
Studying the Impact of Risk
Assessment Analytics

on Risk Awareness and Code Review
Performance

by

Xueyao Yu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Xueyao Yu 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

While code review is a critical component of modern software quality assurance, defects
can still slip through the review process undetected. Previous research suggests that the
main reason for this is a lack of reviewer awareness about the likelihood of defects in
proposed changes; even experienced developers may struggle to evaluate the potential
risks. If a change’s riskiness is underestimated, it may not receive adequate attention
during review, potentially leading to defects being introduced into the codebase. In this
thesis, we investigate how risk assessment analytics can influence the level of awareness
among developers regarding the potential risks associated with code changes; we also study
how effective and efficient reviewers are at detecting defects during code review with the
use of such analytics. We conduct a controlled experiment using Gherald, a risk assessment
prototype tool that analyzes the riskiness of change sets based on historical data. Following
a between-subjects experimental design, we assign participants to the treatment (i.e., with
access to Gherald) or control group. All participants are asked to perform risk assessment
and code review tasks. Through our experiment with 48 participants, we find that the use
of Gherald is associated with statistically significant improvements (one-tailed, unpaired
Mann-Whitney U test, α = 0.05) in developer awareness of riskiness of code changes and
code review effectiveness. Moreover, participants in the treatment group tend to identify
the known defects more quickly than those in the control group; however, the difference
between the two groups is not statistically significant. Our results lead us to conclude that
the adoption of a risk assessment tool has a positive impact on code review practices, which
provides valuable insights for practitioners seeking to enhance their code review process
and highlights the importance for further research to explore more effective and practical
risk assessment approaches.

iii

Acknowledgements

I would like to express my deepest gratitude to my supervisors Prof. Michael Godfrey
and Prof. Shane McIntosh for their invaluable guidance, support, and encouragement
throughout my entire research process. As someone with no research background, I was
initially overwelmed and apprehensive about taking on such a challenge. Their patient
mentorship and assistance gave me a great sense of security and comfort, allowing me to
develop a newfound passion for research and step out of my comfort zone to push myself
further. I feel incredibly fortunate to have had the opportunity to work with them, and I
will always be grateful for their invaluable support and assistance.

I am also appreciative of my project collaborator Dr. Filipe Cogo, for his valuable
feedback and assistance with my research. Furthermore, I extend my gratitude to my
thesis committee members, Prof. Mei Nagappan and Prof. Chengnian Sun, for their
insightful feedback and suggestions that helped improve my research and thesis writing.

I would also like to thank those who participated in or helped me recruit participants
for my user study. Their contributions were critical to the success of my research, and I
am grateful for their time and effort.

I would especially like to thank my loving and supportive parents, whose unconditional
love, encouragement and trust have been a constant source of strength throughout my life.
Their unwavering support has given me the courage to overcome challenges and pursue my
interest. I am forever grateful to them and love them.

Many heartfelt thanks to my friends and colleagues in the SWAG and REBELs group
for their support and help. I really enjoy the time spent with all of them.

This experience has been invaluable to me and thanks everyone I have met.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables ix

List of Publications x

1 Introduction 1

2 Related Work and Motivational Example 4

2.1 Code review . 4

2.2 Risk assessment approaches . 5

2.3 A Motivational Example . 6

3 Pre-experiment Data Collection 8

3.1 Subject Systems/Communities . 8

3.2 Data Preparation . 9

3.2.1 Data Extraction . 9

v

3.2.2 Data Filtering . 9

3.3 Risk Assessment — Gherald . 10

3.3.1 Risk Metrics . 11

3.3.2 Change Risk Score . 12

4 Experiment Design 14

4.1 Experiment Platform . 14

4.2 Experimental Artifacts . 16

4.2.1 Code Changes . 16

4.2.2 Gherald . 17

4.3 Study Variables . 17

4.3.1 Independent Variable . 20

4.3.2 Dependent Variables . 20

4.3.3 Confounding Variables . 21

4.4 Experiment Tasks . 21

4.5 Experiment Flow . 21

4.5.1 Pre-experiment questionnaire . 22

4.5.2 Experiment . 22

4.5.3 Post-experiment Questionnaire . 23

4.6 Pilot Study . 23

4.7 Participants . 23

4.8 Data Analysis . 24

5 Study Results 26

6 Threats To Validity 36

6.1 Construct Validity . 36

6.2 Internal Validity . 36

6.3 External Validity . 37

vi

7 Conclusions 38

References 40

vii

List of Figures

3.1 An overview of our study . 9

4.1 Gherald experiment interface . 18

4.2 Example of a code inspection form . 22

5.1 Correlations among examined variables. Statistical significance: ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001. 27

5.2 Comparison of risk awareness between the treatment and control group
across five change sets. The long (short) dash line represents the median
(Q1/Q3) values. 28

5.3 Comparison of code review effectiveness between the treatment and control
group across five change sets. The long (short) dash line represents the
median (Q1/Q3) values. 31

5.4 Comparison of code review efficiency between the treatment and control
group across five change sets. The long (short) dash line represents the
median (Q1/Q3) values. 33

5.5 The completion time for experiment tasks 34

viii

List of Tables

3.1 The number of changes after each filtering step 10

3.2 The metrics of risk assessment . 11

4.1 Code changes selected for experiment . 15

4.2 Five change sets selected for experiment 17

4.3 The variables of the study . 19

5.1 Distribution of participants among change sets and groups 26

5.2 Descriptives of risk awareness, code review effectiveness, and code review
efficiency in different groups and change sets 29

5.3 Number of participants identified the known defects in different groups and
change sets . 32

ix

List of Publications

This thesis builds upon previous work submitted to the journal of Empirical Software
Engineering (EMSE) and currently under review.

• Xueyao Yu, Filipe R. Cogo, Shane McIntosh, Michael W. Godfrey. Studying the Im-
pact of Risk Assessment Analytics on Risk Awareness and Code Review Performance.
submitted to Empirical Software Engineering (EMSE)

x

Chapter 1

Introduction

Code review has long been a part of quality assurance processes for industrial software
development. Its practice has been recognized to offer a number of benefits, including easing
onboarding and mentoring of new hires, promoting a shared understanding of the system
design, and improving overall code quality, including early detection of defects [4, 42].
However, in practice, there are still a large proportion of reviewed changes that introduce
bugs into the codebase [30]. Prior work [50, 23, 37] suggests that this may be mainly due
to the lack of reviewer awareness of the riskiness of proposed code changes. Most code
review tools provide reviewers with a view of fine-grained textual differences that highlight
the proposed changes. However, it can be difficult for even the most seasoned developer
to retain the historical context in which changes are performed. As a result, changes to
code areas that have been historically prone to defects are likely to be underestimated and
insufficiently reviewed, which in turn may allow defects to slip into the codebase.

Our proposed solution to promote risk awareness during code review is to provide
developers with a risk assessment of each code change. In recent years, a plethora of studies
has explored how to assess the risk of a code change. Some of the popular approaches are
Just-In-Time (JIT) defect prediction [24, 15, 20, 21, 27] and automatic static analysis tools
(ASATs) [43, 5, 3, 40, 22].

Despite the existence of various approaches to identifying risky code areas, little research
has been conducted to investigate whether (and how) the code review process can take
advantage of change risk assessment techniques. As a preliminary investigation on this
topic, we attempted to apply defect prediction and ASATs to help with the code review
process and learned the following lessons: first, while defect prediction approaches can
identify risky changes effectively [20, 21, 38], they are not helpful in the code review

1

process due to their lack of ability to provide clear reasoning and actionable messages [31].
Moreover, bug detection tools should ideally produce no more than 10% of false positives
during code review [41, 13]. However, we applied one of the state-of-the-art JIT defect
prediction approaches, JITLine [38], on our studied project and obtained a precision of
0.22, which falls significantly below the required level of performance for the integration of
a JIT defect predictor with code review. ASATs, on the other hand, can suggest actionable
solutions. However, they detect defects at a too fine-grained level and are inadequate in
providing a comprehensive risk assessment of the change.

Therefore, we propose Gherald, a prototype that enhances code review interfaces with
risk assessment capabilities. Gherald measures popular risk metrics used by defect predic-
tion techniques and enables developers to gain insight into the riskiness associated with
the author, file, and method involved in a code change. We hypothesize that by using
Gherald, reviewers can prioritize risky changes and conduct code reviews more efficiently
and effectively.

To verify our hypothesis, we conduct a controlled experiment with 48 participants to
investigate the impact of using Gherald on developers’ risk awareness and code review
performance. Similar to prior studies [9, 35, 16], we measure code review performance
through the lenses of effectiveness (i.e., how many defects developers detect) and efficiency
(i.e., how quickly developers detect defects). Our study employed a between-subjects
experimental design [18], dividing participants into two groups: one with tool assistance
from Gherald, and one without. We then compared the performance of the two groups
on pre-assigned risk assessment and code review tasks. The goal of our study was to
investigate three research questions:

(RQ1) Is use of Gherald associated with greater awareness of the riskiness of
changes?

We found that the risk rankings provided by participants in the treatment group
were more closely aligned with the defect density of the experimental code changes,
and that the use of Gherald was associated with statistically significant improve-
ments in developer awareness of the riskiness of code changes.

(RQ2) Is use of Gherald associated with an improvement in code review effec-
tiveness?

We found that the participants in the treatment group were able to identify a
larger proportion of known defects, and that there was a statistically significant

2

improvement in code review effectiveness associated with the use of Gherald.

(RQ3) Is use of Gherald associated with an improvement in code review effi-
ciency?

We found that participants in the treatment group had higher code review effi-
ciency than the control group. However, the difference between the treatment and
control groups was not statistically significant. Hence, we cannot conclude that
the use of Gherald was associated with an improvement in code review efficiency.

Overall, we found that the use of a risk assessment tool had a positive effect on code
review practices. With the assistance of Gherald, developers had greater awareness of the
riskiness of code changes and were able to detect defects more effectively.

3

Chapter 2

Related Work and Motivational
Example

In this chapter, we discuss research that relates to code review and risk assessment ap-
proaches, and we provide an example that motivates our study.

2.1 Code review

Peer code review, as a manual code inspection process performed by fellow developers, has
long been applied to ensure the quality of software projects [2, 1]. The concept of code
review dates back to 1976 when Fagan proposed a structured process called code inspec-
tion [12], which required an in-person, manual, finely-grained, and process-heavy review of
the code in question. In the past decades, the lightweight, tool-based, and asynchronous
practice of modern code review has gradually replaced traditional code inspections [4].
Modern code review has been increasingly adopted in both industrial and open source
projects and inspired numerous related studies [10, 42, 33, 30, 29, 8].

Traditionally, code review performance has been measured by the number of defects
found (effectiveness) and the time taken to find them (efficiency) [9]. In recent years,
significant research effort has been put on developing techniques to support the code review
process and improve its performance. For example, Gonçalves et al. [17] studied whether
explicit review strategies — such as using a checklist — improves the overall performance
of code review. Zhang et al. proposed a tool that summarizes similar changes and detects
potential defects based on the change content and context [51]. Tao et al. found that

4

the code review process can be hindered by the presence of large, composite code changes
that comprise multiple independent issues [48]. Because of this, several other approaches
were proposed to decompose composite changes into groups of cohesive and self-contained
changes [19, 6, 49]. Additionally, there has been research examining the role of displayed
file order in code review. For example, Baum et al. [7] proposed to reduce the cognitive load
of reviewers by presenting the change parts in a more helpful order, such as by grouping
related change parts together. Also, Fragnan et al. conducted a user study to verify their
hypothesis that displayed file order has an impact on the code review performance in defect
detection [14]. This thesis builds on the idea that ranking changes by their associated risk
will promote effectiveness and efficiency in code review.

2.2 Risk assessment approaches

In the past decades, a plethora of studies have explored how to identify defect-prone com-
ponents so that quality assurance resources can be allocated effectively. One common ap-
proach is to apply defect prediction models, which are trained using various types of metrics
to identify defect-prone modules (e.g., changes [28], files [52], subsystems [36]). Recently,
the concept of Just-In-Time (JIT) defect prediction has emerged [34], which improves the
traditional defect prediction methods by making predictions at a finer-grained change-
level and assigning predictions to a specific author of the change. JIT defect prediction
has been adopted by many industrial software teams, including Avaya [34], Blackberry [44],
and Cisco [46]. Also, several recent studies have sought to improve JIT defect prediction
models [15, 20, 21, 27, 38].

Automatic static analysis tools (ASATs) are another popular approach to finding po-
tential defects in code changes and to help assure software quality [47]. With the aid of
ASATs, some coding standard violations and common defect patterns can be automatically
detected, which can significantly reduce reviewers’ effort during code review. ASATs have
been widely adopted into the software development process for defect detection and have
supported a variety of programming languages and defect patterns [43, 5, 3, 40, 22].

Our study aims to explore whether the use of risk assessment can enhance a reviewer’s
risk awareness and improve their code review performance. We have considered using an
existing risk assessment approach to evaluate its relationship with code review performance.
However, we found that existing ASATs, which detect defects at the line level by matching
some pre-defined defect patterns, are not able to provide an overall risk assessment to
the change. We also found that there are still some challenges in integrating JIT defect
prediction models into code review, such as the inability to explain the prediction results

5

and provide actionable suggestions [46]. Moreover, existing JIT defect prediction models
are unable to achieve the level of performance (i.e., less than 10% false positives) needed for
code review integration [41, 13]. Khanan et al. [26] introduced a JIT defect prediction bot,
JITBot, providing explainable and actionable feedback in code review; however, it does
not take into account historical change characteristics (e.g.,prior changes and developer
experience), which are essential to the defect-proneness of a change. Recently, Fregnan [13]
compiled a set of requirements needed for integrating defect prediction into code review
practices. Building upon their findings, we introduce a risk assessment prototype for this
study. Further details are described in Section 3.3.

2.3 A Motivational Example

Suppose Alice is a developer who has recently joined a software project. As part of her
duties, she is expected to conduct code reviews for changes submitted by the other team
members. Recently, she has received three pending review requests, one of which was
submitted by a junior developer, Bob, who has made a 10 LOC bug fix to a major feature
of the project.

Of course, Alice is also occupied with her own development tasks. In order to effec-
tively manage her workload, Alice decides to focus more of her reviewing efforts on the
riskier patches. Based on her intuition and experience, she believes that larger patches are
generally more complex and thus have a higher likelihood of containing issues that require
explicit consideration. Consequently, she prioritizes the largest patches and takes ample
time to review them thoroughly. Bob’s bug fixing changes, on the other hand, contain
only minor modifications to the source code, so Alice quickly reviews and approves them.
However, it happens that there are underlying risks of concern here. First, the file that
Bob modified is historically bug-prone, which can be inferred from the number of bug fixes
it has been associated with. Also, Bob, as a junior developer, has little experience with
the project and has never modified this particular file before. Although Alice is an expe-
rienced developer herself, she has only recently joined the team and is unaware of these
issues. Consequently, a bug is inadvertently introduced into the codebase as Alice, after
only a brief inspection, approves the change of an inexperienced developer working on a
historically defect-prone file.

Now let us consider the potential benefits of providing Alice with a risk assessment tool
that offers contextual information about the changes being made. For example, such a tool
could inform her about the number of changes the author has contributed to the project
and the modified files. Also, the tool could provide information about the number of prior

6

changes and prior bugs related to each file and method in the patch. This type of risk
analysis would complement Alice’s understanding of the proposed changes and provide her
with more contextual information when assessing patches.

It is important to note that such a risk assessment tool would not identify specific
mistakes in the code as existing static code analysis tools do. Instead, it would provide
contextual information that may be overlooked by reviewers but may nonetheless be critical
in assessing the overall risk associated with changes. We anticipate that this tool would
improve the reviewers’ awareness of the risk associated with changes, thereby reducing the
likelihood of defective code being introduced into the codebase.

7

Chapter 3

Pre-experiment Data Collection

In this chapter, we discuss the rationale for selecting our studied systems and present our
data preparation process and prototype tool for risk assessment. Figure 3.1 provides an
overview of our study design.

3.1 Subject Systems/Communities

We perform our study on Apache Commons Lang,1 which provides helper utility methods
for the manipulation of Java core classes. We chose this system for several reasons: First,
Apache2 is one of the largest open-source organizations, and projects hosted by the Apache
Software Foundation follow a standard issue-reporting process and adhere to a common set
of code review policies. Also, because it is a library of utility methods, Apache Commons
Lang is designed to be easy to use and understand. The files and methods are decoupled
and independent. Moreover, each method is named in a clear and descriptive manner and
contains a well-written description that not only explains how to use the method, but also
provides examples demonstrating its usage. Since our experiment involves participants
conducting code reviews, familiarity with Java development is sufficient to understand the
changes selected from Apache Commons Lang, without requiring any additional contextual
learning.

1https://commons.apache.org/proper/commons-lang/
2https://www.apache.org

8

https://commons.apache.org/proper/commons-lang/
https://www.apache.org

Issue
Tracking
System

Version
Control
System

Extract
Issue Data

Extract
Commit Data

Merge Data and
Apply SZZ

Compute Gherald
metrics

(3.3)

Change Selection
(4.2.1)

Filter Data
(3.2.2)

Change set 5

Change set 4

Change set 3

Change set 2

Change set 1

Participants w/
Gherald

Participants w/o
Gherald Task A Task B

Pre-experiment
Questionnaire

(4.5.1)

Post-experiment
Questionnaire

(4.5.3)

Experiment (4.5.2)

Data Extraction (3.2.1)

Figure 3.1: An overview of our study

3.2 Data Preparation

3.2.1 Data Extraction

We extracted the issue data (e.g., IssueID, CreatedDate, Type) from the Jira issue tracking
system (ITS) used by the Apache Commons Lang development team3 and selected the
issues of the type Bug. Next, we extracted the commit data from the git version control
system4 (VCS) and joined it with the issue data using the unique identifier for issues (i.e.,
IssueID). This allowed us to identify the defect-fixing changes. Then we applied the SZZ
algorithm using Pydriller [45] to identify the fix-inducing changes — the set of changes
that last “touched” the lines that were modified by the defect-fixing changes.

3.2.2 Data Filtering

Since the SZZ algorithm may result in false positives in identifying fix-inducing changes,
we applied a list of filter steps to remove the suspicious data and to mitigate noise [32].
Table 3.1 shows the number of fix-inducing changes after applying each filter sequentially.
First, we filtered out changes that update only code comments and whitespace (F1). Next,

3https://issues.apache.org/jira/projects/LANG/issues/
4https://github.com/apache/commons-lang/

9

https://issues.apache.org/jira/projects/LANG/issues/
https://github.com/apache/commons-lang/

we removed the fix-inducing changes that were committed after the issue report date (F2).
We also removed the outliers that change at least 10,000 lines (F3a) or at least 100 files
(F3b), or add no lines (F3c). Then, we stratified the data into time periods and analyzed
the rate of fix-inducing changes. We removed the periods that have unsteady fix-inducing
rate (F4). Finally, we filtered out the suspicious fixes (F5) and suspicious fix-inducing
changes (F6). Specifically, we calculated the upper Median Absolute Deviation (MAD) of
the number of bugs fixed for each change and the number of fixes induced by each change.
Then, we ignored changes that fix or induce more than the respective MAD value.

Table 3.1: The number of changes after each filtering step

Filter Total # Fix-inducing % Fix-inducing

F0 No filters 6839 590 9%
F1 Code comments and whitespace 6361 590 9%
F2 Issue report date 6250 479 8%
F3a Too much churn 6245 477 8%
F3b Too many files 6231 474 8%
F3c No lines added 5922 474 8%
F4 Period 5468 473 9%
F5 Suspicious fixes 5281 286 5%
F6 Suspicious inducing changes 5256 261 5%

3.3 Risk Assessment — Gherald

We introduce a risk assessment prototype — Gherald— to analyze the riskiness of each
change in the dataset based on the historical data of its author, files, and methods.

Prior works on JIT defect prediction suggested approaches to measure the risk of a
change [24, 15, 20, 21, 27]. We evaluated the potential of incorporating JITLine [38], which
is currently the most accurate, cost-effective, and time-efficient approach for predicting
JIT defect-introducing changes; however, we decided not to adopt it when we found its
performance to be inadequate. Empirical study demonstrated that to be deemed suitable
for adoption in code review, the bug detection tools need to produce less than 10% false
positives [41, 13]. However, on our dataset collected in Section 3.2, JITLine yields a
precision of 0.22, which is significantly below the level of performance needed for code
review integration. Additionally, JIT defect prediction models lack the ability to effectively
explain the features that induce the risk of change.

10

Table 3.2: The metrics of risk assessment

Metrics Description

A
u
th
or

Project experience The ratio of the number of prior changes authored by an actor
over the max number of prior changes authored by any actors.

Recent activity The ratio of the number of recent changes authored by an
actor over the max number of recent changes authored by
any actors.

File expertise The ratio of file awareness by an actor over the max file aware-
ness by any actors in recent year.

F
il
e/
M
et
h
o
d

Prior changes The number of prior changes to the object1.
Recent changes The number of prior changes to the object1 weighted by the

age of the changes.
Prior bugs The number of prior bugs occurred in the object1.
Recent bugs The number of prior bugs occurred in the object1 weighted by

the age of the bugs.
1 Either file or method.

As indicated by prior works [32], Size properties are the primary contributor for pre-
dicting the defect-proneness of a change. Nonetheless, we designed our study so that par-
ticipants could complete the code review tasks in a reasonable amount of time by selecting
small- to medium-sized changes. However, this selection criterion significantly reduces the
explanatory power of a defect prediction model. As a result, instead of constructing a
defect prediction model that produces an overall score indicating the defect-proneness of
a change, we compute and present the metrics that are commonly associated with the
riskiness of a change and are widely used in defect prediction techniques.

3.3.1 Risk Metrics

We compute a broad range of metrics concerning the three categories (i.e., author, file, and
method) as described below. Table 3.2 provides an overview of these metrics.

Author metrics measure the author’s relative project experience (i.e., how many
changes the author has committed), their recent activity (i.e., how many changes the
author has recently committed), and their file expertise (i.e., how many changes the au-
thor has committed to the files in change) compared to the other authors. Similar to prior
works [34, 32], for each change, we measure the author’s (a) prior changes (i.e., the number
of prior changes submitted by the author), (b) recent changes (i.e., the number of prior

11

changes weighted by their age, which is measured in years), and (c) file awareness (i.e., the
proportion of the prior changes to the modified file submitted by the author). To make the
metrics comparable with the other authors, we divided the values by the max value in the
six month period prior to the author date of the change to compute the author’s relative
project experience, recent activity, and file expertise.

File/Method metrics measure the change history and past defect tendencies of the
modified files and methods. For each change, we computed the number of prior changes
and bugs that are associated with each modified file and method. To account for the
recency, we also measured the recent changes and bugs by normalizing the value of the
prior changes and prior bugs by their age.

3.3.2 Change Risk Score

With the risk metrics measured, we assessed the riskiness at the change-level; we performed
simple calculations to measure the riskiness for each category.

Author risk. The author risk score was calculated by taking the complement of the
average score of the author’s a) project experience, b) recent activity, c) file expertise using
this formula:

CRiska = 1− 1

3
(ProjExp+RecAct+FExp)

File/Method risk. To measure the file and method risk score, we first computde the
risk score at the file/method level, which is calculated by taking the odds ratio of recent
defect-proneness:

FRisk/MRisk = log(RecCng+2)× RecBug+1

RecCng−RecBug+1
,

To prevent uncomputable values when the denominator is zero, we added one to its value;
we also added one to the numerator as a counterbalance. To dampen overly inflated
odds ratio induced by a recently added file/method with only few recent changes, we then
multiplied the odds ratio by a positive factor log(RecCng + 2). We added two to the file
recent change to ensure that the factor is positive.

The overall risk score at the change-level was computed by taking the mean of the risk
score of each file/method involved in a change:

CRiskf/m =
1

n

n∑
i=1

(log(RecCng+2)× RecBug+1

RecCng−RecBug+1
)

12

To improve the explanability and interpretablity of the risk score, we normalized the score
by dividing its value by the maximum value in the recent six month prior to the author
date of the change. This allows the score to be interpreted as the relative file/method risk
compared to the other changes.

13

Chapter 4

Experiment Design

We conducted a controlled experiment1 to examine how the use of Gherald impacts code
review practices. We employed a between-subjects experimental design [18] by randomly
assigning participants into two groups: the control group, who were not given access to our
risk assessment tool Gherald, and the treatment group, who were given access to Gherald.
We then asked the participants to perform a set of risk assessments and code review tasks.
Afterwards, we compared the groups in terms of their risk awareness and code review
performance (i.e., code review effectiveness and efficiency).

4.1 Experiment Platform

We developed a web application for participants to complete their experimental tasks. The
participants were able to directly access the application by opening the URL provided in
their invitation emails. After obtaining the consent of the participant, the application
automatically logged their answers and timed their tasks.

14

Table 4.1: Code changes selected for experiment

Change Class & Method Detail Defect

A StringUtils: unwraps a
string from a string/char

Add condition
checking for invalid
string length

Incomplete condition
checking

B StringUtils: checks
if any one of the
CharSequences are
not empty/blank

Add new methods Return incorrect boolean
for certain case

C NumberUtils: checks
whether the String is a
valid Java number

Handles octal nota-
tions

Incorrect conditional
branching for octal num-
bers without considering
decimal fractions

D NumberUtils: turns
a string value into a
java.lang.Number

Deal with all possi-
ble prefixes for hex
numbers; handle
large hex numbers

(1) Incorrect conditional
branching for Long and
BigInteger; (2) missing
a hex number prefix type

E NumberUtils: con-
verts a String into a
BigInteger

Handles hex and oc-
tal notations

(1) Hex number prefix
typo; (2) missing a hex
number prefix type

F StringUtils: wraps a
string with a string/char

Add new methods -

G StringUtils: gets the
substring before the first
occurrence of a separator

Add a new method -

15

4.2 Experimental Artifacts

4.2.1 Code Changes

We required a set of code changes to seed the reviewing tasks that participants were asked
to complete. To select the code changes for our experiment, we applied a list of inclu-
sion/exclusion criteria to the filtered changes in the project. To avoid outdated changes
that may be refactored or deprecated by recent changes, we excluded changes submitted
ten years prior to our change selection. Due to the limited time that participants had to
perform the experiment, we ignored large changes — those that modify more than 200 lines
or more than ten files — since they require a considerable investment of time to review.
Then, we inspected the remaining changes and selected a sample set that, in our opinion,
clearly state a well-scoped problem, are conceptually self-contained, and are straightfor-
ward to understand without requiring reading other source files or documentation.

Seven code changes were ultimately selected for the experiment. Of these, five changes
(i.e., change A-E) were labelled as Buggy changes, as they necessitated further fixes. The
remaining two changes that did not induce any further fixes were labelled as Clean changes.
The selected changes were diverse in terms of class types, modified methods, as well as as-
sociated defects. For example, changes A, B, F, and G related to character string handling,
while changes C, D, and E pertained to number conversion and parsing. A more detailed
description of each change, along with its associated defect, is provided in Table 4.1.

With experiment code changes selected, we created five change sets, each consisting
of three changes with varying Gherald risk scores and defect density. The assignment of
code changes to their respective change sets is presented in Table 4.2. Each participant
was assigned one of the five change sets for their experiment. We conjectured that changes
C, D, and E were more challenging as they are related to hex and octal numbers which,
compared to basic character string utilities, required a higher level of Java knowledge and
specialized familiarity with Java number types. This conjecture was validated in a pilot
study involving 20 graduate students in computer science, where none of them identified
the defects in changes C, D, and E. Despite this, to improve the generalizability of the
results, we still included these changes to explore the effect of Gherald on different types
of defects at different levels of difficulty. However, we avoided assigning these changes to
participants with less than one year of development experience or Java experience.

1This experiment was reviewed by and received ethics clearance from the University of Waterloo Re-
search Ethics Committee (ORE #44022).

16

Table 4.2: Five change sets selected for experiment

Change set Change Defect Count Defect Density

A 1 0.17
1 B 1 0.05

F 0 0.00

A 1 0.17
2 B 1 0.05

G 0 0.00

A 1 0.17
3 C 1 0.06

F 0 0.00

A 1 0.17
4 D 2 0.13

F 0 0.00

A 1 0.17
5 E 2 0.10

F 0 0.00

4.2.2 Gherald

Participants in the treatment group were provided with access to Gherald during the ex-
periment. Figure 4.1 shows the experiment platform interface for the treatment group.
For each change, an overall risk assessment is presented (Figure 4.1 1), indicating the
riskiness of the author, files, and methods involved in the change. The risk percentages
are relative scores compared to the other changes in the six months prior to the author
date of the examined change. Gherald also offers more fine-grained information such as
author expertise and activity (Figure 4.1 2), as well as file/method change history and
bug tendency (Figure 4.1 3 4).

4.3 Study Variables

This section discusses the variables that we collected and analyzed.

17

Figure 4.1: Gherald experiment interface

18

Table 4.3: The variables of the study

Name Description Scale Operationalization

Independent variable:
Risk assessment
support

Whether the participant is provided
with risk assessment support

Nominal See section 4.3.1.

Dependent variables:
Risk awareness Normalized pairwise agreement be-

tween the participant’s rankings of
changes based on the estimated risk
level and the rankings of changes be
their future defect density

Ratio Computed at the end of type A tasks using
the participant’s rankings and the rankings
by defect density. See section 4.3.2.

Code review
effectiveness

Ratio of the total number of known
defects correctly identified by the
participants over the number of
known defects in the change set

Ratio Computed at the end of type B tasks using
the number of detected known defects and the
total number of known defects.

Code review
efficiency

Number of known defects correctly
identified per review hour

Ratio Computed at the end of type B tasks using
the number of detected known defects and the
review time.

Confounding variables:
Change set The change set provided to the par-

ticipants during the experiment
Nominal Design: each participant is assigned to a

change set selected from the 5 sample change
sets

Review order Order of code changes presented for
review

Nominal Measured: 3 types (”high risk to low risk”,
”low risk to high risk”, ”does not matter”);
pre experiment questionnaire

Development
experience

Years of participant’s software de-
velopment experience

Ordinal Measured: 3-point scale (”less than a year”,
”1 year to 5 years”, ”5 years or more”); pre
experiment questionnaire

Java experience Years of participant’s Java experi-
ence

Ordinal Measured: 3-point scale (”less than a year”,
”1 year to 5 years”, ”5 years or more”); pre
experiment questionnaire

Code review
experience

Years of participant’s code review
experience

Ordinal Measured: 3-point scale (”less than a year”,
”1 year to 5 years”, ”5 years or more”); pre
experiment questionnaire

Coding hour
per week

Participant’s average coding hour
per week

Ordinal Measured: 3-point scale (”less than five
hours”, ”five to ten hours”, ”ten hours or
more”); pre experiment questionnaire

Review hour
per week

Participant’s average review hour
per week

Ordinal Measured: 3-point scale (”less than five
hours”, ”five to ten hours”, ”ten hours or
more”); pre experiment questionnaire

Fitness Perceived energy level of the partic-
ipant during the experiment

Ordinal Measured: 3-point scale (“low”, ”moderate,
“high”); post experiment questionnaire

Understandability
of changes

Participant’s overall understanding
of the provided code changes

Ordinal Measured: 3-point scale (“barely under-
stand”, ”somewhat understand”, “under-
stand very well”); post experiment question-
naire

Difficulty of tasks Participant’s perceived difficulty of
the assigned tasks

Ordinal Measured: 3-point scale (“easy”, ”moder-
ate”, “very hard”); post experiment question-
naire

19

4.3.1 Independent Variable

Our overall goal was to investigate the degree to which code review performance can vary
depending on whether risk assessment support is provided. Hence, we set risk assessment
support as the independent variable.

Participants in the treatment group were exposed to risk assessment support from the
experiment user interface. They were able to assess the riskiness of code changes and to
conduct code reviews with the assistance of Gherald during the experiment. In contrast,
participants in the control group were not provided with risk assessment support from the
experiment user interface.

4.3.2 Dependent Variables

The dependent variables are metrics that we use to measure the participants’ performance
in the assigned tasks. We measured the dependent variable for RQ1 as the developer’s risk
awareness of code changes. For RQ2 and RQ3, we use code review effectiveness and code
review efficiency as dependent variables, respectively.

Risk awareness is the degree to which reviewers recognize the potential for defects or
failures that may be induced by a code change. The participants were asked to evaluate
the perceived level of risk associated with a collection of change sets by arranging them
in order of their perceived risk level. We estimated the risk awareness of a participant
by computing the agreement between the ranking that they provided and the ranking
of change sets by their future defect density. We used the normalized Kendall tau rank
distance to measure the agreement of rankings; essentially, this counts the number of
pairwise disagreements between two ranking lists and lies between 0 and 1 [25]. Before
analyzing the measurements, we applied the complement operation, so that a higher score
indicates greater agreement between the two rankings, i.e., more acute risk awareness.

Code review effectiveness. Finding defects has long been considered a primary
motivation for investment in code review [4] and the number of defects discovered is a
common measurement of the effectiveness of code review performance [9]. Hence, in our
study, we also estimated review effectiveness using the proportion of known defects that a
participant identified in their assigned change set.

Code review efficiency. Code review efficiency has been defined as the number of
defects found per unit of time [9]. In our study, we also estimated review efficiency using
the number of detected known defects per unit of time the participant spent reviewing the
assigned change set.

20

4.3.3 Confounding Variables

Apart from the supporting tools, the performance of code review could also be impacted
by confounding factors related to the sample change sets and the recruited study partic-
ipants (see Table 4.3). To assess their impact, we collected measures that associate with
these confounding factors and we studied their correlation with the dependent variables.
We selected five change sets for inclusion in our experiment to mitigate bias towards a
specific change set. To mitigate the impact of study participant factors (e.g., development
experience, code review experience, Java experience), we applied a matching strategy when
assigning the change sets, so that for each participant in the control group, we assigned
the same change set to a participant with similar development and review experience in
the treatment group.

4.4 Experiment Tasks

To address our research questions, we asked participants to complete two code review-
related tasks:

Task A (RQ1) — Participants were asked to rank three change sets based on their
estimated riskiness.

Task B (RQ2, RQ3) — Participants were assigned to review change sets one at a
time, with the stated goal of identifying functional defects. Participants recorded the
suspected issues in a code inspection form (Figure 4.2), which facilitated our analysis
of the results. To avoid bias, participants were not told how many known defects
were present in the assigned change sets; they were told that it was possible that the
change set contained no defects.

4.5 Experiment Flow

This section describes the flow of our experiment as shown in Figure 3.1.

21

Figure 4.2: Example of a code inspection form

4.5.1 Pre-experiment questionnaire

We first asked participants to complete a pre-experiment questionnaire, in which we col-
lected demographic information and code review preferences. Before collecting their infor-
mation, we asked for the informed consent of the participants to use their data during the
experiment.

4.5.2 Experiment

We analyzed the participants’ responses from the pre-experiment questionnaire to filter
out those who did not have prior experience in Java and code review. Then, we assigned
the remaining participants to different tooling support groups, and we provided them with
a URL and a unique ID to access the web application and initiate the experiment. The
procedure of the experiment in the application is presented as follows.

Welcome Page. The application starts with a welcome page introducing general
information about the experiment and the estimated duration. The assigned tasks are
explained and for those participants in the treatment group, the Gherald tool is explained.

Practice Task. To mitigate learning effects and reduce the impact that a lack of
familiarity with the tasks or available tools has on the participants’ performance, partici-
pants were assigned a practice task before their assigned task is shown. Participants were

22

informed that this was a practice task to familiarize themselves with the interface and the
type of tasks that they can expect during the live experiment.

Experiment Tasks. Once the participants completed the practice task, the live ex-
periment began with the assigned tasks (see Section 4.4). A timer started after the task
page had loaded. Participants were permitted to pause the timer at any time during the
task if their work was interrupted.

4.5.3 Post-experiment Questionnaire

After the participants had completed the assigned tasks in the experiment application,
they were prompted to complete a post-experiment questionnaire, which asked them to
share their perceptions about the experiment (e.g., fitness and understandability).

4.6 Pilot Study

Before releasing the experiment to the public, we conducted a pilot study with 20 graduate
students in computer science to identify problems with the experiment before recruiting
a larger pool of participants. We measured the estimated time for task completion and
evaluate the difficulty of the provided changes. After post-experiment interviews with these
participants, we improved the risk assessment presentation and experiment design based
on their feedback. The data collected from the pilot study were excluded from the results
of the study.

4.7 Participants

We calculated the expected sample size for the study through the statistical power analysis
proposed by Cohen [11], which is commonly used to determine the required sample size to
verify the hypothesis with specified statistical power, significance criterion (α), and effect
size. Although a smaller effect size indicates a greater opportunity to find the significant
difference between the studied groups, it requires a larger number of participants, creat-
ing practical recruitment challenges for this study. Hence, we use the standard settings
for uncovering a medium effect size in the context of applying a Mann-Whitney U test
(unpaired, one-tailed, α = 0.05, power = 0.8, d = 0.5). The estimated sample size is 106
participants, with 53 participants per group.

23

We sent out our recruitment invitation to graduate students at the University of Wa-
terloo and posted the recruitment message on Java developer forums (e.g., Reddit) and
social media platforms (e.g., Facebook). We targeted individuals who had experience with
both code reviews and Java development. In appreciation of their time commitment, we
provided each participant with $15 CAD as a token of our appreciation for their time.

In total, 161 participants sign up for the study.

4.8 Data Analysis

We first applied a list of filter steps to clean the data and remove anomalies. To ensure
that the participants perform completed code reviews, we ignored participants who did
not finish the assigned reviews and skipped the tasks. We also analyzed participants’
activity logs and filtered out those who did not conduct reviews of the assigned changes
(e.g., reported no defect without viewing the code diff). In addition, we filtered out the
participants who declared in the post-experiment questionnaire that they did not fully
understand the tasks or code changes and therefore had likely performed only superficial
code reviews. We also filtered out time-based outliers, i.e., those who took a very long or
very short time to perform the code reviews.

Next, we measured the value of dependent variables from the experimental data. As
described in Section 4.3.2, the risk awareness of participants was measured by computing
the agreement between the participant’s ranking in Task A and the ranking of defect
density of the examined code changes.

To measure code review effectiveness, we manually examined the defects reported by
the participants and measured the proportion of known defects identified. It is possible
that a participant could report a valid defect that has not been previously identified by
the original developer. However, to prevent potential bias, we considered only “known”
(i.e., previously identified) defects. This decision is justified for two reasons. First, the
participants’ inspection behaviors can vary widely, with some individuals reporting only
functional defects that they are certain of, while others may report any types of defects
they observe as many as they can. Also, assessing the validity of the new defects identified
by the participants requires a manual interpretation of the author, which may introduce
bias to the result. As such, new defects reported by the participants were excluded from
the analysis and only known defects were compared with the participants’ responses to
measure code review effectiveness.

Similarly, for the measurement of code review efficiency, we considered only known

24

defects that were identified by the participants. Then, we computed the ratio of the total
number of identified known defects over the total time in hours that the participant spent
on both task A and task B. We used the total time for both tasks to mitigate potential bias
in the results. Due to different understanding of the task requirements and diverse code
review habits, some participants may invest significant time inspecting the code during task
A, which may result in a reduced review time for task B. Our observation of experimental
data further confirms this assumption.

With the values of the dependent variables measured, we applied visualization tech-
niques (e.g., bean plot) to present the descriptive statistics, and then applied the Shapiro–Wilk
test to statistically examine the normality of the data. Also, we applied Spearman’s rank
correlation test to measure the pairwise correlations between the examined variables.

To address the research questions, for each dependent variable, we performed a one-
tailed Mann-Whitney U test to identify whether there existed a significant difference be-
tween the results in the treatment group and the control group. We then applied effect-size
measures (i.e., Cliff’s Delta) to estimate the magnitude of difference between the groups if
a significant difference is found.

25

Chapter 5

Study Results

In this chapter, we present the results of our study. Before discussing the analysis for each
research question, we briefly describe the general results regarding the participants and
preliminary analysis.

A total of 161 participants signed up for the study, of which 90 completed the experi-
ment. Upon conducting a check to filter out invalid participants as described in Section 4.8,
the sample was reduced to 48 participants with valid experiment data. Table 5.1 provides
an overview of the distribution of participants among change sets and groups. Overall,
there were 26 participants in the treatment group and 22 in the control group. The par-
ticipants were well distributed among the studied change sets. Moreover, the difference
in the participant experience, fitness during the experiment, and understandability of the
code changes between the two groups were not statistically significant.

Table 5.1: Distribution of participants among change sets and groups

Change set
Total

1 2 3 4 5

Gherald 8 9 4 3 2 26
No tool 8 7 2 4 1 22

Total 16 16 6 7 3 48

Figure 5.1 presents the Spearman pairwise correlations among the dependent and con-
trol variables introduced in Table 4.3. A significant strong correlation existed between
only code review effectiveness and efficiency (r = 0.94), which is reasonable due to the

26

P
ro

gr
am

m
in

g
E

xp
er

ie
nc

e

C
od

e
R

ev
ie

w
 E

xp
er

ie
nc

e

Ja
va

 E
xp

er
ie

nc
e

P
ro

gr
am

m
in

g
H

ou
rs

C
od

e
R

ev
ie

w
 H

ou
rs

R
ev

ie
w

 O
rd

er

C
ha

ng
e

S
et

D
iff

ic
ul

ty
 o

f T
as

ks

Fi
tn

es
s

U
nd

er
st

an
da

bi
lit

y
of

 C
ha

ng
es

R
is

k
Aw

ar
en

es
s

C
od

e
R

ev
ie

w
 E

ffe
ct

iv
en

es
s

C
od

e
R

ev
ie

w
 E

ffi
ci

en
cy

Programming Experience

Code Review Experience

Java Experience

Programming Hours

Code Review Hours

Review Order

Change Set

Difficulty of Tasks

Fitness

Understandability of Changes

Risk Awareness

Code Review Effectiveness

Code Review Efficiency

0.28

0.28 0.2

0.24 0.36* 0.17

0.14 0.58*** 0.3* 0.34*

-0.14 0.05 0.09 0.26 0.07

0.52*** 0.28 0.31* 0.1 0.23 -0.19

-0.15 0.08 0.16 -0.1 -0.1 -0.15 -0.01

-0.24 0.01 0.24 -0.15 -0.16 0.06 -0.16 0.45**

-0.05 -0.06 0.02 0.07 0.03 0.32* 0.09 -0.25 -0.16

0.09 0.08 -0.19 0.22 0.28 -0.17 0.13 0.06 -0.23 -0.07

0.01 -0.07 -0.22 0.14 0.04 0.27 -0.17 -0.13 -0.17 0.27 0.07

0.04 -0.07 -0.12 0.08 0.01 0.26 -0.18 -0.13 -0.16 0.33* 0.07 0.94***

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.1: Correlations among examined variables. Statistical significance: ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001.

27

Change set 1 Change set 2 Change set 3 Change set 4 Change set 5

R
is

k
aw

ar
en

es
s

Gherald
No tool

Figure 5.2: Comparison of risk awareness between the treatment and control group across
five change sets. The long (short) dash line represents the median (Q1/Q3) values.

computation of code review efficiency (i.e., number of known defects identified per unit of
time). Moreover, we observed a positive relationship between developers’ understandabil-
ity of changes and their code review efficiency (r = 0.33), which indicates, as expected,
developers with a better understanding of changes spent less time identifying the known
defects. No statistically significant strong correlation was found between the dependent
variables and the remaining control variables.

Below, we present the results with respect to each research question.

(RQ1) Is use of Gherald associated with greater awareness of the
riskiness of changes?

The participants in the treatment group exhibited a greater awareness of the riskiness of
code changes compared to participants in the control group. As shown in Table 5.2a, the
median and mean risk awareness of participants in the treatment group were 1.0 and 0.77,
respectively, which were higher than those in the control group (0.67 and 0.53, respectively).
This observation applies to each change set except for change set 3. Although the median
risk awareness in the treatment group was higher, participants with no tool support have

28

Table 5.2: Descriptives of risk awareness, code review effectiveness, and code review effi-
ciency in different groups and change sets

Change set
Gherald No tool

Median Mean Median Mean

1 0.67 0.67 0.33 0.38
2 1.0 0.89 0.67 0.71
3 1.0 0.75 0.83 0.83
4 0.67 0.78 0.5 0.5
5 0.67 0.67 0.0 0.0

Total 1.0 0.77 0.67 0.53

(a) Risk awareness (RQ1)

Change set
Gherald No tool

Median Mean Median Mean

1 0.5 0.38 0.0 0.13
2 0.5 0.33 0.0 0.14
3 0.25 0.38 0.0 0.0
4 0.0 0.11 0.0 0.17
5 0.0 0.0 0.0 0.0

Total 0.17 0.30 0.0 0.12

(b) Code review effectiveness (RQ2)

Change set
Gherald No tool

Median Mean Median Mean

1 2.10 1.99 0.0 0.79
2 1.37 1.27 0.0 1.00
3 1.18 1.36 0.0 0.0
4 0.0 1.02 0.0 0.59
5 0.0 0.0 0.0 0.0

Total 0.69 1.38 0.0 0.71

(c) Code review efficiency (RQ3)

29

a higher mean risk awareness than those with the assistance of Gherald.

This fact is also evident in Figure 5.2. For change set 3, the distribution of risk awareness
for the control group showed a denser concentration of values around 0.83. On the other
hand, for the treatment group, there was more density of values around 1. However, the
distribution of data was more dispersed and less dense, which suggests that a low outlier
may be overly influential in computing the average risk awareness score of the group.
Upon closer inspection, we found that there was a participant in the treatment group with
a risk awareness score of 0, indicating that the rankings provided by this individual are the
exact inversion of the rankings based on defect density. A follow-up discussion with this
participant revealed that they conducted the risk evaluation without accessing the Gherald
results. Figure 5.2 shows that there is clearly a greater risk awareness for participants in
the treatment group for all other change sets, suggesting that this outlier was a singular
case.

We performed a one-tailed Mann-Whitney U test to determine whether the risk aware-
ness of those in the treatment group was larger than those in the control group to a
statistically significant degree The result was a p-value of 0.012, which indicates that the
null hypothesis — that the risk awareness of both groups is sampled from the same dis-
tribution — can be rejected. We then used Cliff’s delta to measure the effect size of the
difference. The delta was 0.36, indicating a “medium” difference in risk awareness between
the groups [39].

The use of Gherald was associated with improvements in developer awareness of the
riskiness of code changes. In our experiment, the risk ranking provided by partici-
pants with the assistance of Gherald was more closely aligned with the actual defect
density of the code changes.

(RQ2) Is use of Gherald associated with an improvement in code
review effectiveness?

The participants provided with Gherald had higher code review effectiveness compared to
participants without tooling support. As shown in Table 5.2b, participants in the treatment
group exhibited a median and mean code review effectiveness of 0.17 and 0.3, respectively,
which exceeds the values from the control group, i.e., 0 and 0.12, respectively. For change
sets 1, 2, and 3, participants with the assistance of Gherald achieved higher median and
mean code review effectiveness. This pattern is also evident from the data and quartile

30

Change set 1 Change set 2 Change set 3 Change set 4 Change set 5

C
od

e
re

vi
ew

 e
ffe

ct
iv

en
es

s

Gherald
No tool

Figure 5.3: Comparison of code review effectiveness between the treatment and control
group across five change sets. The long (short) dash line represents the median (Q1/Q3)
values.

31

Table 5.3: Number of participants identified the known defects in different groups and
change sets

Change set
Total

1 2 3 4 5

Gherald 5 5 2 1 0 13
No tool 2 2 0 1 0 5

Total 7 7 2 2 0 18

distribution depicted in Figure 5.3, where a noticeable difference could be observed for
change sets 1, 2, and 3.

Table 5.3 displays the number of participants from different groups that correctly iden-
tified the known defects for each change set. Out of the 48 valid participants, 18 were able
to identify at least one known defect, and three were able to identify all known defects.
For each of the change sets 1 and 2, seven out of sixteen participants were able to identify
at least one known defect, respectively. However, for change sets 3, 4, and 5, only two,
two, and zero participants, respectively, were able to correctly identify the known defects.
We believe that these results occurred because the defects in change sets 3, 4, 5 were more
complex and required recognizing an edge case with respect to hexadecimal and octal num-
bers. Additionally, the sample size for these changes was small. Nevertheless, although
only a small proportion of participants identified the known defects, from Table 5.3, we can
still observe that Gherald participants outperformed the control group in terms of defect
detection.

The Mann-Whitney U test results indicate that the null hypothesis can be rejected,
i.e., there is a statistically significant improvement of code review effectiveness associated
with Gherald (p = 0.03). The Cliff’s delta effect size is 0.27, indicating a “small” difference
in participants’ code review effectiveness between the groups [39].

The use of Gherald was associated with an improvement in code review effective-
ness. In our experiment, a larger proportion of known defects were identified by
participants with the assistance of Gherald.

32

Change set 1 Change set 2 Change set 3 Change set 4 Change set 5

C
od

e
re

vi
ew

 e
ffi

ci
en

cy
Gherald
No tool

Figure 5.4: Comparison of code review efficiency between the treatment and control group
across five change sets. The long (short) dash line represents the median (Q1/Q3) values.

(RQ3) Is use of Gherald associated with an improvement in code
review efficiency?

The participants provided with Gherald had higher code review efficiency compared to
participants without tooling support. As shown in Table 5.2c and Figure 5.4, the treatment
group displayed a higher median and mean code review efficiency, with 0.69 and 1.38 known
defects identified per hour, respectively. Notably, we observed a significant increase in code
review efficiency associated with Gherald in most change sets, except for change set 5 with
a code review efficiency of zero as none of the participants identified the known defects.

Figure 5.5 depicts the task completion time of participants for each task. On average,
participants spent 4.2 minutes on task A and 18 minutes on task B, which is consistent
with our anticipated experiment duration of 30 minutes. The time taken to complete task
A ranges from 36 seconds to 14.4 minutes, while the completion time for task B ranges from
4.2 minutes to 52.8 minutes. Interestingly, we observed that some participants invested a
long time on task A, while allocating a comparable amount of time to task B. This pattern
of behavior indicates that they may have devoted some review effort to conducting code
inspection during task A. This finding supports our decision to calculate the code review
time by summing the time spent on both tasks.

33

Task A Task B

Ti
m

e
(h

ou
r)

Figure 5.5: The completion time for experiment tasks

34

The Mann-Whitney U test yields a p-value of 0.0503, which is not less than our pre-
established confidence level (0.05). Therefore, we are unable to reject the null hypothesis,
which indicates that there is insufficient evidence to suggest the use of Gherald is associated
with an improvement in code review efficiency.

In our experiment, participants in the treatment group had higher code review
efficiency compared to those in the control group. However, the difference between
the two groups is not statistically significant, so we cannot draw a conclusion that
the use of Gherald is associated with an improvement in code review efficiency.

35

Chapter 6

Threats To Validity

6.1 Construct Validity

The results of our study may be impacted by the accuracy of risk assessment tools. We
choose to focus on whether an accurate risk signal would help developers, and leave the
analysis of noise in the risk assessment signal to future work. To control for that noise
in our study, for each change set, we selected changes with defect density values that are
aligned with Gherald assessment.

Limitation of the SZZ algorithm accuracy in locating fix-inducing changes may result
in false positives and false negatives, which may lead to incorrect historical records about
defects. To mitigate noise in our labels of fix-inducing changes, we followed McIntosh and
Kamei’s approach [32] to apply a series of filtering steps and manual verification to the
initially produced label set.

6.2 Internal Validity

The participants recruited for the experiment were outsiders — not developers or reviewers
of the projects under study. Thus, their behavior might differ from that of the actual
code reviewers. To mitigate this threat, we selected code changes that do not necessitate
additional contextual learning, which allows us to approximate the actual code review
conditions as closely as possible. Nonetheless, it may be safest to interpret our findings as
reflecting the newcomer experience.

36

6.3 External Validity

The sample of the code changes that we included in our study is small when compared
to the history of the studied project. In our study, each participant was shown three
code changes. However, due to a limited number of participants, only a small proportion
of changes were included in the experiment. To mitigate this threat, we selected code
changes for inclusion that impacted different types of functionality and present different
types of defects as our sample for experiment.

Although we selected different types of defects, it is still logistically impractical to
include all types of defects that may occur in real-world scenarios. To generalize the results,
future studies that include other kinds of defects are necessary. We recruited participants
from our local student population and from broadcasts on our social networks. As such,
our sample of participants may not be entirely representative of the broader software
development community.

In addition, to achieve a statistical significant result (α = 0.05, power = 0.8, d = 0.5),
we aimed to recruit at least 106 participants for our study. However, due to the challenges
associated with conducting a human-intensive study, we obtained only 48 valid responses
after filtering. Further studies with a larger, more diverse population of developers are
needed to confirm our findings and to increase the generalizability of the results.

Generalizability concerns also apply to the selection of projects and programming lan-
guages, as we experimented only with code changes from Apache Commons Lang written
in Java. To address these limitations, further studies are necessary to verify whether our
findings are still valid for more projects with different programming languages.

37

Chapter 7

Conclusions

Modern code review is an essential procedure in software development. However, in prac-
tice, there are still a large proportion of reviewed changes that introduce bugs into the
codebase [30]. This can occur due to a lack of historical context and awareness of the
riskiness of the proposed code changes.

In this study, we aimed to investigate whether providing developers with historical con-
text and risk assessment information regarding code changes can enhance their awareness
of the riskiness of such changes and result in an improvement in code review effectiveness
and efficiency. To accomplish this, we introduced a risk assessment prototype called Gher-
ald, which analyzes the riskiness of code changes based on historical data. We conducted a
controlled experiment with 48 participants assigned to two groups, with or without Gher-
ald. We investigated whether the use of Gherald is associated with greater risk awareness
and an improvement of code review performance of the participants.

Through the experiment with 48 participants, we found that Gherald has a positive
impact on the code review practice:

• The use of Gherald was associated with a statistically significant improvement in
developer awareness of the riskiness of code changes.

• The use of Gherald was associated with a statistically significant improvement in code
review effectiveness.

• Although the difference in code review efficiency between the treatment and control
groups was not statistically significant, in our experiment, we observed a higher mean
and median code review efficiency for participants with the assistance of Gherald.

38

Future Work. As existing risk assessment approaches do not provide sufficient contextual
information regarding the riskiness of the code changes, our study introduced a risk as-
sessment prototype and found that its use had a positive impact on code review practices.
Future work may propose risk assessment approaches that provide more precise defect
proneness prediction with explainable risk indicators for code changes.

Furthermore, while we sampled Java code changes from Apache Commons Lang and
conduct one-time code review tasks with participants recruited from various sources, future
studies could benefit from a more project-specific approach involving the actual developers
and reviewers of the repository. With the risk assessment tool embedded into the code
review system, the risk awareness and code review performance of the reviewers can be
evaluated over a long-term to explore whether risk assessment has a positive and sustainable
effect on code review practices.

Data Availability. To facilitate reproduction and foment further research on the field,
we make a replication package publicly available.1

1https://doi.org/10.5281/zenodo.7838135

39

https://doi.org/10.5281/zenodo.7838135

References

[1] A. Frank Ackerman, Priscilla J. Fowler, and Robert G. Ebenau. Software inspections
and the industrial production of software. In Proc. of a Symposium on Software Vali-
dation: Inspection-Testing-Verification-Alternatives, page 13–40, USA, 1984. Elsevier
North-Holland, Inc.

[2] A.F. Ackerman, L.S. Buchwald, and F.H. Lewski. Software inspections: an effective
verification process. IEEE Software, 6(3):31–36, 1989.

[3] Nathaniel Ayewah and William Pugh. The google findbugs fixit. In Proceedings of
the 19th International Symposium on Software Testing and Analysis, ISSTA ’10, page
241–252, New York, NY, USA, 2010. Association for Computing Machinery.

[4] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of
modern code review. 2013 35th International Conference on Software Engineering
(ICSE), 2013.

[5] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob Lichtenberg, Con
McGarvey, Bohus Ondrusek, Sriram K. Rajamani, and Abdullah Ustuner. Thorough
static analysis of device drivers. In Proceedings of the 1st ACM SIGOPS/EuroSys
European Conference on Computer Systems 2006, EuroSys ’06, page 73–85, New York,
NY, USA, 2006. Association for Computing Machinery.

[6] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K. Lahiri. Helping devel-
opers help themselves: Automatic decomposition of code review changesets. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 1,
pages 134–144, 2015.

[7] Tobias Baum, Kurt Schneider, and Alberto Bacchelli. On the optimal order of reading
source code changes for review. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 329–340, 2017.

40

[8] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey. Investigating
technical and non-technical factors influencing modern code review. Empir. Softw.
Eng., 21(3):932–959, 2016.

[9] S. Biffl. Analysis of the impact of reading technique and inspector capability on
individual inspection performance. In Proceedings Seventh Asia-Pacific Software En-
geering Conference. APSEC 2000, pages 136–145, 2000.

[10] Amiangshu Bosu, Michaela Greiler, and Christian Bird. Characteristics of useful
code reviews: An empirical study at microsoft. In Proceedings of the 12th Working
Conference on Mining Software Repositories, MSR ’15, page 146–156. IEEE Press,
2015.

[11] Jacob Cohen. Statistical power analysis. Current directions in psychological science,
1(3):98–101, 2013.

[12] M. E. Fagan. Design and code inspections to reduce errors in program development.
IBM Systems Journal, 15(3):182–211, 1976.

[13] Enrico Fregnan. Assessing Review Outcomes and Cognitive Factors to Improve Code
Review. PhD thesis, 2023.

[14] Enrico Fregnan, Larissa Braz, Marco D’Ambros, Gül Çalıklı, and Alberto Bacchelli.
First come first served: The impact of file position on code review. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2022, page 483–494, New York,
NY, USA, 2022. Association for Computing Machinery.

[15] Takafumi Fukushima, Yasutaka Kamei, Shane Mcintosh, Kazuhiro Yamashita, and
Naoyasu Ubayashi. An empirical study of just-in-time defect prediction using cross-
project models. Proceedings of the 11th Working Conference on Mining Software
Repositories - MSR 2014, 2014.

[16] Pavĺına Wurzel Gonçalves, Enrico Fregnan, Tobias Baum, Kurt Schneider, and Al-
berto Bacchelli. Do explicit review strategies improve code review performance? In
Proceedings of the 17th International Conference on Mining Software Repositories,
MSR ’20, page 606–610, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

41

[17] Pavĺına Wurzel Gonçalves, Enrico Fregnan, Tobias Baum, Kurt Schneider, and Al-
berto Bacchelli. Do explicit review strategies improve code review performance? to-
wards understanding the role of cognitive load. Empirical Softw. Engg., 27(4), jul
2022.

[18] James Hampton. The between-subjects experiment. In Laboratory Psychology, pages
15–37. Psychology Press, 2018.

[19] Kim Herzig and Andreas Zeller. The impact of tangled code changes. In 2013 10th
Working Conference on Mining Software Repositories (MSR), pages 121–130, 2013.

[20] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu Ubayashi.
Deepjit: An end-to-end deep learning framework for just-in-time defect prediction.
2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), 2019.

[21] Thong Hoang, Hong Jin Kang, David Lo, and Julia Lawall. Cc2vec. Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering, 2020.

[22] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not.,
39(12):92–106, December 2004.

[23] Andrea Janes, Michael Mairegger, and Barbara Russo. Code call lens: Raising the
developer awareness of critical code. In Proceedings of the 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering, ASE 2018, page 876–879, New
York, NY, USA, 2018. Association for Computing Machinery.

[24] Yasutaka Kamei, Emad Shihab, Bram Adams, Ahmed E. Hassan, Audris Mockus,
Anand Sinha, and Naoyasu Ubayashi. A large-scale empirical study of just-in-time
quality assurance. IEEE Transactions on Software Engineering, 39(6):757–773, 2013.

[25] Maurice G Kendall. Rank correlation methods. Griffin, 1948.

[26] Chaiyakarn Khanan, Worawit Luewichana, Krissakorn Pruktharathikoon, Ji-
rayus Jiarpakdee, Chakkrit Tantithamthavorn, Morakot Choetkiertikul, Chaiyong
Ragkhitwetsagul, and Thanwadee Sunetnanta. Jitbot: An explainable just-in-time
defect prediction bot. In 2020 35th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 1336–1339, 2020.

[27] Sunghun Kim, E. James Whitehead, and Yi Zhang. Classifying software changes:
Clean or buggy? IEEE Transactions on Software Engineering, 34(2):181–196, 2008.

42

[28] Sunghun Kim, E. James Whitehead, and Yi Zhang. Classifying software changes:
Clean or buggy? IEEE Transactions on Software Engineering, 34(2):181–196, 2008.

[29] Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey. Code review quality: How
developers see it. In Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, page 1028–1038, New York, NY, USA, 2016. Association for
Computing Machinery.

[30] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W. God-
frey. Investigating code review quality: Do people and participation matter? In 2015
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 111–120, 2015.

[31] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou, and E. James
Whitehead. Does bug prediction support human developers? findings from a google
case study. In 2013 35th International Conference on Software Engineering (ICSE),
pages 372–381, 2013.

[32] Shane Mcintosh and Yasutaka Kamei. Are fix-inducing changes a moving target?
a longitudinal case study of just-in-time defect prediction. IEEE Transactions on
Software Engineering, 44(5):412–428, 2018.

[33] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. The Impact
of Code Review Coverage and Code Review Participation on Software Quality: A
Case Study of the Qt, VTK, and ITK Projects. In Proc. of the Working Conference
on Mining Software Repositories (MSR), pages 192–201, 2014.

[34] Audris Mockus and David M. Weiss. Predicting risk of software changes. Bell Labs
Technical Journal, 5(2):169–180, 2000.

[35] Yukasa Murakami, Masateru Tsunoda, and Hidetake Uwano. Wap: Does reviewer
age affect code review performance? In 2017 IEEE 28th International Symposium on
Software Reliability Engineering (ISSRE), pages 164–169, 2017.

[36] N. Nagappan and T. Ball. Use of relative code churn measures to predict system defect
density. In Proceedings. 27th International Conference on Software Engineering, 2005.
ICSE 2005., pages 284–292, 2005.

[37] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and Mark
Harman. Are developers aware of the architectural impact of their changes? In

43

2017 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 95–105, 2017.

[38] Chanathip Pornprasit and Chakkrit Kla Tantithamthavorn. Jitline: A simpler, bet-
ter, faster, finer-grained just-in-time defect prediction. 2021 IEEE/ACM 18th Inter-
national Conference on Mining Software Repositories (MSR), 2021.

[39] Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, Jeff Skowronek, and Linda
Devine. Exploring methods for evaluating group differences on the nsse and other
surveys: Are the t-test and cohen’s d indices the most appropriate choices? In An-
nual Meeting of the Southern Association for Institutional Research, pages 1–51, 2006.

[40] N. Rutar, C.B. Almazan, and J.S. Foster. A comparison of bug finding tools for java.
In 15th International Symposium on Software Reliability Engineering, pages 245–256,
2004.

[41] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera
Jaspan. Lessons from building static analysis tools at google. Commun. ACM,
61(4):58–66, mar 2018.

[42] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bac-
chelli. Modern code review: A case study at google. In 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP), pages 181–190, 2018.

[43] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Soderberg, and Collin Win-
ter. Tricorder: Building a program analysis ecosystem. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages 598–608, 2015.

[44] Emad Shihab, Ahmed E. Hassan, Bram Adams, and Zhen Ming Jiang. An industrial
study on the risk of software changes. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12, New
York, NY, USA, 2012. Association for Computing Machinery.

[45] D. Spadini and A. Bacchelli. Pydriller: Python framework for mining software reposi-
tories. In 2020 IEEE/ACM 17th International Conference on Mining Software Repos-
itories (MSR), pages 528–532, 2020.

[46] Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. Online defect prediction
for imbalanced data. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 2, pages 99–108, 2015.

44

[47] Hao Tang, Tian Lan, Dan Hao, and Lu Zhang. Enhancing defect prediction with static
defect analysis. In Proceedings of the 7th Asia-Pacific Symposium on Internetware,
Internetware ’15, page 43–51, New York, NY, USA, 2015. Association for Computing
Machinery.

[48] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. How do
software engineers understand code changes? an exploratory study in industry. In
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, FSE ’12, New York, NY, USA, 2012. Association for Com-
puting Machinery.

[49] Yida Tao and Sunghun Kim. Partitioning composite code changes to facilitate code re-
view. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
pages 180–190, 2015.

[50] Patanamon Thongtanunam, Shane McIntosh, Ahmed E. Hassan, and Hajimu Iida.
Investigating code review practices in defective files: An empirical study of the qt sys-
tem. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories,
pages 168–179, 2015.

[51] Tianyi Zhang, Myoungkyu Song, Joseph Pinedo, and Miryung Kim. Interactive code
review for systematic changes. In 2015 IEEE/ACM 37th IEEE International Confer-
ence on Software Engineering, volume 1, pages 111–122, 2015.

[52] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects for
eclipse. In Third International Workshop on Predictor Models in Software Engineering
(PROMISE’07: ICSE Workshops 2007), pages 9–9, 2007.

45

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Publications
	Introduction
	Related Work and Motivational Example
	Code review
	Risk assessment approaches
	A Motivational Example

	Pre-experiment Data Collection
	Subject Systems/Communities
	Data Preparation
	Data Extraction
	Data Filtering

	Risk Assessment — Gherald
	Risk Metrics
	Change Risk Score

	Experiment Design
	Experiment Platform
	Experimental Artifacts
	Code Changes
	Gherald

	Study Variables
	Independent Variable
	Dependent Variables
	Confounding Variables

	Experiment Tasks
	Experiment Flow
	Pre-experiment questionnaire
	Experiment
	Post-experiment Questionnaire

	Pilot Study
	Participants
	Data Analysis

	Study Results
	Threats To Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions
	References

