
Tacit Inefficiencies and Barriers in
Continuous Integration

by

Nimmi Rashinika Weeraddana

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2025

© Nimmi Rashinika Weeraddana 2025

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Benoit Baudry
Professor,
Département d’informatique et de recherche opérationnelle,
Université de Montréal

Supervisor: Shane McIntosh
Associate Professor,
Department of Computer Science,
University of Waterloo

Internal Members: Michael W. Godfrey
Professor,
Department of Computer Science,
University of Waterloo

Chengnian Sun
Associate Professor,
Department of Computer Science,
University of Waterloo

Internal-External Member: Ladan Tahvildari
Professor,
Department of Electrical and Computer Engineering,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

I am the primary author for the research presented in this thesis. My responsibilities
include: (1) formulating the research ideas, (2) collecting data, (3) conducting empirical
studies, and (4) drafting the manuscripts. My co-authors contributed by helping to refine
the research ideas, manual coding, and providing constructive feedback to improve the
manuscripts.

iv

Abstract

Continuous Integration (CI) is the heartbeat of a software project. CI enables team mem-
bers to validate each change set through an automated cycle (i.e., a CI build) that compiles
and tests the project’s source code. Although adoption of CI improves team productivity
and software quality, these benefits come at a cost. As projects evolve, the complexity
of CI pipelines tends to increase, introducing potential inefficiencies (i.e., prolonged build
durations and frequent build restarts) and barriers (e.g., the specialized expertise required
to maintain CI artifacts). Such inefficiencies and barriers waste resources that enable CI.

While inefficiencies and barriers in CI are often explicit, where project teams are cog-
nizant of them, there also exist tacitly accrued inefficiencies and barriers that are not
immediately apparent to project teams. In this thesis, we use historical data from a large
collection of software projects to perform three empirical studies, focusing on tacit ineffi-
ciencies and barriers in CI.

We first present an empirical study that focuses on tacit inefficiencies in the environ-
ment (e.g., CircleCI) where CI builds are executed. We observe that (1) CI builds can
unexpectedly time out due to issues in the environment, such as network problems and
resource constraints, and (2) the history of previous CI build outcomes and anticipation of
clusters of consecutive timeouts can provide useful indications to project teams to proac-
tively allocate resources and take preventive measures. Next, we present an empirical study
that investigates tacit inefficiencies in CI that stem from dependencies in projects (e.g., npm
dependencies). More specifically, CI builds triggered from change sets that update versions
of unused dependencies are entirely wasteful because such change sets do not impact the
project source code. We find that (1) a substantial amount of CI build time is spent on
these wasteful builds, (2) bots that automatically manage dependency updates in projects
(e.g., Dependabot) need to consider whether a dependency is used before triggering a build,
and (3) to detect and omit such wasteful builds, project teams may adopt our automated
approach, Dep-sCImitar , to cut down on this waste.

We then present an empirical study that investigates tacit barriers that are related to
the composition of the teams responsible for creating and maintaining CI pipelines, i.e.,
the DevOps contributors. In particular, we examine the diversity and inclusion of these
contributors—a factor that plays a crucial role in CI by influencing collaboration and the
overall efficiency of CI pipelines. Our findings show that (1) the perceived ethnic diversity
of DevOps contributors is significantly low compared to other contributors, with a similar
pattern observed for perceived gender diversity, and (2) the lack of diversity is amplified
when considering the intersection of minority ethnicities and genders, calling for enhanced
awareness of the lack of diversity among DevOps contributors.

v

Related Publications

Earlier versions of the work in this thesis have been published as follows:

• Weeraddana NR, Alfadel M, McIntosh S. Characterizing Timeout Builds in Con-
tinuous Integration. Transactions on Software Engineering, vol 50(6), 2024 [174].

• Weeraddana NR, Alfadel M, McIntosh S. Dependency-Induced Waste in Continu-
ous Integration: An Empirical Study of Unused Dependencies in the npm Ecosystem.
International Symposium on the Foundations of Software Engineering, 2024 [175].

• Weeraddana NR, Xu X, Alfadel M, McIntosh S, Nagappan M. An Empirical Com-
parison of Ethnic and Gender Diversity of DevOps and non-DevOps Contributions
to Open-Source Projects. Empirical Software Engineering, vol 28(6), 2023 [177].

The following publications, while not directly related to the material in this thesis, were
produced concurrently with the research conducted for this thesis.

• Weeraddana NR, Habchi S, McIntosh S. Crash Report Prioritization for Large-
Scale Scheduled Launches. International Conference on Software Engineering: Soft-
ware Engineering in Practice, 2025 [176].

• Kola-Olawuyi A, Weeraddana NR, Nagappan M. The Impact of Code Ownership
of DevOps Artefacts on the Outcome of DevOps CI Builds. International Conference
on Mining Software Repositories, 2024 [94].

vi

Acknowledgements

I am incredibly thankful for all the wonderful people who supported and inspired me
throughout my PhD.

First and foremost, my deepest thanks go to my supervisor, Shane McIntosh. I have
learned so much under your supervision, and I am truly grateful for your mentoring, sup-
port, and courage.

I would like to extend my sincere appreciation to Mahmoud Alfadel, Meiyappan Na-
gappan, and Sarra Habchi for their thoughtful feedback, ideas, and collaboration.

To my defense committee, Benoit Baudry, Chengnian Sun, Michael Godfrey, and Ladan
Tahvildari—thank you for taking the time to evaluate my work and provide constructive
feedback.

I will always cherish the wonderful memories and moments that I shared with my friends
and lab mates over the years. You made this experience richer and more enjoyable. I wish
you all the success through your journey.

To my beloved parents, Sumanasena and Sakunthala—thank you for your endless love
and unwavering support. I am also deeply grateful to my sister (Madhu) and brother (Chathu-
ranga), and to my dear mother-in-law (Harriet), and her family, for the care and encour-
agement you have given me over the years.

Last but not least, to my husband, Sanka—thank you for being my greatest cheerleader.
I am forever grateful.

vii

Dedication

To my beloved husband.

viii

Table of Contents

Examining Committee ii

Author’s Declaration iii

Statement of Contributions iv

Abstract v

Related Publications vi

Acknowledgements vii

Dedication viii

List of Figures xiv

List of Tables xvi

List of Abbreviations xviii

1 Introduction 1

1.1 Problem Statement . 2

1.2 Thesis Overview . 3

1.2.1 Tacit Inefficiencies in CI . 3

ix

1.2.2 Tacit Barriers in CI . 4

1.3 Thesis Contributions . 5

1.4 Thesis Organization . 6

I Preliminaries 7

2 Background 8

2.1 CI Stakeholders . 8

2.2 CI Pipeline . 9

2.3 Chapter Summary . 10

3 Related Work 11

3.1 Inefficiencies in CI . 11

3.2 Accelerating CI . 12

3.3 Barriers in CI . 14

3.4 Chapter Summary . 15

II Tacit Inefficiencies 17

4 CI Timeouts 18

4.1 Introduction . 18

4.2 Study Design . 21

4.2.1 (PS) Project Selection . 21

4.2.2 (DC) Data curation . 23

4.2.3 (MF) Model Fitting . 25

4.3 Study Results . 26

4.3.1 (RQ1) What is the prevalence of CI timeout builds? 27

x

4.3.2 (RQ2) How well can our models explain the incidences of timeout
builds? . 28

4.3.3 (RQ3) What are the most influential features of our models of time-
out builds? . 30

4.3.4 Longitudinal Analysis . 36

4.3.5 Thematic Analysis . 39

4.4 Threats to Validity . 42

4.4.1 Construct Validity . 42

4.4.2 Internal Validity . 43

4.4.3 External Validity . 44

4.5 Practical Implications . 44

4.6 Chapter Summary . 46

5 Unused-Dependency Updates 47

5.1 Introduction . 47

5.2 Study Design . 49

5.2.1 (PS) Project Selection . 49

5.2.2 (DC) Data Curation . 51

5.3 Study Results . 53

5.3.1 (RQ1) What is the prevalence of CI waste due to unused dependencies? 53

5.3.2 (RQ2) What are the main sources of CI waste due to unused depen-
dencies? . 57

5.3.3 Mitigation of CI Waste Due to Updates to Unused Dependencies . . 61

5.4 Threats to Validity . 66

5.4.1 Construct Validity . 67

5.4.2 Internal Validity . 67

5.4.3 External Validity . 67

5.5 Practical Implications . 68

5.6 Chapter Summary . 69

xi

III Tacit Barriers 71

6 Diversity of DevOps Contributors 72

6.1 Introduction . 72

6.2 Study Design . 75

6.2.1 (PS) Project Selection . 75

6.2.2 (DC) Data Curation . 78

6.3 Study Results . 84

6.3.1 (RQ1) Does the perceptible ethnic and gender diversity of DevOps
contributors differ from that of non-DevOps contributors? 84

6.3.2 (RQ2) How does the distribution of perceptible ethnic and gender
diversity change as projects age? 91

6.3.3 (RQ3) How does the intersection of perceptible gender and ethnic
diversity differ between DevOps and non-DevOps contributors? . . 95

6.4 Threats to Validity . 100

6.4.1 Construct Validity . 100

6.4.2 Internal Validity . 103

6.4.3 External Validity . 103

6.5 Practical Implications . 104

6.6 Chapter Summary . 106

IV Final Remarks 107

7 Conclusions and Future Work 108

7.1 Contributions and Findings . 109

7.2 Future Work . 110

7.2.1 Develop approaches for predicting timeout builds 110

7.2.2 Extend the scope of the impact of unused dependencies beyond CI
build time . 110

xii

7.2.3 Mitigate inefficiencies in CI due to smells in CI configurations . . . 110

7.2.4 Explore new business models for CI providers and project maintain-
ers that benefit long-term sustainability 111

7.2.5 Explore the challenges of DevOps contributors situated at the inter-
section of minority groups . 111

7.2.6 Explore tacit barriers faced by DevOps contributors beyond diversity
and inclusion . 112

References 113

xiii

List of Figures

1.1 An overview of the thesis. 3

2.1 An overview of a typical scenario where a CI build is triggered and the
feedback is sent to the developer. 9

4.1 An overview of our study design. 21

4.2 The distributions of the duration of timeout and signal-generating builds. . 28

4.3 Build duration vs. the probability of timing out. 32

4.4 Timeout ratio vs. the probability of builds timing out. 34

4.5 An example of builds timeline. 36

4.6 The number and duration of a timeout cluster. 37

4.7 The distance and time difference between an isolated timeout and the clos-
est timeout. 38

5.1 An overview of our study design. 50

5.2 CI build time consumption of top six projects per month due to unused-
dependency commits. The graphs corresponding to other projects are pro-
vided in our online appendix.53 . 55

5.3 An overview of the Dep-sCImitar workflow. 62

5.4 Distribution of the wasted CI build time of the top six projects before and
after applying our tool. 65

6.1 An overview of our study design showing project selection (PS) and data
curation (DC) steps. 75

xiv

6.2 Threshold plot for the number of builds. 77

6.3 Threshold plot for the number of commits. 77

6.4 Threshold plot for the number of contributors. 78

6.5 Bean plots showing the distribution of percentages of DevOps and non-
DevOps contributors from four perceptible ethnicities (i.e., White, API,
Hispanic, and Black). The solid lines represent the median percentages, and
the dotted lines represent the first and third quantiles. 87

6.6 Bean plots showing the distribution of percentages of contributors perceived
as men and women among DevOps contributors as well as among non-
DevOps contributors. The solid lines present the median, and the dotted
lines present the first and third quantiles. 89

6.7 Change in the perceptible ethnic diversity of DevOps contributors over time. 92

6.8 Change in the perceptible ethnic diversity of non-DevOps contributors over
time. 93

6.9 Change in the perceptible gender diversity of DevOps contributors over time. 94

6.10 Change in the perceptible gender diversity of non-DevOps contributors over
time. 95

6.11 Change in the perceptible ethnic diversity of the DevOps contributors who
are perceptibly women. 98

6.12 Change in the perceptible ethnic diversity of the non-DevOps contributors
who are perceptibly women. 99

xv

List of Tables

4.1 Description and rationale of the selected features. 24

4.2 Model fitness. 30

4.3 Importance of families. 32

4.4 Importance of features. 33

4.5 The extracted themes for CI timeout builds. 41

5.1 The prevalence of CI waste from unused dependencies. The table presents
the total and wasted number of commits and builds. The table further
presents figures for both CI providers and consumers. 54

5.2 Distribution of unused-dependency commits and corresponding build hours
over bots and developers. 59

5.3 Build hours attributed to unused-dependency commits authored by bots. . 59

5.4 Comparison of the total number of commits and build hours stemming from
unused-dependency commits between development and runtime dependen-
cies across all the projects in our dataset. 60

5.5 Build hours resulting from unused-dependency commits in development de-
pendencies. 61

6.1 Descriptive statistics of our curated dataset of 450 projects. 83

6.2 A sample of our curated dataset. 83

6.3 Results of statistical analysis of ethnic diversity metrics for DevOps and
Non-DevOps contributors. 88

6.4 Results of statistical analysis of gender diversity metrics for DevOps and
Non-DevOps contributors. 90

xvi

6.5 Results of the statistical analysis of the percentages of the perceptible eth-
nicities of perceptibly women DevOps and non-DevOps contributors. . . . 97

xvii

List of Abbreviations

2PRACE Mixed Race 82

AIAN American Indian/Alaskan Native 82, 83, 87, 90, 96

API Asian/Pacific Islander 82, 83, 86, 90, 91, 96, 97, 99, 105, 111

AUPRC Area Under Precision-Recall Curve 19, 29, 30

AUROC Area Under Receiver Operating Characteristic Curve 19, 29, 30, 35, 45, 82

CI Continuous Integration 1, 8, 11, 108

CPU Central Processing Unit 41

DoF Degrees of Freedom 26, 29, 32, 33

DORA DevOps Research and Assessment 15, 73

GHA GitHub Actions 8, 9, 48, 50, 53, 56, 63–65, 67

JSON JavaScript Object Notation 35, 51

MENA Middle East and North Africa 100, 101

PR Pull Request 1, 8, 9, 39, 41, 44, 68, 108

RAM Random Access Memory 41

SMOTE Synthetic Minority Over-sampling TEchnique 23

xviii

STEM Science, Technology, Engineering, and Mathematics 74, 96

US United States 82, 83, 93, 100, 101

VCS Version Control System 9

xix

Chapter 1

Introduction

Modern software is developed at a swift pace. At the core of this rapid development is
Continuous Integration (CI)—the heartbeat of a software project [41]. Development events
of importance, such as commits being submitted to a shared repository and creation of
Pull Requests (PRs), could be configured to automatically trigger CI builds. A CI build
orchestrates a series of tasks, including dependency retrieval, compilation, and testing to
validate any changes and maintain code integrity [170, 81, 13, 178]. For instance, a CI
build triggered by a commit allows the team members to verify whether the corresponding
change set integrates seamlessly with the shared repository [56]. Adoption of CI in software
projects is known to improve team productivity [155, 80] and software quality [170, 81, 156].
By continuously integrating change sets and running automated tests, CI provides prompt
feedback, allowing project teams to address faulty change sets while preventing them from
escalating into more costly problems later in the development cycle.

Despite its benefits, CI presents challenges to project teams, which are twofold: barri-
ers and inefficiencies. Barriers include obstacles that may hinder the successful adoption
of CI practices. For example, transitioning to CI practices may require a cultural shift
within development teams, and prior studies have identified resistance to change as a key
barrier to the adoption and success of CI practices [102, 33]. Furthermore, configuring
CI pipelines often requires a specialized skill set that falls under the broader domain of
DevOps practices [179], which requires expertise that not all team members may have.

In parallel, CI pipelines become susceptible to inefficiencies as they grow in complexity
and scale, which can negatively impact their overall effectiveness. For example, long-
running builds are an inefficiency in CI [59]. This is because the longer a build executes,
the more CI resources it consumes. While failing CI builds are known to take longer

1

to complete than those that are passing [59], project teams often restart CI builds after
a failure [40, 109]. Such restarts are often driven by flakiness in CI builds, where the
same change set intermittently passes or fails, consuming CI resources without producing
a consistent outcome [68, 147]. However, restarting CI builds is known to change the
outcome of only 42% of failing builds, further exacerbating the waste of CI resources [109].

1.1 Problem Statement

Inefficiencies in CI that are discussed in prior work are explicit, where team members are
cognizant of them (e.g., the overuse of CI resources due to frequent build restarts [109]);
however, not all inefficiencies in CI are immediately apparent. These tacit inefficiencies
can accrue over time without the awareness of the project team. These include, for in-
stance, unexpected CI build terminations, CI builds triggered due to change sets that do
not affect the project’s source code [3], redundant tasks in CI pipelines, and outdated
configurations [186], increasing the consumption of CI resources.

Besides inefficiencies in CI, team members who create and maintain CI pipelines [131],
i.e., DevOps contributors, encounter a set of barriers. Many of the barriers faced by these
contributors, such as the lack of specialized skills [179], are explicitly recognized and tied
to the technologies used in CI. Barriers may not be explicitly discussed as specific to CI.
We refer to such barriers as tacit barriers—those that may not stem explicitly from the
technology stack, but rather from social and organizational concerns. Such barriers include
a lack of diversity among DevOps contributors and a fear of breaking CI pipelines, which
can discourage collaboration on CI artifacts.1

In this thesis, we set out to understand the prevalence and characteristics of tacit
inefficiencies and barriers in CI and provide strategies to mitigate them. To this end, we
leverage historical data from CI pipelines and evaluate the following research hypothesis:

Hypothesis. Neglecting tacitly accrued inefficiencies and barriers in CI can have a
substantial impact on both CI resources (i.e., build time) and the team members in
a project who contribute to CI artifacts. Systematically identifying and character-
izing these issues can inform the development of strategies that enhance the overall
efficiency of CI pipelines.

1https://www.harrisonclarke.com/devops-sre-recruiting-blog/diversity-and-inclusion-in-devops

2

https://www.harrisonclarke.com/devops-sre-recruiting-blog/diversity-and-inclusion-in-devops

Figure 1.1: An overview of the thesis.

1.2 Thesis Overview

In this section, we present an overview of the thesis, with the structure illustrated in
Fig.1.1. To evaluate our research hypothesis, we examine tacitly accrued inefficiencies in
CI (Section 1.2.1) and tacit barriers in CI (Section 1.2.2).

1.2.1 Tacit Inefficiencies in CI

We perform two empirical studies that focus on tacitly accrued inefficiencies in CI: in-
efficiencies in the underlying CI environment on which CI builds are executed, i.e., CI
timeouts, and inefficiencies in dependencies of a project, i.e., unused dependencies.

3

Chapter 4 CI Timeouts. CI builds may encounter unforeseen issues in the CI environ-
ment, such as network problems2 and prolonged waiting on external services. To
mitigate this, CI providers often impose time limits on builds to prevent erroneous
builds from consuming excessive resources in the CI environment. However, when
a CI build exceeds this time limit, it is automatically terminated (i.e., timed out),3

often after consuming a substantial amount of CI resources. While these limits are
meant to protect the CI environment from abuse, they can result in the maximum
allowable resources being consumed without providing team members with any feed-
back on whether the CI build would pass or fail [56, 60]. In this chapter, we quantify
the prevalence of CI timeouts in open-source projects, and investigate the character-
istics that explain the likelihood of CI timeouts.

Chapter 5 Unused-Dependency Updates. Software projects often rely on external
dependencies listed in their configuration files, many of which may not be actively
used in the project’s source code [98, 152]. Although these unused dependencies are
not essential for building and executing the software, updating their versions in de-
pendency configuration files can still trigger CI builds. Such CI builds are wasteful
because they do not impact the actual functionality of the software. Therefore, in
this chapter, we quantify and characterize CI waste in open-source projects caused
by updates to unused dependencies in order to gain insights into strategies for miti-
gating this waste.

1.2.2 Tacit Barriers in CI

Among the tacit barriers influencing CI, team diversity stands out as particularly important
because it has a direct impact on software development [168]. In fact, a report, “Why
diversity matters in DevOps,” discusses the potential of diversity in DevOps teams to
lead to more streamlined product development.1 Motivated by this, we explore the role of
diversity among team members who contribute to CI artifacts (i.e., DevOps contributors).

Chapter 6 Diversity of DevOps Contributors. While a lack of diversity in the broader
software engineering community has been observed [120, 168], it remains unclear
whether this issue persists, worsens, or improves among DevOps contributors. In
this chapter, we examine the perceptible ethnic and gender diversity of DevOps con-
tributors compared to other contributors in open-source projects, aiming to better

2https://github.com/oblador/loki/issues/94
3https://support.circleci.com/hc/en-us/articles/360007188574

4

https://github.com/oblador/loki/issues/94
https://support.circleci.com/hc/en-us/articles/360007188574

understand the current state and identify opportunities for improving the diversity
not only among teams overall but also among DevOps contributors.

1.3 Thesis Contributions

The main contributions of this thesis are the following:

• Projects that encounter CI timeouts, a tacit inefficiency in CI, can cause substantial
waste of CI resources, posing a burden on CI providers (e.g., CircleCI) due to the
amplified impact on infrastructure and service reliability (Chapter 4).

• Project teams and CI providers can use a project’s build history to anticipate CI
timeouts because build history is the strongest indicator of potential CI timeouts,
and CI timeouts often occur consecutively in clusters (Chapter 4).

• Change sets that are linked to certain files in a project can be more prone to CI
timeouts than others. Thus, instead of restarting a new CI build after a timeout,
project teams can begin their investigations on the root causes of CI timeouts from
these timeout-prone files and fix them (Chapter 4).

• Besides CI builds that time out, those that are triggered by updates to unused de-
pendencies also waste a substantial amount of CI build time. The majority of these
wasteful builds are triggered by bots (e.g., Dependabot4) that automatically main-
tain up-to-date versions of dependencies in projects. Such bots need to be optimized
to consider actual dependency usage before triggering updates (Chapter 5).

• Project teams may adopt Dep-sCImitar ,5 a novel approach that we developed to
safely skip CI builds triggered by unused-dependency updates (Chapter 5).

• Tacit barriers to entry, particularly those related to ethnic and gender diversity, are
more pronounced among team members who contribute to DevOps artifacts (e.g., CI
configuration files) than among others. This disparity calls for a deeper understand-
ing of why DevOps work is less attractive to perceptible minorities (Chapter 6).

• The perceived diversity of both DevOps and non-DevOps contributors is slowly in-
creasing over time, but there is still room for improvement (Chapter 6).

4https://github.com/dependabot
5https://github.com/nimmiw/dep-scimitar

5

https://github.com/dependabot
https://github.com/NimmiW/dep-scimitar

• The lack of perceived diversity is amplified when considering the intersection of mi-
nority ethnicities and genders among DevOps and non-DevOps contributors. This
shows a compounded underrepresentation, indicating the necessity of targeted inclu-
sion strategies (Chapter 6).

1.4 Thesis Organization

The remainder of this thesis is structured into four parts: Part I provides the preliminaries
of this thesis, i.e., an overview of CI stakeholders and CI pipelines (Chapter 2), followed by
a review of related work on inefficiencies and barriers in CI (Chapter 3). Part II explores
tacit inefficiencies in CI: CI build timeouts (Chapter 4) and CI builds triggered due to
unused dependencies (Chapter 5). Part III analyzes the diversity of members in a project
team who contribute to CI-related artifacts, i.e., a tacit barrier in CI (Chapter 6). Part IV
presents the final remarks, summarizing the key findings of this thesis and outlining future
research directions to reduce inefficiencies and barriers in CI (Chapter 7).

6

Part I

Preliminaries

7

Chapter 2

Background

Continuous Integration (CI) is a software development practice where developers frequently
merge their change sets into a shared repository, often triggering automated builds to ensure
the shared repository remains stable [41, 84]. While CI builds are typically triggered by
events such as code commits or PRs, they can also be initiated manually by developers
or scheduled to execute at specific times of the day. CI addresses the challenges of late-
stage code integration, known as “integration hell,” by enabling continuous feedback and
supporting agile and DevOps methodologies [187, 41]. In this chapter, we outline the
stakeholders (Section 2.1) and steps in the pipeline of CI (Section 2.2).

2.1 CI Stakeholders

There are two primary stakeholder groups in CI: CI consumers and CI providers. CI
consumers include project maintainers who oversee the development process, as well as
team members who are responsible for designing and maintaining CI configurations. CI
providers are companies or services that offer tools and infrastructure for CI, e.g., on-
premise CI providers, such as Jenkins,6 and cloud-based CI providers, such as CircleCI,7

GitHub Actions (GHA),8 and Travis CI.9

CI consumers may choose a CI provider based on their project-specific requirements.
For example, a project maintainer may choose CircleCI if they require a dedicated CI

6https://www.jenkins.io
7https://circleci.com
8https://github.com/features/actions
9https://www.travis-ci.com/

8

https://www.jenkins.io
https://circleci.com
https://github.com/features/actions
https://www.travis-ci.com

Figure 2.1: An overview of a typical scenario where a CI build is triggered and the feedback
is sent to the developer.

provider to build, manage, and run its CI pipelines.10 On the other hand, a project
maintainer may opt for GHA if they are looking to automate tasks beyond CI, such as au-
tomatically generating changelogs when deploying a build in the production environment11

or automatically assigning change requests submitted by users to team members working
on the project.12

2.2 CI Pipeline

A CI build can be triggered by various events of importance, such as the submission of a
change set to a Version Control System (VCS), the initiation of a PR, a scheduled nightly
build, or even a manual trigger during a code review. A typical CI build consists of key
phases aimed at smoothly integrating change sets and detecting errors early. Fig. 2.1 il-
lustrates an example of a CI build triggered by a commit that submits a change set to the
VCS. Note that, in addition to team members, automated bots can also trigger CI builds.
The environment in which a CI build is executed may be on-premise or cloud-based in-
frastructure, including hardware, software, and network resources. For instance, hardware
resources may comprise servers for executing tasks and storage systems for archiving build
artifacts (e.g., binaries and log files).

10https://circleci.com/docs/local-cli
11https://docs.github.com/en/repositories/releasing-projects-on-github/automatically-generated-

release-notes
12https://github.com/marketplace/actions/auto-assign-issue

9

https://circleci.com/docs/local-cli/
https://docs.github.com/en/repositories/releasing-projects-on-github/automatically-generated-release-notes
https://docs.github.com/en/repositories/releasing-projects-on-github/automatically-generated-release-notes
https://github.com/marketplace/actions/auto-assign-issue

While the majority of the team members in a project focus on source code files, a
subset (i.e., DevOps contributors) takes the responsibility for configuring all the settings
and instructions in CI configuration files for executing a CI build. For CircleCI, these
are in the configuration.yml file within the .circleci/ directory. GitHub Actions
workflows are defined in YML files in the .github/workflows/ directory, with each file
containing multiple jobs to automate various tasks. These configuration files specify which
branches or events trigger builds, environment variables, and secure management of secrets.
CI configuration files also include the steps to execute a CI build, such as cloning the
repository, downloading dependencies from dependency configuration files, compiling the
code, and running automated tests. Additionally, they may include quality assurance steps,
such as linting to enforce coding standards.

Depending on the outcome of the steps in the CI configuration, a CI build is marked as
either Passed or Failed, indicating a signal-generating build that informs the user whether
their code changes are successfully integrated [56]. In contrast, non-signal-generating builds
terminate early due to user aborts, configuration errors, or infrastructure provisioning
issues within the CI environment, offering no meaningful feedback to project teams [56].

2.3 Chapter Summary

This chapter defines the main concepts of CI. Specifically, we provide an overview of the
stakeholders involved in CI, as well as a typical CI pipeline. We also introduce key terms
used throughout this thesis, such as CI configurations and dependency configurations. In
the next chapter, we survey prior research on CI to situate our empirical studies of tacitly
accrued inefficiencies and barriers within the broader context of the existing literature.

10

Chapter 3

Related Work

CI offers several benefits, making it an essential practice in modern software develop-
ment [14, 170, 81, 157, 46, 54, 187]. The main advantage of CI is the timely feedback it
provides on change sets, allowing developers to address defects promptly [54, 46]. This
reduces the risk of costly bugs propagating to later stages of the development cycle [81].
CI also enhances team collaboration by minimizing integration conflicts [81, 157], and it
increases development velocity through automation, enabling faster delivery of features
and updates [81].

While CI offers benefits, it is not without limitations. In this section, we review prior
studies most relevant to this thesis. We discuss inefficiencies in CI (Section 3.1), existing
solutions to address them (Section 3.2), and barriers in CI (Section 3.3), while positioning
our empirical work within the context of existing research.

3.1 Inefficiencies in CI

Several studies have investigated inefficiencies in CI, including restarted builds, long-
running builds, and unused dependencies, which we detail below.

Restarted CI Builds. Previous studies have investigated restarted CI builds, high-
lighting them as a substantial drain on CI resources [122, 109, 40]. For example, Olewicki
et al. [122] analyzed 11,400 commits across six industrial projects, and found that 31%
of those commits had at least one restarted build. Maipradit et al. [109] analyzed 66,932
code reviews on OpenStack, and found that 55% of failing CI builds were restarted during
code reviews, and the build outcomes changed in only 42% of those builds. Such restarts

11

are often invoked due to flakiness in builds, and several studies propose tools to mitigate
flakiness [68, 4, 147]. For example, Shi et al. [147] proposed a tool, iFixFlakies, to
mitigate the flakiness in CI builds due to order-dependent test cases.

Long-Duration CI Builds. CI build durations may increase as projects mature,
leading to inefficiencies [59, 55, 56]. Ghaleb et al. [59] analyzed 104,442 CI builds from
67 open-source projects, and found that builds that are restarted multiple times are prone
to long durations. They further identified CI timeouts as a common consequence of long-
duration builds, which is supported by other studies as well [56, 60]. Gallaba et al. [56]
examined 23.2 million CircleCI builds across 7,795 projects, identifying 17,917 builds that
timed out. These timeouts waste resources and fail to provide useful feedback. Under-
standing the characteristics of these CI timeouts that distinguish them from other builds
would shed light on targeted optimization strategies, which we explore in Chapter 4.

Inefficiencies in Project Dependencies on CI. Besides the inefficiencies in CI
pipelines, such as restarting and long-duration builds, the inefficiencies in the dependencies
used in projects can waste CI resources. For example, having unused dependencies [98,
152, 83] listed in a project’s dependency configuration file is an inefficiency in dependencies
that impact CI pipelines. Even though caching dependencies can reduce the CI build time
spent on installing unused dependencies [186], maintaining up-to-date versions of those
dependencies may still incur a waste of CI build time. For example, Dependabot4 updates
versions of dependencies in projects without considering whether those dependencies are
used, often triggering CI builds. Such CI builds waste CI build time because the outcomes
of those builds do not impact the project deliverables, as those dependencies are never
used. In Chapter 5, we perform a detailed analysis of how unused dependencies impact
CI pipelines.

3.2 Accelerating CI

Prior studies had proposed approaches to mitigate inefficiencies in CI by accelerating CI
builds. Below, we detail these approaches and describe how this thesis builds on them.

Incremental builds. By incrementally building only what is affected by change sets,
the artifact-building phase of CI can be accelerated. Google’s Bazel,13 Facebook’s Buck,14

and Microsoft’s CloudBuild [47] are examples of incremental build systems. However, these
systems rely on manually specified build dependency graphs, which can drift out of sync or

13https://bazel.build
14https://buck.build

12

https://bazel.build/
https://buck.build/

be inaccurately specified [55, 107, 111, 112]. Adopting incremental builds may also require
replacing existing build systems, creating a barrier to entry [55] (which we discuss in detail
in the next section). Nonetheless, incrementally building is currently limited to only the
artifact-building phase in the CI pipeline.

Caching CI builds. To address the limitations of incremental builds, several ap-
proaches are available to cache CI builds. Gallaba et al. [55] proposed KOTINOS, a
build acceleration approach that is agnostic to CI providers. KOTINOS infers dependen-
cies by tracing system calls and testing operations during an initial build. This inferred
dependency graph is then used to accelerate future builds by caching the environment in a
Docker container and skipping build steps or tests that are unaffected by recent changes.
One limitation of this method is that the entire cache would invalidate if the CI environ-
ment changes in the later builds (e.g., due to updates in dependency versions), and thus,
the cold build procedure will be re-executed (i.e., a fresh image will be created and stored).
CI providers also offer in-built support for partial caching of CI builds, such as caching
dependencies after retrieval.15

Skipping CI builds. To save CI build time, prior work also investigated approaches
to skip CI builds [55, 3, 2, 86, 87]. For example, Abdalkareem et al. [3] examined 1,813
commits where developers purposely skipped CI builds. This analysis revealed reasons
for skipping CI builds (e.g., when change sets only modify non-compilable files, such as
documentation). For these reasons, the study proposed a rule-based method (CI-Skipper)
that automatically identifies commits that could be skipped by CI pipelines.

Other studies proposed methods to predict CI build outcomes not only to enable early
feedback on potential build failures, but also to provide the option of skipping builds
that are unlikely to fail [180, 76, 25, 138, 85, 159]. For example, Chen et al. [25] pro-
posed BuildFast—an approach to predict CI build outcomes by using the change set
and history-aware features. Their predictor outperformed the state-of-the-art approaches,
achieving a 47.5% improvement in the F1-score for failed builds.

Skipping test cases. Other studies proposed approaches to cut down on CI build
time by skipping test cases [62, 79, 106]. For instance, Gligoric et al. [62] proposed a
method to skip test cases that cannot reach the changed files by tracking their dynamic
dependencies on source files. In a new CI build, if none of the source files a particular test
case depends on have changed, that test case can be safely skipped.

The above build acceleration methods focus on speeding up builds rather than reducing
structural inefficiencies in CI. Incremental builds and caching methods primarily focus on

15https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/

caching-dependencies-to-speed-up-workflows

13

https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/caching-dependencies-to-speed-up-workflows
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/caching-dependencies-to-speed-up-workflows

performance optimization by reducing redundant computations or re-installations, rather
than addressing the underlying inefficiencies that silently accrue in CI pipelines. Thus,
they do not necessarily prevent waste caused by unnecessary builds. Moreover, although
skipping CI builds or test cases can reduce CI build time, such methods do not account for
inefficiencies caused by timeouts or updates to unused dependencies. In this thesis, we aim
to scrutinize the insights gained from analyzing tacitly accrued inefficiencies in CI, focusing
specifically on CI timeouts (Chapter 4) and unused-dependency updates (Chapter 5).

3.3 Barriers in CI

In this section, we discuss the barriers faced by contributors who contribute to DevOps
artifacts (e.g., CI configuration files) and organizations that adopt DevOps practices.

Complicated Infrastructure. The complexity of infrastructure is a frequently dis-
cussed barrier to adopting DevOps practices [26, 102, 123, 96]. Indeed, the infrastructure
to execute CI builds may composed of cloud technologies, container orchestrating systems,
databases, and logging systems. Claps et al. [26] interviewed ten employees at Atlassian
and observed that even minor changes in one component of the CI pipeline often required
updates across multiple interconnected systems. Thus, they emphasized the importance
of rigorous testing, especially for tightly coupled components like databases, to prevent
unintended consequences. The study also highlighted the need for a substantial hardware
capacity and special software resources to support robust CI. This complexity is further ex-
acerbated when projects rely on legacy infrastructure that lacks compatibility with modern
CI tools and practices, creating additional barriers to automation and scalability [92].

Lack of Expertise. An understanding of the infrastructure and its configuration
is essential for the successful adoption of CI and related DevOps technologies; however,
prior studies have identified the lack of expertise in automation as a major challenge for
implementing DevOps practices [183, 105, 93, 146, 26]. For example, Yiran et al.[183]
surveyed DevOps practitioners, and found that organizations often lack team members
with the necessary expertise to implement CI pipelines effectively. Senapathi et al.[146],
as a result of interviewing six experienced developers, reported that a lack of expertise was
evident both when upskilling existing team members and during recruitment.

Tacit Barriers. In addition to the technical barriers above, DevOps contributors also
face several tacit barriers that do not explicitly stem from the technology stack [103, 102,
146, 26, 39, 181]. These barriers arise due to social, cultural, and organizational factors.
For example, a lack of motivation is a commonly observed social barrier to adopting De-
vOps practices [102, 146]. Leppänen et al.[102] conducted interviews with employees from

14

15 organizations, and found that these organizations are often reluctant to abandon their
existing workflows. Others [26, 146] found that the shifting of team roles and responsi-
bilities during the adoption of DevOps practices can lead to ambiguity, causing certain
responsibilities to be overlooked.

The aforementioned technical and tacit barriers suggest that DevOps contributors face
a unique set of challenges compared to other team members in software projects. Thus,
these unique challenges may contribute to a lack of diversity among DevOps developers—a
special tacit barrier that is not often discussed in the context of DevOps.

Lack of Diversity. While diversity is known to benefit software teams overall, a lack
of diversity can itself act as a barrier [18, 23, 162, 168, 124]. In the context of DevOps,
annual surveys raise a concern about a lack of diversity among DevOps contributors. For
example, DevOps Research and Assessment (DORA)’s Accelerate State of DevOps Re-
port (2021) [150] highlighted that the percentage of DevOps contributors who found them-
selves underrepresented has increased from 13.7% in 2019 to 17% in 2021. Furthermore,
DORA’s Accelerate State of DevOps Report (2024) [34] showed that only 12% of DevOps
contributors identified themselves as women. Other surveys conducted by Stack Overflow
and demographic studies like Zippia’s16 also revealed that men significantly outnumber
women in DevOps roles [181]. For instance, the Stack Overflow Developer Survey (2022)17

showed that 94.37% of developers identifying as DevOps contributors were men. Note that
recent Stack Overflow surveys from 2023 and 2024 did not contain detailed demographic
questions. While these prior analyses and reports provide insights into the overall diversity
of the DevOps community, Chapter 6 of this thesis complements them with an empirical
analysis of perceptible ethnic and gender diversity at the project level and over time. More-
over, Chapter 6 compares DevOps contributors with non-DevOps contributors within the
same set of studied projects.

3.4 Chapter Summary

In this chapter, we survey prior research on inefficiencies and barriers in CI. While re-
lated work supports our hypothesis that CI is susceptible to such challenges, it remains
unclear: (1) what the impact of tacit inefficiencies and tacit barriers in CI is, and (2) where
optimization efforts should be focused to streamline the software development process.

16https://www.zippia.com/devops-engineer-jobs/demographics
17https://survey.stackoverflow.co/2022

15

https://www.zippia.com/devops-engineer-jobs/demographics/
https://survey.stackoverflow.co/2022/

In the remainder of this thesis, we present our empirical studies aimed to address this
gap in the literature. In the next chapter, we begin by examining how tacit inefficiencies
in the CI environment can affect overall CI performance.

16

Part II

Tacit Inefficiencies

17

Chapter 4

CI Timeouts

Note. An extensive version of this chapter appears in the Transactions on Software
Engineering journal [174].

4.1 Introduction

Inefficient or poorly tuned CI configurations can delay feedback and waste CI resources [171,
58, 184], prompting CI providers such as CircleCI7 to impose time limits on CI builds.18

Builds exceeding these limits are terminated to prevent resource abuse, such as from infinite
loops or network issues.

A CI build that times out is wasteful for both developers and CI providers. For de-
velopers, such builds may produce partial results (e.g., logs or partial test outputs), but
they often fail to provide a definitive signal about whether change sets integrate success-
fully, which can introduce uncertainty and slow down development progress.19 Addressing
CI timeout builds may require adjusting the time limits for timing out. In CircleCI,
the default time limit is ten minutes,20 and project teams can increase this limit in the
.circleci/config.yml file (see the description about CI configurations in Section 2.2).
Properly setting these time constraints is essential to prevent prolonged, resource-intensive
build processes. On the other hand, from a CI provider’s standpoint, timeout builds can

18https://support.circleci.com/hc/en-us/articles/360045268074
19https://github.com/Homebrew/discussions/discussions/4075
20https://support.circleci.com/hc/en-us/articles/16616033407131-Max-Runtime-in-CircleCI-Server

18

https://support.circleci.com/hc/en-us/articles/360045268074
https://github.com/Homebrew/discussions/discussions/4075
https://support.circleci.com/hc/en-us/articles/16616033407131-Max-Runtime-in-CircleCI-Server

result in throughput degradation, as long-running or stalled builds can reduce overall sys-
tem responsiveness. Moreover, persistent inefficiencies can lead to customer dissatisfaction.
Therefore, timeout builds can be costly in terms of service quality, infrastructure utiliza-
tion, and long-term sustainability. Below are our RQs and a preview of the corresponding
answers:

(RQ1) What is the prevalence of CI timeout builds? By quantifying how widespread
timeout builds are across projects, we can better understand the scale and severity of the
problem. In this RQ, we aim to estimate the prevalence of CI timeouts by calculating their
frequency and comparing the durations of CI timeout builds to other signal-generating
builds in the dataset curated by Gallaba et al. [56].

Results. Out of 7,795 projects, 936 (12%) have at least one timeout build. The median
number of timeout builds among these projects is four; however, 10% of the projects have
44 or more timeouts each, while an extreme 4% have 100 or more timeouts each, indicating
a highly skewed distribution [129]. We further find that the median timeout duration is
19.7 minutes, nearly five times longer than the median duration of signal-generating builds.
This suggests that CI timeout builds are a substantial issue for GitHub projects.

(RQ2) How well can our models explain the incidences of CI timeout builds?
Identifying the characteristics of CI builds that are most indicative of timeouts is valuable
for informing strategies to reduce their occurrence. To this end, we fit a statistical regres-
sion model using a set of families of features extracted from CI builds to classify timeout
builds from other types of builds. In this RQ, we aim to determine whether such a model
can effectively distinguish between builds that time out and those that execute until com-
pletion. In particular, we assess our model’s fitness by evaluating its discriminatory power,
i.e., Area Under Receiver Operating Characteristic Curve (AUROC), calibration of risk
estimates (i.e., Brier Score [19]), stability (i.e., bootstrap-calculated optimism [43]), and
ability to balance precision and recall, i.e., Area Under Precision-Recall Curve (AUPRC).

Results. Our statistical model achieves an AUROC of 0.939—a discriminatory power that
vastly surpasses that of näıve baselines, such as random guessing (AUROC of 0.5). More-
over, the model achieves a Brier score of 0.008—a calibration score that suggests the risk
estimates of the model are highly reliable. In terms of stability, our model has only a
small optimism penalty of less than one percentage point in terms of both AUROC and
Brier score, suggesting that the model is unlikely to be overfitted to the data on which
it is trained. Lastly, our model achieves an AUPRC of 0.319, outperforming the baseline
AUPRC of 0.012 [139].

19

(RQ3) What are the most influential features of our models of CI timeout
builds? This RQ seeks to use our statistical model to identify the characteristics that
best explain CI timeouts. To assess the explanatory power of each family of features, we
perform Wald χ2 (a.k.a., “chunk”) tests [136].

Results. We find that CI timeout builds are best characterized by the family of build his-
tory features, which contains the status of recent builds, their durations, and the proportion
of the builds that have previously timed out. Indeed, build history features contribute to
more than half (70%) of the explanatory power of the model. Furthermore, our model
reveals that timeout tendency features (e.g., file tendency) are among the most powerful
features to influence timeout builds, suggesting that change sets that include specific files
or components are more often implicated in CI builds that time out than in others. We
further find that a non-negligible proportion (15%) of files more often appears in the change
sets of timeout builds than signal-generating builds.

Overall, our results highlight the importance of considering the historical context of
builds for CI service providers and consumers to anticipate timeout builds. For example, CI
providers could target efforts to enhance their infrastructure, optimize resource allocation,
and fine-tune their systems to cater to specific demands of individual software projects,
reducing the occurrence of timeouts. CI consumers can also leverage this knowledge to
prioritize their attention to recent builds and their associated characteristics. Moreover,
team members may identify timeout-prone files and focus their efforts on those files when
troubleshooting CI timeouts.

Inspired by the above results, we perform a longitudinal analysis of the occurrences of
timeout builds. We find that the majority (64.03%) of the timeout builds occur in clusters
(i.e., timeout builds tend to occur consecutively). A considerable proportion (20%) of these
clusters comprise at least six builds. We also find that once a cluster of timeout builds
is observed, it takes a median of 24 hours before a signal-generating build occurs. This
suggests the existence of underlying systemic issues that contribute to prolonged periods
of consecutive builds that time out, and to further understand the root causes of build
timeouts, we conduct a thematic analysis of 79 GitHub discussions, encompassing 406
comments. This analysis uncovers six primary causes for CI timeouts. Among these, the
most frequent root cause is inefficiencies in testing processes.

20

(DC) Data Curation

Select
projects

Curate
features

CI Builds
dataset

DC-1 DC-2

(MC) Model Construction

Analyze
correlations

Analyze
redundancies

MC-1 MC-2

Allocate
degrees of
freedom

MC-4

Fit a
statistical

model

MC-5

Estimate the
budget for degrees

of freedom

MC-3

Curated
dataset

Statistical
Model

Model fit Analysis

Feature Importance Analysis

Longitudinal Analysis

Project Selection (PS)

CircleCI
Builds

dataset

Select projects
with a

substantial
number of
timeouts

PS-1

Model Fitting (MF)

Mitigate
collinearity

Mitigate
multicollinearity

MF-1 MF-2

Estimate the
budget for degrees

of freedom

MF-3

Dataset
of 24

projects
Model

Allocate
degrees of
freedom

MF-4

34
projects

26
projects

24
projects

936
projects

Data Curation (DC)

Remove projects
with timeouts

only on
temporary
branches

PS-2

Select
projects that

are still
publicly

available

PS-3

Extract
features

from
commit

logs

DC-2

Extract
features

using
Gallaba et

al.'s
dataset

DC-1

Figure 4.1: An overview of our study design.

4.2 Study Design

In this section, we describe our procedures for selecting projects (PS), curating our dataset (DC),
and fitting our models (MF) to characterize timeout builds. Fig. 4.1 shows an overview of
our study design.

4.2.1 (PS) Project Selection

For our analysis, we require a large and rich collection of build records from a realistic CI
service. Since there has been an increase in the adoption of CI practices [63], a prolifer-
ation and diversity of CI services exist in the market to cater to increasing demands of
collaborative software development and DevOps practices. As indicated in prior work [56],
CircleCI is one of the most popular CI service(s). In fact, CircleCI has 748k installations
over an eight-year period [56]. Given its widespread usage, we focus our analysis on Cir-
cleCI. Thus, we begin with the Gallaba et al. [56] dataset of CirclCI builds which explicitly
labels passing builds, failing builds, and timeout builds that we need for our study. It is
important to highlight that a substantial portion of the timeout builds in the dataset are
contributed by specific projects. Additionally, GitHub accommodates projects that are
still not yet mature. Conducting a closer examination of mature and disproportionately
affected projects would yield valuable insights regarding the workload for the CI provider
and raise awareness among project maintainers. To ensure a focused analysis isolating
the key factors contributing to these issues, we apply the three-step filtering criteria in
Fig. 4.1 (PS) to the projects from the original dataset. Below, we describe each step.

21

(PS-1) Select projects with a substantial number of timeout builds. Our initial
dataset contains 936 projects that suffer from at least one timeout. To conduct our study
on a set of projects that suffer from a meaningful number of timeouts, we sort the projects
in descending order of the timeout frequency. Note that our study requires in-depth data
extraction (e.g., collecting the commit and file records for each project). Therefore, to make
the study feasible, we consider a subset of projects that account for more than half of all
timeout builds collected from the entire dataset. This step yields 34 projects covering 54%
of all timeout builds collected from the entire dataset. The selected projects have a rich
development history with a median of 3,966 commits made by a median of 82 contributors.
Moreover, this dataset includes popular projects, such as the palantir/atlasdb21 project.

(PS-2) Remove projects having timeout builds only on temporary branches. For
each surviving project, we select the timeout builds that appear on its main/master branch.
Doing so ensures that all selected commits corresponding to the builds are still accessible,
mitigating inconsistencies caused by the removal of temporary branches. We find eight of
the selected projects exclusively contain timeout builds on temporary branches, and we
filter these projects out of further analysis. We find 26 projects that survive this step.

(PS-3) Select projects that are publicly available. We need to extract project-
related data, such as commits and lines of code. We select projects that are publicly
available when conducting this work (22nd November 2022). We use the GitHub API to
check the accessibility of projects. Doing so excludes two projects, leaving us with 24
projects eligible for our analysis.

Our final dataset consists of 105,663 CI builds spanning 24 projects. Of these builds,
1,301 are timeouts, while the remaining builds generate a pass/fail signal. Note that our
dataset is imbalanced in terms of the two classes—a common phenomenon in software
engineering research [9]. Class balancing is particularly important in scenarios where the
minority class is of greater interest than the majority, such as in fraud detection or rare
disease diagnosis [77]. Class balancing tends to improve the recall (by fitting the model
in an environment where the minority class is more prevalent than it actually is, a model
with well balanced classes is likely to raise timeout alerts and catch timeout examples),
but at the cost of precision (since the model is prone to raising plenty of timeout warnings,
in real-world scenarios, where timeouts are rare, the model is likely to raise plenty of false
alarms). In our case, although the minority class (timeouts) is of great importance, we
refrain from applying class balancing to avoid inflating the false positive rate. Indeed,
we are interested in modelling the characteristics of builds that are most likely timeouts

21https://github.com/palantir/atlasdb

22

https://github.com/palantir/atlasdb

and not the ones that have a little chance of being a timeout; thus, leaving the classes
imbalanced in our dataset creates a model that is reflective of real-world scenarios. That
said, to see if there is a substantial change in the results after balancing the classes, we rerun
our experiments separately in the following class balancing scenarios: (1) Oversampling
with the Synthetic Minority Over-sampling TEchnique (SMOTE) [24], (2) Undersampling
with the Random method [75, 134], and (3) Combining both SMOTE oversampling and
random undersampling. We do not observe substantial changes in our results. Thus, we
use the dataset without any class balancing in the rest of this study. A detailed description
of this analysis is available in our Online Appendix B.22

Furthermore, we find that the percentage of timeouts varies from one project to an-
other. For example, the docker-atlassian-confluence/cptactionhank project accounts for
20.8% of the timeouts in our sample, whereas the median proportion across the 24 projects
is 2.3%. To account for the impact of any bias introduced by this project, we rebuild
our statistical model, which we discuss in Section 4.2.3 (MF); we do not observe any
substantial differences in the model fits. Interested readers can refer to our Online Appen-
dices C and D22 for details.

4.2.2 (DC) Data curation

To determine a set of features that characterize timeout builds, we consult the related
literature in the areas of build outcome prediction [138, 25, 125] and defect prediction [161].
Table 4.1 shows the initial list of 19 features that span five properties of a build, along with
the rationale for each feature’s impact in the context of build outcomes. We use Gallaba
et al.’s dataset [56] and Git commit logs to extract these features. Fig. 4.1 (DC) shows an
overview of this step, which we describe in detail below.

(DC-1) Extract features using Gallaba et al.’s dataset [56]. For each build in our
dataset, we extract build-history features, i.e., the most recent build outcome, the most
recent build duration, and the timeout ratio, i.e., the ratio of the total number of timeout
builds in a project to the total number of builds of the project that triggered before the
build under analysis. We also extract queuing-related features, such as the build queued
time (the month, day, hour, and minute). We also extract features concerning the tendency
of builds to timeout [161], such as the number of previous timeout builds that are linked to
the commits by the same authors (author tendency) and the number of prior timeout builds
with changes to the same files (file tendency). Build history and tendency features may
not be precise at the beginning but will adapt to more accurately reflect values over time.

22https://doi.org/10.5281/zenodo.10901318

23

https://doi.org/10.5281/zenodo.10901318

Table 4.1: Description and rationale of the selected features.

Family Description/Rationale

B
u
il
d
h
is
to
ry

Recent build status: Whether the previous build timed out or not.
Rationale: If a project has a recent history of timeout builds, the build
is more likely to time out (inspired by the prior work [138, 25]).

Recent build duration: The duration of the prior build. Rationale: A
project with a recent history of long build durations may be more likely
to have the build take longer and be timed out (inspired by GitHub
issues23).

Timeout ratio: The proportion of builds that timed out. Rationale:
Inspired by studies that predict build outcomes [25], we expect greater
timeout ratios to portend future timeouts.

W
h
en Queued month, day, hour, and minute: The moment when the

build was queue for processing. Rationale: Build requests of particular
times may be more/less prone to timeouts.

S
iz
e

LOC: The number of lines of code within the files changed. Rationale:
The size of the files changed may have an impact on the likelihood of the
build to time out.

Insertions, deletions, and files: The sum of inserted/deleted lines of
code and the number of unique files touched. Rationale: The size of the
change corresponding to the build may have a relation to timeout builds
(inspired by similar studies on build failure prediction [138, 125]).

A
u
th
or

ex
p
er
ie
n
ce Changes to related files/changes to any file: The sum of prior

changes by the authors to (a) the files changed; and (b) any file.
Lines added to/deleted from related files/any file: The sum of
prior lines of code added/deleted by the author to (a) the files changes;
and (b) any file.
Rationale: The familiarity of developers with the overall codebase and
specific areas may have an impact on the timeout builds [125].

T
im

eo
u
t
te
n
d
en
cy Author tendency: The number of prior timeout builds that contain

commits by the authors. Rationale: If the author tendency of a build is
high, it has a high chance of timing out [161].

File tendency: The number of prior timeout builds that contain
changes to the files. Rationale: We hypothesize that the higher the file
tendency of a certain build, the higher the chance of that build timing
out [161].

24

(DC-2) Extract features from commit logs. To get the change set size-related
data [125], we analyze the commit log of each project, and extract the unique number
of files added, modified, or deleted, as well as the number of lines inserted or deleted in
the commits associated with each build. We also extract the features that estimate the
project-specific experience of the authors of the commits [125]. For instance, we derive
features like the total number of prior commits made by the commit authors associated
with each build.

4.2.3 (MF) Model Fitting

Our goal is to study what characterizes timeout builds. In this study, we use statistical
regression models, which, unlike other classification techniques, emphasize interpretability.
In fact, statistical models like logistic regression provide clear insights into how different
factors influence outcomes, making them ideal for nuanced analysis.24 Thus, we fit logistic
regression models using the approach recommended by Harrell Jr. [72]. This approach
relaxes linearity assumptions using restricted cubic splines to allow features to share com-
plex relations with the outcome (i.e., the likelihood of inducing a timeout in our case).
Fig. 4.1 (MF) provides an overview of the steps we follow.

(MF-1) Mitigate collinearity Collinear features distort each others’ importance in the
model [114, 113]. Thus, we first check for collinearity among our features using Spearman’s
ρ rank correlation [154]. We choose a rank correlation instead of other types of correlation
measures (e.g., Pearson correlation coefficient) because the rank correlation can detect
nonlinear correlations. Similar to prior work [160, 64, 59], we use ρ = 0.7 as our threshold,
i.e., any pair of features with ρ > 0.7 should have one of the features removed prior to
model interpretation.

The hierarchical overview of the correlations among the features is shown in Fig. E.1 in
our Online Appendix E.22 Selecting one feature from the pairs of features that have ρ > 0.7
eliminates the following six features: loc, files, lines added to the related files, lines added
to any file, lines deleted from the related files, and lines deleted from any file. We provide
details on reasons for choosing one over the other in our Online Appendix E.22 This step
retained 13 non-correlated features.

(MF-2) Mitigate multicollinearity. We perform a redundancy analysis on the sur-
viving 13 non-correlated features to mitigate multicollinearity that can introduce noise in
model interpretation. A feature may introduce multicollinearity if it can be modeled using

24https://www.fharrell.com/post/stat-ml

25

https://www.fharrell.com/post/stat-ml/

the other features. We eliminate such redundant features using the redun function in R,
which fits a set of 13 models that each explain one feature using the 12 other features.
Features having model fits that exceed the threshold (R2 > 0.9) are recommended for ex-
clusion [69]. Applying redun to our set of features did not identify any additional features
for exclusion. Note that reducing collinearity and multicollinearity helps to identify the
independent contributions of each feature to the outcome [99].

(MF-3) Estimate the budget for Degrees of Freedom (DoF) [43, 70]. All of the
features are allocated at least one DoF in our fit. A feature that is allocated a single DoF
can only capture monotonic and linear relationships with the likelihood of a CI build timing
out. Allocating additional DoF to features allows our model to capture nonmonotonic and
nonlinear relationships with the likelihood of a CI build timing out [44]. On the other
hand, spending additional DoF to fit our model increases its risk of overfitting (i.e., being
too specifically tuned to the training data to apply to testing examples). This tradeoff
between model expressiveness and the risk of overfitting is often balanced by respecting a
DoF budget [71]. Following prior work [72, 73], the DoF budget for a logistic regression
model can be estimated as n

15
, where n is the number of records in the minority class.

Thus, the DoF budget for our model is 1,301
15

= 86.

(MF-4) Allocate DoF. To expend our budget prudently, we assign more DoF to features
that are most likely to have a nonmonotonic relationship with CI timeouts, as determined
by Spearman’s multiple ρ2. Fig. F.1 in our Online Appendix F22 shows the ρ2 value
for each feature. From the figure, we observe that the recent build status, timeout ratio,
author tendency, file tendency, and recent build duration have higher ρ2 values than the
other features. Thus, we allocate three DoF for those features except for the status of the
most recent build since it is a binary feature.

Finally, we fit our regression model to our data, applying restricted cubic splines [71] to the
features with additional DoF. These splines smooth transitions between direction changes
using cubic fits, while allowing tail regions to retain more linear (straight) shapes. We
make our dataset and the replication package available online.22

4.3 Study Results

In this section, we describe the approach to answer our research questions and the corre-
sponding results.

26

4.3.1 (RQ1) What is the prevalence of CI timeout builds?

To understand the prevalence of CI timeouts, below, we report on our exploratory analysis
of timeouts in CircleCI. In particular, we analyze the frequency at which timeout builds
occur and the quantity of waste that timeouts generate.

Approach

We begin with a set of 936 projects that contain at least one timeout build from the
dataset curated by Gallaba et al. [56], which includes CircleCI builds from 7,795 open-
source GitHub projects; see Section 4.2 (PS-1). This dataset contains the outcome (e.g.,
pass, failed, timeout, and canceled) for each of the CI builds that it contains. For our
analysis, we select the projects that have at least one CI build, with the outcome status
being “timeout.” We use this dataset to analyze the distribution of CI timeouts across
these 936 projects and to compare the duration of timeout builds to that of other CI builds.

Results

Below, we report the results of our analysis.

Observation 4(1): The distribution of CI timeouts in our dataset is skewed.
Among the projects with at least one timeout, a median of four timeout builds is observed,
suggesting that the distribution is skewed [129]. Indeed, we find that 10% of the projects
account for 44 or more timeouts each, while an extreme 4% of the projects account for 100
or more timeouts each. Overall, this suggests that timeout builds are a relevant issue in
the context of GitHub projects.

Observation 4(2): The median duration of a CI timeout build is fivefold
longer than that of other builds. Fig. 4.2 shows the durations of signal-generating
builds [56] (dark grey) and timeout builds (light grey) in the 936 projects that have at least
one timeout. From the figure, we observe that a timeout lasts for a median of 19.7 minutes.
This is almost fivefold longer than the median duration of signal-generating builds with fail
or pass outcomes (3.4 minutes). In certain situations, the issue of timeouts is exacerbated.
For example, in the Homebrew/linuxbrew-core project,25 the median duration of a timeout
build is 125.3 minutes, which is 21 times the median duration of a signal-generating build.

25https://github.com/Homebrew/linuxbrew-core

27

https://github.com/Homebrew/linuxbrew-core

0 10 20 30 40 50
Duration (minutes)

timeouts builds
signal-generating builds
median duration of timeout builds = 19.7
median duration of signal-generating builds = 3.4

Figure 4.2: The distributions of the duration of timeout and signal-generating builds.

Even the projects that are accountable for small proportions of timeouts in the dataset
can be attributable to a large quantity of waste. For example, coala/coala project26 ac-
counts for only 1.7% of the timeouts in the dataset, but it results in a total waste of 111
build hours.

Our results highlight the disproportionate impact of CI timeouts on build time con-
sumption. Even infrequent timeouts can lead to substantial waste of build time,
emphasizing the need for mitigation strategies.

4.3.2 (RQ2) How well can our models explain the incidences of
timeout builds?

Below, we report on the approach used to assess our statistical regression model (trained
in Section 4.2.3) for distinguishing CI timeouts from other builds, along with the corre-
sponding results.

Approach

We evaluate the fitness of our model according to (a) its discriminatory power, (b) the
calibration of its risk estimates, (c) the stability of the fit, and (d) the ability to balance
precision and recall, particularly in datasets with imbalanced classes like ours. We estimate

26https://github.com/coala/coala

28

https://github.com/coala/coala

the discriminatory power of our model using the AUROC [69], which plots the true positive
rate against the false positive rate; AUROC values of 0, 0.5, and 1 represent the worst
discrimination, random guessing, and perfect discrimination, respectively. We estimate
the calibration of the risk estimates that are produced by our model using the Brier
Score [19], i.e., the mean squared error of the predicted probabilities. A Brier score of
0 indicates the perfect calibration, whereas a score of 1 indicates the worst. Finally, we
estimate the stability of our model fitness using the bootstrap-calculated optimism [43].
We begin by obtaining a sample from our dataset using bootstrap sampling. Then, we
refit our logistic regression model to this bootstrap sample with the same allocation of
DoF used in the original dataset. Next, we calculate the AUROC and Brier score of this
bootstrap model when (a) reapplied to the bootstrap sample on which it was trained and
(b) on the original sample. After that, we estimate the AUROC optimism by subtracting
the respective fitness measures in the bootstrap sample from that of the original data. We
repeat this process for 1,000 bootstrap iterations, and report the mean optimism values.
The closer the mean optimism values of these fitness scores are to zero, the greater the
stability of the fit. Lastly, we calculate the precision and recall for various threshold values
representing the likelihood of a CI build being classified as a “timeout build.” Next,
we compute the AUPRC to measure our model’s ability to balance precision and recall
across different probability thresholds in the context of our imbalanced-class dataset [139].
The AUPRC is also a value between 0–1. We then compare our AUPRC with a baseline
approach. The baseline is determined by the positive class prevalence, i.e., tp

tp+tn
[139]. The

baseline appropriate for a balanced class distribution is 0.5. However, for our dataset, the
baseline is 1,301

1,301+104,362
= 0.012.

Results

Table 4.2 shows the results of our model’s fitness, and we make the following observations
based on the table.

Observation 4(3): Our model can discriminate between timeout and non-
timeout builds effectively, with well-calibrated risk estimates. Our model achieves
an AUROC of 0.939, vastly surpassing the AUROC of näıve baselines, such as random
guessing (AUROC of 0.5). Also, our model achieves a Brier score of 0.008—our model has
a near-perfect calibration, and its risk estimates are highly reliable [19].

29

Table 4.2: Model fitness.

AUROC Brier Score AUPRC

0.939 0.008 0.319

Observation 4(4): Our model is highly stable to bootstrap-simulated vari-
ability [72]. The mean optimism value for AUROC measure is 0.0001, which is close to
perfect optimism [72]. This shows that the AUROC value calculated using the bootstrap
samples and the AUROC value computed using the original dataset are not substantially
different. Similarly, the mean optimism value for the Brier score measure is -0.0002. Such
small optimism penalties below 1% point suggest that the model is unlikely to be overfitted
to the data on which it was trained.

Observation 4(5): Our model demonstrates a commendable balance between
precision and recall. Our model achieves an AUPRC of 0.319, surpassing the correspond-
ing baseline of 0.012. This shows its effectiveness in distinguishing positive instances and
minimizing false positives, which is especially crucial in our dataset of CI builds with an
imbalanced class distribution of timeout builds and other builds.

Our model demonstrates a strong discriminatory power and calibration (AUROC of
0.939 and Brier score of 0.008). Moreover, the fit is highly stable across different
bootstrap samples (mean optimism values of 0.0001 and -0.0002 for AUROC and
Brier score, respectively). Lastly, our model successfully balances precision and
recall, achieving an AUPRC of 0.319, which surpasses the respective baseline.

4.3.3 (RQ3) What are the most influential features of our models
of timeout builds?

Below, we report on our approach to determine the most influential features that charac-
terize CI timeout builds and the corresponding results.

Approach

First, we estimate the importance of each family of feature(s) using the Wald χ2 maximum
likelihood (a.k.a., “chunk”) tests [136]. The Wald χ2 value indicates whether the model is

30

statistically different from the same model in the absence of a given independent family of
feature(s). The higher the Wald χ2 value, the greater the explanatory power of the feature
family in identifying timeout builds. While analyzing feature families allows understanding
the collective impact of feature families on timeout builds, analyzing individual features
allows understanding the specific contribution of each feature to timeout builds. Thus, we
analyze the Wald χ2 values of individual features as well.

Furthermore, we complement our analysis by plotting response curves27 for the most
important features to analyze the trend of the probability of a CI build timing out as the
feature value varies. All other features are held constant at “typical” values, i.e., median
for numeric features and mode for categorical features. These plots also show the 95% con-
fidence intervals of the probabilities that are calculated based on 1,000 bootstrap iterations.

Results

Table 4.3 shows Wald χ2 values for each of the families of features of our model. Note that
the results are shown in two columns. The Overall column shows the explanatory power
of all of the degrees of freedom that have been allocated to a family, while the Nonlinear
column shows the explanatory power that the additional degrees of freedom provide. If
no additional degrees of freedom have been allocated to a family, a dash (-) symbol is
shown in the nonlinear column. The table shows that the ratio of the Wald χ2 of all
the nonlinear degrees of freedom to that of the entire model is 645.04

4,350.03
= 0.15, indicating

that the magnitude of the contribution of additional degrees of freedom to our model is
substantial and statistically significant (p < 0.001). Moreover, the two families of features
(i.e., build history and timeout tendency) that are allocated additional degrees of freedom
contribute a significant amount of explanatory power.

Observation 4(6): The build history family is the most important family for
explaining the likelihood of timeout builds. Table 4.3 shows that the build history
family has the highest Wald χ2 value. Furthermore, the ratio of the Wald χ2 of build
history to that of the entire model is 3,063.19

4,350.03
= 0.70, i.e., the build history family is the

only family that can explain 70% of the variance of our model.

Furthermore, we show the importance of individual features in Table 4.4. The table
shows that the recent build status, timeout ratio, and recent build duration are the most
important features in the model. This indicates that projects with past timeout builds are

27https://cran.r-project.org/web/packages/rms/rms.pdf

31

https://cran.r-project.org/web/packages/rms/rms.pdf

Table 4.3: Importance of families.

Family Overall Nonlinear

Build history
DoF 5 2
χ2 3,063.19 *** 440.14 ***

Timeout tendency
DoF 5 3
χ2 20.77 *** 20.27 ***

Queued time
DoF 4 -
χ2 6.79 ◦ -

Author experience
DoF 2 -
χ2 1.95 ◦ -

Size
DoF 2 -
χ2 0.15 ◦ -

Entire model DoF 18 5
(all families) χ2 4,350.03 *** 645.04 ***

◦ p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001

0.00

0.01

0.02

0.03

10-3 10-2 10-1 100 101 102

Recent build duration (minutes)

Ti
m

eo
ut

 P
ro

ba
bi

lit
y

Adjusted to:queued_month=6 queued_day=2 queued_hour=16 queued_min=28 most_recent_label=0 timeout_ratio=0.002671 deletions=6 insertions=16 author_tedency=0 files_tedency=0 changes_to_related_files=12 changes_to_any_file=2186
Figure 4.3: Build duration vs. the probability of timing out.

more likely to accrue timeout builds. In fact, CI builds are often restarted in response to
timeout builds [40]. Doing so without systematically addressing the cause of such timeouts
may result in consecutive timeouts. To better understand the underlying relationship
between past and future timeouts, we conduct a longitudinal analysis of the incidences of
timeout builds in Section 4.3.4.

32

Table 4.4: Importance of features.

Family Feature Overall Nonlinear
B
u
il
d
h
is
to
ry

recent build DoF 1 -
status χ2 1,215.49 *** -

timeout ratio
DoF 2 1
χ2 739.36 *** 287.02 ***

recent build DoF 2 1
duration χ2 133.69 *** 128.98 ***

T
im

eo
u
t

te
n
d
en
cy author tendency

DoF 3 2
χ2 12.16 ** 11.74 **

file tendency
DoF 2 1
χ2 8.89 * 8.22 **

Q
u
eu
ed

ti
m
e

queued month
DoF 1 -
χ2 2.64 * -

queued day
DoF 1 -
χ2 2.83 ◦ -

queued hour
DoF 1 -
χ2 0.84 ◦ -

queued minute
DoF 1 -
χ2 0.55 ◦ -

A
u
th
or

ex
p
er
i-

en
ce

changes to DoF 1 -
related files χ2 1.67 ◦ -
changes to DoF 1 -
any file χ2 0.42 ◦ -

S
iz
e deletions

DoF 1 -
χ2 0.11 ◦ -

insertions
DoF 1 -
χ2 0.05 ◦ -

◦ p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001

The response curves corresponding to build history features are shown in Fig. 4.3 and
Fig. 4.4. Fig. 4.3 shows the response curve for the direction of the relationship between the
duration of the most recent build and the probability of a CI build timing out. Accordingly,
as the duration of the recent build increases, the probability of the current build timing out
increases. While this appears to be a weak relationship in the figure (when compared to

33

0.0

0.1

0.2

0.3

0.0 0.1 0.2 0.3 0.4 0.5
Timeout ratio

Ti
m

eo
ut

 P
ro

ba
bi

lit
y

Adjusted to:queued_month=6 queued_day=2 queued_hour=16 queued_min=28 most_recent_label=0 most_recent_duration=6.045 deletions=6 insertions=16 author_tedency=0 files_tedency=0 changes_to_related_files=12 changes_to_any_file=2186
Figure 4.4: Timeout ratio vs. the probability of builds timing out.

the strongest features of our model), the chunk test for this feature, as shown in Table 4.4,
yields an explanatory power of 133.69 out of 4,350.03, with a significant p-value (< 0.001).

Fig. 4.4 shows that as the timeout ratio increases, the probability of the current build
timing out increases exponentially. This suggests that projects that experienced a high
proportion of timeouts in the past will likely continue to suffer from a high rate of timeouts
in the future. Note that the 95% confidence intervals are narrow for small values of the
explanatory features but tend to broaden as the feature values increase. Having broader
confidence intervals does not invalidate our model, but is instead a reflection of how the
data in our sample supports the trend (i.e., there are fewer samples supporting the broader
areas of the curve).

Observation 4(7): Timeout tendency is the second strongest family in ex-
plaining timeout builds. Table 4.4 shows that both forms of timeout tendency—file ten-
dency and author tendency—have contributed statistically significant amounts of distinct
explanatory power. In particular, the importance of file tendency to the model suggests
that changes in certain files have a tendency to lead to timeout builds. A similar trend is
observed for author tendency as well. To gain a richer perspective on the relationship be-
tween timeout builds and file tendency, we inspect the files that are associated with timeout
builds. Of these files, we find that 15% appear more in the change sets of timeout builds
than signal-generating builds. That is, the number of timeout builds associated with these
files (median = 4) is greater than the number of signal-generating builds associated with
them (median = 2). For example, Branch-SDK/src/main/java/io/branch/referral/
Defines.java is one such file in BranchMetrics/android-branch-deep-linking-attribution

34

project.28 This file had been associated with 136 timeouts, which is three times more than
the number of signal-generating builds associated with the file. A close inspection of the
content of the file reveals that this file defines JavaScript Object Notation (JSON)29 keys,
request paths, and link parameters. Overall, the file provides an essential way to access
and handle various keys used in the system. Furthermore, we find that 24 artifacts in the
project rely on those keys. Thus, such a file may have a broad impact on the system when
it is changed, which can consequently impact the build outcome.

Lastly, we find that timeout tendency and build history features together account for a
significant portion (4,297.41) of the model’s total explanatory power (4,350.03), providing
evidence of the gain when fitting the model only by considering strong families of features.

Observation 4(8): A subset of observed features does not play a significant
role in identifying CI builds that are likely to time out. The families of queued time,
author experience, and size do not significantly contribute to the explanatory power of our
model compared to the remaining two families. The family of features capturing size has
the least importance to the model. Table 4.3 shows Wald χ2 values for the aforementioned
families; the ratio of the Wald χ2 of the family to the entire model is 6.79

4,350.03
= 0.0015,

1.95
4,350.03

= 0.0004, and 0.15
4,350.03

= 0.00003 for queued time, author experience, and size-related
features, respectively.

Model re-evaluation. Our Observation 4(6) shows that the build history features have
a strong explanatory power of our model. Hence, we build näıve baseline models for the
three features of the build history family, and compare the AUROC of these baseline
models with our initial model discussed in Section 4.3.2. Firstly, regarding the näıve
baseline for the recent build status, it posits that the current build status will mirror
the previous one. A similar baseline approach had been discussed in another recent study
as well [159]. In our case, this approach yields an AUROC of 0.7622. Secondly, the näıve
baseline for the timeout ratio predicts a current build will timeout if the project’s
historical timeout ratio surpasses 0.5, achieving an AUROC of 0.7212. Lastly, our näıve
baseline for recent build duration assumes a current build will timeout if the duration
of its predecessor exceeds CircleCI’s standard time limit (ten minutes).20 This method
results in an AUROC of 0.5. indicating a prediction no better than random chance. This
baseline analysis highlights that our model’s performance (AUROC of 0.939) surpasses the
above baselines.

28https://github.com/BranchMetrics/android-branch-deep-linking-attribution
29https://www.json.org/json-en.html

35

https://github.com/BranchMetrics/android-branch-deep-linking-attribution
https://www.json.org/json-en.html

Timeout builds are strongly associated with the project build history and timeout
tendency; however, queued time, author experience, and size are weakly associated
with timeout builds.

4.3.4 Longitudinal Analysis

The interpretation of our model in Section 4.3.3 indicates that the project build history
is a strong indicator of whether a build will time out or not. To better understand this
chronological relationship between timeouts, we perform a longitudinal analysis of the
occurrences of timeouts.

Approach.

To structure our longitudinal analysis, we draw inspiration from recent studies on build
breakages [138, 85], which report substantial improvements by distinguishing between con-
secutive breakages—where the immediately preceding build also failed—and novel breakages—
where the preceding build was successful. Similarly, we classify timeout builds as either
isolated or clustered. Fig. 4.5 exemplifies each form. In the figure, circles denoted with
an S represent signal-generating builds (either passing or failing), while circles denoted
with a T represent timeout builds. The first three timeout builds form clustered timeout
builds. The last two timeout builds in the timeline are isolated timeout builds ; they occur
in between two signal-generating builds.

To analyze clustered timeout builds, we compute the number of timeout builds that
compose a cluster as well as the time duration of the builds in the cluster. For example, the
cluster annotated in Fig. 4.5 is composed of T1, T2, and T3; hence, the number of timeout
builds in the cluster is three. This cluster’s time duration is the time between the moment

Figure 4.5: An example of builds timeline.

36

101 102

Number of timeout builds

Median = 2 builds
80th percentile = 6 builds

(a) Number of builds in timeout clusters.

10 1 100 101 102 103 104

Number of hours

Median = 24 hours
63th percentile = 48 hours

(b) Duration of builds in timeout clusters.

Figure 4.6: The number and duration of a timeout cluster.

that the first timeout in the cluster is observed and the moment the next signal-generating
build is observed, i.e., the time between the end of T1 and the end of S3.

To analyze isolated timeout builds, we examine how close an isolated timeout build
is to another timeout build (either a cluster or an isolated one), i.e., given an isolated
timeout, we want to analyze the distance to the closest timeout to this isolated timeout.
We measure the distance using the number of signal-generating builds between the isolated
timeout and the closest timeout. Also, we analyze the time elapsed between an isolated
timeout build and its closest timeout build. For example, consider the isolated timeout T4

in Fig. 4.5. The closest timeout build to T4 is T5, which is also an isolated timeout. T5

is one build away from T4; hence, the number of builds between the two timeouts is one.
The time duration until T5 has occurred is measured by the time difference between the
ends of T4 and T5.

Results

Our two main observations of this RQ are detailed as follows.

37

100 101 102 103

Number of signal-generating builds

Median = 4 builds

(a) Distance (number of builds) between an isolated timeout and
the closest timeout.

100 101 102

Number of hours

Median = 5 hour and 30 minutes

(b) Time difference (hours) between an isolated timeout and the
closest timeout.

Figure 4.7: The distance and time difference between an isolated timeout and the clos-
est timeout.

Observation 4(9): The majority (64.03%) of timeout builds in our dataset
occur in clusters. Fig. 4.6a shows the distribution of the number of builds that compose a
timeout cluster. The figure shows that although timeout clusters are composed of a median
of two builds, 20% of the clusters are composed of at least six consecutive timeouts (see
the 80th percentile). Fig. 4.6b shows the distribution of the duration of timeout clusters.
Accordingly, it takes a median of 24 hours before a signal-generating build occurs. More
extremely, we find that it takes at least 48 hours in 37% of the timeout clusters (see
the 63th percentile). For example, the cptactionhank/docker-atlassian-confluence project30

encountered a cluster of 14 consecutive timeout builds, and it took more than six days for
the timeouts to subside.

Observation 4(10): Isolated timeout builds are often close to another time-
out build. Fig. 4.7a shows the distribution of the number of builds between an isolated

30https://github.com/cptactionhank/docker-atlassian-confluence

38

https://github.com/cptactionhank/docker-atlassian-confluence

timeout and its closest timeout, and accordingly, the median is four builds. Furthermore,
Fig. 4.7b shows the time difference between two timeouts, one of which is an isolated time-
out. Indeed, the closest timeout to an isolated timeout build occurs in less than a day
(i.e., five hours and 30 minutes) on the median. Examples of such isolated timeout builds
can be found in the spotify/helios project.31 This project had encountered timeout builds
in less than an hour (in the extreme case) after an isolated timeout build. Similar cases
can be observed in other projects, such as cptactionhank/docker-atlassian-confluence,30

palantir/atlasdb,21 and onyx-platform/onyx.32

The majority (64.03%) of timeout builds occur in clusters. Moreover, after a time-
out build, it takes a substantial amount of time (a median of 24 hours) until the
occurrence of a signal-generating build.

4.3.5 Thematic Analysis

The discovery of timeout clusters in Section 4.3.4 and the key influential features in Sec-
tion 4.3.3 led us to explore the root causes behind CI timeouts, and below, we detail our
approach and results.

Approach

We start by gathering links to community discussions on timeout builds in the projects
that we analyzed in our study by using GitHub search, with queries like “ci timeout”
and “circleci time out” to find relevant issues and PRs. By analyzing these, we aim to
understand the reasons behind CI timeouts. Our search finds 79 issues and PRs with
406 comments related to CI timeouts in the projects examined. After collecting relevant
documents, we perform a systematic inspection and a thematic analysis [144]. In the initial
iteration, two coders collaboratively review titles, descriptions, and discussion threads (i.e.,
comments) to create codes summarizing reasons for timeout builds. If the reason remains
unclear, the coders mark it as “Unknown.” The coders then identify common themes that
span across codes (which are not necessarily mutually exclusive), linking together similar
topics or underlying issues.

31https://github.com/spotify/helios
32https://github.com/onyx-platform/onyx

39

https://github.com/spotify/helios
https://github.com/onyx-platform/onyx

In the second iteration of the analysis, the two coders independently assign themes to
discussions, with any disagreements resolved through discussion or, if needed, a deciding
vote by a third coder. However, all disagreements were resolved without needing this
vote. To assess the reliability of these themes and coding, we calculate Cohen’s Kappa
coefficient [28]. This coefficient is used to evaluate inter-rater agreement for categorical
items between the two coders. The coefficient ranges from -1 to +1, with values greater than
zero indicating a level of agreement that surpasses what would be expected by chance alone.
In our case, the Cohen’s Kappa coefficient is 0.778, showing substantial agreement [97].

Results

Our thematic analysis yields six themes, as shown in Table 4.5. Each theme describes
a reason for build timeouts and the solutions that developers implemented. The total
frequency of the identified reasons is greater than 100% because multiple themes may
apply to the same case.

(T1) Efficiency Issues in Testing. In this theme, testing issues cause timeouts for
two reasons: First, extensive tests lead to timeouts, and prompt developers to exclude them
from CI pipelines. For example, in the cptactionhank/dockeratlassian-jira project, devel-
opers have removed a set of long-duration tests to mitigate timeouts.33 Second, timeouts
may be caused by misconfigurations or an excessive number of tasks, which can prolong
build times. For example, the CI pipeline in the tikv/tikv project is configured with a code
coverage tool that prolongs the build time, and is to blame for timeouts.34 The developers
initiated executing this code coverage analysis in a separate build to reduce the prolonged
build durations.

(T2) Project-Specific Issues. Timeouts arise from project-level parameters, such
as the selection of programming languages, databases, and Android emulators. For exam-
ple, in the BranchMetrics/android-branch-deep-linking-attribution project, the selected
Android emulator becomes unresponsive, entering into infinite loops during the build pro-
cess.35 This unresponsiveness contributes to timeouts. To avoid such timeouts, the devel-
opers changed the version of the Android emulator they were using.

(T3) Network Issues. Another common reason for timeout builds is due to net-
work issues, such as incorrect network settings, API network errors, and server timeouts.

33https://github.com/cptactionhank/docker-atlassian-jira/commit/dbb3b143efe02351614e6f33be4b02-
39991f40f2

34https://github.com/tikv/tikv/issues/3012
35https://github.com/BranchMetrics/android-branch-deep-linking-attribution/pull/400

40

https://github.com/cptactionhank/docker-atlassian-jira/commit/dbb3b143efe02351614e6f33be4b0239991f40f2
https://github.com/cptactionhank/docker-atlassian-jira/commit/dbb3b143efe02351614e6f33be4b0239991f40f2
https://github.com/tikv/tikv/issues/3012
https://github.com/BranchMetrics/android-branch-deep-linking-attribution/pull/400

Table 4.5: The extracted themes for CI timeout builds.

ID Theme Frequency (%) Solution

(T1) Efficiency Issues in
Testing

28 (35.44%) Remove long-running tests
and/or execute long-running
tasks in separate builds.

(T2) Project-Specific
Issues

10 (12.65%) Project-specific patterns.

(T3) Network Issues 8 (10.12%) Increase the CI timeout setting.
(T4) Resource Con-

straints
8 (10.12%) Induce waiting in threads and/or

processes.
(T5) Efficiency Issues in

the CI Provider
6 (07.59%) Restart the build.

(T6) Containerized Envi-
ronment Issues

6 (07.59%) Increase the CI timeout setting.

(TU) Unknown 16 (20.25%) Increase the CI timeout setting.

For instance, in the spacetelescope/notebooks project, slow network requests led to CI
timeouts.36 Attempts to address this included extending the timeout limit from 10 to 20
minutes, which, while reducing timeouts, is not ideal as it can increase costs due to longer
billable service usage.

(T4) Resource Constraints. Timeout builds can be attributed to resource con-
straints, such as limitations in Random Access Memory (RAM) and/or Central Pro-
cessing Unit (CPU), or parallelism constraints that manifest as race conditions. For
example, in the tendermint/tendermint project, a statement to cause a thread to wait
(time.Sleep(time.Second)) was added to mitigate race conditions that otherwise lead
to timeouts.37

(T5) Efficiency Issues in the CI Provider. Builds may time out due to inefficien-
cies in the CI provider’s infrastructure. For example, in the influxdata/kapacitor project,
developers observed that certain builds running quickly on local machines faced delays and
timeouts on CircleCI.38 Similarly, in a PR within the influxdata/influxdb project, develop-
ers noted timeouts, which were suspected to be due to the limitations of the infrastructure

36https://github.com/spacetelescope/notebooks/issues/87
37https://github.com/tendermint/tendermint/issues/846
38https://github.com/influxdata/kapacitor/pull/1631

41

https://github.com/spacetelescope/notebooks/issues/87
https://github.com/tendermint/tendermint/issues/846
https://github.com/influxdata/kapacitor/pull/1631

on the CI provider’s side.39 In both cases, developers were in favour of restarting the build
even though restarting without addressing the underlying issues can waste resources [109].

(T6) Containerized Environment Challenges. Timeouts within a containerized
environment can be traced to container maintenance and configuration issues. For exam-
ple, in the moby/libnetwork project, timeouts occurred because the network interfaces of
Docker containers were not adequately cleaned up after the tests were completed.40 On the
other hand, in the Homebrew/brew project, Docker containers play a crucial role in the
CI process by providing isolated environments for the building software packages.41 This
process times out when building large software packages, and the developers discussed the
need to lift the timeout limit.

Emergent themes of root causes for CI timeouts range from technical challenges
(T3, T4, and T6) and testing inefficiencies (T1) to project-specific (T2) issues and
limitations with CI providers (T5).

4.4 Threats to Validity

In this section, we describe the threats to the validity of this chapter. To support verifia-
bility and replicability, we make our replication package publicly available.22

4.4.1 Construct Validity

We have not measured all potential characteristics that impact timeout builds. For in-
stance, the performance characteristics of the CI server, such as parallelism and scalability,
are not included in our models. Such features may better explain the likelihood of time-
out builds than the features we use. However, such information is not available publicly.
To mitigate this, we select a set of 19 features spanning five dimensions of CI builds by
consulting the related literature on the build outcome prediction [138, 25, 125] and de-
fect prediction [161].

39https://github.com/influxdata/influxdb/pull/8961
40https://github.com/moby/libnetwork/pull/1325
41https://github.com/Homebrew/brew/issues/10597

42

https://github.com/influxdata/influxdb/pull/8961
https://github.com/moby/libnetwork/pull/1325
https://github.com/Homebrew/brew/issues/10597

4.4.2 Internal Validity

We may have missed confounding factors that could impact our interpretations. For ex-
ample, we observe that the longer the duration of the previous build, the higher the like-
lihood of CI builds timing out, but this might reflect limited CI service resources, making
the observed relationship coincidental. Additionally, implicit factors of builds could be
overlooked, such as the CI provider’s workload metrics (not available for us via public
APIs/datasets), which might provide further context to our model.

Also, the time limit (the no output timeout setting), which developers can set, may
have a relationship to the probability of timeout builds; when a project is assigned a larger
time limit, the likelihood of encountering build timeouts naturally decreases. We collect
no output timeout values for each build in our dataset (assuming the default time limit
for the build that does not have the configuration explicitly set). Upon rerunning our
models, we discover that the no output timeout settings do not significantly explain the
model’s outcomes. For a more detailed exploration of this direction, we direct interested
readers to our Online Appendix G,22 which contains an in-depth overview of this updated
model. Note that the goal of our study is to identify features that provide insights into the
project’s overall health in terms of timeouts, irrespective of whether those features share
causal or correlational relationships with timeout builds. We encourage future research to
explore causal links between our features and timeout builds.

Our decision to use statistical models was made because of their ability to elucidate the
influences of the set of studied features on timeout builds. We recognize that this choice
might introduce bias, especially when compared to visually intuitive and interpretable
machine-learning models, such as decision trees. For further analysis, we construct a
decision tree using the same dataset. This decision tree does not yield substantially new
insights, suggesting that this experimental design choice is not a substantial threat to the
validity of our results. For a detailed exploration of our decision tree analysis, we invite
readers to consult our Online Appendix H.22 Moreover, we recognize that stronger causal
claims would require access to server-side operational data, such as CI provider workload
metrics, which are not available to us. Future researchers with access to such operational
data may consider applying causal analysis techniques to further investigate the underlying
drivers of CI timeouts.

Our thematic analysis shows that 20.25% of the issues we analyzed do not contain any
discussion of a known root cause. In these cases, developers often increase the CI timeout
setting as a mitigation strategy. Although the true root cause is not explicitly discussed
in the issue comments, it is possible that developers are aware of it, but choose not to
document it. As a result, the true frequencies for the root causes T1–T6 may be slightly

43

higher than what we report, and there may exist additional root causes beyond those we
identified. However, we believe that this is not a substantial threat to the validity of
our results, as we analyze a sufficiently large and representative sample of issues, and our
coding process is composed of multiple rounds of review with high inter-rater agreement.

4.4.3 External Validity

Our models are built using data from projects that used CircleCI. As such, our results
may not generalize to other CI services; however, there is nothing inherently service-
specific about the phenomenon of timeout builds. Nonetheless, since we select statically-
computable and CI service-agnostic features, our replication package22 can be used to
accelerate replication studies for other CI services (e.g., GitHub Actions, which is also
known to be a popular CI service [63]). We select the 24 most timeout-prone projects for
our analysis. As such, our results may not be generalized to all CircleCI users. We apply a
set of conservative filters to exclude early-stage or immature projects where timeout builds
are less relevant.

4.5 Practical Implications

In this chapter, we investigate the features that can characterize CI timeout by analyzing a
dataset of 105,663 CI builds that span 24 open-source GitHub projects. Then, we conduct
a thematic analysis to identify the root causes of CI timeouts by analyzing 79 issues and
PRs with 406 comments related to CI timeouts in the projects examined. Below, we discuss
the implications of our findings.

Project build history and timeout clusters can provide useful information to
proactively allocate resources (for CI providers) and minimize CI waste (for CI
consumers). Observation 4(6) shows that the history of a project’s builds is the strongest
indicator of whether a build will time out. Additionally, we found that timeout builds
occur in clusters—as discussed in Observation 4(9). By leveraging these project tendencies
and timeout patterns, CI providers can anticipate timeout builds and take appropriate
action. For example, if additional resources are available, it may be more cost-effective to
proactively allocate them to builds with a high likelihood of timing out in order to mitigate
such issues. This is by no means a simple action since one cannot know in advance the
quantities of additional resources required to allow the problematic build to terminate with
a pass or fail signal [56]. However, it is likely that timeouts will be retried [40], which will

44

likely cascade into a series of timeout builds (i.e., clusters), generating more waste than
a proactive increment to the resources of the initial build would. After a timeout build,
24 hours are taken (on median) for a project to see a passing or failing build. Moreover,
clusters of timeouts suggest a substantial problem, like a shared environmental condition or
code change that introduces timeouts, rather than just flakiness. We recommend developers
investigate the root causes (detailed in our Section 4.3.5) to better understand and prevent
future timeouts.

Prioritizing files that are prone to build timeouts can optimize resource al-
location and may help to avoid incidences of timeout builds. Observation 4(7)
indicates that certain file characteristics can increase the likelihood of a CI build timing
out. By inspecting examples of timeout builds, we find that certain files are more often
implicated in timeouts. This may indicate that timeout builds are localized, and are often
triggered by the changes to a small fraction of project files. Upon a closer inspection of
our dataset, we find cases where developers make changes to certain files to fix the issue
of timeouts, e.g., commenting out long-running test cases in test files,42 adjusting test set-
tings (such as changing the Android emulator version43), and changing CI configurations.44

Hence, a tool that ranks such timeout-prone files based on the strength of their association
with builds that time out may have a potential impact. For example, a tool may flag a
change to a file if it is likely to eventually lead to a timeout build, letting project maintain-
ers direct their efforts to optimize components that pose the most elevated risk for timeout
builds. This strategy could prioritize the files that are frequently associated with timeouts.
Specifically, files that have a consistent track record of leading to timeouts across multiple
builds ought to be placed at the top of the prioritization list for analysis.

Researchers should propose approaches for predicting timeout builds to as-
sist developers in preventing timeouts. Observations 4(3) and 4(4) show that our
model achieves a high level of discriminatory power (AUROC = 0.939), is well calibrated
in terms of risk estimates (Brier score of 0.008), and is highly stable for explaining the in-
cidences of timeouts. However, our primary goal in this chapter is to use statistical models
to characterize and understand timeout builds rather than to predict future timeouts. We
encourage researchers to build upon our findings, i.e., the important features we identified
in observations 4(6) and 4(7) and the timeout clusters in observations 4(9) and 4(10), as
well as those in the context of build failure prediction, to develop more powerful predic-
tion models for timeout builds. For example, prior work (e.g., [25]) built machine-learning

42https://github.com/cptactionhank/docker-atlassian-confluence/commit/e81db60ee6cbee71bb427aa0-
15afb3b9762d029c

43https://github.com/BranchMetrics/android-branch-deep-linking-attribution/pull/400
44https://github.com/autoreject/autoreject/pull/194/commits/92b388594d3c1cb2678c1f189940b84cfc

45

https://github.com/cptactionhank/docker-atlassian-confluence/commit/e81db60ee6cbee71bb427aa015afb3b9762d029c
https://github.com/cptactionhank/docker-atlassian-confluence/commit/e81db60ee6cbee71bb427aa015afb3b9762d029c
https://github.com/BranchMetrics/android-branch-deep-linking-attribution/pull/400
https://github.com/autoreject/autoreject/pull/194/commits/92b388594d3c1cb2678c1f189940b84cfc9b9f5c

models to predict build failures, but our findings suggest that such approaches could be
extended to predict timeout builds.

4.6 Chapter Summary

Compute resources that enable CI are a shared commodity that organizations need to
manage. To prevent erroneous builds from consuming a large amount of resources, CI
providers often impose a time limit. CI builds that exceed the time limit are automatically
terminated. While imposing a time limit helps to prevent abuse of the service, builds that
time out consume the maximum amount of resources and leave project team members
without an indication of whether their change set will pass the CI build or not. Therefore,
understanding timeout builds and the features that characterize them is important for
improving the stability and quality of a CI provider. In this chapter, we investigate the
prevalence of timeout builds and the characteristics associated with them. The highlights
of this chapter are as follows:

• Project teams and CI providers can leverage a project’s build history to predict CI
timeouts.

• Certain change sets associated with specific files in a project may have a higher
likelihood of triggering CI timeouts. Instead of merely restarting a CI build after
a timeout, project teams can prioritize investigating these high-risk files to identify
and address the root causes.

• Project teams may also use the curated catalog of timeout root causes from our study
to guide their debugging efforts.

Concluding Remarks. Although this chapter focused on inefficiencies in CI environ-
ments (i.e., CI timeouts), inefficiencies in project dependencies can also contribute to the
waste of CI resources. In the next chapter, we set out to study inefficiencies in dependencies
that can tacitly waste CI resources.

46

Chapter 5

Unused-Dependency Updates

Note. An extensive version of this chapter appears in the proceeding of Foundations of
Software Engineering [175].

5.1 Introduction

Modern software systems rely on ecosystems of reusable code [151, 29], typically in the
form of packages (a.k.a. dependencies) provided by dependency managers like npm (for
JavaScript), PyPI (for Python), and Maven (for Java). Such external packages facilitate
cross-project reuse [12] and improve developer productivity [89].

Dependencies in projects can introduce compatibility issues [188, 98, 16] and security
vulnerabilities [188, 6, 7]. To address these issues, dependency developers frequently re-
lease new versions to fix bugs [27, 188, 98], enhance security [127, 128], and add new
features [185, 95]. To benefit from the latest dependency versions, project teams actively
maintain their dependency specifications. As projects evolve, managing dependencies can
become increasingly complex, which in turn can lead to the accrual of unused depen-
dencies [98, 152]. These unused dependencies can account for up to 59% of a project’s
declared dependencies [98]. They bloat the dependency folder [153] and introduce security
vulnerabilities [15]. Such dependencies also prolong CI build times by adding unnecessary
download and installation steps, as noted by developers.45 While caching dependencies

45https://github.com/E3SM-Project/e3sm diags/pull/385

47

https://github.com/E3SM-Project/e3sm_diags/pull/385

mitigates the waste generated by such cases [55], CI builds triggered from updates to un-
used dependency versions, i.e., unused-dependency commits, are entirely wasted, as they do
not affect the actual build outcomes. In this chapter, we aim to quantify and characterize
CI waste from builds triggered by updates to unused dependencies. More specifically, we
analyze a dataset of JavaScript projects that use npm dependencies and GHA,8 and answer
the RQs below.

(RQ1) What is the prevalence of CI waste due to unused dependencies? Un-
derstanding the extent to which CI resources are wasted due to updates to unused depen-
dencies is crucial for CI consumers and providers. For CI consumers, such as developers
and project maintainers, identifying substantial sources of waste can highlight the need
for more efficient resource allocation or alternative optimization strategies. For CI service
providers, recognizing this waste may present opportunities for improving operational effi-
ciency, whether through enhanced resource allocation or the adoption of new optimization
strategies. In this RQ, we quantify CI waste from the perspectives of CI consumers as well
as CI providers.

Results. Our findings reveal that unused dependencies are a substantial source of waste in
CI builds. From the perspective of the CI provider, we find that 55.88% (3,427 build hours)
of the overall CI build time that is consumed by updates to npm dependency specifications
in the studied projects is attributed to unused dependencies. At the project level, a median
of 56.09% of CI build time is spent on updates to unused dependencies. To provide an
operational cost perspective on this quantity of CI waste, we compare the waste of the
most wasteful projects with the monthly budget of free build minutes that is provided to
projects by GHA.46 Among those projects, we find that the CI build time that is spent on
unused-dependency updates in 14 of the 54 studied months already exceeds their monthly
allocation of free build minutes.

(RQ2) What are the main sources of CI waste due to unused dependencies?
Since developers as well as bots (such as Dependabot4) update versions of dependencies
in projects, to tailor effective waste reduction strategies, we must better understand who
(i.e., either developers or bots) are generating the majority of unused-dependency commits.
For example, if bots emerge as the primary contributors of unused-dependency commits,
an effective waste mitigation strategy would need to include scrutinizing and refining the
functionalities and configurations of these bots. Conversely, if developers are identified

46https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-
actions

48

https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions
https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions

as the primary contributors of unused-dependency commits, an effective waste mitigation
strategy would need to raise awareness about the importance of dependency management.
Besides, it is equally important to understand which types of dependencies tend to be
affected (i.e., development or runtime). If the majority of the unused-dependency up-
dates are made on development dependencies, mitigation strategies should focus on those
dependencies and vice versa.

Results. Our results reveal that a large proportion (92.93%) of the CI build time that is
spent on unused dependencies is wasted due to bot-generated updates, with Dependabot

accounting for 74.52% of that wasted CI build time. With respect to the type of dependen-
cies, the majority of the wasted CI build time (92.63%) occurs due to unused development
dependencies, which are at lower risk of introducing field failures due to erroneous re-
moval [35]. This suggests that development teams who are willing to invest in removing
unused dependencies can focus on these development dependencies to reduce CI waste
without exposing projects to elevated risk levels.

Our results show that a substantial quantity of CI waste is generated by unused-
dependency commits. Existing CI service providers do not have measures in place to
minimize this waste. Thus, we develop an approach to mitigate CI waste by skipping
builds when they are triggered by unused-dependency commits, i.e., Dep-sCImitar . A
retrospective analysis of the application of Dep-sCImitar to past commits in the studied
projects shows that 68.34% of wasted CI build time can be saved with a precision of 94%.

5.2 Study Design

In this section, we describe our study design. Specifically, we present our approaches to
project selection (PS) and data curation (DC). Fig. 5.1 provides an overview of the steps
involved in these approaches, which we describe below.

5.2.1 (PS) Project Selection

Our study aims to analyze the waste in the CI process that is generated by version updates
to unused dependencies. Therefore, we need to collect a dataset of projects that have
accrued a rich history of dependency changes and build logs, as well as transparent CI
configurations. Below, we describe the steps that we follow to select our sample of projects
for analysis.

49

Figure 5.1: An overview of our study design.

(PS-1) Select JavaScript projects. We use the SEART GitHub search engine [31] to
query for GitHub projects that meet our basic inclusion criteria. We select JavaScript
projects due to JavaScript’s popularity and importance. In fact, JavaScript is currently
the most popular programming language in the world, with a vibrant and fast-growing
ecosystem.47,48 This rich ecosystem is a boon for developers, and our query returns 261,739
JavaScript projects.

(PS-2) Select projects with recent activity. Since GitHub hosts toy and immature
projects [118, 31, 90], we remove projects with fewer than ten commits. Inspired by prior
work (e.g., [115]), we purposely do not restrict our project dataset only to the most active
projects (i.e., projects with a large commit history) because there can be projects that are
not updated frequently, but still play a critical role in the build process of other projects.
Nonetheless, to ensure that the projects that we study have been active recently, we select
projects that have received commits within the January 2020 to December 2022 timeframe.
This filtering criterion improves the validity and modern relevance of the conclusions that
we draw. After applying these filters, 100,811 projects survive.

(PS-3) Select projects that adopt CI. To analyze CI waste, we need to select projects
that actively apply CI. To do so, we choose to select projects that adopt the GHA CI
service,8 which has quickly become the predominant CI service among npm projects on
GitHub [63]. Furthermore, as of December 2022, GHA had accumulated a catalog of
over 16,000 reusable actions [36]. To identify projects that are configured for GHA, we
use the GitHub API49 to check for the availability of the corresponding CI configuration
files in each project. In particular, we check for the presence of .yml files within the
.github/workflows directories of the candidate projects.8 We find that GHA is configured
for 16,226 projects in our dataset.

47https://www.npmjs.com
48https://libraries.io/NPM
49https://docs.github.com/en/rest/repos/contents?apiVersion=2022-11-28

50

https://www.npmjs.com/
https://libraries.io/NPM
https://docs.github.com/en/rest/repos/contents?apiVersion=2022-11-28

(PS-4) Select projects that adopt a software package manager. npm is the de
facto package manager used by JavaScript projects to manage their dependencies [172].
Therefore, we select projects that adopt npm. JavaScript projects that adopt npm must
specify their dependencies in a package.json file, a JSON file that lists the packages upon
which this project depends, as well as their versioning constraints. A project with npm

dependencies must contain at least one package.json file located in its root folder. To
identify projects that use npm, we first clone a local copy of each of the 16,226 candidate
projects that have been selected so far. Then, we search the root directory of the HEAD

commit of each cloned repository for a package.json file. If a match is found, we store
the repository for further analysis.

At the end of this filtering process, 13,991 projects survive. These projects have a
median of 181 commits and seven contributors. Our corpus of candidate projects comprises
popular and large projects from organizations of influence, such as Meta,50 Google,51 and
Microsoft.52 We made this dataset is available online.53

5.2.2 (DC) Data Curation

After obtaining our set of projects, we process each project further to calculate the time
that was spent on builds that were invoked due to updates to unused dependencies. An
overview of the steps of this process is shown in Fig. 5.1 (DC), which we detail below.

(DC-1) Extract commits with dependency-version updates. We need to extract
the dependency changes to identify updates to dependency versions. As explained above,
JavaScript projects specify their direct dependencies in the package.json file, which con-
tains the list of packages upon which the project depends. Hence, we extract all changes
(i.e., commits) that modify the package.json file. Specifically, for each project, we mine
through its commits, extracting the list of modified files, and the content of the modified
lines using the git-log command. Note that to ensure the modern relevance of our anal-
ysis, we only select commits that occurred between 2020 and 2022 (inclusive). Then, we
categorize these commits into those pertaining to dependency-version updates and those
unrelated to dependency versions. Specifically, we consider a commit as a dependency
commit if it exclusively modifies the package.json file (or both package.json file and

50https://github.com/facebookincubator/rapid
51https://github.com/googlechromelabs/tooling.report
52https://github.com/microsoft/react-native-macos
53https://doi.org/10.5281/zenodo.11192753

51

https://github.com/facebookincubator/rapid
https://github.com/googlechromelabs/tooling.report
https://github.com/microsoft/react-native-macos
https://doi.org/10.5281/zenodo.11192753

package-lock.json file) and the only updates in that file are version specifiers of de-
pendencies. Commits that do not meet both criteria are considered outside the scope of
our investigation and are not considered in our analysis of CI waste. We detect 121,453
dependency commits spanning 1,854 projects.

Note that our approach may lead to the exclusion of commits that update unused
dependencies in the package.json file while simultaneously making changes to other files
that do not impact the source code functionality. For instance, commits that merely add
comments in source files or modify the README.md file ([3]), in addition to updating unused
dependencies in the package.json file, fall outside the scope of our analysis. As a result,
the waste that we report represents a conservative lower bound, underestimating the actual
quantity of CI waste accrued due to unused-dependency commits.

(DC-2) Identify unused dependencies. Following prior studies [89, 83, 121], we apply
DepCheck54 to identify unused direct dependencies that are listed in the package.json

file. First, we run DepCheck on each dependency commit and store a list of all unused
dependencies. Subsequently, we cross-reference this list of unused dependencies with those
that are modified in the commit to identify relevant commits. When a match occurs, we
classify the commit as a dependency commit responsible for modifying the version of an
unused dependency, a.k.a., an unused-dependency commit. Of the 121,453 dependency
commits that we extract in DC-1, 49,731 are unused-dependency commits, which are of
particular interest to us due to their potential to contribute to CI waste by triggering
CI builds.

(DC-3) Extract CI data. To analyze the amount of CI waste that is generated by
unused-dependency commits, we retrieve the CI data that is associated with them using
the GitHub API.55 Note that not all of these commits are directly associated with CI
builds. A subset of them fail to trigger CI builds altogether, while in other cases, gathering
CI data from the API is no longer possible, often because the data is no longer available.
Consequently, we could retrieve CI data for only 20.9% of the unused-dependency commits.

We acknowledge that CI data is noisy [60, 57, 49]. This noise stems from various
sources, such as experimental builds that fail, passing builds with ignored failing steps,
and timeouts without proper signals. However, within the scope of our research, this noise
does not pose a substantial concern because our study takes a holistic view of CI resources.
In particular, we provide an estimation of CI waste from both the CI consumer and provider
perspectives, which is a lower-bound estimate of the actual amount of CI waste. Indeed,

54https://github.com/depcheck/depcheck
55https://docs.github.com/en/rest/checks/runs?apiVersion=2022-11-28

52

https://github.com/depcheck/depcheck
https://docs.github.com/en/rest/checks/runs?apiVersion=2022-11-28

since these noisy builds still consume CI resources, we consider them valid data entries for
our study, and do not make attempts to filter them out.

Also, prior work [63] revealed that a number of GHA workflows are not entirely CI-
related. For example, GitHub Actions are used for various purposes, such as manually
triggering workflows (e.g., workflow dispatch, accounting for 8.3%) and scheduled work-
flows (e.g., schedule, accounting for 8.1%). Our dataset does not contain such GitHub
Actions that are not CI-related because we only collect the CI builds that are associated
with dependency-update commits.

5.3 Study Results

In this section, we describe the approach to answer our RQs and the corresponding results.

5.3.1 (RQ1) What is the prevalence of CI waste due to unused
dependencies?

Measuring the time spent on CI builds is crucial for better resource management. By
analyzing the effect of unused-dependency commits on CI resources, we strive to provide
insights for the following two primary stakeholders of CI:

CI Consumers (i.e., project maintainers and developers). Understanding whether
a considerable amount of CI build time is spent on unused-dependency commits will help
CI consumers direct their future efforts. For example, if a large amount of CI build time is
spent on unused-dependency commits, it may impose a financial burden on project main-
tainers. While a quota of CI build time is provided for free on a monthly basis,46 CI build
time that is spent on unused-dependency commits wastes this limited resource and may
push projects over the free limit into billable time. If only a small amount of CI build time
is spent on unused-dependency commits, it may suggest that effort would be better spent
on other resource-saving options (e.g., build-oriented refactoring [164]).

CI Providers (e.g., GHA). If the CI build time that is spent on unused-dependency
commits is not billable, the CI provider must absorb the cost of that CI build time. Such
wasted resources that are spent across a large number of projects will quickly accrue. Even
if the wasted CI build time is billable and the cost is borne by consumers, these wasted
resources still indicate inefficiencies in resource allocation and present an opportunity for
the optimization of CI operations.

53

Approach

Our quantification of CI waste resulting from version updates to unused dependencies offers
insights that are tailored to the distinct perspectives of each CI stakeholder.

CI Consumer. In this perspective, we stratify our analysis based on individual
projects. For each project in our dataset, we count the commits and compute the CI build
time that is associated with builds that were triggered due to unused dependencies. This
approach sheds light on the concern from the perspective of project maintainers, offering
insights into how this problem impacts different projects within the open-source commu-
nity. For example, it provides insights regarding the unnecessary maintenance activity that
is generated by unused dependencies.

CI Provider. From this perspective, our investigation focuses on quantifying the
combined influence of unused-dependency commits on CI build time. In other words, we
count the commits and compute the CI build time that is associated with builds that were
triggered due to unused dependencies. This viewpoint emphasizes the cost incurred by the
CI provider.

Results

Table 5.1 shows the proportion of commits and build hours that are generated by version
updates to unused dependencies from the CI provider and consumer perspectives.

Observation 5(1): More than half (55.88%) of the CI build time for depen-
dencies is spent on CI builds that are triggered by unused-dependency commits.

Table 5.1: The prevalence of CI waste from unused dependencies. The table presents the
total and wasted number of commits and builds. The table further presents figures for
both CI providers and consumers.

CI Provider CI Consumer

Commits Build Hours Commits Build Minutes
(Median) (Median)

Total Quantity (#) 20,743 6,133 7 42.13
Wasted Quantity (#) 10,412 3,427 3 23.63
Wasted Quantity (%) 50.19% 55.88% 42.85% 56.09%

54

This equates to a substantial waste of 3,427 build hours, originating from 50.19% (10,412
commits) of all dependency commits. A closer inspection reveals that 30% (3,123) of these
unused-dependency commits consume more than ten minutes of CI build time for each
commit, and 7% (728) consume more than half an hour for each commit. For CI providers,
the fact that unused-dependency commits make up over half of all dependency commits
presents an opportunity to reduce waste.

Dependency update commits account for a median of 2.30% of the total number of
commits during the studied period, whereas unused-dependency commits account for a
median of 1.09%. Across all projects in our dataset, the overall percentage of dependency
commits is 3.21%, and the percentage of unused-dependency commits is 1.60%. Despite
these modest percentages, the impact on CI build time is non-negligible and should not
be ignored.

(a) wip/app. (b) probot/settings. (c) bus-stop/x-terminal.

(d)
testing-library/esli...

(e)
aws-observability/aws... (f) xmldom/xmldom.

Figure 5.2: CI build time consumption of top six projects per month due to unused-
dependency commits. The graphs corresponding to other projects are provided in our
online appendix.53

55

https://github.com/wip/app
https://github.com/probot/settings
https://github.com/bus-stop/x-terminal
https://github.com/testing-library/eslint-plugin-jest-dom
https://github.com/aws-observability/aws-otel-js
https://github.com/xmldom/xmldom

Observation 5(2): At the project level, a median of 56.09% of the CI build
time that is spent on dependency commits is generated by unused-dependency
commits. The median CI build time that is consumed by unused-dependency commits in
a project is 23.63 minutes. In fact, 30% of the projects in our dataset exceed an hour of
wasted CI time. For example, the dekkerglen/cubecobra project consumed an hour of CI
build time on unused-dependency commits, making up 31% of its total CI build time for
all of its dependency commits. In more extreme cases, such as the bus-stop/x-terminal
project, an alarming 127 build hours are wasted, with over 70% of its dependency-related
CI build time being wasted on unused dependencies.

To provide an operational cost perspective on this quantity of CI waste, we compare the
project-level waste with the budget of 2,000 build minutes per month that is provided to
projects by the free plan of GHA.46 We conduct a focused analysis of the top six projects
that accrue the largest amounts of CI waste. For this analysis, we use GHA’s billing
criteria. In fact, GHA calculates build minute usage for billing based on factors, such as
the platform that was used (Linux, Windows, or MacOS) for the execution of the build.
Thus, for each build (triggered by unused-dependency commits), we identify the platform
on which the build was executed from the CI data that we retrieve from the GitHub API
during the DC-3 step in Section 5.2.2.

Fig. 5.2 shows the number of build minutes that are consumed by unused-dependency
commits per month. The figure shows instances where this wasted CI build time alone
already exceeds the entire monthly budget of free CI build time for these projects. Indeed,
14 of the 54 studied monthly periods exceed the free monthly budget. In the most extreme
case, the bus-stop/x-terminal project wasted 9,756 build minutes in April 2022, exceed-
ing the entire monthly budget of free build minutes by almost fivefold. In other months,
the wasted CI build time of this project still constitutes a substantial portion, comprising
at least 8.4% (168 build minutes) of the available free CI build time for the project.

Although both successful and failed builds triggered by updates to unused dependen-
cies are considered wasteful due to their resource consumption, one may argue that failed
builds are not actually wasteful because they usually raise concerns that developers should
address. To address this viewpoint, we conduct a follow-up analysis to examine the per-
centage of successful and failing builds in our dataset. We find that 87.61% of the builds
that are associated with unused-dependency updates are successful, while 12.39% failed. To
explore the impact of considering only successful builds as wasteful, we conduct a revised
prevalence analysis. This analysis reveals that wasted builds from unused-dependency com-
mits account for 43.98% of the dependency-update commits in our dataset, with wasted
CI build time comprising 38.19%.

56

https://github.com/dekkerglen/cubecobra
https://github.com/bus-stop/x-terminal
https://github.com/bus-stop/x-terminal

Unused dependencies are a substantial source of inefficiency in CI processes. For CI
providers, more than half (55.88%) of the CI build time of dependency-update com-
mits is taken up by unused-dependency commits in the studied projects, generating
a considerable amount of waste (3,427 build hours). At the project level, the median
project spends 56.09% of its dependency-related CI build time on updates to unused
dependencies. Among the six most wasteful projects, more than their entire monthly
budget of 2,000 free build minutes is entirely spent on building unused-dependency
commits in 14 of the 54 studied months.

5.3.2 (RQ2) What are the main sources of CI waste due to un-
used dependencies?

In Section 5.3.1, we observe that a considerable amount of CI waste is generated by unused-
dependency commits. Understanding the origin of such commits is essential for crafting
targeted solutions. In this section, we characterize CI waste according to the type of
(1) commit author and (2) dependencies being updated.

Commit Authorship. Unused-dependency commits might be created by people
maintaining the project or an automated software bot. Prior research [8, 78, 117] suggests
that projects often use automated bots, such as Dependabot, to keep their dependencies
up to date. If bots emerge as the primary contributors of unused-dependency commits, an
effective waste mitigation strategy would need to include scrutinizing and refining the func-
tionalities and configurations of these bots. Conversely, if developers are identified as the
primary contributors of unused-dependency commits, an effective waste mitigation strat-
egy would need to raise awareness about the importance of dependency management. The
time that developers are spending on this unnecessary maintenance of unused dependencies
could be better spent on more productive and impactful development activities.

Dependency Type. According to official guidelines,56 npm dependencies may be
development and runtime. Development dependencies are used during development and
testing, and are listed in the devDependencies section of the dependency specification
file (package.json). For instance, webpack57 is a development dependency in JavaScript
projects, bundling modules for delivery on the web. Runtime dependencies are necessary
for production deployment environments. An example would be lodash,58 which provides

56https://docs.npmjs.com/specifying-dependencies-and-devdependencies-in-a-package-json-file
57https://webpack.js.org/concepts
58https://lodash.com

57

https://docs.npmjs.com/specifying-dependencies-and-devdependencies-in-a-package-json-file
https://webpack.js.org/concepts/
https://lodash.com/

implementations of data structures like arrays and strings. We strive to understand the type
of dependencies that generate most of the waste to formulate effective mitigation strategies.
For example, if most unused-dependency commits update development dependencies, they
would present less risk-prone opportunities for optimization, as they are used solely during
the development phase and are not installed in production environments.

Approach

Our approach to understanding the sources of unused-dependency commits focuses on
(1) identifying who made the commit and (2) categorizing the type of dependency.

Commit Authorship. To distinguish between bot-generated and developer-generated
waste, we identify who authored each unused-dependency commit. Following prior work [38],
we apply a regular expression to detect authors having the term “bot” in their name, clas-
sifying them as bots. All other authors are labeled as developers. Our analysis reveals
four bot candidates, and these are indeed automated bots: Dependabot,4 Renovate bot,59

Snyk bot,60 and Depfu bot.61 For the remaining authors, we estimate the accuracy by
inspecting a sample of 400 randomly selected commits, which provides a 95% confidence
level that our observed proportions are within a confidence interval of ±5%. We inspect
each sampled commit to determine if its author is a bot. If this inspection of the author’s
name is inconclusive, we then cross-reference the name with the corresponding GitHub
profile to arrive at a decision. However, this analysis yields no instances of incorrect
labeling. To account for potential name variations or aliases, we employ heuristics to con-
solidate identities [169]. After establishing commit author categories, we compute both
the number of unused-dependency commits and the total CI build time that is consumed
by these commits.

Dependency Type. To understand how CI waste due to unused-dependency com-
mits is associated with the different dependency types, we examine the nature of dependen-
cies that cause CI waste. We group unused dependencies into development and runtime
categories according to whether they appear in the devDependencies or dependencies

section of the package.json file, respectively. We analyze each unused-dependency com-
mit by extracting both development and runtime dependencies from the package.json file
as of the commit’s timestamp. After obtaining the list of dependencies, we cross-reference

59https://www.mend.io/renovate
60https://snyk.io
61https://depfu.com

58

https://www.mend.io/renovate/
https://snyk.io
https://depfu.com

Table 5.2: Distribution of unused-dependency commits and corresponding build hours over
bots and developers.

Bot Developer

Commits 9,280 (89.12%) 1,132 (10.88%)
Build hours 3,184 (92.93%) 242 (07.07%)

Table 5.3: Build hours attributed to unused-dependency commits authored by bots.

Bot Commits Build Hours

Dependabot 6,541 2,373
Renovate bot 2,514 741
Snyk bot 174 60
Depfu bot 51 10

Total consumption 9,280 3,184

it with the unused dependencies that we identify for each commit in Section 5.2.2 (DC-
2) to determine whether an unused dependency is a development or runtime dependency.
Then, we calculate the CI waste for each dependency type by counting the number of
wasteful builds and their associated wasted build hours.

Results

Tables 5.2 and 5.3 present the number of commits and build hours that are associated with
unused-dependency commits, respectively.

Observation 5(3): Bots are the primary contributors to the wasted build
hours. Table 5.2 shows that bots are responsible for a substantial proportion of the CI
waste being generated by updates to unused dependencies. Specifically, bot-generated
commits account for 3,184 build hours (92.93%) spanning 9,280 unused-dependency com-
mits (89.12%). In contrast, developers account for only 7.07% of this wasted CI build
time. The 1,132 developer-generated unused-dependency commits are produced by 265
developers. Even though this percentage is much lower than that of bots, it is important
to highlight that a small number of developers are responsible for a substantial proportion
of the generated waste. For example, the two developers who produced the most unused-
dependency commits contributed 48% of the wasted CI build time. This suggests that

59

Table 5.4: Comparison of the total number of commits and build hours stemming from
unused-dependency commits between development and runtime dependencies across all the
projects in our dataset.

Unused Development Dependencies Unused Runtime Dependencies

Commits 8,762 (84.15%) 1,650 (15.85%)
Build hours 3,174 (92.63%) 253 (07.37%)

misinformed developers can quickly accumulate waste due to unnecessary maintenance.

Table 5.3 breaks down how each of the four detected bots contributes to CI waste.
Dependabot emerges as the top contributor, representing roughly three-quarters of the
wasted build hours (74.52%). Renovate bot is next, accounting for 741 hours (23.27%).
The remaining Snyk bot and Depfu bot contribute 60 hours (1.88%) and ten hours
(0.31%), respectively. This distribution closely follows the quantiles of unused-dependency
commits that are associated with each bot.

Observation 5(4): Unused development dependencies lead to most of the
wasted build hours. In Table 5.4, we see a clear distinction between the impact of
unused development and runtime dependencies. Unused development dependencies con-
tribute 92.63% of the total wasted time, amounting to 3,174 build hours. In contrast,
unused runtime dependencies contribute only 7.37% (253) of the build hours. This sug-
gests that development teams that are inclined to allocate resources to the mitigation of
CI waste that is generated by unused dependencies would benefit most from focusing on
these development dependencies. By doing so, they can mitigate CI waste efficiently while
maintaining a minimal risk level of field failures, since these development dependencies are
unlikely to affect the production environments [35].

Upon analyzing individual projects, we find that version updates to unused develop-
ment dependencies consume a median of roughly five minutes of CI build time, while
unused runtime dependencies consume a median of roughly three minutes; however, the
distribution is skewed. Indeed, 19% of projects consume more than an hour and 40 minutes
of wasted CI build time due to unused development dependencies. Comparatively, only
4% of projects waste that much CI build time for runtime dependencies.

Furthermore, Table 5.5 shows that while a total of 942 development dependencies are
associated with unused-dependency commits, only five of them collectively contribute to
53.21% of the overall CI build time for unused development dependencies, which highlights
the critical role being played by specific development dependencies that are implicated in
unused-dependency commits.

60

Table 5.5: Build hours resulting from unused-dependency commits in development depen-
dencies.

Unused Development Dependency Build Hours

@vercel/node 797
eslint 325
prettier 245
jest 209
mocha 112
Other development dependencies (937 dependencies) 1,485

Total consumption 3,174

Bots contribute the vast majority (92.93%) of the CI build time that is wasted on
unused dependencies. Moreover, unused development dependencies represent 92.63%
of the wasted CI build time that is associated with unused dependencies in the studied
projects. Thus, we recommend that waste mitigation strategies (1) target the most
wasteful bots (i.e., Dependabot and Renovate bot) for improvements and (2) focus
waste reduction efforts on development rather than runtime dependencies.

5.3.3 Mitigation of CI Waste Due to Updates to Unused Depen-
dencies

Our results show that a substantial quantity of CI waste is generated by unused-dependency
commits. Existing CI service providers do not have measures in place to minimize this
waste. Consumers of CI services might not realize that unused dependencies linger in their
projects [98], and removing unused dependencies can be an onerous task. For example,
a discussion on the GoogleCloudPlatform/nodejs-docs-samples project suggests that
refactoring source code to remove such dependencies requires substantial effort.62 More-
over, Kula et al. [95] found that developers are hesitant to make dependency-related
changes in general due to the substantial efforts needed to avoid introducing errors.

Given the hesitancy among developers to introduce changes into a stable codebase
due to the perceived risks, opting to skip unnecessary builds when they are triggered

62https://github.com/GoogleCloudPlatform/nodejs-docs-samples/pull/3168

61

https://github.com/GoogleCloudPlatform/nodejs-docs-samples
https://github.com/GoogleCloudPlatform/nodejs-docs-samples/pull/3168

Figure 5.3: An overview of the Dep-sCImitar workflow.

by unused-dependency commits—which are skippable because they do not impact the
project’s functionalities—emerges as a practical strategy. We perform an analysis of 272
GitHub issue reports related to removing unused dependencies (which is sufficient to pro-
vide a 95% confidence level with a 5% margin of error when making inferences about the
entire population), and find that, in 40.44% of the cases, developers decide to remove the
unused dependencies, while in 37.13% of the cases, developers decide not to remove unused
dependencies; the other 22.43% of cases are not related to developer decisions. A more
detailed description of this analysis is discussed in our Online Appendix.53

With these challenges in mind, we set out to develop an approach to mitigate CI waste
by skipping builds when they are triggered by unused-dependency commits. This approach
avoids the removal of such dependencies from the dependency specification files.

Approach

We proposeDep-sCImitar —an approach to cut down on dependency-induced CI waste.
Our approach is agnostic of the CI service provider, and is freely available as an npm package
to foster its adoption.5 Fig. 5.3 provides an overview of the design of Dep-sCImitar ,
emphasizing its automated reasoning process to skip CI builds for unused-dependency
commits. Since unused-dependency commits are generated by humans as well as bots,
Dep-sCImitar can process commits that are produced by both types of authors.

Dep-sCImitar begins when a commit generates a build request by analyzing the
commit to check for updates to versions of dependencies in the package.json file. When
such updates are detected, Dep-sCImitar uses the DepCheck tool to detect whether
the changed dependency has an unused status. Although tempting, simply skipping such
commits without considering their recent history may inadvertently permit a failing build to
pass. For example, commit #fa843b6 of the aws-observability/aws-otel-js project is
an unused-dependency commitand it is linked to a failing build. A closer inspection reveals
that its parent commit is also linked to a failing build, and the CI builds of both the current

62

https://github.com/aws-observability/aws-otel-js/commit/fa843b657421346d8035f9b67e917668d95a25c7
https://github.com/aws-observability/aws-otel-js

and parent commits failed due to the same cause, i.e., a failure in the build step for testing
a certain application feature. This implies that the error was carried forward without being
fixed. To avoid such situations, whenever Dep-sCImitar detects an unused-dependency
commit, it also retrieves the build status of the parent commit using GitHub API;55 the
tool skips the current build only if the build of the parent commit is successful. Note
that our tool supports only public GitHub repositories due to its dependency on GitHub
API calls for fetching build statuses without authentication tokens. For private projects,
a project-specific authentication token is required.

Configuration

The Dep-sCImitar prototype can seamlessly integrate into the CI process of consumers
that adopt CI services, such as GHA,8 Travis CI,9 and CircleCI.7 Listing 1 shows a fragment
from a GHA configuration file that uses Dep-sCImitar . The full version of this file is
available in our Online Appendix.53 This file needs to contain steps to both install our tool
(npm install dep-scimitar) and run it (npx dep-scimitar runremote), as shown on
lines 3 and 4 of Listing 1. Running the command classifies commits as unused-dependency
commits or otherwise. This classification is stored as an environment variable (in line
5) and subsequently guides execution processes in the project, illustrated in line 8 (i.e.,
project-specific execution decisions).

1 − name : Check For Unused−Dependency Commits
2 run : |
3 npm i n s t a l l dep−s c im i t a r # I n s t a l l the t o o l
4 unusedDepCommit=$ (npx dep−s c im i t a r runremote) # Run the t o o l
5 echo ”UnusedDepCommit=$unusedDepCommit” >> $GITHUB ENV # Env

va r i ab l e
6
7 − name : Project−s p e c i f i c Steps
8 i f : ${{ env . UnusedDepCommit == 0 }} # Check the env va r i ab l e
9 run : |

10 # pro j ec t−s p e c i f i c s t ep s

Listing 5.1: Example of a configuration file required for Dep-sCImitar .

63

Dep-sCImitar further offers an enhancement configuration to boost developer
awareness. It can automatically add the [CI skip] tag to commit messages. This tag
indicates to the CI service provider that the commit should not trigger a CI build. Com-
mits with the [CI skip] tag skip builds on widely-used CI platforms, such as GHA, Travis
CI, and CircleCI. Users can leverage this feature by installing Dep-sCImitar locally and
enabling it for their project using the command: npx dep-scimitar on.

Evaluation

To evaluate our approach, we create a prototype implementation that is compatible with
npm-based GitHub projects. We conduct a retrospective analysis of past commits to the
projects in our dataset, focusing on (1) the precision of the tool and (2) the reduction of
wasted CI build time.

Observation 5(5): The precision of Dep-sCImitar is 94%. While the precision
is high, there are cases that this tool makes mistakes, falsely skipping builds that should not
have been skipped. In particular, if the previous commit of an unused-dependency commitis
linked to a passing build, Dep-sCImitar skips the current commit because it updates an
unused dependency and the commit does not have a failing history; yet, the current commit
may fail if we do not skip it, and those cases are the false positives detected by our tool. A
closer inspection reveals three scenarios that contribute to false positives, where the actual
outcome of the build remains unknown. First, CI builds can fail due to external network
issues, such as in the mdn/bob project, where a commit updating an unused dependency
failed because it exceeded the API rate limit.63 Second, CI build timeouts occur when
the build process exceeds the allocated upper limit of build minutes, leading to automatic
cancellation; for instance, a commit64 in the btargac/excel-parser-processor project
that updated an unused dependency caused the build to time out and be marked as a
failure. Third, premature cancellations of CI builds will also result in a “failed” status. For
example, a commit65 in the optimistiksas/oibus project is associated with a failing build
due to three canceled steps, despite its parent commit being linked to a successful build.

Note that calculating the recall is challenging. Below, we discuss two potential scenarios
where Dep-sCImitar may produce false negatives. First, we only choose to skip a build
that is triggered by an unused-dependency commitif its preceding build succeeds. Upon

63https://github.com/mdn/bob/commit/013ff
64https://github.com/btargac/excel-parser-processor/commit/5ba1
65https://github.com/iobroker/iobroker.pushover/commit/905a

64

https://github.com/mdn/bob
https://github.com/btargac/excel-parser-processor
https://github.com/optimistiksas/oibus
https://github.com/mdn/bob/commit/013ff
https://github.com/btargac/excel-parser-processor/commit/5ba1
https://github.com/iobroker/iobroker.pushover/commit/905a

closer inspection, we discover instances of unused-dependency commits where the previous
build fails. Such preceding failures occur due to premature termination by the CI provider,
e.g., when a higher-priority build is waiting in the queue. If the CI provider had not
interrupted this build, it might have been successful. Such false-negative cases occur when
our tool does not skip commits with a recent history of build failures and/or when commits
include both an unused dependency version update and other minor changes, such as edits
to documentation or comments in source files [3].

Observation 5(6): Dep-sCImitar can save a substantial amount of the
overall dependency-induced CI waste. At the project level, we find that the median
number of commits that are skippable is three, with a waste of 23 minutes; however, we
find that 25% of the studied projects can save at least an hour and 23 minutes of CI build
time. Projects like probot/settings skip 43 commits while saving 246.85 build hours.
For a more detailed analysis of how such extreme projects generate waste in the context of
the monthly budget of free build minutes that are provided by GHA, in Fig. 5.4, we plot

(a) wip/app. (b) probot/settings. (c) bus-stop/x-terminal.

(d)
testing-library/esli...

(e)
aws-observability/aws... (f) xmldom/xmldom.

Figure 5.4: Distribution of the wasted CI build time of the top six projects before and
after applying our tool.

65

https://github.com/probot/settings
https://github.com/wip/app
https://github.com/probot/settings
https://github.com/bus-stop/x-terminal
https://github.com/testing-library/eslint-plugin-jest-dom
https://github.com/aws-observability/aws-otel-js
https://github.com/xmldom/xmldom

the amount of wasted CI build time before and after applying Dep-sCImitar for the six
projects that accrue the most dependency-induced CI waste. Focusing on these projects
allows our analysis to effectively showcase the substantial savings and efficiency gains that
are achievable with the Dep-sCImitar approach. This selection also acts as a proof of
concept, indicating that similar benefits, if not proportionally scaled, could be achieved
for other projects. For interested readers, the graphs that correspond to other projects are
provided in our Online Appendix.53 Time (in terms of months) is shown on the x-axis, and
the number of build minutes that are spent is shown on the y-axis. The solid line shows the
CI build time that was spent for all unused-dependency commits before applying the tool,
and the dashed line shows the CI build time that would be spent after applying the tool.
The gap between the two lines demonstrates the CI build time that is safely skippable by
the tool.

Fig. 5.4 further shows that for the probot/settings, xmldom/xmldom, and testing-

library/eslint-plugin-jest-dom projects, the CI waste is cut down to almost zero.
For the wip/app and bus-stop/x-terminal projects, we observe that there are months
when Dep-sCImitar cannot skip a substantial number of builds. This tends to occur
when builds are linked to unused-dependency commits that were preceded by build failures.
Nonetheless, we observe that a substantial amount of CI build time could still be saved for
those projects in other months. Note that the aws-observability/aws-otel-js project
has only two builds that are triggered by unused-dependency commits, and their parent
commits are linked to failing builds, which Dep-sCImitar conservatively chooses to run.
On the other hand, from the CI provider perspective, our tool detects 83% of wasteful CI
builds, and could have saved 2,342 (68.34%) build hours.

Our Dep-sCImitar approach can effectively identify and skip CI builds that are
associated with unused-dependency commits with a precision of 94%. A retrospective
evaluation shows that integrating Dep-sCImitar in the studied projects would
have saved 2,342 build hours, which amounts to 68.34% of the overall dependency-
induced CI waste.

5.4 Threats to Validity

In this section, we describe the threats to the validity of this chapter. We made our dataset
and scripts available online for replication purposes.53

66

https://github.com/probot/settings
https://github.com/xmldom/xmldom
https://github.com/testing-library/eslint-plugin-jest-dom
https://github.com/testing-library/eslint-plugin-jest-dom
https://github.com/wip/app
https://github.com/bus-stop/x-terminal
https://github.com/aws-observability/aws-otel-js

5.4.1 Construct Validity

We use the DepCheck54 tool to detect unused dependencies. Hence, we are limited by the
accuracy of this tool. Validating unused dependencies can be challenging since npm packages
can be loaded dynamically (e.g., using reflection mechanisms) that can go undetected by
static analysis. While a dynamic tracing-based approach to identify dynamically loaded
dependencies (e.g., DepPrune [104]) would improve the accuracy of detecting unused
dependencies, such tools are known to identify a fewer number of unused dependencies
than DepCheck [104] and require execution of the software, thus, are not lightweight
solutions like static analyzers (e.g., DepCheck). Therefore, despite the potential for false
positives, DepCheck remains, to the best of our knowledge, one of the most widely used
tools for detecting unused JavaScript dependencies, and has been adopted in several prior
studies [89, 83, 121]. Furthermore, the tool actively addresses false positives,66 making it
a practical choice for both developers and researchers.

5.4.2 Internal Validity

Inspired by prior work [38], we apply a regular expression to distinguish between commit
authors who are bots and developers. Through this process, we identify four bots that
are responsible for 9,280 unused-dependency commits. To mitigate false positives in our
classification, we inspect the profiles and commit activity of these four bots and a sample
of 400 commits; however, it is unlikely that our set of bots is complete. Thus, our bot-
produced unused-dependency commit rates are best seen as minimum estimates rather
than exact figures. In a similar vein, since GitHub allows the same commit author to
use different names and/or different email addresses when committing changes,67 there is
likely noise in our authorship analyses (Section 5.3.2). To reduce the impact of aliases,
we apply heuristics to consolidate them [169]; nonetheless, our findings should be viewed
as estimates rather than precise figures.

5.4.3 External Validity

Our study is based on JavaScript projects that use npm and adopt GHA from 2020 to 2022
(inclusive). Hence, our findings might not directly apply to projects developed in other

66https://github.com/depcheck/depcheck/releases
67https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-

on-github/managing-email-preferences/setting-your-commit-email-address

67

https://github.com/depcheck/depcheck/releases
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-email-preferences/setting-your-commit-email-address
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-email-preferences/setting-your-commit-email-address

programming languages, those that use other CI providers, or commits made outside the
specified timeframe. Also, our study’s reliance on the free build minutes quota as of August
2023 introduces the possibility that our findings may become outdated if there are changes
to GitHub’s billing structure.46 Despite these specifics, the key concept and the design of
our study can still be applied to other settings to expand the investigation of inefficiencies
in CI due to unused dependencies.

5.5 Practical Implications

In this chapter, we study dependency-induced CI waste. We collect and analyze a dataset
of 20,743 dependency commits from 1,487 JavaScript projects that use npm dependencies.
We find that 55.88% of the CI build time that is associated with dependency updates is
wasted on unused dependencies. The median project allocates 56.09% of its dependency-
related CI build time to updates of unused dependencies. Below, we distill the implications
of this chapter for CI stakeholders, bot developers, and researchers.

CI stakeholders (i.e., project maintainers and CI providers) should detect
and omit unnecessary builds that are triggered by unused-dependency com-
mits. Observations 5(1) and 5(2) show that the projects that are most prone to CI waste
spend a substantial amount of their quota of free build minutes on unused-dependency
commits. This waste also contributes to financial costs for the CI provider, as well as
increased development and maintenance costs. Our research calls for the attention of
CI stakeholders to recognize which dependencies disproportionately generate CI waste
and devise strategies to mitigate it. To put our results into action, we propose Dep-
sCImitar to automatically recommend skippable builds to mitigate this waste without
requiring a change to dependency configurations. A prototype implementation of Dep-
sCImitar for JavaScript projects is publicly available.5 Observations 5(5) and 5(6) show
that Dep-sCImitar yields substantial benefits, detecting 83% of the wasteful commits,
and avoiding 2,342 (68.34%) hours of CI build time that would have otherwise been need-
lessly expended.

Bot developers should effectively manage CI waste due to unused-dependency
commits. Observation 5(3) shows that bots contribute the vast majority (92.93%) of the
CI build time that is wasted on unused dependencies. Our findings shed light on the
negative impact that bot-generated updates can have on project maintenance and their
over-consumption of CI build resources. We recommend that bot developers incorporate
tags, such as [CI skip], into commit messages or PRs that update unused dependen-
cies. Employing this tagging mechanism can enhance the recognition and screening of

68

such updates, allowing projects to allocate their CI resources to more pressing build re-
quests. Additionally, we recommend that bot developers focus first on cutting down waste
when they update development dependencies since these development dependencies are
unlikely to affect production environments [35]. Observation 5(4) provides further support
for this, indicating that a considerable amount of CI waste is linked to specific categories
of development dependencies.

Researchers should broaden the scope of the impact of unused dependen-
cies beyond CI build time. Although our study offers perspectives on the impact of
unused dependencies on CI, future research should consider other implications that unused
dependencies may have on development workflows and project maintenance. For example,
our study reveals that unused dependencies are often maintained, e.g., by updating to
more recent versions when they become available. This may be because organizations are
sensitive to the security risks of using outdated dependencies [98], irrespective of whether
the dependency is used. This practice also adds to development overhead, suggesting that
exploring this area further could yield beneficial insights.

5.6 Chapter Summary

External packages, i.e., dependencies, are an essential part of a software project. Devel-
opers of these dependencies regularly release updated versions to provide new features,
fix defects, and address security vulnerabilities. Thus, project teams who reuse these
dependencies often try to keep their dependencies up to date to get the benefits of the
latest improvements.

Due to the potential for regression, managing dependencies is not just a trivial mat-
ter of selecting the latest versions. As projects evolve, they tend to accrue dependencies,
exacerbating the difficulty of dependency management. As a result, projects tend to accu-
mulate unused dependencies. Although unused dependencies are not required to build and
run the project, updates to their dependency versions can still trigger CI builds. These CI
builds that are initiated by updates to unused dependencies are fundamentally wasteful. In
this chapter, we study the CI waste that is generated by updates to unused dependencies.
Below are the highlights of this chapter:

• CI builds that are triggered by updates to unused dependencies also waste a sub-
stantial amount of CI build time.

• Bots that trigger these wasteful builds need to be optimized to consider actual de-
pendency usage before triggering updates.

69

• We introduce Dep-sCImitar ,5 a novel approach to safely skip CI builds triggered
by unused-dependency updates.

Concluding Remarks. So far, we have focused on tacit inefficiencies in CI (timeouts
and unused-dependency updates). To improve the effectiveness of CI, it is also important
to mitigate tacit barriers, as they can impact collaboration in CI practices. To this end,
in the next chapter, we set out to study tacit barriers in CI. In particular, we investigate
whether there is a significantly greater lack of diversity among developers who contribute to
CI artifacts in projects compared to those who contribute to other parts of the codebase.

70

Part III

Tacit Barriers

71

Chapter 6

Diversity of DevOps Contributors

Note. An extensive version of this chapter appears in the Empirical Software Engineer-
ing journal [177].

6.1 Introduction

While there is an inherent lack of diversity in the software engineering community, hav-
ing diverse project teams has been associated with more resilient software solutions, and
tends to improve the effectiveness of teamwork and problem-solving from broader perspec-
tives [168]. In the context of CI, the diversity among team members who contribute to
CI artifacts alongside other DevOps artifacts in a project (i.e., DevOps contributors) is
a tacit barrier that can impact the overall performance of a project. In fact, a report,
“Why diversity matters in DevOps,”1 discusses the potential of diversity in DevOps teams
to lead to more streamlined product development. Moreover, there is a growing focus on
the diversity of DevOps contributors in the industry. For example, the global movement
“Women in DevOps”68 aims to close the gender gap in DevOps contributors, believing that
a balanced and diverse workforce drives innovation.

DevOps contributors typically require expertise in collaboration, automation, measure-
ment, monitoring [82], Agile methodologies [11, 10], and cloud-based tools and infrastruc-
ture [30, 10]. Such specialized skills and tooling expertise may not be as common in the
wider open-source community. This is evident in the Stack Overflow Survey (2022),17 as

68https://www.womenindevops.com

72

https://www.womenindevops.com/

it shows that only 10.06% of respondents identified themselves as DevOps contributors.
Note that this percentage is as low as 1.7% in Stack Overflow Survey (2024).69 Other
reports on DevOps contributors raise a gap in gender diversity. For example, DORA’s Ac-
celerate State of DevOps Report (2024) [34] showed that only 12% of DevOps contributors
identified themselves as women.

Despite these observations, limited empirical research exists on the composition of De-
vOps contributors compared to other types of contributors. This gap motivates us to set
out to perform an empirical study by using data from 450 active and mature projects that
are hosted on GitHub. Below are the RQs that we explore in this chapter, and a preview
of the corresponding results.

(RQ1) Does the perceptible ethnic and gender diversity of DevOps contributors
differ from that of non-DevOps contributors? Since DevOps plays a major role in
the software development process [42], a diverse DevOps team would ensure the DevOps
process is more robust, inclusive, and successful. Therefore, this RQ aims to provide the
community with more awareness of the presence or lack of ethnic and gender diversity of
DevOps contributors to open-source projects.

Results. With respect to ethnic diversity, contributors with perceptibly White names are
the majority among both DevOps contributors (median = 87.70%) and non-DevOps con-
tributors (median = 85.50%). With respect to gender diversity, contributors with names
perceived as men are the majority among both DevOps contributors (median = 93.75%)
and non-DevOps contributors (median = 92.82%). We statistically measure the ethnic
and gender diversity of both DevOps and non-DevOps contributors using diversity metrics
(e.g., Blau index [149]), and we find that the diversity of DevOps contributors is signif-
icantly less than that of non-DevOps contributors (Wilcoxon signed rank test, p < α =
0.0023, one-tailed, paired). Note that the Bonferroni-corrected significance level for this
chapter is 0.0023 [17].

(RQ2) How does the distribution of perceptible ethnic and gender diversity
change as projects age? While a concerning lack of ethnic and gender diversity in
open-source communities has been reported for decades now [51, 173, 32], it is not yet
clear where the current trend is headed. By analyzing the diversity metrics over time, we
can better understand whether the trend of diversity is improving or further degrading.
Therefore, we examine the evolution of ethnic and gender diversity of DevOps and non-
DevOps contributors in the projects.

69https://survey.stackoverflow.co/2024

73

https://survey.stackoverflow.co/2024

Results. As projects evolve, contributors who are perceptibly non-White remain greatly
underrepresented. The overall percentage of DevOps contributors who are perceptibly
White is decreasing over time; however, the percentage of DevOps contributors who are
perceptibly non-White is still low, i.e., it varies between 0%–16.02%. For non-DevOps
contributors, the percentage varies between 0%–18.77%. With respect to gender diver-
sity, both DevOps and non-DevOps contributors who are perceptibly men dominate over
contributors who are perceptibly women. The percentage of contributors who are percep-
tibly women varies between 0%–12.5% for DevOps and between 0%–9.48% for non-DevOps.

(RQ3) How does the intersection of perceptible gender and ethnic diversity dif-
fer between DevOps and non-DevOps contributors? Analyzing ethnicity and gen-
der separately, as in the above RQs, may overlook diversity concerns of contributors who
belong to multiple minority groups (e.g., those who are perceptibly non-White women).
Indeed, prior studies [65, 137, 165, 5, 116, 132] indicated that individuals who identify
themselves as in the intersection of two or more minority groups encounter specific obsta-
cles in Science, Technology, Engineering, and Mathematics (STEM) fields. For example,
Black women tend to have less exposure to Software Engineering [137] and face system-
atic impediments to career mobility [65]. Thus, in this RQ, we perform an intersectional
analysis to complement existing studies and provide a more realistic understanding of the
current state of perceptible ethnic and gender diversity among DevOps contributors [66].

Results. Our findings show that even within the already underrepresented group of per-
ceptibly women contributors, those who are perceived as non-White are greatly underrep-
resented, suggesting that contributors at the intersection of multiple minority identities
(e.g., non-White women) may face compounded barriers to contribute to DevOps roles.

We believe that our study provides empirical evidence that contributes towards a better
understanding of the perceptible diversity among contributors in open source. While solu-
tions and strategies have been proposed to increase diversity in open-source projects [51,
173, 32], our results underscore the importance of encouraging open-source communities
to foster a more diverse and inclusive environment, considering not only the overall project
team but also the different subteams within the project, e.g., DevOps contributors. Our
results further highlight the need for targeted inclusion strategies that go beyond isolated
dimensions of diversity and address the barriers faced by DevOps contributors with mul-
tiple minority identities.

74

Figure 6.1: An overview of our study design showing project selection (PS) and data
curation (DC) steps.

.

6.2 Study Design

In this section, we describe our process for collecting and curating the dataset we use to
address our research questions. Fig. 6.1 provides an overview of our study design, which is
composed of project selection (PS) and data curation (DC) steps. Below, we explain each
step in detail.

6.2.1 (PS) Project Selection

Our study aims to analyze the diversity of contributors to DevOps and non-DevOps ar-
tifacts in open-source projects. To this end, we need to collect a dataset of open-source
projects that adopt tools and technologies for DevOps activities. Fig. 6.1 (PS) provides
an overview of our project selection process. We begin with the public dataset of Gallaba
et al. [56]. This dataset contains data from 23,330,690 CI builds that span 7,795 GitHub
projects that have been using CircleCI,7 a leading cloud-based CI provider that has served
over one million unique contributors during its nine years of operation.70 This dataset en-
sures that the projects have potentially been using DevOps tools and technologies to help

70https://circleci.com/milestones/

75

https://circleci.com/milestones

them automate software development processes, such as building, testing, and deploying
the software.

Since GitHub hosts repositories that are not representative of software projects that
we aim to investigate (e.g., toy or immature projects) [118], we follow the methodology
recommended by previous work [91] to further curate our dataset by applying the following
inclusion criteria:

(PS-1) Select non-forked projects. GitHub projects can be forks, where a fork is
defined as a copy of a project that a GitHub user manages. Forks let GitHub users make
changes to a project without affecting the original project. We remove such forks because
they largely contain duplicated project history, which would bias our analysis. To do so,
we use the GitHub API71 to determine whether a project is a fork or not. If the project is
a fork, the GitHub API returns the fork status True, and we filter out all such projects.
This step reduces our dataset to 7,068 projects.

(PS-2) Select active and large projects. Active and large projects are likely to show-
case a long-running and collaborative software development process to examine diversity.
To detect active and large projects, we consider different thresholds of (1) the number of
builds, (2) the number of commits, and (3) the number of contributors.

Number of builds. Fig. 6.2 plots candidate threshold values of the number of builds
against the number of surviving projects. We select a threshold of 500 builds because it
is closer to a “knee” in the curve. Selecting this threshold further reduces the number of
projects in the dataset to 2,124. Note that we do not use the Kneedle algorithm [143]
(a knee detecting algorithm) to detect knees because such algorithms use a conservative
approach to detect knees by identifying a clear inflection point, resulting in an overly
conservative number of surviving projects.

Number of commits. Fig. 6.3 plots candidate threshold values of the number of
commits against the number of surviving projects. We select a threshold of 1,500 commits
because it is also closer to a “knee” in the curve. Doing so reduces the number of projects
in the dataset to 850 projects.

Number of contributors. Fig. 6.4 plots candidate threshold values for the number
of contributors against the number of surviving projects. We select a threshold of 50 con-
tributors because we wanted to study projects with a substantial number of contributors.
Doing so reduces the number of projects in our dataset to 450.

71https://docs.github.com/en/rest/repos/repos#get-a-repository

76

https://docs.github.com/en/rest/repos/repos#get-a-repository

100 101 102 103 104 105 106

Threshold (# of builds)

0

1000

2000

3000

4000

5000

6000

7000

of

 p
ro

je
ct

s

Figure 6.2: Threshold plot for the number of builds.

100 101 102 103 104 105

Threshold (# of commits)

0

250

500

750

1000

1250

1500

1750

2000

of

 p
ro

je
ct

s

Figure 6.3: Threshold plot for the number of commits.

This dataset of 450 projects comprises large projects from popular organizations, e.g.,
Facebook,72 Google,73 and Angular.74 Overall, the projects in our dataset run a consider-
able number of builds (a median of 8,711 builds per project) and have a rich development
history (a median of 4,935 commits per project and 145 contributors per project).

72https://github.com/facebook
73https://github.com/google/mtail
74https://github.com/angular/angular

77

https://github.com/facebook
https://github.com/google/mtail
https://github.com/angular/angular

100 101 102 103 104

Threshold (# of contributors)

0

100

200

300

400

500

600

700

800

of

 p
ro

je
ct

s

Figure 6.4: Threshold plot for the number of contributors.

6.2.2 (DC) Data Curation

In our study, we integrate data from various sources to acquire all the data we need for our
analysis. Fig. 6.1 (DC) provides an overview of our data curation process. In the following,
we describe each data curation step in detail.

(DC-1) Collect commit information. To analyze the diversity of contributors, we need
to collect historical data on project development activity. Therefore, we first clone local
copies of the 450 repositories in our dataset. Then, for each repository, we mine the commit
records that appear on its master/main branch (doing so ensures that the most impactful
changes to the source code are considered and mitigates the inconsistencies that may arise
due to the deletion of temporary branches). For each commit, we extract (meta)data, such
as the unique commit ID (i.e., SHA), timestamp, name of the contributor who authored
the commit, and files modified (or created) in the commit.

(DC-2) Filter out commits from non-human contributors. Our goal is to examine
ethnic and gender diversity among contributors in open-source projects, and hence, any
contribution made by non-humans (e.g., bots) should not be considered in our data analysis.
Therefore, we filter out commits made by non-human contributors. To do so, we use the
GitHub API75 to determine the commit author type, i.e., if the commit is made by a
human contributor, the GitHub API returns the type USER. We filter out all commits
made by authors of a different type. For example, contributions associated with the type
BOT indicate that the commit is made by a bot (e.g., Dependabot).

75https://docs.github.com/en/rest/users/users#about-the-users-api

78

https://docs.github.com/en/rest/users/users#about-the-users-api

(DC-3) Identify DevOps contributors. Since we aim to analyze the diversity of con-
tributors to DevOps artifacts, we need to identify potential DevOps artifacts in the studied
projects. To do so, we first search for DevOps tools that have the potential to be used in
the studied projects. Then, we identify the adoption of such tools in the projects.

Select DevOps tools. We opt to select the tools that are used for Deployment,
Containers, Builds, and Configuration, in addition to CI, as these practices are frequently
integrated into CI pipelines and represent key components of the DevOps toolchain [140].
The table of DevOps tools [1] offered by Digital.ai76 contains a list of popular DevOps tools
used for these practices. For instance, for CI, the listed tools are CircleCI,7 TravisCI,9

Jenkins,6 AWS CodeBuild,77 and Codeship.78

Note that there are other websites that list DevOps tools (e.g., Atlassian,79 Guru,80 and
Geekflare81). We choose the Digital.ai periodic table for two reasons. First, this periodic
table offers a comprehensive and organized representation of the DevOps tools [1]. More
specifically, it defines 17 categories of tools across five different licensing models from open
source through enterprise, covering a wide range of functionalities that cater to diverse
IT processes in the DevOps domain. Also, it reflects the votes of over 18,000 DevOps
practitioners for over 400 tools. Second, Digital.ai periodic table is widely acknowledged
and cited as a reference in academic papers and industry articles in the DevOps field.82

Identify DevOps files. We begin by inspecting the documentation of each tool
to identify the filenames that are used to configure those tools. For example, to configure
CircleCI, a .circleci/config.yml file is required; any project that contains a commit on
the .circleci/config.yml file is using (or used) CircleCI service.

A subset of DevOps technologies do not have a filename convention. For example,
Ansible83 and Kubernetes84 are configured using .yml files, but the team may choose to
name the file however they see fit. Since .yml is a popular extension used for all sorts of files,
we cannot rely solely on the extension to identify DevOps files. Therefore, two inspectors
inspect a sample of 400 .yml files from our dataset that are not explicitly classified as

76https://digital.ai
77https://aws.amazon.com/codebuild
78https://www.cloudbees.com/products/codeship
79https://www.atlassian.com/devops/devops-tools
80https://www.guru99.com/devops-tools.html
81https://geekflare.com/devops-tools
82https://www.uktech.news/technology-news/digital-ai-releases-new-version-of-industry-standard-

periodic-table-of-devops-tools
83https://www.ansible.com
84https://kubernetes.io

79

https://digital.ai/
https://aws.amazon.com/codebuild
https://www.cloudbees.com/products/codeship
https://www.atlassian.com/devops/devops-tools
https://www.guru99.com/devops-tools.html
https://geekflare.com/devops-tools/
https://www.uktech.news/technology-news/digital-ai-releases-new-version-of-industry-standard-periodic-table-of-devops-tools
https://www.uktech.news/technology-news/digital-ai-releases-new-version-of-industry-standard-periodic-table-of-devops-tools
https://www.ansible.com
https://kubernetes.io

DevOps files based on the filename. The inspectors prepare a list of keywords found in the
filename or file path that make a file a DevOps file or a non-DevOps file. For example,
devops, deployment, kubernetes, and chef are examples of keywords in a file path, which
indicate that .yml file is a DevOps file; in contrast, if the file path contains changelog,
docs/, package, or pullapprove, then that .yml file is a non-DevOps file. During this
coding, the inspectors also prepare a list of keywords by inspecting the content of a .yml

file. For example, any .yml file related to Kubernetes must contain kind and apiVersion

key settings.

After listing the potential keywords, we identify the .yml files that are likely to be
DevOps files by matching keywords to the file paths. For the .yml files that are not easily
classifiable, we parse the content in search of key settings that we identified as DevOps-
related above. After applying these automatic classification steps, 3.4% of the .yml files
remain ambiguous. To ensure the integrity of our categories, we remove the ambiguous
files from our analysis.

After that, we evaluate our classifier. To do so, a coder manually classifies a sample
of 400 .yml files from our dataset. Then, we calculate the Cohen’s Kappa coefficient [28]
of agreement between the coder and our classifier. This coefficient is commonly used
to evaluate inter-rater agreement for categorical items between two raters. The value of
Cohen’s Kappa coefficient ranges from -1 to +1, with values greater than zero indicating
an agreement better than chance. We obtain a coefficient of 0.82, indicating near-perfect
strength of agreement between the coder and the classifier. The false positive rate is 0.005,
meaning that 0.5% of negative instances are falsely identified as positive, while the false
negative rate is 0.227, indicating that 22.7% of positive instances are incorrectly labelled
as negative.

Clean files dataset. Through a preliminary inspection of the files in our dataset, we
observe that a non-negligible proportion is not relevant to the purpose of our analysis, e.g.,
node modules/node-inspector/node modules/v8-debug/node modules/node-pre-gyp-

/node modules/mkdirp/package.json and vendor/k8s.io/kubernetes/cmd/mungedocs-
/links.go are automatically generated files that are not maintained by hand. Thus, two
inspectors examine a sample of 200 files from our dataset and prepare a list of keywords
in a file path that makes a file an auto-generated dependency file or not. For example, the
files within the folders named vendor and node modules contain third-party dependencies.
After listing the potential keywords, we identify the files that are likely to be dependency
files by matching keywords to the file paths. The percentage of such files amounts to 15.7%
of all the files in our dataset, and we remove them from our analysis to ensure the validity
of the results.

80

To evaluate the aforementioned classifier, a coder manually classifies a sample of 400
files from our dataset. We then calculate the Cohen’s Kappa coefficient of agreement
between the coder and our classifier. We obtain a Kappa coefficient of 0.81, showing near-
perfect agreement between the coder and the classifier. The false positive rate is 0.056,
meaning that 5.6% of negative instances are falsely identified as positive, while the false
negative rate is 0.047, indicating that 4.7% of positive instances are incorrectly labelled
as negative.

Then, for each project, we include in our dataset the commits made after the first
DevOps-related commit in the project and until the end of the year 2021. Analyzing the
commits after the first DevOps-related commit ensures that the timeframes for non-DevOps
and DevOps artifacts align.

Finalize DevOps and non-DevOps contributors. Once we identify the DevOps
files, for each contributor in our dataset, we check for the type of files changed in the
commits made by the contributor. We find that the majority of the contributors in a
project (median = 86.70%) only contribute to non-DevOps files, which we refer to as
non-DevOps contributors. However, a non-negligible percentage (median = 13.30%) of
contributors made at least one commit to DevOps files. We refer to such contributors as
DevOps contributors.

(DC-4) Unify identities. On GitHub, commits may not be attributed properly due to
variations in a committer’s name and email address.85 For example, consider the email
address sandyw@gmail.com that could be associated with two names based on the local con-
figurations of the contributor: Sandy W and Sandy White. Besides, the same contributor
may use different email addresses. For example, Sandy White may use their personal email
sandyw@gmail.com as well as the noreply email address (sandy@users.noreply.githu-
b.com) as their commit-email address.86 In order to unify such cases with different identi-
ties of the same GitHub contributor, we use the GitHub-alias-merging script by Vasilescu
et al. [169]. This script uses heuristics to link different aliases and email addresses belong-
ing to the same GitHub contributor. By using this script, we identify 110,336 unique
contributors from 138,012 <name,email> pairs in our original dataset. For the rest of the
study, we use these unique contributor identities.

(DC-5) Infer perceptible demographics of contributors. Since we aim to investigate
gender and ethnic diversity, we need to classify contributors accordingly. Since gender and

85https://git-scm.com/book/en/v2/Git-Basics-Git-Aliases
86https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-

on-github/managing-email-preferences/setting-your-commit-email-address

81

https://git-scm.com/book/en/v2/Git-Basics-Git-Aliases
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-email-preferences/setting-your-commit-email-address
https://docs.github.com/en/account-and-profile/setting-up-and-managing-your-personal-account-on-github/managing-email-preferences/setting-your-commit-email-address

ethnic identity are difficult to ascertain at scale, similar to prior work [120, 168, 119, 135],
we rely on perceived identity characteristics that can be inferred based on publicly visible
profile data.

Infer perceptible genders. It is not our aim to establish new means of infer-
ring gender. There already exist open-source tools that are capable of inferring gender
based on the name of the contributor, such as Gender-guesser,87 GenderComputer,88 and
Wiki-Gendersort.89 Unfortunately, these tools are not without limitations. For example,
Santamaŕıa et al. [142] evaluated the Gender-guesser tool and found that the tool pro-
duced a rate of 20.12% unrecognized names [142]. In such cases, the tool predicts the gender
as None; for example, the gender predicted from the names, such as rd, ga, and xulin was
None. To tackle the problem of the high rate of unrecognized names, inspired by prior
work [145], we combine the outcomes from all three gender-inferring tools and evaluate the
rate of unrecognized names. Among the different combinations we study, the most effec-
tive combination to infer gender for the test dataset (provided by Santamaŕıa et al.[142])
is first to infer the gender using Wiki-Gendersort, and if the gender is unrecognized, then
infer the gender using Gender-guesser and GenderComputer. Doing so reduces the rate
of unrecognized names (20.12%) to 5.15%. Thus, we used the aforementioned combination
of tools to infer the perceptible genders of contributors in our dataset. We discard the
names that none of the tools are able to infer the perceptible gender from our analysis.

Infer perceptible ethnicities. Inspired by prior work on diversity [120, 119, 67, 45],
we use the Name-Prism [182] tool to infer the perceptible ethnicity of contributors.
Name-Prism [182] is a name-based perceptible ethnicity classification tool, which uses
name-embeddings to predict the ethnicity of a person by using their name. This classifier
was trained using United States (US) Census Bureau data,90 and it predicts the probabil-
ities of a given name belonging to a person of White, Black, Asian/Pacific Islander (API),
Hispanic, American Indian/Alaskan Native (AIAN), and Mixed Race (2PRACE). A recent
study by Preoţiuc-Pietro et al. [133] evaluated the performance of the Name-Prism’s [182]
ethnicity classifier. They measured the AUROC of Name-Prism with respect to the top
four ethnic groups: White, API, Hispanic, and Black. Their evaluation showed that the
AUROC of classifying people from White, API, Hispanic, and Black were 0.719, 0.765,
0.740, and 0.681, respectively. To strengthen the validity of our study, we discard the
names where the ethnicity is unknown from our ethnic diversity analysis; we find only
0.03% (five) and 0.06% (59) names in which the ethnicity is unknown among DevOps and

87https://pypi.org/project/gender-guesser
88https://github.com/tue-mdse/genderComputer
89https://github.com/nicolasberube/Wiki-Gendersort
90https://www.census.gov/quickfacts/fact/note/US/RHI625221

82

https://pypi.org/project/gender-guesser/
https://github.com/tue-mdse/genderComputer
https://github.com/nicolasberube/Wiki-Gendersort
https://www.census.gov/quickfacts/fact/note/US/RHI625221

Table 6.1: Descriptive statistics of our curated dataset of 450 projects.

Metric Min Median Max Total

The number of contributors 45 164 4,033 110,336
The number of commits 1,034 4,653 151,416 4,216,386
The number of DevOps file changes 6 479 161,825 1,197,829
The number of non-DevOps file changes 2,454 26,930 813,974 29,750,595
The number of perceptibly men 24 120 3,164 104,883
The number of perceptibly women 0 10 297 9,166
The number of perceptibly White contributors 14 116 2,721 96,554
The number of perceptibly Hispanic contributors 0 4 138 3,671
The number of perceptibly API contributors 0 15 542 15,197
The number of perceptibly Black contributors 0 0 22 495
The number of perceptibly AIAN contributors 0 0 1 2

Table 6.2: A sample of our curated dataset.

Project Project sha Datetime File Is Dev Author Perceived Perceived
Owner Name Ops File? Gender Ethnicity

angular angular ef6... 2021-5-19 12: .circleci True Kavya woman API
12:32.345237 /config.yml

angular angular c68... 2021-5-19 12: docs/COMM False Pete man White
16:01.459565 ITTER.md Clay

angular angular c68... 2021-5-19 12: docs/PUB False Pete man White
16:01.459565 LIC API.md Clay

non-DevOps contributors, respectively. Furthermore, following prior studies that rely on
the US Census Bureau’s classification to label developers across different countries and
contexts [120], we only use contributors’ names where the perceptible ethnicity is inferred
by Name-Prism [182] with a confidence level greater than 0.8.

Table 6.1 shows the descriptive statistics of our final dataset. It contains 1,197,829
DevOps file changes and 29,750,595 non-DevOps file changes made by 110,336 contributors
to 450 GitHub projects, and an anonymized version of this dataset is available online along
with our replication package.91 Table 6.2 shows a sample of data from this dataset. The
data items in this preview table are altered to protect the contributors’ identities.

91https://doi.org/10.5281/zenodo.8277702

83

https://doi.org/10.5281/zenodo.8277702

6.3 Study Results

In this section, we describe our approach and then present our results for each RQ.

6.3.1 (RQ1) Does the perceptible ethnic and gender diversity
of DevOps contributors differ from that of non-DevOps
contributors?

In this RQ, we quantitatively analyze the perceptible ethnic and gender diversity of DevOps
and non-DevOps contributors in the studied projects.

Approach

We first compute the percentages of DevOps and non-DevOps contributors perceived as
different ethnicities and genders. Then, we statistically test the significance of the differ-
ence between the percentages of DevOps contributors and non-DevOps contributors. In
particular, we use the Wilcoxon signed rank test with a 95% confidence level. We use this
non-parametric test because our data are not normally distributed.

To complement the previous analysis, we compute other common metrics, including
the Richness, Evenness [37, 20], Blau index (a.k.a. Diversity index/Simpson index) [149],
and Prevalence rankings and Diffusion score,92 which are used to measure the diversity in a
community. These metrics have been used in prior studies for similar purposes [22, 126, 189,
168]. The first metric, richness (R), measures the number of groups in a community [37].
We use the richness metric to measure the number of ethnicities of contributors to DevOps
and non-DevOps files in a project. The higher the richness, the more diverse the community
is. For example, if a project contains only contributors with perceptibly White names, the
ethnic richness of that project is one. If a project contains contributors of two perceptible
ethnicities (e.g., White and Asian), the richness value is two. Similarly, for gender diversity,
if a project includes contributors who are perceived as men only, the richness is one. If a
project includes contributors who are perceived as men as well as those who are perceived
as women, the richness is two. The second metric, evenness (E), measures the relative
species abundances in a community. We use the Brillouin metric [20] to measure the
evenness. Equation (6.1) shows the formula for computing the evenness in a community,

92https://www.census.gov/newsroom/blogs/random-samplings/2021/08/measuring-racial-ethnic-
diversity-2020-census.html

84

https://www.census.gov/newsroom/blogs/random-samplings/2021/08/measuring-racial-ethnic-diversity-2020-census.html
https://www.census.gov/newsroom/blogs/random-samplings/2021/08/measuring-racial-ethnic-diversity-2020-census.html

where ni is the number of individuals in a group i, and N is the total number of individuals
in the community.

E =
ln(N !)−

∑S
i=1 ln(ni!)

N
(6.1)

In the context of our study, suppose a project contains 10 contributors (N = 10)
spanning four ethnicities (R = 4): three perceptibly Asian contributors (n1 = 3), two
perceptibly Black contributors (n2 = 2), one perceptibly Hispanic contributors (n3 = 1),
and four perceptibly White contributors (n3 = 4). The evenness is computed as follows:
ln(10!)−(ln(3!)+ln(2!)+ln(1!)+ln(4!))

10
= 0.94. This value shows a high level of evenness, indicating

a high level of ethnic diversity of contributors. Similarly, the closer this number is to zero,
the lower the evenness, thus the lower the diversity. Following the same equation, we
compute the evenness for gender diversity as well.

The next metric, the Blau index, a.k.a diversity index (D) [149], computes the prob-
ability that two individuals randomly selected from a community would belong to two
different groups within the community. Equation (6.2) shows the formula to compute the
Blau index of a community. Blau index ranges from zero to one. The closer the Blau index
is to one, the more diverse the community is.

D = 1−
S∑

i=1

(ni

N

)2

(6.2)

In the previous example with 10 contributors, the Blau index is computed as below:

1 −
((

3
10

)2
+

(
2
10

)2
+

(
1
10

)2
+

(
4
10

)2)
= 0.7; accordingly, there is high probability of two

contributors randomly selected from the project belong two different ethnicities, thus indi-
cating a high level of ethnic diversity in the project. Similarly, we compute the Blau index
for gender diversity as well.

Lastly, we compute the prevalence rankings and diffusion scores.92 The prevalence rank-
ing in a community is the ranking of groups in descending order of the number of individuals
belonging to each group. From the prevalence rankings of a community, first-, second-,
and third-prevalent groups could be obtained. The percentage of the individuals that are
not in those first-, second-, or third-prevalent groups combined is called the diffusion score.
The first-, second-, and third-prevalent ranks in the previous example are owned by per-
ceptibly White, Asian, and Black contributors, with proportions of 40%, 30%, and 20%,
respectively. Thus, the diffusion score is 100% − (40% + 30% + 20%) = 10%, which is
equal to the percentage of least-prevalent ethnicity (Hispanic) in this example since there

85

are only four ethnicities. For gender diversity in the context of our study, the diffusion
score will be equal to the contributor percentage from the minority gender. This is be-
cause we consider a binary classification of gender, and accordingly, there are only first-
and least-prevalent groups with respect to the perceptible gender. Thus, we consider the
percentage of contributors from the least-prevalent gender in a particular project/setting
as the diffusion score of that case.

To test the statistical difference between diversity metrics for DevOps and non-DevOps,
we first compute the metrics for each project. Then, to compare the metrics of DevOps
and non-DevOps contributors, we perform the Wilcoxon signed rank test with a 95%
confidence level (α = 0.05). To account for multiple comparisons, we apply the Bonferroni
correction [17]—a widely used method for adjusting the significance level to reduce the
likelihood of false positives. As our study involves 22 statistical comparisons, the adjusted
significance level is set to 0.05

22
≈ 0.0023.

Results

Below, we present the results of the above analysis and highlight the key observations.

Observation 6(1): Contributors to DevOps artifacts tend to have less ethnic
diversity than contributors to non-DevOps artifacts. Fig. 6.5 shows the distribution
of the percentage of contributors to DevOps and non-DevOps artifacts in the studied
projects, per ethnicity. From the figure, we observe that contributors who are perceived
as White are the majority of DevOps contributors (median = 87.70%) and non-DevOps
contributors (median = 85.50%).

The second dominating ethnicity in our dataset is Asian/Pacific Islander (API). On
median, the percentages of DevOps and non-DevOps contributors with perceptibly API
names are 9.10% and 10.53%, respectively. We find a statistically significant difference
between the percentages of DevOps and non-DevOps contributors with perceptibly API
names but with a negligible effect size (Wilcoxon, p << α = 0.0023, one-tailed, paired;
Cliff’s |δ| = 0.132). The third dominating ethnicity is Hispanic. On median, the per-
centages of DevOps contributors with perceptibly Hispanic names are 0% and 3.25%, re-
spectively. We find a statistically significant difference between DevOps and non-DevOps
contributors with a medium effect size (Wilcoxon, p << α = 0.0023, one-tailed, paired;
Cliff’s |δ| = 0.415). The fourth dominating group is the contributors having perceptibly
Black names. For those contributors, we find a statistically significant difference between
the percentages of DevOps (median = 0%) and non-DevOps (median = 0.77%) contribu-
tors with a large effect size (Wilcoxon, p << α = 0.0023, one-tailed, paired; Cliff’s |δ| =

86

0.783). Finally, we find that the contributors with perceptibly American Indian/Alaskan
Native (AIAN) names are the least dominating ethnic group among DevOps contributors
and non-DevOps because only two out of 450 projects we use for the analysis has contribu-
tors perceived as AIAN. Moreover, none of the DevOps contributors in those two projects
are perceived as AIAN.

White API Hispanic Black AIAN
Ethnicity

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f C
on

tri
bu

to
rs

 fr
om

 th
e

et
hn

ici
ty

Contributor Group
DevOps
Non-DevOps

Figure 6.5: Bean plots showing the distribution of percentages of DevOps and non-DevOps
contributors from four perceptible ethnicities (i.e., White, API, Hispanic, and Black). The
solid lines represent the median percentages, and the dotted lines represent the first and
third quantiles.

87

Table 6.3: Results of statistical analysis of ethnic diversity metrics for DevOps and Non-
DevOps contributors.

Diversity DevOps Non-DevOps Wilcoxon, One-Tailed, Effect Size
Metric (Median) (Median) Paired (α = 0.0023) (Cliff’s |δ|)

Richness 2 3 p = 2.81× 10−47 << α 0.588, large
Evenness 0.330 0.467 p = 2.41× 10−31 << α 0.246, medium
Blau Index 0.219 0.255 p = 6.95× 10−7 << α 0.111, negligible

Diffusion Score 9.091 10.157 p = 0.006 > α -

Furthermore, Table 6.3 presents the results of the analysis of ethnic diversity metrics
for DevOps and non-DevOps contributors. This table shows that the median values of eth-
nicity richness of DevOps and non-DevOps contributors are two and three, respectively.
Also, we find statistically significant differences in terms of richness of ethnic diversity be-
tween DevOps and non-DevOps contributors, with a large effect size. Similarly, the ethnic
evenness of DevOps contributors is significantly less than that of non-DevOps contributors,
with a medium effect size. For the Blau index, we find statistically significant differences
between the ethnic diversity of DevOps and non-DevOps contributors, but the effect size
is negligible. Also, note that for the diffusion score, we do not find statistical significance
between DevOps and non-DevOps contributors.

Observation 6(2): The perceptible gender diversity of DevOps contributors
tends to be less than that of non-DevOps contributors. Fig. 6.6 shows the dis-
tribution of percentages of DevOps and non-DevOps contributors who are perceived as
men and women. Accordingly, the DevOps contributors who are perceived as men are the
majority of DevOps contributors (median = 93.75%) as well as non-DevOps contributors
(median = 92.82%). We find a statistically significant difference between the percentages
of DevOps and non-DevOps contributors who are perceived as men, with a small effect
size (Wilcoxon, p << α = 0.0023, one-tailed, paired; Cliff’s |δ| = 0.149).

Furthermore, the median percentage of DevOps contributors who are perceived as
women (median = 6.25%) is less than that of non-DevOps contributors (median = 7.18%).
We further find a statistically significant difference between DevOps and non-DevOps con-
tributors who are perceived as women, with a small effect size. This is in line with the data
collected from the Stack Overflow Survey (2022),17 which shows that the percentage of De-
vOps developers who identify themselves as women is 2.10%, while the other developers,
i.e., non-DevOps, who identify themselves as women, is 5.13%.

88

Men Women
Gender

0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f C

on
tri

bu
to

rs
 fr

om
 a

 g
en

de
r

Contributor Group
DevOps
Non-DevOps

Figure 6.6: Bean plots showing the distribution of percentages of contributors perceived as
men and women among DevOps contributors as well as among non-DevOps contributors.
The solid lines present the median, and the dotted lines present the first and third quantiles.

Table 6.4 reports the results of our analysis of gender diversity among DevOps and non-
DevOps contributors. It shows that the median value of richness in terms of gender is two
for both DevOps and non-DevOps contributors; however, we find a statistically significant
difference in gender richness between DevOps and non-DevOps contributors, with a small
effect size. Similarly, the evenness, Blau index, and diffusion score of DevOps contributors
in projects, in terms of gender diversity, are statistically less than those of non-DevOps
contributors, with a small effect size. Furthermore, we find that 29.11% of the projects
in our dataset did not contain any DevOps contributors perceived as women. In contrast,
only 2.00% of the projects in our dataset did not contain non-DevOps contributors who
are perceived as women.

89

Table 6.4: Results of statistical analysis of gender diversity metrics for DevOps and Non-
DevOps contributors.

Diversity DevOps Non-DevOps Wilcoxon, One-Tailed, Effect Size
Metric (Median) (Median) Paired (α = 0.0023) (Cliff’s |δ|)

Richness 2 2 p = 1.44× 10−25 << α 0.271, small
Evenness 0.181 0.243 p = 7.79× 10−20 << α 0.246, small
Blau Index 0.117 0.133 p = 1.58× 10−6 << α 0.149, small

Diffusion Score 6.250 7.176 p = 6.44× 10−5 << α 0.149, small

Note that we exclude contributors whose perceptible gender is not determined by
gender-inferring tools, as mentioned in Section 6.2.2 (DC-5). However, studying the effects
of perceiving all unknown genders as either men or women can provide valuable insights
into gender representation and potential biases in various contexts. Thus, we follow the
approach of Vasilescu et al. [167], who faced a similar issue. In particular, we investi-
gate the impact of assuming all unknown genders as women. Since women contributors
are typically underrepresented in GitHub [168], assuming all unknown genders as women
would allow us to evaluate whether biases persist even when we artificially increase the
representation of women contributors. From this analysis, we observe that our findings
still hold: those who are perceived as women are more underrepresented among DevOps
contributors than non-DevOps contributors. A detailed preview of our results, assuming
all contributors with unknown genders are women, is available in our Online Appendix B.91

As for perceptible ethnic diversity, we observe that contributors perceived as non-
White (API, Hispanic, Black, and AIAN) are more underrepresented among DevOps
contributors compared to non-DevOps contributors. With respect to perceptible
gender diversity, we find contributors perceived as women are more underrepresented
among DevOps contributors compared to non-DevOps contributors. Overall, there
is a statistically significant difference in the diversity metrics between DevOps and
non-DevOps contributors.

90

6.3.2 (RQ2) How does the distribution of perceptible ethnic and
gender diversity change as projects age?

In this section, we present the approach that we used to examine the evolution of gender
and ethnic diversity among DevOps and non-DevOps contributors in the studied projects,
along with the corresponding results.

Approach

We begin by partitioning the commits in our dataset into segments, where each segment
represents a set of commits that are made during a year. Then, for each segment (year),
we identify DevOps and non-DevOps contributors who contributed to the commits made
during that year and analyze perceptible ethnic and gender diversity. In particular, we
examine the yearly percentages of ethnicities and genders, followed by the computation
of diversity metrics for each corresponding year. Then, we compute the average growth
in diversity metrics over the last ten years. Equation (6.3) shows how we compute the
average growth, for example, in evenness, for the last ten years where n = 10.

Average growth = Σ10
t=1evennesst − evennesst−1 (6.3)

Results

Below, we discuss the observations that we made.

Observation 6(3): Over time, the overall perceptible ethnic diversity of De-
vOps and non-DevOps contributors increases. Still, the contributors perceived
as non-White (API, Hispanic, and Black) are the minority. Fig. 6.7 shows (a) the
percentage of DevOps contributors from each perceptible ethnicity per year and (b) the
values of the diversity metrics per year. From Fig. 6.7a, we observe that the percentage of
DevOps contributors who are perceived as White generally varies between 83.98%–100%.

Also, we observe that all DevOps contributors who made commits in the studied
projects before 2010 are perceived as White (except for the year 2006). Hence, the evenness
metric of these years is zero (Fig. 6.7b). From 2010 onward, DevOps contributors with
perceptibly non-White names have started to participate in the studied projects; however,
the percentage remains low. For example, the percentage of DevOps contributors with API
names ranges from 0%–12.63%, and the percentage of contributors with Hispanic names

91

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f D
ev

Op
s c

on
tri

bu
to

rs

White
API
Black
Hispanic

(a) Percentages of perceptible ethnicities of
DevOps contributors over time.

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

ne
ss

/B
la

u
In

de
x/

Di
ffu

sio
n

Sc
or

e
Evenness
Blau Index
Diffusion Score (normalized)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ri
ch

ne
ss

Richness

(b) Diversity metrics over time: Both the left and
right y-axes present the metrics values. The diffu-
sion score is normalized.93

Figure 6.7: Change in the perceptible ethnic diversity of DevOps contributors over time.

ranges from 0%–3.30%. This is further evident in Fig 6.7b. The figure shows that the
diversity metrics for the ethnicity of DevOps contributors are increasing over time, yet the
evenness, Blau index, and diffusion score mostly remain constant over the last ten years.
In particular, the evenness ranges from 0.068–0.138, and its average growth is 0.008 over
the last ten years; the Blau index ranges from 0.136–0.278 with an average growth of 0.016;
similarly, the normalized diffusion score93 ranges from 0.045–0.126, and its average growth
is 0.009 over the last ten years.

The diversity of non-DevOps contributors belonging to different ethnicities follows a
similar trend to that of DevOps contributors. Fig. 6.8 shows that diversity metrics for the
ethnicity of non-DevOps contributors are gradually increasing over time. We observe that
the ethnic evenness, Blau index, and diffusion score for non-DevOps contributors range
between 0.079–0.157, 0.158–0.315, and 0.051–0.149, respectively, over the last ten years;
their average growth over time are 0.009, 0.017, and 0.010, respectively.

93The diffusion score is usually a percentage, but for visualization purposes, we normalize the diffusion
score by dividing the score by 100 to show the corresponding proportion.

92

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-D
ev

Op
s c

on
tri

bu
to

rs

White
API
Black
Hispanic

(a) Percentages of perceptible ethnicities of
non-DevOps contributors over time.

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

ne
ss

/B
la

u
In

de
x/

Di
ffu

sio
n

Sc
or

e
Evenness
Blau Index
Diffusion Score (normalized)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ri
ch

ne
ss

Richness

(b) Diversity metrics over time: Both the left and
right y-axes present the metrics values. The diffu-
sion score is normalized.93

Figure 6.8: Change in the perceptible ethnic diversity of non-DevOps contributors over
time.

Note that the above observation discussing the increase of ethnic diversity over time is
in line with the diversity analysis of US-based DevOps job-seekers by Zippia16 which is a
web application that is used to search US-based jobs. Zippia’s analysis revealed that the
percentage of non-White developers increased from 37.16% in 2010 to 42.77% in 2021.

Observation 6(4): Over time, the perceptible gender diversity of DevOps
and non-DevOps contributors is increasing. Still, the contributors who are per-
ceived as women remain underrepresented. Figures 6.9 and 6.10 show (a) the per-
centage of perceived genders of DevOps and non-DevOps contributors and (b) the change
in diversity metrics over time. We observe that the percentage of DevOps and non-DevOps
contributors who are perceived as men varies between 87.50%–100% and between 90.52%–
100%, respectively. Moreover, we observe that the overall richness, evenness, Blau index,
and diffusion score for DevOps and non-DevOps contributors have been increasing over
time, yet the improvement is gradual. For example, the evenness for DevOps contributors
over the past ten years ranges from 0.040–0.086, while it is 0.047–0.085 for non-DevOps
contributors. In addition, we find that the average growth in evenness is 0.005 for DevOps

93

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f D
ev

Op
s c

on
tri

bu
to

rs

Men
Women

(a) Percentages of perceptible gender of De-
vOps contributors over time.

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

ne
ss

/B
la

u
In

de
x/

Di
ffu

sio
n

Sc
or

e

Evenness
Blau Index
Diffusion Score (normalized)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ri
ch

ne
ss

Richness

(b) Values of diversity metrics over time: Both
the left y-axis and the right y-axis present the
metrics values. Note that the diffusion score is
normalized.93

Figure 6.9: Change in the perceptible gender diversity of DevOps contributors over time.

contributors and 0.004 for non-DevOps contributors. We observe similar trends for the
Blau index and diffusion score as well. This observation complements Prana et al.’s [132]
study, which found that gender diversity in open-source projects (GHTorrent94 dataset)
has increased over time (2014–2018); however, there is still much room for improvement.

Finally, similar to the sensitivity analysis of gender diversity in RQ1, for RQ2, we in-
vestigate the impact of assuming all contributors with unknown genders as women [167];
however, we do not find a substantial change in our Observation 6(4). A detailed pre-
view of our results, assuming all unknown genders are women, is available in our Online
Appendix B.91

94http://ww38.ghtorrent.org

94

http://ww38.ghtorrent.org

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-D
ev

Op
s c

on
tri

bu
to

rs

Men
Women

(a) Percentages of perceptible gender of non-
DevOps contributors over time.

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

ne
ss

/B
la

u
In

de
x/

Di
ffu

sio
n

Sc
or

e

Evenness
Blau Index
Diffusion Score (normalized)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ri
ch

ne
ss

Richness

(b) Values of diversity metrics over time: Both
the left y-axis and the right y-axis present the
metrics values. Note that the diffusion score is
normalized.93

Figure 6.10: Change in the perceptible gender diversity of non-DevOps contributors over
time.

Although the perceptible ethnic diversity of contributors is increasing over time, De-
vOps and non-DevOps contributors with perceptibly non-White names are greatly
underrepresented. Similarly, the perceptible gender diversity of contributors is grad-
ually increasing over time. Still, contributors who are perceived as women remain
substantially underrepresented.

6.3.3 (RQ3) How does the intersection of perceptible gender and
ethnic diversity differ between DevOps and non-DevOps
contributors?

Our study thus far has been performed to independently analyze the perceptible gender
and ethnic diversity of DevOps and non-DevOps contributors. However, it is unclear how
diverse DevOps and non-DevOps contributors are when considering the intersection of mi-
nority groups of perceptible ethnicity and gender (e.g., perceptibly women contributors

95

with perceptibly non-White names). In fact, prior studies [65, 137, 165, 5, 116, 132] have
shown that individuals who belong to the intersection of two minority groups face specific
challenges in STEM fields. Indeed, contributors who belong to two or more underrepre-
sented categories tend to receive fewer opportunities [65].

In this RQ, we shed light on the intersectionality of gender and ethnic diversity of
DevOps and non-DevOps contributors. Below, we describe our approach to examine the
participation of contributors with perceptibly non-White and women names, along with
the corresponding results.

Approach

We first compute the percentage of DevOps and non-DevOps contributors perceived as
women of different perceptible ethnicities. Then, we test the significance of the differ-
ence between such DevOps and non-DevOps contributors in the studied projects using
the Wilcoxon signed rank test with a 95% confidence level (with Bonferroni correction;
α = 0.0023). To examine the trend of intersectionality over time, we then compute the
diversity metrics for DevOps and non-DevOps contributors per year.

Results

Below, we present the observations derived from the above analysis in response to this RQ.

Observation 6(5): Among DevOps and non-DevOps contributors who are
perceptibly women, those who are perceived as White are the majority. Ta-
ble 6.5 reports the percentage of perceptible ethnicities of perceptibly women DevOps and
non-DevOps contributors. Since none of the DevOps contributors in our dataset are per-
ceived as AIAN, we do not consider the AIAN in this intersectional analysis. This table
shows that contributors with perceptibly White names are the majority among perceptibly
women DevOps contributors (median = 100%) and non-DevOps contributors (median =
70%) in a project. The second ethnic majority among perceptibly women contributors is
API; the median percentages of DevOps and non-DevOps contributors are 0% and 25%,
respectively. Perceptibly women contributors with perceptibly Hispanic and Black names
are the least included among DevOps and non-DevOps contributors (median = 0%).

Table 6.5 also shows statistically significant differences in the perceived ethnic diversity
between DevOps and non-DevOps contributors with perceptibly women names. In partic-
ular, the contributors who are perceived as White women are more represented in DevOps

96

Table 6.5: Results of the statistical analysis of the percentages of the perceptible ethnicities
of perceptibly women DevOps and non-DevOps contributors.

Perceptible DevOps Non-DevOps Wilcoxon, One-Tailed, Effect Size
Group (Median) (Median) Paired (α = 0.0023) (Cliff’s |δ|)

White women 100% 70% p = 5.85× 10−5 << α 0.221, small
API women 0% 25% p = 3.48× 10−4 < α 0.219, small
Hispanic women 0% 0% p = 3.07× 10−6 << α 0.193, small
Black women 0% 0% p = 0.18 > α -

compared to non-DevOps, with a small effect size (Wilcoxon, p << α = 0.0023, one-tailed,
paired; Cliff’s |δ| = 0.221). With respect to contributors who belong to the intersection
of two minorities, perceptibly API women and Hispanic women contributors are more un-
derrepresented among DevOps contributors compared to non-DevOps contributors, with a
small effect size. Lastly, we do not observe a significant difference between the DevOps and
non-DevOps contributors who are perceived as black women; however, we observe that a
substantial proportion of projects do not contain such contributors. In particular, 34% of
the projects do not have perceptibly black women among DevOps contributors, while 4%
of the projects do not have any perceptibly black women among non-DevOps contributors.

Observation 6(6): Over time, the perceptible ethnic diversity of percepti-
bly women DevOps and non-DevOps contributors is increasing. Perceptibly
women contributors with perceptibly White names remain the majority for
both DevOps and non-DevOps contributors. Fig. 6.11 presents (a) the percentages
of different perceptible ethnicities per year within DevOps contributors who are percepti-
bly women, and (b) the values of the corresponding diversity metrics per year for DevOps
contributors who are perceptibly women. This figure shows that the number of perceptible
ethnicity groups of DevOps contributors with perceptibly women names is increasing. For
example, the percentage of perceptibly API women contributors has increased from 0%
in 2010 to 22.9% in 2021, excluding the exception of 2006). This is further evident in
Fig. 6.11b, as it shows an overall increase in diversity metrics with respect to the perceived
ethnic diversity of perceptibly women DevOps contributors. For example, the ethnic even-
ness of DevOps contributors who are perceptibly women increased from zero in 2010 to
0.218 in 2021. Still, we observe that the improvement in evenness over the last years is not
substantial; the average growth in evenness over the last ten years is 0.007. We observe
similar trends for the Blau index and diffusion score as well.

For a subset of authors (7.4%), ethnic and gender-inferring tools could not identify both

97

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f D
ev

Op
s c

on
tri

bu
to

rs

White women
API women
Black women
Hispanic women

(a) Percentages of perceptible ethnicities of
DevOps contributors who are perceptibly
women.

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

ne
ss

/B
la

u
In

de
x/

Di
ffu

sio
n

Sc
or

e

Evenness
Blau Index
Diffusion Score (normalized)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ri
ch

ne
ss

Richness

(b) Values of diversity metrics over time: Both
the left y-axis and the right y-axis present the
metrics values. Note that the diffusion score is
normalized.93

Figure 6.11: Change in the perceptible ethnic diversity of the DevOps contributors who
are perceptibly women.

the perceptible ethnicity and the gender with the expected confidence level. Thus, for years
2005, 2007, 2008, and 2009 in Fig. 6.11a, we do not observe perceptibly women DevOps
contributors with a perceptible ethnicity confidence level greater than 0.8. For 2006, we
find an exception where only one perceptibly women DevOps contributor is available with
a perceptible ethnicity confidence level greater than 0.8 in our dataset.

With respect to non-DevOps contributors, Fig. 6.12 shows that contributors who are
perceived as women from different ethnicities follow a similar trend to DevOps contribu-
tors. In particular, the richness is increasing, yet the other metrics have remained almost
constant in the last ten years; for example, the evenness ranges between 0.165–0.229, and
the average growth is only 0.005.

98

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f n
on

-D
ev

Op
s c

on
tri

bu
to

rs

White women
API women
Black women
Hispanic women

(a) Percentages of perceptible ethnicities of
non-DevOps contributors who are perceptibly
women.

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

0.0

0.2

0.4

0.6

0.8

1.0

Ev
en

ne
ss

/B
la

u
In

de
x/

Di
ffu

sio
n

Sc
or

e

Evenness
Blau Index
Diffusion Score (normalized)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ri
ch

ne
ss

Richness

(b) Values of diversity metrics over time: Both
the left y-axis and the right y-axis present the
metrics values. Note that the diffusion score is
normalized.93

Figure 6.12: Change in the perceptible ethnic diversity of the non-DevOps contributors
who are perceptibly women.

Contributors who are perceived as White women are the majority of the women con-
tributors, followed by contributors with perceptibly API, Hispanic, and Black names.
We find statistical differences between the participation of contributors perceived as
women in DevOps and non-DevOps (e.g., contributors who are perceptibly API and
Hispanic women are more underrepresented in DevOps compared to non-DevOps).
Additionally, it is worth noting that perceptibly black women are absent among De-
vOps contributors in 34% of the projects, while among non-DevOps contributors,
this is only 4%. Over time, the richness of perceptible ethnic diversity of perceptibly
women contributors tends to increase, yet the other diversity metrics remain low.

99

6.4 Threats to Validity

In this section, we describe the threats to the validity of this chapter. To support verifia-
bility and replicability, we make our replication package publicly available.91

6.4.1 Construct Validity

We use the Name-Prism [182] tool to infer the perceptible ethnicity of contributors. Us-
ing Name-Prism to infer ethnicity has three main limitations. First, the ethnicity of an
individual is a complex and multifaceted social construct that is not always easily identifi-
able [48], and the tool may misassign ethnicities to contributors. For example, contributors
with Brazilian names but are not Hispanic (because their ancestors do not speak Spanish)
may be perceived as Hispanic by the Name-Prism. Mixed-race contributors also may
be perceived as belonging to a particular ethnicity, which may not necessarily align with
the ethnicity that they identify with personally. Also, Black individuals may have names
perceived as White [53], and using the perceived ethnicity may exclude individuals who
identify as Black. However, note that in open-source communities, such as GitHub, one
would only perceive the ethnicity of the other unless and otherwise it is revealed. Thus,
our goal is to study the perceived diversity instead of the actual diversity. Moreover, as
suggested by prior work [120], we only use contributors’ names in which the perceptible
ethnicity is inferred by the tool with a confidence level greater than 0.8 for better validity.

The second limitation of using Name-Prism is that the US government officially cat-
egorizes people with origins in Lebanon, Iran, Egypt, and other countries in the Middle
East and North Africa (MENA) region as White.95 According to Maghbouleh et al. [108],
both non-MENA Whites and MENA individuals consider MENA-related traits as MENA
rather than White. In addition, treating individuals from the MENA region as Whites
does not necessarily correspond to the discrimination-related experiences of these contrib-
utors.96 Because of this, considering individuals from the MENA region as White as per
US Census Bureau may not accurately reflect the perceptible diversity of the DevOps and
non-DevOps contributors that we study. However, to check the validity of our conclusions,
we recompute our results by considering the perceptibly White contributors with percepti-
ble MENA-related traits as a separate ethnic group. Since the contributor names available
in our current dataset do not include the necessary information (e.g., nationality) to check

95https://www.documentcloud.org/documents/21218285-2020-census-state-pl-94-171-redistricting-
summary-file-technical-documentationdocument/p232/a2082431

96https://www.npr.org/2022/02/17/1079181478/us-census-middle-eastern-white-north-african-mena

100

https://www.documentcloud.org/documents/21218285-2020-census-state-pl-94-171-redistricting-summary-file-technical-documentation##document/p232/a2082431
https://www.documentcloud.org/documents/21218285-2020-census-state-pl-94-171-redistricting-summary-file-technical-documentation##document/p232/a2082431
https://www.npr.org/2022/02/17/1079181478/us-census-middle-eastern-white-north-african-mena

if a contributor is associated with a MENA-related trait or not, we use Name-Prism’s
perceptible nationality-inferring API (which has an F-score of 0.795). We find our con-
clusions remain unchanged. An in-depth preview of our results corresponding to this new
distinction of contributors who are perceived as from MENA countries is available in our
Online Appendix E.91

The third limitation of using the Name-Prism is that the results obtained with respect
to US Census Bureau’s classification may not be completely generalizable for contributors
who are based outside US [5, 141]. To reflect on the validity of our study, we perform
a new analysis to understand the impact of using Name-Prism for both US-based and
non-US-based contributors. To categorize contributors into US-based and Outside US,
we attempt to use the GitHub API to obtain the geographical locations, specifically the
countries, of the contributors within our dataset. Because our current dataset does not
include GitHub usernames, which are exclusively needed to retrieve locations via GitHub
API,97 we manually check for GitHub profiles of those contributors for locations. Note that
Name-Prism’s perceptible nationality-inferring API that we used in our previous analysis
on contributors perceptibly associated with MENA-related traits does not infer locations
but rather nationalities; for example, it does not make the distinction between perceptible
Whites from the US vs. the perceptible Whites from other countries. For our manual
check, we obtain a significant sample of 500 contributors by searching on GitHub, and we
check if there is a substantial difference in the observations we made with respect to the two
distinct groups based on their locations: US-based and Outside US. Note that this sample
size of 500 individuals exceeds the minimum recommended threshold (383) for achieving a
95% confidence level with a 5% margin of error when making inferences about the entire
population of contributors within our dataset. We do not observe substantial changes in
the observations concerning the two groups. For example, we find that, regardless of the
location, perceptibly White contributors are the majority; contributors from other percep-
tible ethnicities are generally underrepresented. This is consistent with the observations
we made in Section 6.3.1. We provide a detailed preview of our results corresponding to
this new analysis in our Online Appendix J.91 Furthermore, to facilitate future studies
on diversity, we encourage researchers to train more sophisticated ethnicity-inferring tools
with datasets spanning diverse populations.

We use gender-inferring tools (e.g. Gender-guesser) to infer the perceptible gen-
der of contributors. Using such tools to infer gender has two main limitations. First,
gender-inferring tools may not recognize the perceptible gender correctly as discussed in
Section 6.2.2 (DC-5), e.g., rate of unrecognized names in Gender-guesser was 20.12% [142].
We tackle this problem by combining the outcomes from three gender-inferring tools to

97https://docs.github.com/en/free-pro-team@latest/rest/users/users?apiVersion=2022-11-28get-a-user

101

https://docs.github.com/en/free-pro-team@latest/rest/users/users?apiVersion=2022-11-28##get-a-user

take advantage of the strengths of all the tools as discussed in Section 6.2.2 (DC-5). We
use the most effective combination, which we obtain by testing different combinations of
the tools against the labelled dataset provided by Santamaŕıa et al. [142]. The selected
combination approach reduces the rate of unrecognized names to 5.15%. We remove these
names with unrecognized genders from our analyses for better accuracy.

The second limitation of using gender-inferring tools is that gender-inferring tools have
different classifications of gender given a name. To ensure consistency across all the tools
used in this study, we follow the definition of gender as a binary classification (either
men or women) as used in prior studies by Vasilescu et al. [166, 168, 167]. As men-
tioned in Section 6.2.2. (DC-5), we use three gender inferring tools: Wiki-Gendersort,
Gender-guesser, and GenderComputer. The first tool, Wiki-Gendersort, classifies a
name into one of the three gender groups: male, female, and unisex. We consider
female category as women and male category as men; we consider the remaining cate-
gory, unisex, to be unknown because we limit our discussion to a binary classification of
gender [166, 168, 167]. The next tool, Gender-guesser, classifies a name into one of the five
categories: female, mostly female, androgynous, mostly male, and male. We consider
female and mostly female categories as women; similarly, we consider male and mostly

male categories as men. We consider Gender-guesser’s remaining category (androgynous)
as unknown, as similar to Wiki-Gendersort’s unisex category. The third tool, the
GenderComputer, classifies gender into two main categories: male and female. Note that
we cannot claim Gender-guesser’s androgynous category and Wiki-Gendersort’s unisex
category to have the same meaning without evidence. We consider the female category
inferred from GenderComputer to be women, and the male category to be men. Although
we are aware that gender is a more complex issue than a binary variable [142], we believe
that following the terminologies used in prior work mitigates the risk of misrepresenting
genders. Future researchers may consider training more sophisticated gender-inferring tools
with much larger datasets, taking the diverse representations of gender into consideration.

We use Vasilescu et al.’s GitHub-alias-merging approach [169] to track name changes
of users, as discussed in Section 6.2.2 (DC-4). If a user changes the name to a completely
different one but keeps using the same email address, we are able to unify the identities of
such cases. However, if the user makes substantial changes to both their name and email
address, we may miss such cases. In fact, it is infeasible to recognize such cases by human
contributors as well since no ground truth data is available for users. Nonetheless, we only
discuss the perceived diversity in this paper, and missing such extreme cases would not
substantially impact our study’s conclusions.

Lastly, in our study, we use four measures of diversity (richness [37], evenness [20],
Blau index [149], and diffusion score92). Other indices, such as Gini index [61] and Theil

102

index [163], are not applicable to our study because they are not comparable across different
teams when teams have different numbers of ethnicities or genders, as in our study.

6.4.2 Internal Validity

To identify DevOps files, we rely on filename and keyword conventions. Despite our best
efforts, our automated classification script may still misclassify files. However, our initial
results from a validation set (of 400 files) show that the agreement between a human
labeller and the automated classification script is near-perfect (Cohen’s Kappa = 0.82).

Our preliminary analysis of the dataset shows that a subset of DevOps files are auto-
matically generated and, hence, are not valid targets for our analyses. We filter out such
files using keyword matching. Initial results from a validation set of 400 randomly selected
files that are classified as DevOps show that the agreement between a human labeller and
the automated classification script is near-perfect (i.e., Cohen’s Kappa of 0.81).

We considered DevOps contributors as the ones who made at least one change to
DevOps files. A threshold of one DevOps file change may introduce selection bias to our
definition of DevOps contributors. To address this, we recompute our results with two more
thresholds: two file changes and ten file changes. We find our results still hold, indicating
that our choice of the threshold does not include a substantial selection bias. A detailed
description of the results of this extra analysis is available in our Online Appendices C
and D.91

6.4.3 External Validity

We begin with a dataset of projects using CircleCI, and carefully select a meaningful
sample of projects that are worthy of study. To do so, we filter out the projects that are
immature and have little development history by applying filtration criteria used by prior
studies [91]. This selection results in a dataset of 450 projects that adopt DevOps tools
and technologies. Our dataset might be considered small when it is compared to the whole
population of GitHub projects. To check the validity of our analyses beyond the projects
that adopt CircleCI, we recompute the results of our research questions using another
dataset that contains commits of projects that adopt GitHub Actions.8 We find that the
overall conclusions of the study remain unchanged for this new dataset of projects that
adopt GitHub Actions. To access a complete preview of this analysis and its corresponding
figures, we direct readers to our Appendix F.91

103

Lastly, while we study ethnic diversity in open-source projects, prior work shows that
a majority of open-source contributors are based in North America and Europe [120]. In
non-Western or company-specific settings, both the demographic makeup and the emphasis
placed on different diversity dimensions may vary. For instance, in certain contexts, aspects
such as neurodiversity and age diversity among DevOps developers may be more relevant
and warrant further exploration in future studies.

6.5 Practical Implications

In this chapter, we investigate the perceived gender and ethnic diversity of DevOps and
non-DevOps contributors to open-source projects by quantitatively analyzing 4,207,735
commits made by 110,336 contributors to 450 open-source projects in GitHub. Below, we
discuss the implications of our findings.

The lack of perceived diversity among DevOps contributors) is more promi-
nent than that of the other developers. Our findings indicate disparities in the per-
ceived ethnic and gender representation among DevOps and non-DevOps contributors in
the GitHub community. In particular, our observations 6(1) and 6(2) show that the group
of contributors who contribute to DevOps artifacts tend to have less perceptible diversity
than contributors to non-DevOps artifacts. Previous studies [92, 101] have discussed bar-
riers to adopt DevOps, such as the difficulties in choosing appropriate tools from a diverse
set of tools, which may contribute to the lack of perceptible diversity, which, in turn, can
serve as an additional—albeit tacit—barrier to adoption. Potential reasons for the lack of
diversity in DevOps have been discussed in various online reports as well. For instance, the
report “Inspiring Women to Join the DevOps Movement”98 discussed a lack of awareness
among women developers about the availability of career paths such as DevOps. Other
reports99,100 also discussed the stereotypical perception that DevOps is man-dominated,
which may discourage women from pursuing careers in this area. Concerns were raised
about the gender pay gap101,102 in DevOps, which may also contribute to the lack of di-
versity. We encourage future studies to direct efforts towards further understanding why
DevOps contributions (e.g., contributing to CI configuration files) are less attractive to
perceptibly non-Whites and women developers. We also encourage future work to extend

98https://www.pagerduty.com/blog/inspiring-women-to-join-the-devops-movement
99https://www.cloudbees.com/blog/women-devops-tracy-ragan

100https://peapletalent.com/the-gender-gap-in-technology
101https://www.puppet.com/press/press-releases/puppets-seventh-annual-devops-s alary-report
102https://techmonitor.ai/leadership/workforce/devops-gender-pay-gap-critics-c alling-change

104

https://www.pagerduty.com/blog/inspiring-women-to-join-the-devops-movement/
https://www.cloudbees.com/blog/women-devops-tracy-ragan
https://peapletalent.com/the-gender-gap-in-technology
https://www.puppet.com/press/press-releases/puppets-seventh-annual-devops-salary-report
https://techmonitor.ai/leadership/workforce/devops-gender-pay-gap-critics-calling-change

our results by examining how this pronounced lack of diversity among DevOps contribu-
tors impacts business practices. In particular, we suggest measuring variations in developer
productivity and the quality of source code in projects with differing levels of diversity,
using frameworks such as SPACE [52] and TRUCE [158], respectively.

The perceived diversity of DevOps and non-DevOps contributors is slowly
increasing over time, but there is still room for improvement. Observations 6(3)
and 6(4) show that perceptible diversity is increasing over time, but the improvement is not
substantial. To bridge this gap, one particular effort is the “Women in DevOps” platform,68

which was established in 2017 specifically to address the issue of gender imbalance in the
DevOps industry. Furthermore, to improve diversity in Software teams in general, previous
studies [173, 120, 132] have suggested strategies. For example, Wang et al. [173] have
proposed to design a series of carefully crafted and empirically tested training courses
that aim to reduce gender bias in both educational institutions and software development
organizations. Prana et al. [132] emphasized the fact that current automatic tools, such
as bug assignment tools [100, 88], make recommendations based on the similarity between
developers (homophily), restricting the promotion of diversity. That said, to the best of our
knowledge, it is yet to be investigated whether projects get the benefit of implementing such
strategies. Future work could examine the impact of various strategies, such as mentorship
programs [132, 173] and code of conduct amendments [132, 50], shedding light on specific
interventions required to promote diversity and inclusion for developers contributing to
different project activities (e.g., DevOps and non-DevOps).

The lack of perceived diversity is amplified when considering the intersec-
tion of ethnicity and gender of DevOps and non-DevOps contributors. Prior
work [119, 120, 168, 18] that studied diversity had mainly considered independent analyses
of ethnic and gender diversity. Considering the intersection of perceived ethnic and gender
diversity is important to provide a richer understanding of the problems that individuals in
this intersection encounter. For example, our observations 6(5) and 6(6) show that DevOps
and non-DevOps contributors who are perceptibly Hispanic women and Black women are
greatly underrepresented (median = 0%), while DevOps contributors who are perceived
as API women and Hispanic women tend to be more underrepresented than non-DevOps
contributors. We believe that the challenges faced by those who belong at the intersection
of a minority ethnicity and minority gender may not be treated with a single overarching
solution targeted towards one identity factor. Thus, we encourage future studies to explore
those challenges and amplify the voices of developers situated at the intersection.

105

6.6 Chapter Summary

Among tacit inefficiencies related to CI, the lack of diversity plays an important role. While
prior work has raised concerns about the lack of diversity in open-source communities, it
remains unclear whether these diversity concerns extend to DevOps contributors—those
who contribute to CI-related artifacts alongside other DevOps artifacts within projects.

In this chapter, we present an empirical study to analyze perceptible ethnic and gender
diversity among DevOps contributors while grounding our analysis in a comparison with
non-DevOps contributors. Below, we summarize the key highlights of this chapter.

• The lack of perceptible diversity is more pronounced among team members who
contribute to DevOps artifacts (e.g., CI configuration files) than among others, calling
for a deeper understanding of why DevOps work is less attractive to perceptible
minorities.

• The perceived diversity among both DevOps and non-DevOps contributors has been
gradually increasing over time; however, there remains considerable room for im-
provement.

• The lack of perceived diversity is amplified when considering the intersection of minor-
ity ethnicities and genders among DevOps and non-DevOps contributors, highlighting
the need for targeted inclusion strategies to address compounded underrepresenta-
tion.

Concluding Remarks. In this thesis, we discussed tacit inefficiencies in CI, such
as timeouts and updates to unused dependencies, as well as tacit barriers, including the
lack of diversity among CI contributors. We also presented insights into opportunities for
improvement. In the next and final chapter, we conclude the thesis and discuss potential
future directions.

106

Part IV

Final Remarks

107

Chapter 7

Conclusions and Future Work

Continuous Integration (CI) is the heartbeat of a software project. It enables team mem-
bers to validate change sets through automated cycles (i.e., CI builds). The events of
importance, such as commits being submitted to a shared repository and creation of PRs,
can automatically trigger CI builds. These CI builds orchestrate a series of tasks, including
dependency retrieval, compilation, and testing to validate any changes and maintain code
integrity [170].

While adoption of CI improves team productivity [155, 80] and software quality [170,
81, 156], these benefits come at a cost. In this thesis, we set out to understand the
prevalence and characteristics of tacit inefficiencies and barriers in CI and provide strategies
to mitigate them. We use historical data from CI pipelines and evaluate the following
research hypothesis.

Hypothesis. Neglecting tacitly accrued inefficiencies and barriers in CI can have a
substantial impact on both CI resources (i.e., build time) and the team members in
a project who contribute to CI artifacts. Systematically identifying and character-
izing these issues can inform the development of strategies that enhance the overall
efficiency of CI pipelines.

To evaluate this hypothesis, we conduct empirical studies focusing on tacit inefficiencies
in CI, such as timeouts occurring in the environments where CI builds are executed and
wasteful CI builds triggered by updates to unused dependencies. We perform another em-
pirical study that investigates tacit barriers in CI, such as the lack of contributor diversity.

108

7.1 Contributions and Findings

In this section we summarize the main contributions and findings of this thesis.

Part II Tacit inefficiencies stem from the environments where CI builds are executed
and from the external dependencies declared in project. In Chapter 4, we examine the
prevalence and characteristics of CI timeouts that are caused by inefficiencies in CI
environments. Our findings suggest that project build history and timeout clusters
can offer useful insights to proactively allocate resources and reduce CI waste. We also
find that certain files are more prone to timeout builds than others and thus could help
optimize resource allocation and potentially prevent timeout builds. In Chapter 5, we
investigate inefficiencies in project dependencies, particularly focusing on updates to
unused dependencies that trigger wasteful CI builds. This chapter also highlights the
need for bot developers to take CI waste caused by unnecessary updates into account,
as bots are the major culprits of triggering updates to unused dependencies. For
project teams, we introduce an approach, Dep-sCImitar , designed to minimize
CI waste accrued from unused dependencies. We also encourage CI providers to
recommend Dep-sCImitar to project teams that excessively consume CI build
time due to such wasteful builds.

Part III Tacit barriers are the challenges that stem from social, cuclural, and organiza-
tional factors. With respect to such barriers, Chapter 6 presents an empirical study
on the diversity and inclusion of developers who contribute to DevOps artifacts (e.g.,
CI configuration files) within projects, i.e., DevOps contributors. This study reveals
that the perceptible diversity of DevOps contributors is significantly lower than that
of other contributors in project teams. Although the perceived diversity of both De-
vOps and non-DevOps contributors has gradually increased over time, there remains
substantial room for improvement. Moreover, the lack of perceived diversity is am-
plified when examining the intersection of ethnicity and gender among contributors,
calling for targeted inclusion strategies.

Overall, this thesis contributes to a broader understanding of inefficiencies and barriers
that are not explicitly recognized as specific to CI, as well as practical insights for CI
stakeholders and researchers aiming to optimize CI.

109

7.2 Future Work

This thesis lays the groundwork for promising future directions, which we detail below.

7.2.1 Develop approaches for predicting timeout builds

Our observations in Chapter 4 indicate that our model demonstrates strong discriminatory
power, is well-calibrated, and exhibits high stability in explaining CI timeouts. Although
our focus is on using statistical models to characterize and understand timeout builds
rather than predict future occurrences, we encourage future research to expand upon our
findings on the key features that explain CI timeouts. These insights, along with related
work on build failure prediction, can inform the development of more robust models for
predicting timeout builds. For instance, previous studies (e.g., Chen et al. [25]) have
used machine-learning models to predict build failures; our results suggest that similar
approaches could be adapted to predict CI timeouts.

7.2.2 Extend the scope of the impact of unused dependencies
beyond CI build time

While our observations in Chapter 5 highlight the impact of unused dependencies on CI,
future research may investigate their broader implications on software development and
maintenance. For instance, this thesis finds that unused dependencies are frequently up-
dated to newer versions as they become available. This may reflect organizational concerns
about the security risks associated with outdated dependencies [98], regardless of actual
usage. Such practices contribute to development overhead, indicating that further investi-
gation into this area could offer valuable insights to mitigate development overhead.

7.2.3 Mitigate inefficiencies in CI due to smells in CI configura-
tions

In this thesis, we discussed two sources of tacit inefficiencies in CI: CI environment and
project dependencies. However, other sources of tacit inefficiencies also exist, such as those
arising from CI configuration files. CI configurations are susceptible to anti-patterns, a.k.a
CI smells [58, 171, 184, 21]. While prior studies partially went in this direction [186],
mitigation strategies for a variety of smells are yet to be addressed. For example, the

110

use of overly long scripts that perform redundant tasks [148] and incorrect paralleliza-
tion settings [58] are examples of CI smells that need further investigation. These CI
smells, often subtle and unnoticed, can degrade the performance and effectiveness of CI
pipelines [58, 171, 184, 21]. Thus, we encourage future studies to quantify the impact of
these CI smells and propose strategies to mitigate them.

7.2.4 Explore new business models for CI providers and project
maintainers that benefit long-term sustainability

In Part II (i.e., tacit inefficiencies), we discuss that both CI providers and project maintain-
ers may bear the cost of inefficient CI usage. We encourage future work to explore a new
business model that encourages collaboration between CI providers and project teams to
improve the sustainability and efficiency of CI pipelines. For instance, while CI providers
often do not disclose internal data related to resource usage, they could expose action-
able insights to project teams through subscriptions, e.g., allowing them to allocate extra
time for timeout-prone builds to complete in exchange for a reasonable fee. Such a model
would help reduce redundant executions, alleviate infrastructure strain, and create mutual
benefits for both CI providers and their customers.

7.2.5 Explore the challenges of DevOps contributors situated at
the intersection of minority groups

Our observations in Chapter 6 show that DevOps contributors who are perceptible as
Asian/Pacific Islander (API) women and Hispanic women tend to be more underrepre-
sented than non-DevOps contributors. However, prior work [119, 120, 168, 18] that studied
diversity has independently analyzed challenges faced by developers from minority ethnici-
ties and genders and proposed solutions to improve diversity and inclusion. We believe that
the challenges faced by those who are perceptible at the intersection of a minority ethnicity
and minority gender may not be treated with a single overarching solution targeted towards
one identity factor. Thus, we encourage future studies to explore the challenges faced by
DevOps contributors who are situated at the intersection of multiple minority traits.

111

7.2.6 Explore tacit barriers faced by DevOps contributors be-
yond diversity and inclusion

While this thesis focuses on diversity as a key tacit barrier in CI, there are other barriers
that are yet to be explored, such as the personal well-being of DevOps contributors [110]
and the cognitive workload of DevOps tasks [74]. For example, elements such as lack of
motivation, distractions, fear of making mistakes, and burnout [130] can negatively impact
productivity, collaboration, and the overall efficiency of CI pipelines and other DevOps
tasks. Future work may aim to quantify the effects of these human-centered challenges and
propose strategies to mitigate their negative impacts—both on developers and on software
development. Such efforts could help foster a healthier work environment through improved
workload management, mental health support, and the promotion of a more sustainable
work culture.

112

References

[1] Periodic table of devops. https://digital.ai/

periodic-table-of-devops-tools.

[2] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. A machine learning ap-
proach to improve the detection of ci skip commits. Transactions on Software Engi-
neering, 2020.

[3] Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, and Juergen Rilling. Which
commits can be ci skipped? Transactions on Software Engineering, 47, 2019.

[4] Amal Akli, Guillaume Haben, Sarra Habchi, Mike Papadakis, and Yves Le Traon.
Flakycat: Predicting flaky tests categories using few-shot learning. In 2023
IEEE/ACM International Conference on Automation of Software Test (AST), pages
140–151. IEEE, 2023.

[5] Khaled Albusays, Pernille Bjorn, Laura Dabbish, Denae Ford, Emerson Murphy-Hill,
Alexander Serebrenik, and Margaret-Anne Storey. The diversity crisis in software
development. Software, 38, 2021.

[6] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. Empirical analysis of
security vulnerabilities in python packages. Empirical Software Engineering, 28,
2023.

[7] Mahmoud Alfadel, Diego Elias Costa, Emad Shihab, and Bram Adams. On the
discoverability of npm vulnerabilities in node. js projects. ACM Transactions on
Software Engineering and Methodology, 32(4):1–27, 2023.

[8] Mahmoud Alfadel, Diego Elias Costa, Emad Shihab, and Mouafak Mkhallalati. On
the use of dependabot security pull requests. In 18th International Conference on
Mining Software Repositories (MSR), 2021.

113

https://digital.ai/periodic-table-of-devops-tools
https://digital.ai/periodic-table-of-devops-tools

[9] Abdullateef Oluwagbemiga Balogun, Shuib Basri, Jadid Abdulkadir Said, Vic-
tor Ebenezer Adeyemo, Abdullahi Abubakar Imam, and Amos Orenyi Bajeh. Soft-
ware defect prediction: analysis of class imbalance and performance stability. School
of Engineering, Taylor’s University, 2019.

[10] Soon K Bang, Sam Chung, Young Choh, and Marc Dupuis. A grounded theory
analysis of modern web applications: knowledge, skills, and abilities for devops. In
Proceedings of the 2nd annual conference on Research in information technology,
2013.

[11] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A software architect’s perspective.
2015.

[12] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Se-
bastiano Panichella. How the apache community upgrades dependencies: an evolu-
tionary study. Empirical Software Engineering, 20, 2015.

[13] Moritz Beller, Georgios Gousios, and Andy Zaidman. Oops, my tests broke the build:
An explorative analysis of travis ci with github. In 14th International conference on
mining software repositories (MSR), 2017.

[14] Arka Bhattacharya. Impact of continuous integration on software quality and pro-
ductivity. PhD thesis, The Ohio State University, 2014.

[15] Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. When and
how to make breaking changes: Policies and practices in 18 open source software
ecosystems. ACM Transactions on Software Engineering and Methodology (TOSEM),
30(4):1–56, 2021.

[16] Christopher Bogart, Christian Kästner, and James Herbsleb. When it breaks, it
breaks: How ecosystem developers reason about the stability of dependencies. In
International Conference on Automated Software Engineering Workshop, 2015.

[17] Carlo Bonferroni. Teoria statistica delle classi e calcolo delle probabilita. Pubbli-
cazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze,
8, 1936.

[18] Amiangshu Bosu and Kazi Zakia Sultana. Diversity and inclusion in open source
software (oss) projects: Where do we stand? In Proceedings of the International
Symposium on Empirical Software Engineering and Measurement, 2019.

114

[19] Glenn W Brier. Verification of forecasts expressed in terms of probability, volume 78.
American Meteorological Society, 1950.

[20] Leon Brillouin. Maxwell’s demon cannot operate: Information and entropy. i. Journal
of Applied Physics, 22, 1951.

[21] William J Brown, Hays W“Skip” McCormick III, and Scott H Thomas. AntiPatterns
and patterns in software configuration management. John Wiley & Sons, Inc., 1999.

[22] Tanja Buch, Moritz Meister, and Annekatrin Niebuhr. Ethnic diversity and segrega-
tion in german cities. Cities, 115, 2021.

[23] Gemma Catolino, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik, and
Filomena Ferrucci. Gender diversity and women in software teams: How do they
affect community smells? In Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Society, 2019.

[24] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16, 2002.

[25] Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng. Buildfast: History-aware
build outcome prediction for fast feedback and reduced cost in continuous integra-
tion. In Proceedings of the 35th International Conference on Automated Software
Engineering, 2020.

[26] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum. On the
journey to continuous deployment: Technical and social challenges along the way.
Information and Software technology, 57:21–31, 2015.

[27] Filipe Roseiro Cogo, Gustavo A Oliva, and Ahmed E Hassan. An empirical study of
dependency downgrades in the npm ecosystem. Transactions on Software Engineer-
ing, 47, 2019.

[28] Jacob Cohen. Weighted kappa: Nominal scale agreement provision for scaled dis-
agreement or partial credit. Psychological Bulletin, 70, 1968.

[29] Russ Cox. Surviving software dependencies. Communications of the ACM, 62(9):36–
43, 2019.

115

[30] Daniel Cukier. Devops patterns to scale web applications using cloud services. In
Proceedings of the companion publication for conference on Systems, programming,
& applications: software for humanity, 2013.

[31] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects in github
for msr studies. In 18th International Conference on Mining Software Repositories
(MSR), 2021.

[32] Jennifer L Davidson, Rithika Naik, Umme Ayda Mannan, Amir Azarbakht, and Car-
los Jensen. On older adults in free/open source software: reflections of contributors
and community leaders. In Proceedings of the Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2014.

[33] Adam Debbiche, Mikael Dienér, and Richard Berntsson Svensson. Challenges when
adopting continuous integration: A case study. In Product-Focused Software Process
Improvement: 15th International Conference, PROFES 2014, Helsinki, Finland, De-
cember 10-12, 2014. Proceedings 15, pages 17–32. Springer, 2014.

[34] Derek DeBellis, Kevin M. Storer, Amanda Lewis, Benjamin Good, Daniella Villalba,
Eric Maxwell, Kim Castillo, Michelle Irvine, and Nathen Harvey. The accelerate
state of devops report. 2024.

[35] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the impact of security
vulnerabilities in the npm package dependency network. In Proceedings of the 15th
international conference on mining software repositories, 2018.

[36] Alexandre Decan, Tom Mens, and Hassan Onsori Delicheh. On the outdatedness of
workflows in the github actions ecosystem. Journal of Systems and Software, 2023.

[37] Theodore M DeJong. A comparison of three diversity indices based on their compo-
nents of richness and evenness. Oikos, 1975.

[38] Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu, Anna
Filippova, and Audris Mockus. Detecting and characterizing bots that commit code.
In Proceedings of the 17th international conference on mining software repositories,
2020.

[39] Elisa Diel, Sabrina Marczak, and Daniela S Cruzes. Communication challenges and
strategies in distributed devops. In 2016 IEEE 11th International Conference on
Global Software Engineering (ICGSE), pages 24–28. IEEE, 2016.

116

[40] Thomas Durieux, Claire Le Goues, Michael Hilton, and Rui Abreu. Empirical study
of restarted and flaky builds on travis ci. In Proceedings of the 17th International
Conference on Mining Software Repositories, 2020.

[41] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous integration: improv-
ing software quality and reducing risk. 2007.

[42] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. Devops.
Software, 2016.

[43] Bradley Efron. How biased is the apparent error rate of a prediction rule? Journal
of the American statistical Association, 81, 1986.

[44] Joseph G Eisenhauer. Degrees of Freedom in Statistical Inference. Springer Berlin
Heidelberg, 2011.

[45] Holly Else, Jeffrey M Perkel, et al. The giant plan to track diversity in research
journals. Nature, 602, 2022.

[46] Andreas Erlandsson and Hannes Lantz. Improving feedback loop by two-step con-
tinuous integration.

[47] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac,
Wolfram Schulte, Newton Sanches, and Srikanth Kandula. Cloudbuild: Microsoft’s
distributed and caching build service. In Proceedings of the 38th International Con-
ference on Software Engineering Companion, pages 11–20, 2016.

[48] James D Fearon and David D Laitin. Violence and the social construction of ethnic
identity. International organization, 54, 2000.

[49] Wagner Felidré, Leonardo Furtado, Daniel A Da Costa, Bruno Cartaxo, and Gustavo
Pinto. Continuous integration theater. In International Symposium on Empirical
Software Engineering and Measurement, 2019.

[50] Denae Ford, Reed Milewicz, and Alexander Serebrenik. How remote work can foster
a more inclusive environment for transgender developers. In Proceedings of the 2nd
International Workshop on Gender Equality in Software Engineering, 2019.

[51] Denae Ford, Justin Smith, Philip J Guo, and Chris Parnin. Paradise unplugged:
Identifying barriers for female participation on stack overflow. In Proceedings of
the 24th SIGSOFT International symposium on foundations of software engineering,
2016.

117

[52] Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann,
Brian Houck, and Jenna Butler. The space of developer productivity: There’s more
to it than you think. Queue, 19(1):20–48, 2021.

[53] Roland G Fryer Jr and Steven D Levitt. The causes and consequences of distinctively
black names. The Quarterly Journal of Economics, 119, 2004.

[54] Keheliya Gallaba. Improving the Robustness and Efficiency of Continuous Integration
and Deployment. PhD thesis, McGill University, 3480 Rue University, Montréal, QC,
Canada, November 2021.

[55] Keheliya Gallaba, John Ewart, Yves Junqueira, and Shane Mcintosh. Accelerating
continuous integration by caching environments and inferring dependencies. Trans-
actions on Software Engineering, 2020.

[56] Keheliya Gallaba, Maxime Lamothe, and Shane McIntosh. Lessons from Eight Years
of Operational Data from a Continuous Integration Service: An Exploratory Case
Study of CircleCI. In Proc. of the International Conference on Software Engineering,
2022.

[57] Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh. Noise and
heterogeneity in historical build data: an empirical study of travis ci. In Proceedings
of the 33rd International Conference on Automated Software Engineering, 2018.

[58] Keheliya Gallaba and Shane McIntosh. Use and misuse of continuous integration
features: An empirical study of projects that (mis) use travis ci. IEEE Transactions
on Software Engineering, 46(1):33–50, 2018.

[59] Taher Ahmed Ghaleb, Daniel Alencar Da Costa, and Ying Zou. An empirical study of
the long duration of continuous integration builds. Empirical Software Engineering,
24, 2019.

[60] Taher Ahmed Ghaleb, Daniel Alencar Da Costa, Ying Zou, and Ahmed E Hassan.
Studying the impact of noises in build breakage data. IEEE Transactions on Software
Engineering, 47, 2019.

[61] Corrado Gini. On the measure of concentration with special reference to income and
statistics. Colorado College Publication, General Series, 208, 1936.

[62] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical regression test selec-
tion with dynamic file dependencies. In Proceedings of the International Symposium
on Software Testing and Analysis, 2015.

118

[63] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. On the rise and fall of ci services
in github. In 2022 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2022.

[64] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study of
the pull-based software development model. In Proceedings of the 36th international
conference on software engineering, 2014.

[65] Hannah Green. Disparity in discrimination: A study on the experience of minority
women in the workplace. 2017.

[66] Lucas Gren. On gender, ethnicity, and culture in empirical software engineering
research. In Proceedings of the 11th International Workshop on Cooperative and
Human Aspects of Software Engineering, 2018.

[67] Dale Griffin, Kai Li, and Ting Xu. Board gender diversity and corporate innovation:
International evidence. Journal of Financial and Quantitative Analysis, 56, 2021.

[68] Sarra Habchi, Guillaume Haben, Jeongju Sohn, Adriano Franci, Mike Papadakis,
Maxime Cordy, and Yves Le Traon. What made this test flake? pinpointing classes
responsible for test flakiness. In 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 352–363. IEEE, 2022.

[69] James A Hanley and Barbara J McNeil. The meaning and use of the area under a
receiver operating characteristic (roc) curve. Radiology, 143, 1982.

[70] Niels Richard Hansen and Alexander Sokol. Degrees of freedom for nonlinear least
squares estimation. arXiv preprint arXiv:1402.2997, 2014.

[71] Frank E Harrell et al. Regression modeling strategies: with applications to linear
models, logistic regression, and survival analysis, volume 608. 2001.

[72] Frank E Harrell Jr, Kerry L Lee, Robert M Califf, David B Pryor, and Robert A
Rosati. Regression modelling strategies for improved prognostic prediction. Statistics
in medicine, 3, 1984.

[73] Frank E Harrell Jr, Kerry L Lee, David B Matchar, and Thomas A Reichert. Regres-
sion models for prognostic prediction: advantages, problems, and suggested solutions.
Cancer treatment reports, 69, 1985.

119

[74] Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load index):
Results of empirical and theoretical research. In Advances in psychology, volume 52,
pages 139–183. Elsevier, 1988.

[75] Tawfiq Hasanin and Taghi Khoshgoftaar. The effects of random undersampling with
simulated class imbalance for big data. In international conference on information
reuse and integration (IRI), 2018.

[76] Foyzul Hassan and Xiaoyin Wang. Change-aware build prediction model for stall
avoidance in continuous integration. In Proceedings of the International Symposium
on Empirical Software Engineering and Measurement, 2017.

[77] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transac-
tions on knowledge and data engineering, 21, 2009.

[78] Runzhi He, Hao He, Yuxia Zhang, and Minghui Zhou. Automating dependency
updates in practice: An exploratory study on github dependabot. Transactions on
Software Engineering, 2023.

[79] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. The art of
testing less without sacrificing quality. In Proceedings of the 37th IEEE International
Conference on Software Engineering, volume 1, 2015.

[80] Michael Hilton, Nicholas Nelson, Danny Dig, Timothy Tunnell, Darko Marinov, et al.
Continuous integration (ci) needs and wishes for developers of proprietary code. 2016.

[81] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Us-
age, costs, and benefits of continuous integration in open-source projects. In Proceed-
ings of the 31st international conference on automated software engineering, 2016.

[82] Jez Humble and Joanne Molesky. Why enterprises must adopt devops to enable
continuous delivery. Cutter IT Journal, 24, 2011.

[83] Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, and Niko-
laos Tsantalis. Dependency smells in javascript projects. Transactions on Software
Engineering, 48, 2021.

[84] Ciera Jaspan, Matthew Jorde, Andrea Knight, Caitlin Sadowski, Edward K Smith,
Collin Winter, and Emerson Murphy-Hill. Advantages and disadvantages of a mono-
lithic repository: a case study at google. In Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice, pages 225–
234, 2018.

120

[85] Xianhao Jin and Francisco Servant. A cost-efficient approach to building in contin-
uous integration. In Proceedings of the 42nd International Conference on Software
Engineering, 2020.

[86] Xianhao Jin and Francisco Servant. Which builds are really safe to skip? maximizing
failure observation for build selection in continuous integration. Journal of Systems
and Software, 188, 2022.

[87] Xianhao Jin and Francisco Servant. Hybridcisave: A combined build and test selec-
tion approach in continuous integration. ACM Transactions on Software Engineering
and Methodology, 32(4):1–39, 2023.

[88] Leif Jonsson, Markus Borg, David Broman, Kristian Sandahl, Sigrid Eldh, and Per
Runeson. Automated bug assignment: Ensemble-based machine learning in large
scale industrial contexts. Empirical Software Engineering, 21, 2016.

[89] Md Mahir Asef Kabir, Ying Wang, Danfeng Yao, and Na Meng. How do devel-
opers follow security-relevant best practices when using npm packages? In Secure
Development Conference (SecDev), 2022.

[90] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. Ger-
man, and Daniela Damian. The promises and perils of mining GitHub. In Proceedings
of the 11th Working Conference on Mining Software Repositories, 2014.

[91] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German,
and Daniela Damian. An in-depth study of the promises and perils of mining github.
Empirical Software Engineering, 2016.

[92] Muhammad Shoaib Khan, Abudul Wahid Khan, Faheem Khan, Muhammad Adnan
Khan, and Taeg Keun Whangbo. Critical challenges to adopt devops culture in
software organizations: a systematic review. 2022.

[93] Gene Kim, Jez Humble, Patrick Debois, John Willis, and Nicole Forsgren. The De-
vOps handbook: How to create world-class agility, reliability, & security in technology
organizations. It Revolution, 2021.

[94] Ajiromola Kola-Olawuyi, Nimmi Rashinika Weeraddana, and Meiyappan Nagappan.
The impact of code ownership of devops artefacts on the outcome of devops ci builds.
In Proceedings of the 21st International Conference on Mining Software Repositories,
pages 543–555, 2024.

121

[95] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. Do developers update their library dependencies? an empirical study on the
impact of security advisories on library migration. Empirical Software Engineering,
23, 2018.

[96] Manish Kumar. The design and implementation of automated deployment pipelines
for amazon web services: Gitops practices in the context of ci/cd pipelines using
gitlab and infrastructure as code, 2024.

[97] J Richard Landis and Gary G Koch. The measurement of observer agreement for
categorical data. biometrics, 1977.

[98] Jasmine Latendresse, Suhaib Mujahid, Diego Elias Costa, and Emad Shihab. Not
all dependencies are equal: An empirical study on production dependencies in npm.
In 37th International Conference on Automated Software Engineering, 2022.

[99] Matthew Ryan Lavery, Parul Acharya, Stephen A Sivo, and Lihua Xu. Number of
predictors and multicollinearity: What are their effects on error and bias in regres-
sion? Communications in Statistics-Simulation and Computation, 48, 2019.

[100] Seonah Lee, Rongxin Wu, Shing-Chi Cheung, and Sungwon Kang. Automatic detec-
tion and update suggestion for outdated api names in documentation. Transactions
on Software Engineering, 47, 2019.

[101] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles. A
survey of devops concepts and challenges. Computing Surveys, 52, 2019.

[102] Marko Leppänen, Simo Mäkinen, Max Pagels, Veli-Pekka Eloranta, Juha Itkonen,
Mika V Mäntylä, and Tomi Männistö. The highways and country roads to continuous
deployment. Ieee software, 32(2):64–72, 2015.

[103] Jingyue Li, Nils B Moe, and Tore Dyb̊a. Transition from a plan-driven process to
scrum: a longitudinal case study on software quality. In Proceedings of the 2010
ACM-IEEE international symposium on empirical software engineering and mea-
surement, pages 1–10, 2010.

[104] Yuxin Liu, Deepika Tiwari, Cristian Bogdan, and Benoit Baudry. An empirical study
of bloated dependencies in commonjs packages. arXiv preprint arXiv:2405.17939,
2024.

122

[105] Ruth W Macarthy and Julian M Bass. An empirical taxonomy of devops in practice.
In 2020 46th euromicro conference on software engineering and advanced applications
(seaa), pages 221–228. IEEE, 2020.

[106] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. Predic-
tive test selection. In Proceedings of the 41st International Conference on Software
Engineering: Software Engineering in Practice, 2019.

[107] Christian Macho, Shane McIntosh, and Martin Pinzger. Predicting build co-changes
with source code change and commit categories. In 2016 IEEE 23rd international
conference on software analysis, evolution, and reengineering (SANER), volume 1,
pages 541–551. IEEE, 2016.

[108] Neda Maghbouleh, Ariela Schachter, and René D Flores. Middle eastern and north
african americans may not be perceived, nor perceive themselves, to be white. Pro-
ceedings of the National Academy of Sciences, 119, 2022.

[109] Rungroj Maipradit, Dong Wang, Patanamon Thongtanunam, Raula Gaikovina Kula,
Yasutaka Kamei, and Shane McIntosh. Repeated Builds During Code Review: An
Empirical Study of the OpenStack Community. In Proc. of the International Con-
ference on Automated Software Engineering, 2023.

[110] Gerald Matthews, Lucy Joyner, Kirby Gilliland, Sian Campbell, Shona Falconer,
Jane Huggins, et al. Validation of a comprehensive stress state questionnaire: To-
wards a state big three. Personality psychology in Europe, 7:335–350, 1999.

[111] Shane McIntosh, Bram Adams, Meiyappan Nagappan, and Ahmed E Hassan. Mining
co-change information to understand when build changes are necessary. In 2014 IEEE
International Conference on Software Maintenance and Evolution, pages 241–250.
IEEE, 2014.

[112] Shane McIntosh, Bram Adams, Meiyappan Nagappan, and Ahmed E Hassan. Iden-
tifying and understanding header file hotspots in c/c++ build processes. Automated
Software Engineering, 23:619–647, 2016.

[113] Shane McIntosh and Yasutaka Kamei. Are Fix-Inducing Changes a Moving Target?
A Longitudinal Case Study of Just-In-Time Defect Prediction. Transactions on
Software Engineering, 44, 2018.

123

[114] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. An empirical
study of the impact of modern code review practices on software quality. Empirical
Software Engineering, 21, 2016.

[115] Samim Mirhosseini and Chris Parnin. Can automated pull requests encourage soft-
ware developers to upgrade out-of-date dependencies? In 2017 32nd IEEE/ACM
international conference on automated software engineering (ASE), 2017.

[116] Kamla Modi, Judy Schoenberg, and Kimberlee Salmond. Generation stem: What
girls say about science, technology, engineering, and math. A Report from the Girl
Scout Research Institute. New York, NY: Girl Scouts of the USA, 2012.

[117] Hamid Mohayeji, Andrei Agaronian, Eleni Constantinou, Nicola Zannone, and
Alexander Serebrenik. Investigating the resolution of vulnerable dependencies with
dependabot security updates. In 20th International Conference on Mining Software
Repositories (MSR), 2023.

[118] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curating
github for engineered software projects. Empirical Software Engineering, 2017.

[119] Reza Nadri, Gema Rodriguez-Perez, and Meiyappan Nagappan. Insights into non-
merged pull requests in github: Is there evidence of bias based on perceptible race?
Software, 38, 2021.

[120] Reza Nadri, Gema Rodŕıguez-Pérez, and Meiyappan Nagappan. On the relation-
ship between the developer’s perceptible race and ethnicity and the evaluation of
contributions in oss. Transactions on Software Engineering, 48, 2021.

[121] Thiago Nicolini, Andre Hora, and Eduardo Figueiredo. On the usage of new javascript
features through transpilers: The babel case. IEEE Software, 2023.

[122] Doriane Olewicki, Mathieu Nayrolles, and Bram Adams. Towards language-
independent brown build detection. In Proceedings of the 44th International Confer-
ence on Software Engineering, pages 2177–2188, 2022.

[123] Helena Holmström Olsson, Hiva Alahyari, and Jan Bosch. Climbing the” stairway to
heaven”–a mulitiple-case study exploring barriers in the transition from agile develop-
ment towards continuous deployment of software. In 2012 38th euromicro conference
on software engineering and advanced applications, pages 392–399. IEEE, 2012.

124

[124] Marco Ortu, Giuseppe Destefanis, Steve Counsell, Stephen Swift, Roberto Tonelli,
and Michele Marchesi. How diverse is your team? investigating gender and na-
tionality diversity in github teams. Journal of Software Engineering Research and
Development, 5, 2017.

[125] Cong Pan and Michael Pradel. Continuous test suite failure prediction. In Proceedings
of the 30th SIGSOFT International Symposium on Software Testing and Analysis,
2021.

[126] Pierpaolo Parrotta, Dario Pozzoli, and Davide Sala. Ethnic diversity and firms’
export behavior. European Economic Review, 89, 2016.

[127] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. Vulnerable open source dependencies: Counting those that matter. In
Proceedings of the 12th International Symposium on Empirical Software Engineering
and Measurement, 2018.

[128] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. A qualitative study of dependency
management and its security implications. In Proceedings of the 2020 ACM SIGSAC
conference on computer and communications security, 2020.

[129] Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical
Transactions of the Royal Society of London. A, 185, 1894.

[130] Juanjo Pérez-Sánchez, Saima Rafi, Juan Manuel Carrillo de Gea, Joaqúın Nicolás
Ros, and José Luis Fernández Alemán. A theory on human factors in devops adop-
tion. Computer Standards & Interfaces, page 103907, 2024.

[131] Shaun Phillips, Thomas Zimmermann, and Christian Bird. Understanding and im-
proving software build teams. In Proceedings of the 36th international conference on
software engineering, pages 735–744, 2014.

[132] Gede Artha Azriadi Prana, Denae Ford, Ayushi Rastogi, David Lo, Rahul Puran-
dare, and Nachiappan Nagappan. Including everyone, everywhere: Understanding
opportunities and challenges of geographic gender-inclusion in oss. Transactions on
Software Engineering, 48, 2021.

[133] Daniel Preoţiuc-Pietro and Lyle Ungar. User-level race and ethnicity predictors from
twitter text. In Proceedings of the 27th international conference on computational
linguistics, 2018.

125

[134] Joseph Prusa, Taghi M Khoshgoftaar, David J Dittman, and Amri Napolitano. Using
random undersampling to alleviate class imbalance on tweet sentiment data. In 2015
IEEE international conference on information reuse and integration, 2015.

[135] Huilian Sophie Qiu, Alexander Nolte, Anita Brown, Alexander Serebrenik, and Bog-
dan Vasilescu. Going farther together: The impact of social capital on sustained
participation in open source. In Proceedings of the 41st international conference on
software engineering, 2019.

[136] Jon NK Rao and Alastair J Scott. The analysis of categorical data from complex
sample surveys: chi-squared tests for goodness of fit and independence in two-way
tables. Journal of the American statistical association, 76(374):221–230, 1981.

[137] Monique Ross, Zahra Hazari, Gerhard Sonnert, and Philip Sadler. The intersection
of being black and being a woman: Examining the effect of social computing rela-
tionships on computer science career choice. Transactions on Computing Education,
20, 2020.

[138] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem Mkaouer. Predict-
ing continuous integration build failures using evolutionary search. Information and
Software Technology, 128, 2020.

[139] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative
than the roc plot when evaluating binary classifiers on imbalanced datasets. PloS
one, 10, 2015.

[140] Mary Sánchez-Gordón and Ricardo Colomo-Palacios. Characterizing devops culture:
a systematic literature review. In Proceedings of the International Conference on
Software Process Improvement and Capability Determination, 2018.

[141] Livio Sansone. Blackness without ethnicity: Constructing race in Brazil. 2003.

[142] Lućıa Santamaŕıa and Helena Mihaljević. Comparison and benchmark of name-to-
gender inference services. PeerJ Computer Science, 4, 2018.

[143] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. Finding a”
kneedle” in a haystack: Detecting knee points in system behavior. In Proceedings of
the 31st international conference on distributed computing systems workshops, 2011.

[144] Carolyn B. Seaman. Qualitative methods in empirical studies of software engineering.
IEEE Transactions on software engineering, 25(4):557–572, 1999.

126

[145] Paul Sebo. Performance of gender detection tools: a comparative study of name-to-
gender inference services. Journal of the Medical Library Association: JMLA, 109,
2021.

[146] Mali Senapathi, Jim Buchan, and Hady Osman. Devops capabilities, practices, and
challenges: Insights from a case study. In Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software Engineering 2018, pages 57–
67, 2018.

[147] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. ifixflakies: A
framework for automatically fixing order-dependent flaky tests. In Proceedings of the
27th Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019.

[148] Ruben Blenicio Tavares Silva and Carla IM Bezerra. Analyzing continuous integra-
tion bad practices in closed-source projects: An initial study. In Proceedings of the
XXXIV Brazilian Symposium on Software Engineering, pages 642–647, 2020.

[149] Edward H Simpson. Measurement of diversity. nature, 163, 1949.

[150] Dustin Smith, Daniella Villalba, Michelle Irvine, Dave Stanke, and Nathen Harvey.
The accelerate state of devops report. 2019.

[151] César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, and Benoit
Baudry. The emergence of software diversity in maven central. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR), pages 333–
343. IEEE, 2019.

[152] César Soto-Valero, Thomas Durieux, and Benoit Baudry. A longitudinal analysis
of bloated java dependencies. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 2021.

[153] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. A com-
prehensive study of bloated dependencies in the maven ecosystem. Empirical Software
Engineering, 26, 2021.

[154] Charles Spearman. The proof and measurement of association between two things.
Appleton-Century-Crofts, 1961.

127

[155] Daniel St̊ahl and Jan Bosch. Experienced benefits of continuous integration in indus-
try software product development: A case study. In Proceedings of the 12th IASTED
International Conference on Software Engineering, 2013.

[156] Daniel St̊ahl and Jan Bosch. Industry application of continuous integration model-
ing: a multiple-case study. In Proceedings of the 38th International Conference on
Software Engineering Companion, 2016.

[157] Daniel St̊ahl, Antonio Martini, and Torvald Mårtensson. Big bangs and small
pops: on critical cyclomatic complexity and developer integration behavior. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Software Engi-
neering in Practice (ICSE-SEIP), pages 81–90. IEEE, 2019.

[158] Margaret-Anne Storey, Brian Houck, and Thomas Zimmermann. How developers and
managers define and trade productivity for quality. In Proceedings of the 15th In-
ternational Conference on Cooperative and Human Aspects of Software Engineering,
pages 26–35, 2022.

[159] Gengyi Sun, Sarra Habchi, and Shane McIntosh. Ravenbuild: Context, relevance,
and dependency aware build outcome prediction. Proceedings of the ACM on Software
Engineering, 1(FSE):996–1018, 2024.

[160] Xin Tan, Minghui Zhou, and Zeyu Sun. A first look at good first issues on github. In
Proceedings of the 28th Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020.

[161] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, Akinori Ihara, and
Kenichi Matsumoto. The impact of mislabelling on the performance and interpreta-
tion of defect prediction models. In Proceedings of the 37th International Conference
on Software Engineering, 2015.

[162] Josh Terrell, Andrew Kofink, Justin Middleton, Clarissa Rainear, Emerson Murphy-
Hill, Chris Parnin, and Jon Stallings. Gender differences and bias in open source:
Pull request acceptance of women versus men. PeerJ Computer Science, 3, 2017.

[163] Henri Theil. Economic forecasts and policy. 1961.

[164] Mohsen Vakilian, Raluca Sauciuc, J David Morgenthaler, and Vahab Mirrokni. Auto-
mated decomposition of build targets. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1, pages 123–133. IEEE, 2015.

128

[165] Roli Varma, John H Falk, and Lynn D Dierking. Challenges and opportunities: Asian
women in science, technology, engineering, and mathematics. American Behavioral
Scientist, 67, 2023.

[166] Bogdan Vasilescu, Andrea Capiluppi, and Alexander Serebrenik. Gender, representa-
tion and online participation: A quantitative study of stackoverflow. In Proceedings
of the International Conference on Social Informatics, 2012.

[167] Bogdan Vasilescu, Andrea Capiluppi, and Alexander Serebrenik. Gender, represen-
tation and online participation: A quantitative study. Interacting with Computers,
26, 2014.

[168] Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark GJ van den Brand, Alexander
Serebrenik, Premkumar Devanbu, and Vladimir Filkov. Gender and tenure diversity
in github teams. In Proceedings of the 33rd annual conference on human factors in
computing systems, 2015.

[169] Bogdan Vasilescu, Alexander Serebrenik, and Vladimir Filkov. A data set for social
diversity studies of GitHub teams. In Proceedings of the 12th Working Conference
on Mining Software Repositories, Data Track, MSR, 2015.

[170] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. Quality and productivity outcomes relating to continuous integration in
github. In Proceedings of the 10th joint meeting on foundations of software engineer-
ing, 2015.

[171] Carmine Vassallo, Sebastian Proksch, Harald C Gall, and Massimiliano Di Penta.
Automated reporting of anti-patterns and decay in continuous integration. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages
105–115. IEEE, 2019.

[172] Hernan C Vazquez, J Pace, Claudia Marcos, and Santiago Vidal. Retrieving
and ranking relevant javascript technologies from web repositories. arXiv preprint
arXiv:2205.15086, 2022.

[173] Yi Wang and David Redmiles. Implicit gender biases in professional software devel-
opment: An empirical study. In Proceedings of the 41st International Conference on
Software Engineering: Software Engineering in Society, 2019.

129

[174] Nimmi Weeraddana, Mahmoud Alfadel, and Shane McIntosh. Characterizing time-
out builds in continuous integration. IEEE Transactions on Software Engineering,
2024.

[175] Nimmi Rashinika Weeraddana, Mahmoud Alfadel, and Shane McIntosh.
Dependency-induced waste in continuous integration: An empirical study of unused
dependencies in the npm ecosystem. Proceedings of the ACM on Software Engineer-
ing, 1(FSE):2632–2655, 2024.

[176] Nimmi Rashinika Weeraddana, Sarra Habchi, and Shane McIntosh. Crash report pri-
oritization for large-scale scheduled launches. In Proceedings of the 46th International
Conference on Software Engineering: Software Engineering in Practice, 2025.

[177] Nimmi Rashinika Weeraddana, Xiaoyan Xu, Mahmoud Alfadel, Shane McIntosh,
and Meiyappan Nagappan. An empirical comparison of ethnic and gender diversity
of devops and non-devops contributions to open-source projects. Empirical Software
Engineering, 28(6):150, 2023.

[178] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu. A
conceptual replication of continuous integration pain points in the context of travis
ci. In Proceedings of the 27th Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, 2019.

[179] Anna Wiedemann and Manuel Wiesche. Are you ready for devops? required skill set
for devops teams. 2018.

[180] Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. Predicting build
failures using social network analysis on developer communication. In 31st interna-
tional conference on software engineering, 2009.

[181] Pavlina Wurzelová, Fabio Palomba, and Alberto Bacchelli. Characterizing women
(not) contributing to open-source. In 2019 IEEE/ACM 2nd International Workshop
on Gender Equality in Software Engineering (GE), 2019.

[182] Junting Ye, Shuchu Han, Yifan Hu, Baris Coskun, Meizhu Liu, Hong Qin, and Steven
Skiena. Nationality classification using name embeddings. In Proceedings of the on
Conference on Information and Knowledge Management, 2017.

[183] Zhou Yiran and Liu Yilei. The challenges and mitigation strategies of using devops
during software development, 2017.

130

[184] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Canfora, Har-
ald Gall, and Massimiliano Di Penta. An empirical characterization of bad practices
in continuous integration. Empirical Software Engineering, 25:1095–1135, 2020.

[185] Ahmed Zerouali, Tom Mens, Jesus Gonzalez-Barahona, Alexandre Decan, Eleni Con-
stantinou, and Gregorio Robles. A formal framework for measuring technical lag in
component repositories—and its application to npm. Journal of Software: Evolution
and Process, 31, 2019.

[186] Chen Zhang, Bihuan Chen, Junhao Hu, Xin Peng, and Wenyun Zhao. Buildsonic:
Detecting and repairing performance-related configuration smells for continuous in-
tegration builds. In Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, pages 1–13, 2022.

[187] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. The impact of continuous integration on other software development
practices: a large-scale empirical study. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 60–71. IEEE, 2017.

[188] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
Small world with high risks: A study of security threats in the npm ecosystem. In
USENIX security symposium, volume 17, 2019.

[189] Irit Zohar and Miriam Belmaker. Size does matter: methodological comments on
sieve size and species richness in fishbone assemblages. Journal of Archaeological
Science, 32, 2005.

131

	Examining Committee
	Author's Declaration
	Statement of Contributions
	Abstract
	Related Publications
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Statement
	Thesis Overview
	Tacit Inefficiencies in CI
	Tacit Barriers in CI

	Thesis Contributions
	Thesis Organization

	I Preliminaries
	Background
	CI Stakeholders
	CI Pipeline
	Chapter Summary

	Related Work
	Inefficiencies in CI
	Accelerating CI
	Barriers in CI
	Chapter Summary

	II Tacit Inefficiencies
	CI Timeouts
	Introduction
	Study Design
	(PS) Project Selection
	(DC) Data curation
	(MF) Model Fitting

	Study Results
	(RQ1) What is the prevalence of CI timeout builds?
	(RQ2) How well can our models explain the incidences of timeout builds?
	(RQ3) What are the most influential features of our models of timeout builds?
	Longitudinal Analysis
	Thematic Analysis

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Practical Implications
	Chapter Summary

	Unused-Dependency Updates
	Introduction
	Study Design
	(PS) Project Selection
	(DC) Data Curation

	Study Results
	(RQ1) What is the prevalence of CI waste due to unused dependencies?
	(RQ2) What are the main sources of CI waste due to unused dependencies?
	Mitigation of CI Waste Due to Updates to Unused Dependencies

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Practical Implications
	Chapter Summary

	III Tacit Barriers
	Diversity of DevOps Contributors
	Introduction
	Study Design
	(PS) Project Selection
	(DC) Data Curation

	Study Results
	(RQ1) Does the perceptible ethnic and gender diversity of DevOps contributors differ from that of non-DevOps contributors?
	(RQ2) How does the distribution of perceptible ethnic and gender diversity change as projects age?
	(RQ3) How does the intersection of perceptible gender and ethnic diversity differ between DevOps and non-DevOps contributors?

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Practical Implications
	Chapter Summary

	IV Final Remarks
	Conclusions and Future Work
	Contributions and Findings
	Future Work
	Develop approaches for predicting timeout builds
	Extend the scope of the impact of unused dependencies beyond CI build time
	Mitigate inefficiencies in CI due to smells in CI configurations
	Explore new business models for CI providers and project maintainers that benefit long-term sustainability
	Explore the challenges of DevOps contributors situated at the intersection of minority groups
	Explore tacit barriers faced by DevOps contributors beyond diversity and inclusion

	References

