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Abstract

Modern software development is a highly collaborative endeavour. Developers work in teams with
tens, if not hundreds, of people who are globally distributed. At the heart of developer collaboration
lies the process of code review, where fellow developers critique code changes to provide feedback to the
author. Unlike the rigid formal code inspection process, which includes in-personmeetings, the modern
variant of code review provides developers with a lightweight, tool supported, online collaboration en-
vironment, where code changes are discussed. However, the existence of Modern Code Review (MCR)
tools does not guarantee a smooth collaborative process that generates more value than cost. Indeed, the
investment of developer effort in code reviewing is a key software development cost that needs to be spent
efficiently and effectively.

Intelligent MCR investment decisions need to be made at the level of organizations and individuals.
Thus, in this thesis, we set out to support team and individual code reviewing investment decisions. First,
to support decisions about the content of code reviewing feedback, we train and analyze topic models of
248,695 reviewer comments from one open source community and one proprietary organization. We ob-
serve that more context-specific, technical feedback is being raised as the studied organizations have aged
and as the reviewers within those organizations accrue project-specific experience. These topic models
can be used to track organizational and individual feedback trends, and whether those trends align with
respect to organization and individual reviewing goals.

Next, we set out to support individual decisions about which review requests require additional effort.
Since patches that impactmission-critical project deliverables or deliverables that cover a broad set of prod-
ucts should involvemore reviewing investment than others, we propose BLIMPTracer—an impact anal-
ysis tool that pinpoints which deliverables are affected by given code changes. To evaluate BLIMPTracer,
we deploy a prototype implementation of it at a large multinational software organization, and conduct
a qualitative empirical study with the developers from that organization. We observe that BLIMPTracer
not only improves the speed and accuracy of identifying the set of deliverables that are impacted by a
patch, but also helps the newmembers of the organization to better understand the project architecture.
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Résumé

Le développement moderne de logiciels est un effort hautement collaboratif. Les développeurs tra-
vaillent en équipe avec des dizaines, voire des centaines, de personnes réparties dans le monde entier.
Au cœur de la collaboration avec les développeurs se trouve le procédé de revue de code, où d’autres
développeurs critiquent les changements apportés au codepour fournir des commentaires à l’auteur. Con-
trairement au processus rigide d’inspection de code formelle, qui inclut des réunions en personne, la vari-
antemoderne de l’examen de code fournit aux développeurs un environnement de collaboration en ligne,
où les modifications de code sont discutées. Cependant, l’existence d’outils de Revue de Code Moderne
(RCM) ne garantit pas un processus collaboratif fluide qui génère plus de bénéfices que de coûts. En effet,
l’investissement de l’effort de développement dans la révision de code est un coût clé de développement
de logiciel qui doit être dépensé efficacement.

Les décisions d’investissement intelligentes du RCM doivent être prises au niveau des organisations et
des individus. Ainsi, dans cette thèse, nous avons décidé de soutenir des décisions individuelles et organi-
sationnelles d’investissement de la revue de code. Tout d’abord, pour soutenir les décisions concernant le
contenu des commentaires dans la revue de code, nous formons et analysons des modèles de sujets de 248
695 commentaires de réviseurs provenant d’une communauté open source et d’une organisation proprié-
taire. Nous observons que des commentaires techniques plus spécifiques au contexte sont soulevés au
fur et à mesure que les organisations étudiées ont vieilli et que les évaluateurs au sein de ces organisations
accumulent une expérience spécifique au projet. Ces modèles de sujets peuvent être utilisés pour suivre
les tendances de la rétroaction organisationnelle et individuelle, et si ces tendances s’harmonisent avec les
objectifs de la revue de code des l’organisation et l’individuels.

Ensuite, nous avons décidé de prendre en charge des décisions individuelles concernant les requêtes
de revue de code requièrent des efforts supplémentaires. Puisque les correctifs qui impactent les livrables
de projet critiques ou les livrables qui couvrent un large éventail de produits devraient impliquer plus
d’investissements de révision que d’autres, nous proposons BLIMP Tracer—un outil d’analyse d’impact
qui identifie les livrables affectés par des changements de code donnés. Pour évaluer BLIMP Tracer,
nous déployons un prototype dans une grande entreprise de logiciels multinationale, et menons une
étude empirique qualitative avec les développeurs de cette organisation. Nous observons que BLIMP
Tracer améliore non seulement la rapidité et la précision de l’identification de l’ensemble des livrables im-
pactés par un correctif, mais aide également les nouveauxmembres de l’organisation àmieux comprendre
l’architecture du projet.
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1
Introduction

Modern software development is more than a personal struggle. It is not uncommon to have

hundreds of developers working together on one complex software system. For example, 1,681 active de-

velopers from 225 companies collaborated to develop version 4.13 of Linux Kernel in 2017 [23]. Each indi-

vidual developer is unlikely to understand every aspect of the complex software system. Hence, developer

collaboration is necessary and challenging.

Code review is a mechanism that enables and enriches collaboration. Developers first write patches

that implement new features or fix defects, then ask relevant reviewers to provide feedback or approve

their patches. Code patches written by individual developers are peer-reviewed before integrating with

the software system, which ensures a quality collaboration among a large base of developers.

Unlike the rigid code inspections of the past [27], themodern variant of code review uses tools to facili-

tate the need of a lightweight, online developer collaboration environment. Because of the light overhead,

Modern Code Review (MCR) has been widely adopted by proprietary and open-source organizations
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that have large teams for software development.

However, themere existence ofMCRdoes not guarantee a well-managed developer collaboration pro-

cess. To truly improve the quality of a patch, reviewers must consider the potential implications of the

patch and engage in a discussion with the author. Prior work shows that a lack of reviewer participation

is correlated with a drop in software release quality [49, 70] and a drop in design quality [52]. Indeed, lax

code reviews may allow poor quality code to slip through to official software releases, affecting customer-

visible software quality negatively in large systems [48].

1.1 Problem Statement

Although MCR tools provide easy-to-use platforms for teams to collaborate in developing large scale

software systems, they lack information that would help stakeholders to make pragmatic decisions about

where to invest their time and effort.
Thesis statement: Data about the content of past code reviews and the impact that a patch has on a

software system can help stakeholders to make more effective effort-allocation decisions.
To ensure a quality code review process, developers andmanagers should invest their resources efficiently

and effectively. Bosu and Carver [16] find that developers spend an average of six hours per week review-

ing code. Since spending equal amount of time to review each patch is not optimal, a busy developer

should use available information to decide the priority of her backlogged patches for reviewing. From

a team or organizational perspective, code reviewers and managers need to know how code reviews are

being performed so that they can assess progress with respect to personal and community goals, and even

guide future decisions. Since current code review tools do not provide the necessary information to sup-

port these use cases, in this thesis, we set out to provide frameworks for supporting (1) team awareness of

code reviewing focus, and (2) individual decisions about which review requests require additional effort.

1.2 Thesis Overview

We now provide a brief overview of the thesis. Figure 1.1 provides an overview of the scope of this thesis.

First, we provide the necessary background for our topic.
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(e.g., catching defects early) and non-technical (e.g., promote knowledge transfer). Rigby and Bird [61]

found that the focus of code review has shifted from being on defect hunting to collaborative problem

solving. Indeed, recent work has reported that roughly 75% of the issues that are uncovered [45] and

fixed [11] during code review do not alter system behaviour, instead aiming to improve system maintain-

ability. However, little is known about how reviewing feedback—a primary value-generating artifact of

the code review process—changes as a software community and its stakeholdersmature. In this thesis, we

perform an empirical study that focuses on the evolution of code review feedback topics.

Chapter 4: Topics of Code Reviewing Feedback

While recent research analyzes the problems that are raised and fixed during code review,

little is known about how reviewing feedback evolves as a software community ages and as

reviewers accrue experience. To help teamsmake resource investment decisions based on the

past trends of code review, we conduct a longitudinal study of 39,249 reviews that contain

248,695 review comments from a proprietary project that is developed by Dell EMC and

the OpenStack Nova open source project.

1.2.2 Personal Resource Investment

Rigorous code review introduces an overhead on developers, whose time is a limited and valuable com-

modity. The time spent reviewing code is an expensive context switch away from other important de-

velopment tasks (e.g. repairing and improving code). Making matters worse, patch authors at Microsoft

report that an average of 35% of code review comments are not useful [17], suggesting that a large propor-

tion of reviewing time may be misspent generating feedback that is not valuable.

Since some changes are of greater risk than others, some patches will require a more rigorous review

than others. Czerwonka et al. [25] argue that spending an equal amount of reviewing effort on all code

patches is a suboptimal use of development resources. Currently, to reducewaste in the reviewing process,

developers use their intuition and their past experience to decide which patches require detailed feedback.

However, knowing which patches require more reviewing attention than others is a difficult problem for

code authors and reviewers alike.

4



Chapter 1

Chapter 5: BLIMP Tracer: Build Impact Analysis for Code Review

To help reviewers make pragmatic decisions about where to invest reviewing effort, we devel-

oped Build Impact (BLIMP) Tracer, an impact analysis system that we integrated with the

code review platform at Dell EMC. Unlike traditional change impact analysis [5], BLIMP

Tracer operates on a Build Dependency Graph (BDG) that describes how each file in the

system is processed to produce the set of intermediate and output deliverables. To evaluate

BLIMP Tracer, we conduct a qualitative study with Dell EMC developers. We solicit feed-

back from participants during their use of BLIMPTracer, and compare it with their current

style of conducting impact analysis on patches.

1.3 Thesis Contributions

This thesis shows that:

• The change of reviewingbehaviour of a code review community often coincideswithproject events

(Chapter 4).

• Experienced reviewers who mature in different code reviewing communities focus on different

topics according to project needs (Chapter 4).

• BLIMPTracer not onlymade build impact analysis on code patches faster, but also vastly improves

the depth and breath of impact analysis when compared to traditional methods (Chapter 5).

• BLIMPTracer can also help to onboard new developers by helping them to better understand the

system architecture (Chapter 5).

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background knowledge and def-

initions of key terms. Chapter 3 surveys research related to allocation of resources in code reviewing en-

vironments. Chapter 4 presents the result of an longitudinal study that reveals trends of code reviewing

5
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feedback that help teams make collective investment decisions. Chapter 5 presents the design, deploy-

ment, and evaluation of BLIMP Tracer, our proposed impact analysis tool that integrates with code re-

view platforms. Finally, Chapter 6 draws conclusion and discusses paths for future work.
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2
Background

We use the term code review to refer to the activity where peer developers review patches and provide

feedback to the author. In this chapter, we describe an overview of the code review process. Since we

analyze and improve code review systems from theOpenStack andDellEMCcode review repositories,

we focus on describing the process of their corresponding code review processes, which are enabled by

Gerrit* and Review Board.†

2.1 The Code Review Process

Code review is a key softwarequality assurancepractice,where fellowdevelopers (reviewers) inspect changes

to a codebase and provide feedback to the author. The broadly adopted contemporary variant of code

review is tool-based and tightly integrates with the software contribution management process [12].
*https://www.gerritcodereview.com/
†https://www.reviewboard.org/
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based on the areas of the code base that were modified. However, Review Board prompts the au-

thor to confirm or replace those reviewers.

2. The servers perform automatic verification as sanity check.

As a part of Continuous Integration (CI), the servers of the OpenStack community and Dell

EMC initiate automated verification of the change to check for blatant mistakes (e.g., the codebase

no longer compileswhen the change is applied or incorrect formatting) before reviewerswaste their

time checking changes that are not ready for feedback. Normally, only when the code passes the

automatic checks will reviewers begin their inspections.

3. Relevant reviewers are notified.

The selected reviewers receive review requests, and should they accept, can begin their reviews of

the patch. At the same time, they can decide to invite other developers to participate in the code

reviewing process.

4. The reviewers inspect the changes and initiate discussion.

Reviewers inspect the changes with respect to the previous versions of the system and provide feed-

back to the author. TheGerrit and Review Board web interfaces are designed to encourage review-

ers to provide inline comments, i.e., comments that correspond directly to lines within the change.

Figure 2.2 provides an example of two inline review comments. Reviewers may also write general

discussion comments (non-inline) that summarize the inline comments, and provide further justi-

fication for their opinions, or further comment on the general content or form of the patch.

In Gerrit, once reviewers finish with writing comments, they may provide a review score from -2

to +2 to indicate support for acceptance (positive values), support for rejection (negative values),

or abstention (zero). On the other hand, core Review Board reviewers can assign ‘Ship it!’ labels

to the patches that they deem ready to be integrated. The authormay discuss with the reviewers by

either replying to the inline comments or replying in the general discussion thread. If the code is not

accepted for integration (e.g., due to insufficient support from reviewers or automatic verification

failure), the author will need to improve the change by addressing the raised issues. After updating

9
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the change, the author will upload a new revision of the change to Gerrit for another round of

review.

5. Integrate the approved code.

If the patch receives +2 scores (Gerrit) or ‘Ship it!’ labels (ReviewBoard) from twomembers of the

core team, it will be approved for integration into the main project repository. If any of the steps

2–4 fail, the patch returns to the author, whomay revise the patch by addressing the feedback, and

then the process repeats from step 2 onward.

2.2 Chapter Summary

This chapter provides some background knowledge of the code reviewing process. More specifically, we

introduce the two largely similar code review processes that are used by theOpenStack community and

the Dell EMC organization. In our experience, the process of code review is largely similar in other

installations (e.g. Qt [48] and Sony Mobile [67]), setting aside some minor customization details.

In the next chapter, we survey prior research on understanding and improving code review in order to

situate our empirical studies of investment of resources in code review with respect to the broader body

of knowledge.
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3
Related Work

In this chapter, we survey the related work on analyzing and improving code review. In addition, we

include past studies that motivate us to use specific techniques in each of our two empirical studies.

3.1 Team Resource Investment

Past data from code review systems are needed to help teams manage their reviewing effort investment.

The proliferation of code review data, and tools for analyzing it, havemade several recent studies possible.

Several papers have shared data sets of (and tools for interfacingwith)Gerrit repositories [53, 32, 83]. Since

these data sets can be quite large and difficult to understand, tools like ReDA [76] and Bicho [30] aim to

support analysts inmining review data. In the same spirit of openness, we havemade all the relevant data

retrieved from the open-source project, OpenStack Nova, available online.

Code review ismore than an exercise in defect hunting. Code review also serves as a platform for knowl-

edge transfer, and collaborative problem solving [6]. Rigby and Storey [63] analyzed interactions in code

11
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review processes of five open source systems and found that in addition to defect prevention, developers

also talk about features, scope, and process issues. Baysal et al. [10] performed an empirical study on We-

bKit, and found the developer’s affiliated organization and level of participation influence the outcome of

code review. Jiang et al. [36] analyzed eight years of patch review data from the Linux kernel mailing list,

and found that while the reviewing time becomes shorter, the time for integration becomes longer. Tsay

et al. [77] analyzedGitHub pull requests and showed that although some third-party developers’ patches

are rejected after discussion, core developers often extract the ideas from the discussion and re-implement

the rejected patches by themselves. Mäntylä and Lassenius [45] and Beller et al. [11] found that review

discussions raise and fix three maintainability issues for every functional issue. Similar to prior work, in

Chapter 4, we also analyze the rich data that is stored in code reviewing archives; however, we set out to

better understand how the reviewing feedback that is generated changes as communities and reviewers

mature.

Reviewer experience is a crucial factor that affects the value that is derived from review comments. Bac-

chelli and Bird [6] analyzed code review comments atMicrosoft, and report thatmore a priori knowledge

of the code triggers more valuable feedback. Bosu et al. [17] analyzed the usefulness of 1.5 million review

comments in Microsoft, and found that reviewers make more useful comments when they have worked

forMicrosoft for a longer period of time. Rigby et al. [62] examined 25 open source software projects and

found that people withmore expertise in code review are the ones who provide context-specific feedback.

Di Biase et al. [26] manually analyzed 185 security issues by backtracking them to the code review stage.

They found that reviews thatwere conducted by two ormore reviewers tend to bemore successful at find-

ing security issues. Since the prior work demonstrates that reviewing expertise is a key skill, in Chapter 4,

we study how reviewing feedback changes as reviewers accrue experience.

To ensure that reviewers who have the right expertise are invited to review, recent work proposes ap-

proaches to recommend reviewers. These approaches derive recommendations using the history of the

code [8, 75, 72], reviewer profiles [84, 59], and the textual content of patches [81]. In Chapter 4, instead

of recommending reviewers, we advocate for the use of topic models to track trends in community and

reviewer activity. The eventual goal is to help teams better manage their focus on the collective goals on
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their projects.

Recently, there have been studies on different types of code review comments. Pangsakulyanont et

al. [56] used semantic similarity to group 72,000 review comments into different topics, and found that

code review comments are often unrelated to defect prevention, with some of them discussing trivial is-

sues. Kononenko et al. [40] used the SZZ algorithm [68] to detect that 54% of the reviewed changes

in Mozilla are bug inducing, concluding that code reviewers tend to miss bugs. Kononenko et al. [39]

also surveyed 88 coreMozilla developers and found that review quality is mainly associated with the thor-

oughness of the feedback. Moreover, reviewers find it difficult to maintain their technical skillset for

writing high-quality reviews. Norikane et al. [54] claimed that different kinds of code review feedback af-

fect the willingness of a volunteer contributor to engage in open source software. Zhu et al. [87] showed

that improving code review management, e.g., providing clearer guidelines for reviewers, will make code

contribution more efficient in software projects. We believe that topic models are a viable approach to

support a community and reviewer analytics dashboard thatwould enable a data-driven approach to code

review management.

3.1.1 Topic Modelling

Topic modelling has been used in various experiments that appear in the software engineering literature

in the recent years. Xia et al. [82] used topic modelling to automatically recommend tags to describe

the most important features of posted content or projects. Zhao et al. [86] used LDA to extract topics

from discussions involving bug fixes in five open source projects, and explore the relation between the

frequency of discussion and bug reworking. Maskeri et al. [46] used LDA to extract business topics from

identifiers and comments in source code. In Chapter 4, we use LDA to extract and identify topics from

code review comments.

In addition to identifying topics from a text corpus, previous work has also focused on the analysis

of the trends that are shown in topics. Barua et al. [9] used LDA to extract topics from StackOverflow,

a popular Q&A forum, and identified the changes of technical topics and programming language over

time. Linstead et al. [43] applied LDA on source code and investigate the evolution of programming
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concepts from smaller code bases to larger ones. Hindle et al. [34] applied topic models on developer

communication corpora within pre-defined time windows, and visualize the topics and their trends over

time according to those windows. We focus on the changes of topic choices with respect to time and

developer experience.

Since topic modelling is widely used in software engineering research, previous literature has pointed

out issues and suggested different ways to tackle them. Chen et al. [22] surveyed 167 software engineering

papers that use topic modelling techniques for different purposes. They pointed out common pitfalls,

such as issues in interpretation andparameter settings. They suggest that software engineering researchers

should keep up with the machine learning community to avoid well-known pitfalls while applying topic

modelling techniques. Hindle et al. [33] surveyed developers and projectmanagers, asking themhow they

interpret topics that were generated by topic models. They found that the level of difficulty for interpre-

tation differs across topics. We recognize the importance of topic model construction and validation by

using work from the natural language processing community [21, 85] to support us when training our

models.

3.2 Personal Resource Investment

Understanding the architecture of the software system is crucial as software defectsmay often be related to

incorrect dependencies. Seo et al. [66] studied 26.6million builds at Google and observe thatmost of the

build failures are associatedwith dependencies (i.e., design or architectural-level component interactions).

Indeed, Paixao et al. [55] revealed that developers are generally not aware of architectural changes. They

analyzed code review data from four open source systems in conjunction with their commits, and found

that only 38% of time do developers discuss the impact of their changes on the architectural structure. To

aid in exposing developers to the higher level impact of their changes, in Chapter 5, we propose BLIMP

Tracer, a build impact analysis tool that plugs into the code reviewing interface. The long term vision of

BLIMP Tracer is to improve software quality by more clearly explaining to developers what the impact

of their patches are. Armed with that clearer understanding, reviewers and testers can focus their effort

more effectively.
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3.2.1 Build Impact Analysis

We derive the definition of build impact analysis from that of change impact analysis. Change Impact

Analysis (CIA) refers to the efforts to identify the potential consequences of a change to a software sys-

tem [5]. Similarly, build impact analysis finds the consequence of a change with regard to build system

inputs (source code, data files) and outputs (project deliverables, products).

Researchers have exploredways to conduct CIA for software in different languages and at various gran-

ularity levels. Ren et al. [60] designed Chianti, which uses the interdependent changes’ history to deter-

mine change impact for Java programs. Apiwattanapong et al. [4] introduced an algorithm that uses a

small amount of dynamic information to efficiently analyze change impact at the level ofmethods. Gyori

et al. [31] proposed an algorithm that uses equivalence relations to discover change impact at the level of

statements. Li et al. [42] surveyed 30 academic publications and found that although CIA is increasingly

crucial in software maintenance, most of the proposed tools in academia are yet to be applied in industry.

To bridge the gap, in Chapter 5, we describe an impact analysis tool (BLIMP Tracer) that we developed

and integrated with a production code reviewing environment in industry.

Researchers have proposed techniques to analyze data in previous studies with respect to impact anal-

ysis and build system analysis. Breech et al. [18] used static analysis to estimate the influence of a change

by considering scoping, function signatures, and global variable accesses. Canfora and Cerulo [19] used

information retrieval algorithms to link the text-based change request description and the code entities

impacted by the change. Jashki et al. [35] proposed an impact analysis technique that creates clusters of

closely associated files by mining their co-modification history in version control systems. Tamrawi et

al. [69] proposed SYMake, an infrastructure and tool that evaluates Makefiles symbolically, and used it

to detect code smells and errors. Al-Kofahi et al. [3] developed MkDiff to detect changes to a Makefile

at the semantic level. Adams et al. [1] designed MAKAO, a tool for visualizing, querying, refactoring,

and validating build dependency graphs through parsing build logs. BLIMP Tracer combines impact

and build system analyses by providing build impact analysis report based on information retrieved from

build data in the past.
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3.3 Chapter Summary

In this chapter, we surveyprior researchwith respect to teamandpersonal code reviewing resource investment—

the two key themes of this thesis. We find that although researchers have analyzed code reviewing be-

haviour to make teams and developers’ reviewing effort investment more efficient, they have yet to incor-

porate natural language processing or impact analysis techniques to do so.

In the following chapters, we describe our empirical studies that use these two techniques to bridge

the gaps in the literature. We begin, in the next chapter, by studying the evolution of code reviewing

feedback, and how it can be used to support team decisions about where to invest code reviewing effort.
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4
Evolution of Code Reviewing Feedback

4.1 Introduction

Code review is a process whereby fellow developers inspect code changes and provide feedback to

the author. Code review is a valuable mechanism that software teams use to improve software quality.

Recently, software teams have begun to adopt tools that are developed specifically for managing the code

review process. These tools support remote, online code reviews, storing the generated data in a code

review database.

Unlike the rigid code inspections of the past [27], the modern variant of the code review process is

informal; however, review discussions are still a rich source of information about the evolution of the sys-

tem under review. Bacchelli and Bird [6] found that motivations for code review are both technical (e.g.,

catching defects early) and non-technical (e.g., promote knowledge transfer). Rigby and Bird [61] found

that the focus of code review has shifted from being on defect hunting to collaborative problem solving.
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Indeed, recent work has reported that roughly 75% of the issues that are uncovered [45] and fixed [11]

during code review do not alter system behaviour, instead aiming to improve system maintainability.

The value that is derived from a code review process is dependent on the investment that reviewers

make when reviewing. For example, McIntosh et al. [48] found that the mere existence of a code review

(i.e., code review coverage) shares a weaker linkwith post-release software quality thanmeasures of review

participation do. Thongtanunam et al. [74] found that reviews with poor participation can be explained

using characteristics of the change, its author, and its reviewers.

Little is known about how reviewing feedback—a primary value-generating artifact of the code review

process—changes as a software community and its stakeholders mature. Understanding how reviewing

feedback evolvesmay help software project teams to reduce the ramp-up time of newcomers to their com-

munities.

In this chapter, we perform a longitudinal study of code review feedback in two large, rapidly evolv-

ing software communities. Our data set is comprised of a corpus of 248,695 reviewer comments from

39,249 changes that we extract from two projects that are developed by the Dell EMC (proprietary) and

OpenStack (open source) communities. We train and analyze topic models using Latent Dirichlet Al-

location (LDA) for each of the studied projects. Thesemodels show that context-specific, technical issues

(e.g., configuration and API-related topics) are more frequently discussed than formatting issues (e.g.,

whitespace and spelling errors) overall in both communities. We then use the topic models to perform a

longitudinal study, which addresses the following two research questions:

RQ1. How does the popularity of code review topics change as a community ages?

Motivation: Developers discuss different topics in different phases of the evolution of a project.

Prior work [63, 77] has analyzed the content of code review discussions. However, little is known

about how this content changes as a software community matures. For example, after introspec-

tion, a community may adjust code review focus to address its perceived shortcomings. Alterna-

tively, as time passes, a community may tacitly degrade in its code reviewing focus. Thus, we are

interested in how the content of review discussions change as a software community matures.

Results: Our topic modelling approach can reveal interesting trends in the reviewing behaviour
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of a community. Topics related to exception handling and object oriented design concerns have be-

come significantly less prevalent as the Nova project has aged. Conversely, context-specific, tech-

nical feedback has become more prevalent in both studied projects. We also observe interesting

changes of trends for code review process, logging and user-facing error messages, and object-oriented

design topics in the Dell EMC project between late-2015 and early-2016, which coincides with a

large change in team composition.

RQ2. How does the popularity of code review topics change as reviewers accrue experience?

Motivation: It is often expected that novice reviewers focus on generic flaws in the code (e.g., code

style), while themore experienced reviewers produce reviews that aremore context-specific. A soft-

ware community is made up of developers who are (ideally) learning from their past experiences

and improving. Prior work [17, 39, 62] has pointed out that the more experienced reviewers are

often the authors of high-quality review comments. In this research question, we set out to gain

a better understanding of how reviewers change their reviewing focus as they accrue experience.

Results: Our topic models also yield interesting trends in reviewing behaviour as reviewers ac-

crue experience. The more experienced reviewers in both studied projects tend to focus more

on context-specific, technical feedback, suggesting that their reviewing skills are honed to provide

feedback with a greater return on investment as they accrue experience within the teams. In addi-

tion, we observe trends that coincide with team focus. For example, our Dell EMC topic models

shows that as reviewer experience grows, so does the amount of code style feedback. This coincides

with a concerted effort that seniorDell EMCdevelopers havemade to provide code style feedback

to help to onboard a recent influx of new developers.

Our topic models lay the groundwork for an analytics system that could be used to monitor trends in

reviewing focus. The proposedmeasures that we extract from topicmodels could be trackedwith respect

to community and/or personal goals.

19



Chapter 4

Table 4.1: An overview of the studied projects.

Project Scope # Changes # Comments Time
OpenStack Nova Provisioning man-

agement for Open-
Stack

26,547 154,171 2011.09–2018.01

Dell EMC Project Enterprise data
backup & recovery
solution

12,702 94,524 2013.09–2017.09

Total - 39,249 248,695 -

4.1.1 Chapter Organization

The remainder of this chapter is organized as follows. Section 4.2 describes the design of our case study.

Section4.3 discusses the overall prevalence of the extracted topics in the data set, while Section4.4presents

the results of our longitudinal study with respect to our two research questions. Section 4.5 discusses the

broader implications of our results. Section 4.6 describes the threats to the validity of our study. Finally,

Section 4.7 draws conclusions.

4.2 Case Study Design

In this section, we describe the design of our case study. First, we provide our rationale for selecting the

OpenStack Nova and Dell EMC projects as subjects for our study (Section 4.2.1). Next, we explain

how we extract and preprocess the data (Section 4.2.2). Finally, we describe our approach to training the

topic models that we use to address our research questions (Section 4.2.3).

4.2.1 Studied Communities

We choose to study projects in the OpenStack and Dell EMC communities because we want to per-

form a case study on large, widely-used and rapidly-evolving software with a globally distributed devel-

opment community. Table 4.1 provides an overview of the studied projects. In total, we analyze 39,249

changes that contain 248,695 review comments.

As a cross-companyopen source community,OpenStackhas a vested interest in improving their code

review process. In the past, researchers have recognized the value of the data from the OpenStack com-
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API.†

We further filter both sets of comments to remove those that were produced by bots (e.g., integration

and testing bots) and replies that were written by the authors of the changes themselves. After applying

these filters, our data set contains only the comments that were written by the reviewers of each change.

In order to mitigate the impact of noise on our topic models, we identify whether the comments are

natural language or code by using NLoN, an R package that determines whether a document is natural

language using machine learning algorithms [44]. After that, we apply standard text preprocessing tech-

niques [37] to each document of inline comments. We first remove URLs, non-alphabet characters, and

convert words to lower case. Then, we remove stop words—the most common English words that add

little lexical meaning (e.g., the, a, be). We use the list of stop words from the RANKS NL Page Ana-

lyzer,‡ a widely-used list in Search Engine Optimization (SEO), which includes 173 generic prepositions,

pronouns, verbs, and adjectives. Finally, to minimize the effect of conjugation and synonyms, we apply

lemmatization to each token of the comment corpus. Lemmatization maps different conjugated forms

of a word to their base form according to its part-of-speech tag. We use lemmatization instead of stem-

ming approaches (e.g., Porter Stemmer [58]), since lemmatization tends to preserve more of the original

meaning of the word [37].

4.2.3 Topic Modelling

Topic models are a type of statistical model that discover latent topics in a corpus of text documents. In

our research setting, our corpora are comprised of documents of comments that we extract from the code

review databases of the OpenStackNova andDell EMC communities. We use Latent Dirichlet Allo-

cation (LDA) [15] to automatically detect the latent topics in the preprocessed review comment corpus.

Researchers have developed several topic modelling techniques for different goals [41, 71]. LDA meets

our research goal, as it groups discussion topics in natural language text documents [15].
†https://review.openstack.org/Documentation/rest-api.html
‡https://www.ranks.nl/stopwords
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w in topic t (β= P(w|t)). In theMALLET implementation of LDA, α and β can be initialized at random

and automatically tuned via a re-sampling process; however, aK value must be provided a priori.

With a K value that is too large, topics may become fragmented and lose their semantic meaning. On

the other hand, with aK value that is too small, topicsmay become tangled and containmore than a single

semantic meaning. Indeed, selecting the correct value for K is an important step in the LDA modelling

process, but is still an open research problem [22].

Agrawal et al. [2] suggest that since parameters widely affect the stability of topic models, they should

be tuned independently for topic models built for different corpora. We tune the parameters in aiming

to produce a topic model that has high stability, i.e. future researchers can easily reproduce a similar topic

model using our data set. In order to acheive model stability, we first train models with K = [10..50]

five times with randomly initialized α and β values. Then, for each set of models with the same K value,

we calculate the Rn, i.e., the median number overlaps of size n words. Rn is a metric that measures the

cross-run similarity of topics [2]. More specifically, Rn is the median number of occurrences of n terms

appearing in all the topics in all runs.

Figure 4.2 shows the Rn values for each set of topics trained using different K values. We observe that

the Rn curves are the highest when K= 10 for both studied projects, i.e., the K= 10 set of topic models

share themost similaritywith each other, and are hence themost stable. Therefore, weuse a configuration

ofK= 10 for the remainder of our analyses.

Output of LDA

Once trained on our preprocessed data, LDA outputs a set of topics that contain statistical distributions

of words in the corpus. The words with higher probability scores often correspond to a high-level con-

cept. For example, if the words with the highest probability scores in a topic are “log”, “message”, “error”

and “debug”, this indicates that (1) these words co-occur frequently in documents of the corpus and (2)

they likely fit a similar high-level concept. In this case, we suspect that the topic is related to logging and

exception handling, and label the topic as such.

LDA also generates a distribution of topic membership scores for any given document. More specif-
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Table 4.2: Amap between the topics’ indices, their labels, and their topic share values.

Theme OpenStack Nova Share Dell EMC Project Share

Context Specific

Volumes and Storage
Management

6.1 File Locations 4.5

Provisioning Decision
Making

4.4 Project Configuration 6.5

Virtual Machine 5.1 Project Terminology 8.8
API Issues 10.5

Exception Handling Exception Handling, Log-
ging and User-facing Er-
ror Msg

7.3 Logging and User-Facing
Error Msg

9.3

Exception Handling and
Memory Management

8.8

Language Specific Python Collections 8.1 String/Buffer Issues 5.4

Design Object Oriented Design 12.4 Object Oriented Design
and Concurrency

10.4

Function Design 11.9
Code Review
Process

Code Review Process and
Minor Issues

20 Code Review Process and
Minor Issues

14.8

Code Style Code Style 6.8 Code Style 8.2
Unit Testing Unit Testing 6.2

ically, for a given document di, the LDA model outputs a membership score 0 ≤ δ(di, tk) ≤ 1, which

indicates the strength of the relationship between di and topic tk (larger values indicate a strong relation-

ship). For example, the review comment “provide more straightforward error messages and log them

appropriately” will have a strong relationship with the logging and exception handling topic described

above, and thus, will have a high membership score for that topic.

4.3 Topic Prevalence

Prior work has analyzed the contents of code review comments. For example, Bacchelli and Bird [6]

found that code reviews at Microsoft contain code improvement suggestions and requests for additional

detail, in addition to addressing code defects. Mäntylä et al. [45] and Beller et al. [11] find that there are

roughly three maintainability comments for every functionality comment in the code reviews of several

proprietary and open source systems.

To complement these observations from the literature, prior to performing our longitudinal analysis,
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we are interested in how prevalent our automatically extracted topics are in our data set.

4.3.1 Approach

We first identify the high-level concepts that the tenLDA-generated topics for both of the studied projects

highlight. More specifically, we label them by reading the 20 terms and 20 unprocessed review comments

with the strongest association to each topic.

We select the terms with the top 20 term weights for each topic. When ordering the terms of which a

topic is comprised, we draw inspiration from the Term Frequency - Inverse Document Frequency (TF-

IDF) concept. The TF score is mapped to the term weight within the topic. The IDF score is mapped to

the Inverse Topic Frequency (ITF).We order terms by their TF-ITF score—terms with high termweight

scores that appear in few other topics are considered first in our topic labelling process.

To further aid in the topic labelling process, we also analyze the 20 review comments with the strongest

association to the topic under analysis. We only include comments with highest δ(di, tk) scores for each

topic tk to avoid including comments for which the topic membership is less definitive. The first author

manually labelled each topic and the second author confirmed the labels in follow-up meetings.

After labelling the topics, we apply the topic share metric of Barua et al. [9] to each topic tk across the

corpus of review threads. The topic share metric is defined as:

topic_share(tk) =
1

|D| ∑
∀di,di∈D,

δ(di,tk)≥0.1

δ(di, tk) (4.1)

where D is our corpus of review comments and di is an individual document (a review comment). The

topic share measures the proportion of documents in the text corpus that contains a specific topic. For

example, topic_share(t1) = 0.28 indicates that 28% of the documents share a non-negligible association

with topic t1.

Since the topicmembership score δ is statistical in nature, each comment has a distribution ofmember-

ship scores for all topics. Since we train topic models withK= 10 topics, each topic will have aminimum

membership score of 1
10 = 0.1 for a (theoretical) document that is not associated with any topic. On the
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other hand, if a document is associated with some topic ti, the topic membership score for some other

non-related topics must be less than 0.1. Therefore, to keep the topics that have the minimum member-

ship score from skewing our topic share scores, we filter out topic membership scores below 0.1.

4.3.2 Topic Identification

Asmentioned above, we analyze strongly associated terms and example threads when labelling our topics.

Below, we provide a sample comment from two topics that share the same theme in both of the Open-

Stack Nova and Dell EMC projects. In addition to these comments (and 19 other similar comments

for these topics), we analyze the top 20 terms of the topics in the studied systems (40 terms total).

No, this is correct indentation for a continued line. Visual indentation would only be 4 spaces, which

would line up with the ‘return’ line below. Correct indentation is 2 levels, or 8 spaces.

Project: Nova, topic_score(code style) = 0.94

Are you intentionally indenting thismuch space for a command that doesn’t fit? Also, because all these

are at the same level it makes it a bit harder to tell when commands begin and end. You may want to

consider shifting all the sub-commands an indent to the right.

Project: Dell EMC, topic_score(code style) = 0.96

We label these topics as code style because the sample comments focus on issues like indentation and visual

appearance of the code, and the top 20 terms include keywords like “line”, “space”, and “blank”.

We present the labels that both authors agree upon in Table 4.2. We include the full mapping from

topics to their most relevant terms in Appendix A.1. The full mapping from topics to their most relevant

comments in Nova are included in our online replication package§.

4.3.3 Observations

In general, the proportion of review comments that are associatedwith context-specific topics (i.e., topics

that tackle project-specific issues) is on par with code style or code review process discussions. Table 4.2
§ https://github.com/software-rebels/code-review-topic-models
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shows that the code style and code review process topics have a total topic share of 26.8% and 23% for

Nova and Dell EMC, respectively. On the other hand, four topics in Nova and three topics in Dell

EMCare context-specific, and have a combined topic share of 26.1% and 19.8%. As a result, approximately

half of the comments belong to technical topics that are related to general software engineering concepts

and are comparable across the studied projects.

These results complement observations of prior work. For example, Bacchelli and Bird [6] found that

although general communication is an important aspect of code reviewing practice in Microsoft, code

improvement topics are more frequently discussed. Moreover, our topic models yield a similar rate of

code style issues (6.8%–8.2%) as was observed through manual review inspection by Mäntylä and Lasse-

nius [45] in a different context (visual representation concerns are raised in 9.8%–10.8% of their studied

reviews).

4.4 Case Study Results

In this section, we present the results of our case study with respect to our two research questions. For

each research question, we first present our approach to addressing it (including themeasures that we use

to operationalize key concepts), followed by the results, and our observations.

RQ1: How does the popularity of code review topics change as a community ages?

RQ1: Approach

In order to analyze how topic popularity changes over time, we analyze trends using the topic impact

measure [9], which defines the impact of a topic tk in monthm as:

topic_impact(tk,m) =
1

|D(m)| ∑
∀di,di∈D(m),
δ(di,tk)≥0.1

δ(di, tk) (4.2)

where D(m) represents the set of review comments that are written in month m. In other words, topic

impact measures the proportion of review comments that are associated with a given topic tk in a given
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RQ1: Results

Observation 1—As the studied communitiesmature, reviewers tend to provide fewer code review comments

related to the theme of code review process. Code review process topics mainly include comments that

address issues related to procedural formalities and minor issues of the code review process. Figure 4.3

shows a consistent decreasing trend of the Nova project. On the other hand, we observe that the trend

of this topic in the Dell EMCproject is non-monotonic, slightly increasing before late 2015 and decrease

afterwards. To dig deeper into this trend, we held a discussion with a development manager from the

DellEMCprojectwho explained that the periodwith themost steady growth (early/mid 2015) coincides

with a large change in the composition of the development team. During this period, there was a large

influx of new members into the development team. This may explain why more comments appear with

respect to code review process in that period. As the new members became more familiar with the code

review process, the topic trend begins to descend (early 2016).

Observation 2 — The Dell EMC project has less discussion within the code review process topic during

the analyzed period. Despite the growing trend during 2015, Dell EMC developers seem to raise code re-

view process concerns than those of Nova. Figure 4.3 shows that the Dell EMC trend never exceeds the

Nova trend. There are several reasons why this may be occurring, but we suspect that offline discussion

is a large factor. Although the teams themselves in the Dell EMC project is globally distributed, within

the teams, most members are collocated. Thus, process-related discussions may occur in offline discus-

sions more frequently than in the Nova project, where team members are spread across several software

organizations.

Observation 3 — Although the code style topic in Dell EMC is relatively flat, Nova reviewers focus less

on code style over time. Figure 4.4 shows that the code style topic in Nova has a decreasing trend, which

a Cox-Stuart test confirms is significant. Compared to the Dell EMC project, which dates back to early

1990s,Nova is a relatively newopen-source project. Our code reviewdataset forNova includes the initial

phases of its development. The larger initial quantities of code style comments may be an artifact of the
¶A sensitivity analysis that explores threshold values between 0.1 and 0.2 yielded no significant change in the shape of the

topic trends. See the online replication package for more detail.
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Figure 4.10: Experience scores (in log scale) of review comments in Nova for eachmonth.

more useful feedback [17, 59].

In order to avoid oversampling the experience signal, we further group raw experience values into 100

levels of experience. Note that according to our definedheuristic, one reviewer’s experience score (slightly)

grows after each comment that they write. Figure 4.10 and Figure 4.11 show that in both projects, as time

progresses, the breadth of experience scores grows, but themedian and lower quartile values are relatively

consistent. This results in heavily right skewed experience score distributions (i.e., there are farmore inex-

perienced reviewers than experienced ones) in the studied systems. This is likely due to the often lamented

high turnover rate in the software industry. An analysis has shown that 13.2% LinkedIn members in the

software technology sector took new jobs at different companies in 2017.‖ Another analysis shows that

the employee retention rate ranged from 1.8 to 7.8 years in 15 large Bay Area technology employers.** Be-

cause of the skewness, grouping experience values using equidistant thresholds will undersample the low

experience values and oversample the high experience values. Therefore, we group them into bins that

contain an equal number of reviewers. We select 100 as the number of bins by analyzing the distribution

of the data. Analysis of the data set with 50 and 75 bins suggests that the general direction and shape
‖https://bit.ly/2pfQdsc

**https://bit.ly/2MPqGRr
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Chapter 4
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Figure 4.11: Experience scores (in log scale) of review comments in Dell EMC for eachmonth.

of the distribution remain consistent. We include the figures of the 50- and 75-bin experiments in our

replication package. Nevertheless, we elaborate on this threat to validity in Section 4.6.

Topic Impact by Experience Levels or Core Levels. Similar to the analysis of how topic popularity

evolves over time in RQ1, we compute topic_exp_impact—a measure that captures the prevalence of a

topic for reviewers with a given level of experience, or whether or not the reviewer has been promoted to

the core team yet. We redefine the topic impact measure (Equation 4.2) to focus on experience and core

membership levels rather than time periods. More specifically, we define the experience impact of a topic

tk in an experience or core membership level x as:

topic_exp_impact(tk,x) =
1

|D(x)| ∑
∀di,di∈D(x),
δ(di,tk)≥0.1

δ(di, tk) (4.3)

whereD(x) represents the set of review comments that are written by reviewers with experience or core

membership level x. The topic_exp_impactmeasures the proportion of review comments that have a non-

negligible associationwith topic tk (i.e., δ(di, tk)≥ 0.1) for reviewers with experience or coremembership

level x.††
††Similar as in RQ1, a sensitivity analysis that explores threshold values between 0.1 and 0.2 yielded no significant change in
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Table 4.3: A table with the p-values of theMann-Whitney U test and the effect size for the comparison of core/non-core reviewers in

Nova.

Topic Label M.-W. p-value Effect Size
Volumes and Storage Management 0.73 negligible
Exception Handling, Logging and User-facing Error Msg 0.86 negligible
Provisioning Decision Making 0.22 small
Code Review Process and Minor Issues 0.38 negligible
Virtual Machine 0.84 negligible
Object Oriented Design 0.48 negligible
Unit Testing 0.53 negligible
Python Collections 0.26 small
API Issues 0.04 small
Code Style 0.2 small

For topic impact over core membership levels, Figure 4.12 compares core and non-core topic impact

scores for each topic. Each of the data point in the box plot represents the topic impact of a reviewer

during her time before and after being promoted to the core team. We test if there is a significant differ-

ence between these topic impact scores using paired, two-tailedMann-WhitneyU tests (α= 0.05). Since

we are conducting multiple comparisons between samples drawn from the same original population, we

apply Bonferroni correction, which adjusts the α= 0.05
10 = 0.005. To estimate the effect size of the differ-

ence, we use Cliff’s delta, which is negligible when 0 ≤ delta < 0.147, small when 0.147 ≤ delta ≤ 0.33,

medium when 0.33 ≤ delta≤ 0.474, and large otherwise.

For topic impact over experience levels, we show key plots of the trends over experience levels. Similar

to RQ1, the plots contain raw data points and Loess-smoothed regression lines. We also apply the two-

tailed variant of the Cox-Stuart trend test to all of the topic experience trends (α= 0.05).

RQ2: Results

Observation 8 — We do not observe any significant difference in the behaviour of reviewers before and

after promotion to the core team. As shown in Table 4.3, theMann-WhitneyU test results do not support

rejection of the null hypothesis that both samples follow the same distribution. Thismay be a result from

the small number of core reviewers, as only 41 of the 992 Nova reviewers are members of the core team.

the shape of the topic trends. See the online replication package for more detail.
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Figure 4.12: The comparison between core and non-core reviewers’ topic impact scores in Nova.

Indeed, we have only 41 non-core and core observation pairs, which may not yield the statistical power

necessary to reject the null hypothesis.

Observation 9 — As reviewers accrue experience, trends in code style topics diverge among the studied

projects Figure 4.14 shows that after a common flat period, the experience trend for code style tends to de-

crease in Nova and increase in the Dell EMC project. On the surface, code style feedback seems to have

a lowROI, and having experienced reviewers spend their effort on it seemswasteful. Thus, the decreasing

trend for Nova is encouraging, and the increasing trend for the Dell EMC project may raise concern.

When we discussed our observations with the Dell EMC staff, a manager from the Dell EMC project

explained that the team had discussed a growing need to address code style problems in team meetings.

Hence, the observation that the rate of code style concerns being raised increases with experience seemed

to match his expectation.

Observation 10 — The code review process topic tends to decrease as reviewers accrue experience. Figure 4.13

shows a downward trend of topic impact in code review process discussions for both Dell EMC and

Nova reviewers when they become more experienced. Developers at Microsoft [17] and Mozilla [39]

argue that, when trying to improve their changes, code review process comments are not as helpful as the

more context-specific comments. The observed trends for the code review process topics of both studied
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results more replicable. However, selecting different settings may still yield different results. The goal of

this study is not to identify the optimal settings for these experimental parameters, but rather to examine

whether and how reviewing feedback changes as communities and reviewers mature.

4.7 Chapter Summary

Code review is a lynchpin of most modern software quality approaches. To derive value from a code

review process, it must produce valuable feedback for authors to address. While past work [45, 11] has

explored the issues that are found and fixed during the code review process, little is known about how

reviewing feedback changes as a software community and its stakeholders mature.

In this chapter, we train topicmodels to identify latent topics in the review comments of anopen source

and a proprietary community: OpenStack Nova and a Dell EMC project. Through a longitudinal

study of 248,695 review comments in 39,249 changes in two projects, wemake the following observations:

• The changeof reviewingbehaviour of a code review community often coincideswithproject events.

• Experienced reviewers who grow up in different code reviewing communities focus on different

topics according to project needs.

4.7.1 Concluding Remarks

The focus of this chapter is on studying the evolution of code reviewing feedback topics, providing in-

sights of the change of focus for the teams as awhole. On the other hand, wewould like to help individual

developers make better decisions in investing code reviewing effort. To that end, in the next chapter, we

introduceBLIMP Tracer, a build impact analysis system that we integrated with the code reviewing plat-

form at a Dell EMC project team.

48



An earlier version of the work in this chapter appears in
Proceedings of the 34th International Conference on Soft-
ware Maintenance and Evolution (ICSME 2018) [80].

5
Code Review with Build Impact Analysis

5.1 Introduction

Code review refers to the practice where fellow developers inspect code changes and provide feed-

back to the author. Dedicated code review tools that manage the modern code review process have be-

come a commonplace in practice. These tools allow developers to post patches and select relevant review-

ers to inspect their patches. The review process itself is a valuable practice that development teams use

to ensure software quality [48], improve team communication [6], and leverage team problem-solving

capacity [61].

However, the mere existence of a code review does not improve code quality. To truly improve the

quality of a patch, reviewers must consider the potential implications of the patch and engage in a discus-

sion with the author. Prior work shows that a lack of reviewer participation is correlated with a drop in

software release quality [49, 70] and a drop in design quality [52].
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On the other hand, rigorous code review introduces overhead on developers, whose time is a limited

and valuable commodity. Bosu and Carver [16] find that developers spend an average of six hours per

week reviewing code. The time spent reviewing code is an expensive context switch from other impor-

tant development tasks (e.g. repairing and improving code). Making matters worse, patch authors at

Microsoft report that an average of 35% of code review comments are not useful [17], suggesting that a

large proportion of reviewing time may be misspent generating feedback that is not valuable.

Since some changes are of greater risk than others, some patches will require a more rigorous review

than others. Czerwonka et al. [25] argue that spending an equal amount of reviewing effort on all code

patches is a suboptimal use of development resources. Currently, to reducewaste in the reviewing process,

developers use their intuition and their past experience to decide which patches require detailed feedback.

However, knowing which patches require more reviewing attention than others is a difficult problem for

code authors and reviewers alike.

An understanding of the impact that a patch has on the entire software system may help stakeholders

to focus on reviewing effort on patches that have a broader impact on the project. More specifically, we

believe that: Patches that impact mission-critical project deliverables or deliverables that cover a broad

set of products should involve more reviewing investment than others. However, such information is

missing from modern code reviewing interfaces.

Tounderstand the impact that a patchwill have on a system,Change ImpactAnalysis (CIA) techniques

have been proposed [5]. However, recent work suggests that CIA techniques are rarely adopted in prac-

tice [42]. To understand the state of CIAwithin the studied product team atDell EMC,we conducted a

preliminary survey of 45 developers. In the survey, we ask developers how they assess the potential impact

of a patch. The results indicate that, despite their tendency to produce fault prone and incomplete results,

developers choose to use command line tools, such as grep and find to estimate the impact of changes

(likely due to their ubiquity and flexibility), to complement their intuition-based on prior knowledge of

the modified files. Indeed, as Li et al. [42] reported, dedicated and commercialized use of CIA tools is

rare. Use of ad hoc and intuition based approaches may lead to false positives (i.e. patches that did not

need to be reviewed rigorously, but were) or false negatives (i.e. patches that should have been reviewed
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rigorously, but were not).

To help reviewers make deliverable-based decisions of reviewing where to invest reviewing effort, we

developed Build Impact (BLIMP) Tracer, an impact analysis system that we integrated with the code

reviewplatformof the studied product team atDell EMC.Unlike traditional change impact analysis [5],

BLIMPTracer exposes the impact that a change has on project deliverables rather than other areas of the

source code. This difference is of key importance in the context of the studied Dell EMC team because

the subject system is comprised of several deliverables that belong to several customer-facing products.

In a nutshell, BLIMP Tracer produces impact analysis reports by first extracting the Build Dependency

Graph (BDG)of the system, then recursively traverses the graph starting from the changed files to identify

the (set of) impacted product deliverables.

To evaluate BLIMP Tracer, we deployed it within the production reviewing environment at the stud-

ied Dell EMC team. We conducted a comparative user study with five developers. More specifically, we

solicit feedback from participants during their use of BLIMP Tracer, and compare it with current style

of conducting impact analysis. In all five cases, BLIMP Tracer improves the speed and accuracy of locat-

ing impacted software components of a code patch. In addition, we find that BLIMP Tracer provides

developers with a clearer understanding of the project build-time architecture [78], which will likely help

when onboarding newcomers to the project.

5.1.1 Chapter Organization

The remainder of this chapter is organized as follows. Section 5.2 describes the code review process at

the studied Dell EMC team and shows a motivational example. Section 5.3 describes the design and

results of the preliminary survey distributed to the developers. Section 5.4 describes the design of BLIMP

Tracer. Section 5.5 discusses the design of our user study. Section 5.6 presents the results with respect to

our user study. Section 5.7 describes the threats to the validity of our study, and finally, Section 5.8 draws

conclusions.
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5.2 Background

In this section, we present a motivating example to demonstrate the value of BLIMP Tracer.

5.2.1 A Motivational Example

Adam, a new developer who has just started working at Dell EMC one week ago, is submitting his first

patch onReviewBoard. As is part of theDellEMCcode reviewing practice, Adamhas to indicatewhich

team members to invite to review his patch. Being a new team member, Adam does not yet know which

members of the team have the necessary expertise in the areas of the code base that hemodified. Thus, he

relies on the Review Board recommendations to select his team lead, Becky, as a reviewer.

Being a team lead, Becky receives plenty of review requests. In order to have time to complete her

other tasks, she needs to be selective where she focuses her reviewing effort. She needs to decide whether

to apply her full effort to the review (high time cost) or perform a quick review (low time cost).

At the time when Becky is notified of Adam’s review request, she already has a backlog of ten review

requests. All ten of the review requests are associated with issue reports of equal severity and priority.

Based on her intuition, Becky decides to prioritize the patches that are larger in size because she believes

that larger patches are inherently more risky. However, Becky’s decision may not be optimal because

Adam’s patch involves a change to broadly adopted in-house libraries. Changes to those libraries may be

inherently more risky than large changes because they impact a large amount of customer-facing func-

tionality, ending up being linked with several project deliverables.

BLIMPTracer is designed to provide decision support for Becky. She can consult the results of BLIMP

Tracer for Adam’s patch, and determine which deliverables may be impacted by his patch. By exposing

the impacted deliverables of a patch, Becky can reason about the impact of a change on customer-facing

products and functionality. Knowing which products are impacted by a patch helps Becky make a more

informed decision about how to prioritize her backlog of patches for reviewing.
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5.3 Preliminary Survey

In this section, wepresent the design of a developer survey thatwe conducted atDellEMC.Through the

survey, we aim to gain a better understanding of how developers conduct impact analysis. The questions

in the survey were intentionally open ended to allow for developers to explain their current practices in

language that is natural to them.

5.3.1 Survey Design

At a high level, the survey is composed of three parts. The first part focuses on information about the

developer, with demographic questions about their general software development experience and their

experienceworking on the product suite atDellEMC.The second part asks developers about their prior

knowledge in software change impact analysis. The third part asks developers to reflect on their day-to-

day procedures for assessing the impact of patches. We also invite developers who are interested in further

discussing their experiences to participate in follow-up interviews afterwards.

The survey was broadcasted to 45 on-site developers, 12 of whom responded (27% response rate). The

survey was also broadcasted to off-site developers, four of whom responded.

5.3.2 Demographic Information

The 16 respondents of this survey work in development offices in Canada and India. Figure 5.1 shows that

the respondents have a broad range of experiencewith theDell EMCproduct suite, ranging fromone to

18 years, with a median of 6.5 years. Similarly, the respondents’ experience on the current product varies

from zero to 18 years, with a median of 6.5 years. On the other hand, the majority of the respondents are

senior software engineers, with general software development experience ranging from one to 29 years,

with amedian of 14 years. Indeed, twelve of the respondents havemore than five years of experience. The

wide span of experience of the responding developers withinDell EMC assures that the observed results

apply to a broad range of development backgrounds. The large number of senior developers ensures that

our results are not biased towards new developers who may not have formed impact analysis habits.
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Figure 5.3: The number of developers on how they analyze the impact of a patch.

Developers on the studied Dell EMC product team are aware of the importance of impact analysis prior

to code reviewing, yet few of them use dedicated impact analysis tools.

5.3.4 Change Impact Practice

Developers tend to use command line tools and their background knowledge to understand the impact

of a code change. We asked developers to describe how they determine what other parts of the system is

impacted by a code patch. As shown in Figure 5.3, a majority (ten of the 16 respondents) claim they use

tools, such as grep or find to navigate source code to find the impact. In addition, twelve developers say

that the analysis is based on their understanding from prior experience developing the software system.

The respondents also described some other ways that they would use to help perform impact analysis,
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eg1.o

all

deliverable_a

eg1.c eg2.c

eg2.o

example.h

eg3.o

deliverable_b

eg3.c

Figure 5.5: A sample build dependency graph.

Listing 5.1: A sampleMakefile

1 CC=gcc
2 DEPS=example.h
3
4 all: deliverable_a deliverable_b
5
6 %.o: %.c $(DEPS)
7 $(CC) -c -o $@ $< -I.
8
9 deliverable_a: eg1.o eg2.o
10 $(CC) -o $@ $^
11
12 deliverable_b: eg3.o
13 $(CC) -o $@ $^

5.4.2 Build Dependency Graph Extraction

The build system of the studied product team is implemented using non-recursive make [50]. In make-

based build systems, developers specify targets, dependencies, and rules. Targets specify an intermediate

or a deliverable file. Dependencies list other targets that must exist or be updated before the target can be

updated. Rules explain what command needs to be run to create the targets. For example, in Listing 5.1,

line 6 specifies that all .o files (targets) depend on their corresponding .c file, as well as the DEPS variable

that expands to the header file example.h (dependencies). Line 7 shows that to update the dependencies

in line 6, a C compiler (in this case, gcc) will run to create the targets. Similar patterns can be seen in the

following lines that specify rules for the deliverables.

The targets and their dependencies form what is called a Build Dependency Graph (BDG). This is a

directed acyclic graph that is at the heart of the incremental build—a commodity feature of the modern

build system. After executing a full build that executes all of the necessary build commands to produce

project deliverables, an incremental build will only execute a subset of the full build commands that are

required by activities that have taken place after the previous full build. For example, Figure 5.5 shows the

BDG that corresponds to theMakefile snippet fromListing 5.1. After executing a full build, if a developer

were only to update eg3.c, the build process would only re-execute the rules to eg3.o and deliverable_b.
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In this chapter, we query the BDG to understand which deliverables are impacted by a set of modified

files. Extraction of the BDG from a make-based build system is a non-trivial task.

We use MAKAO [1] to extract the build dependency graphs from the Dell EMC project. Since

MAKAO constructs the BDG by parsing build trace logs, we fully build the project in one of the sup-

porting Linux platforms with GNU make tracing enabled and extract the trace log.

The trace log contains a listing of commands and their corresponding files that were executed during

the build job, which can be parsed by MAKAO to generate a BDG.

Extracting a BDG for the Dell EMC project requires building the software in full. At the same time,

the Dell EMC project we study is large and complex, and undergoes rapid development. Indeed, con-

ducting a full, tracing-enabled build for each uploaded review revision is impractical. Moreover, similar

to our prior work [20], we find that changes that modify the BDG structure are relatively rare in practice.

In order to have an up-to-date BDG for accurate impact analysis results while maintaining a low build

load, BLIMPTracer updates the BDG twice daily. We discuss the potential ramifications of this decision

in Section 5.7.

5.4.3 Graph Traversal and Filtering

Oncewe obtain a list of files within a change, we traverse the BDG for each of the file in the list of changed

files and record every target that is impacted by the change. To keep the report page readable, we filter out

binary and archive files that are directly impacted by a changed file,since the impact of such files is already

clear for the developers to recognize.

In addition, we identify whether the list of changed files contains build specification files (e.g. *.mk or

Makefile), or newly added files that had never been shown in the repository. Since a change in the build

system or adding new files may change the build dependency graph we extracted previously, a traversal

on the old BDGmay not provide accurate impact analysis information. In such cases, BLIMPTracer will

print awarningmessage in the impact analysis report page, indicating that the analysismay be incomplete.

Again, in practice, BDG-changing commits are rare. Additional computing power could be used to solve

this problem, but given the scarcity of the issues, the warning message was deemed sufficient for the time
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Table 5.1: An overview of the interviewed developers.

Name Dell EMC Exp. (Yrs) Studied Proj. Exp. (Yrs)
Developer A 2 0
Developer B 13 8
Developer C 11 11
Developer D 2 2
Developer E 11 11

nated to assess the code patch will receive a notification from the code review platform, indicating that

BLIMP Tracer has finished analyzing and publishing the impact analysis of the patch. Developers and

reviewers can plan their code assessment activities accordingly using the information provided by BLIMP

Tracer. BLIMP Tracer typically publishes reports for newly uploaded patches within 30 minutes. Note

that the speed of BLIMPTracer is not of concern because developers rarely react to a new review request

more quickly than that.

5.5 User Study Design

We now discuss the design and execution of our user study with developers at Dell EMC. More specifi-

cally, we describe how we conducted semi-structured interviews and plan for future improvements.

5.5.1 An Overview of the Industrial System

BLIMPTracer is deployed within a large, multinational product team of Dell EMC. The product suite

that this team produces provides solutions for enterprise data backup and recovery. This product itself

dates back to early 1990s, and has over ten million lines of code. Despite being implemented in a variety

of programming languages (C, C++, Java, and C# to name a few), the product suite is highly portable,

supporting product variants that run on Windows, as well as various flavours of UNIX, Linux, and ma-

cOS.

The complexity of the system and its build dependency graph make it an ideal subject system to pilot

BLIMP Tracer. Indeed, understanding the large and complex build dependency graph of this product

suite is difficult, even for senior Dell EMC developers.
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5.5.2 Interview Design

Using the information that we gathered during the survey, we designed semi-structured interviews [65]

for developers who expressed their interest in further discussing our proposed solution and how it could

be improved. Semi-structured interviews contain planned open and close-ended questions, but the order

is not necessarily the same as planned. In addition, during a semi-structured interview, interviewers are

free to explore new findings and improvise the questions. We choose to perform semi-structured inter-

views instead of amore rigidly structured interview to allow for ideas that emerge during the interview to

be explored to some extent. The interview sessions were recorded, transcribed, and coded.

In total, we conducted one-on-one interviews with five developers. Table 5.1 provides an overview of

the participant experience levels. The participants have two to 13 years of experience working at Dell

EMC (median of eleven years), and zero to eleven years of experience working on the subject product

suite (median of eight years).

The purpose of the interviews was to discern whether BLIMP Tracer helps developers to perform

impact analysis on patches. During the interview, we asked participants to show on screen how they

assess the impacted deliverables of a code patch (without the help of BLIMP Tracer) Developers were

asked to follow a think aloud protocol to enable us to gather data about why they are performing the

tasks that they are performing. At the same time, we record how much time they spend. We then invite

the interviewee touseBLIMPTracer to assess the impact of the samepatch, anddetermine if the impacted

deliverables computed by BLIMP Tracer match the expected result.

5.6 User Study Results

In this section, we present the results of the semi-structured interviews with respect to effectiveness and

additional benefits.

5.6.1 Effectiveness of BLIMP Tracer

One of the primary goals of BLIMP Tracer is to help developers to better understand the impact of

patches. During the one-to-one interviews, we observe how developers currently conduct impact inves-
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tigations for a given patch. More specifically, we selected patches that include regular .c files, as well as

header .h files, to cover files that have both small and large potential impact. We invite participants to

estimate the number of components and deliverables that are impacted by the patch and name some of

them, usingmethods that aremost comfortable to them. After that, we introduce BLIMPTracer and ask

developers how they would use it during code review. We record the interviews, transcribed and coded

the developers response. By analyzing the transcribed and coded interview data, we identify three aspects

that BLIMP Tracer can improve in the impact analysis procedures for the developers.

Using only command line tools for impact analysis is inefficient

Echoing the responses from the survey, all participants stated that when they investigate the impact of

a patch for code review purposes, they usually use command line tools. However, using command line

tools often does not give a full picture of the deliverables that a patch impacts. Developers B, C, and E

state that if no dedicated tool for impact analysis is provided, they would only check the components

that are immediately impacted by the changed file. In other words, the manual impact analysis that they

conduct does not trace beyond one layer of impacted deliverables. Since these first-layer deliverables often

have several transitive dependencies, the impact is likely being underestimated. Moreover, the developers

agree the impact analysis process using grep and find is “slow”. Developer A commented that for a

relatively large file used by several components, “it is impossible to do [impact analysis] by hand”.

BLIMPTracer providesaccess to impact informationattherighttime fordevelopers

The participants agree that integrating an impact analysis system with the code review platform is bene-

ficial for a more well-rounded understanding of a code patch in a timely manner. Indeed, Developer C

commented that although there are tools that analyze the static dependency structure of a system, he does

not run the tool every time when he is asked to review a patch. Integrating a build-based impact analy-

sis directly into the code reviewing process shows plenty promise. Indeed, Developer D explains that

since doing an impact investigation of a patch takes time, he only checks the impact for the patch that he

authors. The introduction of BLIMP Tracer will change the reviewing and developing behaviour. De-
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veloper C stated that BLIMP Tracer would likely help him to assess “a patch that has a lot of impacted

[deliverables]”.

BLIMPTracer improves developers’ awareness of the impact that patches have on sys-

tem architecture

Participants agree that integrating BLIMP Tracer with the code review platform will accelerate and im-

prove their workflows (Developers C, D and E). Since BLIMPTracer automatically displays impact anal-

ysis reports directly, no manual input is required for developers to see the impacted deliverables. While

Developer D stated that he had used a dedicated impact assessment tool during development, the others

rely on command line tools to get an approximate sense of the impact of a patch. Indeed, Developer

C commented that having BLIMP Tracer in the code reviewing platform can help reviewers and patch

authors to “make sure the impacted deliverables [have been tested]”.
Developers on the studied product team at Dell EMC agree that in addition to improving development

workflow, BLIMP Tracer has the potential to improve the breadth and depth of impact analysis, as well

as save developer time and effort.

5.6.2 Additional Benefits of BLIMP Tracer

In addition to making impact analysis easier and faster for the developers, we wish to know how BLIMP

Tracer would benefit other aspects of development. In order to do so, we asked survey participants open-

ended questions after they had the opportunity to try BLIMP Tracer. More specifically, following the

nature of semi-structured interview, the questions are based on the participant’s comments on BLIMP

Tracer during the trials. For example, if the participant made comments about the accuracy of the results

of BLIMPTracer, wewould followupwithquestions askingwhat deliverableswere surprisingly included

in or excluded from the impact list. The follow-up questions unveil two types of benefits that BLIMP

Tracer may provide to improve understanding of the dependency structure of the studied system.
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BLIMPTracerprovidesknowledgetodeveloperstoreduceunnecessarydependencies

in a system

First, using BLIMP Tracer, developers are able to identify deliverables that do not have a surface-visible,

direct relationship with the changed files. This may expose problematic or unnecessary dependencies in

the build dependency graph [13]. Removal of these unnecessary dependencies may speed up incremental

builds. One theme thatDeveloper C andE raised after examining the BLIMPTracer reportwas that there

were someunexpected deliverables appearing in the report. For example,Developer E commented that he

found it “odd” that a component may be impacted by some change in a function in some other module.

However, after some contemplation, he commented that it is “understandable how the function is used

in that deliverable, but I need some time to understand the logic behind it”. Knowing this dependency,

he can decide whether to note this dependency, or to notify themodule owners to remove the potentially

unnecessary dependencies.

BLIMP Tracer helps accelerating newcomers’ onboarding process

Moreover, BLIMPTracer provides a resource that can help new developers to improve their understand-

ing of the system architecture. A solid understanding of the project structure will reduce the risk of “shot-

gun surgery” [57], which would degrade the system architecture. Indeed, Developer D mentioned that

when he was a newcomer to the project, the learning curve was steep to understand the connections be-

tween different project components. Therefore, he said: “if I were a newcomer, I would use BLIMP

Tracer to learn the dependency of files”.
BLIMP Tracer can help the community and developers in improving and understanding the system

architecture.

5.7 Threats to Validity

In this section, we discuss the threats to the validity of our study.
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5.7.1 External Validity

Threats to external validity have to do with the generalizability of our results to other subject systems.

BLIMP Tracer is only integrated with the code review platform of the studied product team at Dell

EMC. The focus on one project may affect the generalizability of the results. Although we have reached

out to developers with various years of development and project experience, future study on other sub-

jects may be needed to arrive at more general conclusions.

Similar to other software engineering studies, we have a low response rate with our surveys and inter-

views atDellEMC.We recognize that the general populationof our studiedprojectsmight havedifferent

characteristics and opinions than the ones that we present. Nevertheless, the purpose of our survey and

interview is not to achieve generalizability, but rather to gather feedback and insights from practitioners

who will interact with BLIMP Tracer on a daily basis.

5.7.2 Internal Validity

Threats to internal validity have to do with whether other plausible hypotheses could explain our results.

We conclude that BLIMP Tracer shows promise due to our survey and interview studies. It may be that

the participants were biased towards providing positive feedback to us due to social pressure. To combat

this, we explained to all participants that their frank and honest feedback was what we needed to collect

in order to improve BLIMP Tracer. Nevertheless, the response may still have been biased towards the

positive.

Interview participants were asked to identify files that are impacted by a patch first, and then use

BLIMPTracer for confirmation in one setting. Since BLIMPTracer was always presented second, partic-

ipants may have been biased in favour of it. Although we do not suspect that the influence of tool order

is strong, we plan to control for this confounding factor in future replication studies.

5.7.3 Construct Validity

Threats to construct validity have to do with the alignment of our choice of indicators with what we set

out to measure. Since we generate the build impact analysis report based on the traversal of build depen-
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dency graphs, changes that modify the BDG may result in inaccurate report. However, in the studied

system, changes that have the potential to change the BDG are infrequent. In order to provide the most

accurate BDG for generating the reports, we extract the BDG frequently (twice every day). In addition,

BLIMP Tracer prints a warning message when a change to a known build specification is detected in the

code patch under analysis.

BLIMP Tracer calculates the result of build impact analysis using files as a unit. Because of that, some

of the ‘impacted modules’ in the report page may not be a direct result from the code change. Rather,

the ‘impactedmodules’ could be directly related to some other functions in the file. Our analysis is at the

file-level because this is the granularity at which the Make build technology operates. Nonetheless, if a

finer-grained build dependency graph were to become available, the impact analysis results would likely

be even more useful for developers.

5.8 Chapter Summary

Code review iswidelyused inmoderndevelopmentprocess to ensure softwarequality. However, themere

existence of code review does not promise improvement in software quality. A key concern in code review

is data-driven discussions of patch implications. To accurately assign reviewers to assess code patches

and to pinpoint the potential issues that affect the system, stakeholders need to know what areas of the

software will be impacted by the changes. We introduce BLIMP Tracer, a build impact analysis system

that integrates with the Review Board code reviewing environment of a product team at Dell EMC.

We evaluate the effectiveness of BLIMP Tracer by conducting a qualitative study. Through a study that

involves semi-structured interviews with Dell EMC developers, we make the following conclusions:

• Before the introduction of BLIMP Tracer, developers often use general-purpose command line

tools to analyze the build impact of a code patch.

• BLIMPTracer not onlymade build impact analysis on code patches faster, but also vastly improves

the depth and breath of impact analysis when compared to traditional methods.
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• BLIMP Tracer can help to onboard new developers by helping them to better understand the sys-

tem architecture.
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Conclusion

Modern software development requires team collaboration. The speed and complexity at which

modern software is developedmake large team-based development common. At the heart of team-based

development lies Modern Code Review (MCR), a mechanism that enables and enriches collaboration.

However, themere existence ofMCRdoes not guarantee a well-managed developer collaboration pro-

cess. In fact, MCR tools lack information for stakeholders to make decisions about where to invest their

time and effort. In this thesis, we empirically study how to support teams and developers inmaking those

investment decisions. In the remainder of this section, we outline the contribution of this thesis and draw

paths for future research.

6.1 Contributions and Findings

The goal of this thesis is to support project teams and developers in investing effort in code review. To do

so, we analyze past data in code review and introduce an impact analysis tool that tightly integrates with
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an existing code reviewing platform. We claim that:

Thesis statement: Data about the content of past code reviews and the impact that a patch has on a

software system can help stakeholders to make more effective effort-allocation decisions.

We investigate existing code review effort allocation processes and propose tools to improve those prac-

tices. In doing so, we perform two empirical studies. Below, we reiterate the key findings of the studies

presented in this thesis:

1. Topics of Code Reviewing Feedback

Changes in reviewing behaviour of a code review community often coincidewith project events. In

addition, experienced reviewerswhomaturewithindifferent code reviewing communities focus on

different topics according to project needs (Chapter 4).

2. BLIMP Tracer: Build Impact Analysis for Code Review

Developers often use general-purpose command line tools to analyze the build impact of a code

patch. BLIMP Tracer not only made build impact analysis on code patches faster, but also vastly

improves the depth and breadth of impact analysis when compared to traditional methods. More-

over, BLIMP Tracer can help to onboard new developers by helping them to better understand

the system architecture (Chapter 5).

6.2 Opportunities for Future Research

Althoughwe believe that this thesis has contributed positively towards supporting the decision for invest-

ment of developer effort in code review, there are plenty of opportunities for future research. Below, we

describe several paths for future work.

6.2.1 Analytics Dashboard for Tracking the Evolution of Code Reviewing Feedback

Webelieve that the key contributionofChapter 4 is that it provides strong evidence of significant trends in

reviewing behaviour and a set of measures that can be tracked as communities age and their stakeholders
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accrue experience. To complete the lastmile for decision support for developers, in futurework,wewould

like to use our topic models to build an analytics dashboard for monitoring reviewing behaviour.

6.2.2 Filtering Code Segments from Natural Language

Although we have used a state-of-the-art machine learning library [44] for identifying documents that

only contain code, the topic models we build in Chapter 4 can be improved by identifying and filtering

code snippets from all text documents. Since some code tokens are also natural language elements (e.g.

ip_address,identifier), removing code segments fromnatural language remains a complex research

problem for future researchers.

6.2.3 Build Impact Analysis in the Presence of Multiple Build Tools

We acknowledge that the Dell EMC project studied in Chapter 5 is unique as it uses a single build sys-

tem (make). Because of that, future work is needed to tackle more complex problems in the presence of

multiple build tools or a fractured build graph.

6.2.4 Queryable Services for Dependency Analysis

Build dependency graph (BDG) is useful for more than supporting review effort investment decisions.

Developers can use BDG to trace file dependencies in various granularity. To serve as a transition between

the existing technologies that enable local dependency checks to BLIMP Tracer, it may also be helpful

to offer a service to query for dependencies that offers information on the degree of dependency of an

impacted deliverable.

6.2.5 Other Dimensions of Review Request Prioritization

File dependencymay not be the only criterion developers use for deciding the investment of their code re-

viewing effort. Future data onwhether the developers use other dimensions of code patches to determine

the priority of review requests may also be a useful extension.
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Additional Tables and Figures

A.1 Mapping from Topics to Terms

In this appendix section, we provide a mapping from topics to their most relevant terms for Open-

Stack Nova and the Dell EMC project.
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Table A.1: Amap between theOpenStack Nova topics’ labels, their shares, and their top-10 key terms.

Theme Topic Label Share Topic Key Terms

Context Specific

Volumes and Storage Man-
agement

6.1 instance, volume, migration,
compute, call, case, state,
host, delete, check

Provisioning Decision Mak-
ing

4.4 host, resource, node, sched-
uler, compute, instance, fil-
ter, cell, allocation, service

Virtual Machine 5.1 libvirt, driver, image, nova,
device, virt, support, type,
set, default

API Issues 10.5 api, nova, change, version,
option, add, default, com-
pute, service, note

Exception Handling Exception Handling, Log-
ging and User-facing Error
Msg

7.3 exception, log, error, raise,
message, check, case, return,
code, debug

Language Specific Python Collections 8.1 object, instance, field, list, re-
turn, key, uuid, dict, set,
method

Design Object Oriented Design 12.4 method, make, code, func-
tion, call, class, thing, change,
bit, object

Code Review
Process

CodeReviewProcess andMi-
nor Issues

20 comment, patch, change,
good, inline, nit, commit,
bug, message, code

Code Style Code Style 6.8 line, nit, import, nova, space,
file, remove, blank, pep,
python

Unit Testing Unit Testing 6.2 test, unit, mock, method,
case, add, call, testing, called,
fake
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Table A.2: Amap between the Dell EMC project topics’ labels, their shares, and their top-10 key terms.

Theme Topic Label Share Topic Key Terms

Context Specific
File Locations 4.5 file, nsr, directory, cpp,

change, path, lib, build,
version, library

Project Configuration 6.5 device, change, user, snap-
shot, data, backup, restore,
password, set, group

Project Terminology 8.8 backup, set, save, client, time,
server, change, database, job,
list

Exception Handling Logging and User-Facing Er-
ror Msg

9.3 message, error, log, user,
change, unable, file, debug,
add, suggest

Exception Handling and
Memory Management

8.8 null, check, return, error,
free, line, set, false, true, call

Language Specific String/Buffer Issues 5.4 string, const, char, std, size,
buffer, return, int, type, func-
tion

Design Object Oriented Design and
Concurrency

10.4 code, function, class, make,
method, call, case, time,
thread, file

Function Design (low-level) 11.9 function, comment, line,
code, add, remove, variable,
file, move, call

Code Review
Process

CodeReviewProcess andMi-
nor Issues

14.8 change, comment, code, re-
view, good, issue, test, check,
fix, add

Code Style Code Style 8.2 line, space, remove, add,
change, delete, file, tab,
quote, indentation
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