits than the method/class declaration, the two techniques yield different
results. Yet at least one common commit is implicated by both techniques in 41 of the remaining 56 cases (73.2%).

We are unable to implicate commits for non-Check New Entity changes and for 50% of Override changes. Nonetheless, our data flow analysis also reveals that at least one refactoring commit is incorrectly implicated as fix-inducing 46.5% of the time. This is due to an inherent shortcoming of SZZ and stresses the importance of implementing an automated Refactoring Aware SZZ implementation [31].

5.4.2 Precision Analysis

We find that our data flow analysis has a precision of 0.753, while A-SZZ has a precision of 0.358. One reason for this difference in precision is the data flow approach’s ability to implicate lines outside the code block immediately surrounding the added lines. For example, commit d92d3a8 adds a null check for reconnectTask on lines 148–150. The data flow approach traces line 129, which updates reconnectTask’s value. This line is outside the try block surrounding the null check.

Another reason for the difference in precision is that the lines in the code block are often unrelated to the defect being fixed. This results in a higher rate of false positives. For example, in commit 4adc8e4 from the ActiveMQ project,

> A context-aware, data flow based approach implicates commits more precisely than a purely syntactic approach.
5.5 MG 1 Maintenance Type Analysis Evaluation

Across our sample, (92.4%) of MG 1 commits are corrective, while 5.7% are adaptive, and 2.1% are perfective. These observations share similarities with the recent work of Rodriguez-Perez et al. [34], who found that the fixes for bugs are often extrinsic, i.e., do not have a fix-inducing change. The fixes that we labeled as corrective maintenance are intrinsic in nature, while perfective and adaptive maintenance are often extrinsic. This indicates that 7.6% of ghost commits are extrinsic in nature, which falls within the range of rates reported by Rodriguez-Perez et al. [34].

5.6 Chapter Summary

In this chapter, we outline our strategies to mitigate the most frequently occurring type of ghost commit: MG 1. We also investigate the relationship between ghost commits and intrinsic/extrinsic bugs by classifying ghost commits as Corrective, Adaptive, or Perfective. We find the majority (92.4%) of ghost commits to be corrective, suggesting that extrinsic defects are not a large concern for ghost commits.

To evaluate our strategies, we compare them to a baseline approach (A-SZZ) when applied to a sample from the ActiveMQ project, and find that while the exact same commits are implicated 21.1% of the time, our approach outperforms the baseline by 39.5 percentage points in terms of precision, promoting the use of a context-aware approach when implicating
commits.
Chapter 6

Threats to Validity

Like any empirical study, this thesis is subject to threats to its validity. In this chapter, we discuss the threats to construct, internal, and external validity, as well as the steps that we took to mitigate these threats.

6.1 Construct Validity:

Construct threats to validity are associated with how closely our measurements reflect what we set out to measure. When linking VCS commits to ITS reports, we rely on developers recording the *issueID* within the commit message. However, developers may mistype or omit the *issueID*, which would introduce linkage bias [8] into our datasets. To mitigate the risk of linkage bias, we select a sample of projects where the linkage rate exceeds 50%.

We characterize ghost commits using an open coding approach. Since we are not
developers of the studied projects, our understanding of the studied projects is limited. This surface understanding of the projects could introduce misclassification in our results. To mitigate this risk, the author and a collaborator independently coded the samples and a consensus was reached for 97.9% of the MG 1 sample and 100% of the MG 2 sample. A tie breaking vote was only needed for the remaining 2.1% of the MG 1 sample.

6.2 Internal Validity

Internal threats to validity emerge when alternative hypotheses may also explain our observations. We argue that addition-only fixes (MG 1) and removal-only commits (MG 2) present a risk for current SZZ implementations. However, it may be that these commits do not account for enough data to be of practical consequence. On the other hand, we observe that ghost commits account for a considerable proportion of the fixes and the commits in the studied projects. Since their mitigation will improve the recall of SZZ approaches, the relative importance of addressing the ghost commit problem may depend on the importance of false negatives for the project(s) under analysis.

Developers may not create a new issue report for every defect. As we observed in our analysis of the filtering ghosts (see Section 4.6, follow-up work (e.g., minor defects in an initial patch) may be tacked onto the same issue ID as the initial commit. Future work should investigate how the SZZ approach can account for these patterns of use of issue trackers.
6.3 External Validity

External threats to validity are concerned with the generalizability of our results. We studied 14 open source projects from the Apache Software Foundation. Since these projects are primarily written in Java, our results may not generalize to other organizations or programming languages. However, the studied projects are of varying sizes (0.087 MLOC–4.3 MLOC) and span multiple domains (e.g., database management systems, content repositories).
Chapter 7

Conclusion

In this chapter, we conclude this thesis by summarizing its contributions and proposing promising directions for future work in the area.

7.1 Contributions and Findings

Defects are introduced during software development. Identifying commits that are at risk of inducing future fixes can help teams to allocate quality assurance effort more effectively. To aid in identifying risky commits, the popular SZZ approach for identifying fix-inducing commits is used; however, the SZZ approach is not without limitations. In this thesis, we focus on three types of ghost commits, i.e., commits that cannot connect to or from other commits. We conduct an empirical study of 14 Apache open source projects to quantify and characterize these ghost commits, observing that they occur regularly and share several
common properties. We observe that:

- Ghost Commits are not rare in SZZ datasets: 7.64% (MG 1), 2.68% (MG 2), and 5.46% (FG).

- Adding *checks* and *cleanup* of unnecessary code are the most frequently occurring reasons for MG1 and MG2 commits, respectively.

- The date filter of SZZ is the reason for 35% of FG commits. Closer inspection revealed that, at least in the case of the ASF, the date filter is being applied too aggressively.

Based on that characterization, we propose and evaluate control flow based, context-aware directions to improve upon the SZZ approach to *mitigate* MG 1 commits, and compare them to a baseline approach. We find that the same commits are implicated by both approaches 21.1% of the time, while the control flow approach outperforms the baseline by 39.5 percentage points in terms of precision.

Finally, we investigate the relationship between MG 1 commits and intrinsic/extrinsic bugs by performing a maintenance type analysis. We find that 92.4% of MG 1 commits are related to corrective maintenance activities, which maps onto the concept of intrinsic bugs, suggesting that extrinsic bugs are present at similar rates in ghost commits as they are in other commits.
7.2 Opportunities for Future Research

In this section, we outline promising directions for future work. In particular, we focus on how mitigation strategies for the other two ghost commit types (MG 2 and FG) might be investigated, as well as how MG 1 mitigation strategies could be applied as SZZ filters.

7.2.1 Promising Directions for Future Work on MG 2

To implicate MG 2 commits in future fixes, we propose to track program elements that were removed in a lookup table. This lookup table can be checked during the SZZ mapping phase. If program elements that were removed are re-added later, the lookup table can map defect-fixing commits to the commits where the elements were removed.

A key limitation of this approach is the cost of creating and traversing the lookup table; however, we envision that a simple hash-like data structure could be efficient. Perhaps of greater concern is the risk of false positives, when commits that reintroduce a program element have done so as a coincidence rather than an intentional resurrection of the previous code. To mitigate this risk, more heavyweight matching techniques (e.g., clone detection [44]) could be applied. This would increase the analysis cost (since entire program elements would need to be tracked and not just the identifier), but would likely reduce the false positive rate.
7.2.2 Promising Directions for Future Work on FG

While in theory, the null pointer exception discussed in Section 4.6 and its fix should have been tracked under an independent issue ID, in our experience, this reuse of issue IDs is common developer behaviour. Indeed, Miura et al. [37] found that 5%–62% (median 29%) of work items across 14 studied systems are composed of two or more commits. Moreover, Park et al. [45] found that 22%–33% of resolved defects across three studied systems required more than one fix attempt. Future SZZ extensions should take such behaviour into account to mitigate filtering ghosts.

Such filtering ghosts happen due to the inherent limitations of SZZ. A potential strategy to address multiple fix attempts being linked to a single issue ID would be to relax the date-cutoff in the filtering stage of SZZ by specifying a date range, within which commits may be implicated. This way, commits made after the bug report creation date, but discussed in bug report comments may be considered. This approach would increase the total number of commits to be analyzed, and thus further increases the complexity of applying SZZ. A trade-off between the recall of SZZ and the resources needed to analyze the extra commits could be explored by varying the threshold of the date range.

7.2.3 Mitigation Strategies as SZZ Filters

Another idea for future research is applying the MG 1 mitigation strategies introduced in this thesis in the SZZ filtering stage. For example, if a commit that adds a check is implicated
by SZZ, applying the Check-type mitigation strategy to locate the identifier being added could more accurately pinpoint where the defect was truly introduced. Similarly, the other mitigation strategies could be applied as a series of filters to all commits implicated by SZZ. It would be interesting to explore how applying ghost mitigation strategies could reduce the amount of false positives generated by SZZ.
Bibliography

