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Abstract

Continuous Integration (CI) is a popular software development practice that allows de-
velopers to quickly verify modifications to their projects. To cope with the ever-increasing
demand for faster software releases, CI acceleration approaches have been proposed to
expedite the feedback that CI provides.

However, adoption of CI acceleration is not without cost. The trade-off in duration
and trustworthiness of a CI acceleration approach determines the practicality of the CI
acceleration process. Indeed, if a CI acceleration approach takes longer to prime than
to run the accelerated build, the benefits of acceleration are unlikely to outweigh the
costs. Moreover, CI acceleration techniques may mislabel change sets (e.g., a build labelled
as failing that passes in an unaccelerated setting or vice versa) or produce results that
are inconsistent with an unaccelerated build (e.g., the underlying reason for failure does
not match with the unaccelerated build). These inconsistencies call into question the
trustworthiness of CI acceleration products.

We first evaluate the time trade-off of two CI acceleration products — one based on
program analysis (PA) and the other on machine learning (ML). After replaying the CI
process of 100,000 builds spanning ten open-source projects, we find that the priming costs
(i.e., the extra time spent preparing for acceleration) of the program analysis product are
substantially less than that of the machine learning product (e.g., average project-wise
median cost difference of 148.25 percentage points). Furthermore, the program analysis
product generally provides more time savings than the machine learning product (e.g.,
average project-wise median savings improvement of 5.03 percentage points). Given their
deterministic nature, and our observations about priming costs and benefits, we recommend
that organizations consider the adoption of program analysis based acceleration.

Next, we study the trustworthiness of the same PA and ML CI acceleration products.
We re-execute 50 failing builds from ten open-source projects in non-accelerated (base-
line), program analysis accelerated, and machine learning accelerated settings. We find
that when applied to known failing builds, program analysis accelerated builds more often
(43.83 percentage point difference across ten projects) align with the non-accelerated build
results. Accordingly, we conclude that while there is still room for improvement for both
CI acceleration products, the selected program analysis product currently provides a more
trustworthy signal of build outcomes than the machine learning product.

Finally, we propose a mutation testing approach to systematically evaluate the trust-
worthiness of CI acceleration. We apply our approach to the deterministic PA-based CI
acceleration product and uncover issues that hinder its trustworthiness. Our analysis con-
sists of three parts: we first study how often the same build in accelerated and unaccelerated
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CI settings produce different mutation testing outcomes. We call mutants with different
outcomes in the two settings “gap mutants”. Next, we study the code locations where gap
mutants appear. Finally, we inspect gap mutants to understand why acceleration causes
them to survive. Our analysis of ten thriving open-source projects uncovers 2,237 gap
mutants. We find that: (1) the gap in mutation outcomes between accelerated and unac-
celerated settings varies from 0.11%-23.50%; (2) 88.95% of gap mutants can be mapped
to specific source code functions and classes using the dependency representation of the
studied CI acceleration product; (3) 69% of gap mutants survive CI acceleration due to
deterministic reasons that can be classified into six fault patterns. Our results show that
deterministic CI acceleration suffers from trustworthiness limitations, and highlights the
ways in which trustworthiness could be improved in a pragmatic manner.

This thesis demonstrates that CI acceleration techniques, whether PA or ML-based,
present time trade-offs and can reduce software build trustworthiness. Our findings lead
us to encourage users of CI acceleration to carefully weigh both the time costs and trust-
worthiness of their chosen acceleration technique. This study also demonstrates that the
following improvements for PA-based CI acceleration approaches would improve their trust-
worthiness: (1) depending on the size and complexity of the codebase, it may be necessary
to manually refine the dependency graph, especially by concentrating on class properties,
global variables, and constructor components; and (2) solutions should be added to detect
and bypass flaky test during CI acceleration to minimize the impact of flakiness.
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Chapter 1

Introduction

Continuous Integration (CI) is a popular practice in modern software development [55, 74].
Accordingly, substantial effort has been invested in improving the performance of each
phase of the CI process [31]. Among these phases, the test execution phase normally
consumes the majority of CI execution [37, 18]. As a result, accelerating the testing
process contributes to rapid feedback—a hallmark benefit of CI.

Adopting of CI acceleration is not without pitfalls. The trade-off in time and trust-
worthiness of a CI acceleration approach determines the practicality of the CI acceleration
process. Indeed, if a CI acceleration approach takes longer to prime than to run the build,
it may not be worth it [11].

However, even if the approach provides large time savings, if it mislabels change sets
(e.g., a faulty build passes) [31, 0], then it may ultimately result in more work for devel-
opers [30, 75, 87]. Builds can have failing outcomes for multiple reasons, and these may
not be consistent when using CI acceleration. This can allow some bugs to slip through
CI when acceleration is in use. Indeed, when build behaviour is deemed untrustworthy, it
is not uncommon for developers to rely on sub-optimal workarounds, such as repeated ex-
ecution [50]. Since developers tend to prioritize correct build behaviour over efficiency [1],
if CI acceleration is untrustworthy, they may hesitate to adopt it. Despite its importance,
systematic approaches to evaluate the trustworthiness of CI acceleration approaches do
not yet exist. Early work by Gallaba et al. [28] suggest that at a high level, accelerated
outcomes of change sets tend to match (i.e., change sets with a passing/failing outcome
continue to pass/fail when acceleration is applied); however, the results are based on a
replay of 100 historical change sets, which may not capture a full variety or breadth of po-
tential software modifications. To bridge this gap, we propose a mutation testing approach



to study the trustworthiness of CI acceleration.

The costs and benefits of CI acceleration approaches should therefore be carefully mea-
sured. In this thesis, we use replay analysis, which can be used to evaluate the cost of
time and trustworthiness. We believe that the outcomes of our study can assist CI users to
better weigh the benefit and cost when selecting CI acceleration products and guide future
work on improvements to the CI acceleration approaches.

1.1 Problem Statement

The cadence of software development is set by the pace at which Continuous Integration
services process change sets. Rapid feedback in a CI process is a key feature. Accelerating
CI processes provides several benefits, but is accompanied by limitations:

Thesis Statement: CI acceleration is not free. Replay analysis can be leveraged to
evaluate the costs and benefits in terms of time and trustworthiness. Furthermore, mu-
tation testing can complement replay analysis to provide a fine-grained assessment of the
limitations that hinder CI acceleration.

The costs and benefits of a CI acceleration product determine the quality of the CI
acceleration process. Indeed, it may be impractical if a CI acceleration product takes
longer to prime than to run the accelerated build. Therefore, the costs and benefits of CI
acceleration products should be carefully measured.

To understand and compare the costs and benefits of two families of CI acceleration
products, we conduct an empirical comparison of a program analysis and a machine learning
acceleration product. Furthermore, aimed at the decision-making guidelines (e.g., the
dependency graph of changed code) of the program analysis product, we apply mutation
testing to assess the defect patterns that exist in CI acceleration.

1.2 Thesis Overview
Below, we provide a brief overview of the scope of this thesis.

e Chapter 2: Background
We begin by providing the necessary research background for our selected topic. We
introduce the fundamental steps of continuous integration (CI) and highlight the
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Figure 1.1: An overview of the scope of this thesis.

factors that trigger the CI procedure. Subsequently, we outline and discuss various
mainstream methods that can be employed to accelerate the CI process. Additionally,
we describe mutation testing, the technique we apply to assess the CI acceleration.

e Chapter 3: Related Work
In this chapter, we aim to situate this thesis with respect to the prior work in the
field of continuous integration acceleration.

e Chapter 4: CI Acceleration Time Trade-off
We study the performance of two CI acceleration products — one based on program
analysis (PA) and the other on machine learning (ML). After replaying the CI process
of 100,000 builds spanning ten open-source projects, we summarize the trade-off in
terms of the priming costs (i.e., the extra time spent preparing for acceleration) and



time savings (i.e, the saved time save in accelerated build) of two CI acceleration
products.

e Chapter 5: Trustworthiness Comparison
We study the trustworthiness of the same program analysis and machine learning CI
acceleration products. We re-execute 50 failing builds from ten open-source projects
in non-accelerated (baseline), PA-accelerated, and ML-accelerated settings. We study
how often the CI acceleration products align with the non-accelerated build results.

e Chapter 6: Mutation-Guided Assessment
We propose a mutation testing approach to systematically evaluate the trustworthi-
ness of CI acceleration. We apply our approach on a deterministic solution that uses
program analysis to accelerate CI and uncover issues that hinder its trustworthiness.

1.3 Thesis Contributions

This thesis demonstrate that:

e The priming costs of the program analysis approach are substantially lower than
those of the ML approach (Chapter 4).

e During the acceleration process, the program analysis approach generally provides
greater time savings than the ML approach (Chapter 4).

e The results of builds accelerated by the program analysis approach more often align
with non-accelerated build results (Chapter 5).

e 90% of studied projects contain mutants that survive in accelerated settings although
they are killed in unaccelerated settings (Chapter 6).

e 88.95% of the mutants that only survive in the accelerated setting are traceable
within the dependency graph of the studied CI acceleration product (Chapter 6).

e While 22.5% of mutants that survive in the accelerated setting but are killed in the
unaccelerated setting differ due to non-deterministic build behaviour, 69% survive

because of deterministic reasons, and can be broadly classified into six categories
(Chapter 6).



Overall, this thesis demonstrates that CI acceleration can sacrifice trustworthiness.
While there is still room for improvement for both CI acceleration approaches, the selected
program analysis approach currently provides greater practical value in an explainable
fashion, while also incurring less risk. We therefore encourage users of CI acceleration
to carefully weigh the trustworthiness of their chosen acceleration technique before accel-
erating their builds to avoid compromising their build results. On the other hand, it is
possible to use techniques such as mutation testing to evaluate this sacrifice and identify
improvements for current approaches.

1.4 Thesis Organization

We organize the remainder of the thesis as follows. Chapter 2 outlines the background
for our research. Chapter 3 introduces the related research in Continuous Integration, CI
acceleration and mutation testing. Chapter 4 presents the trade-off in time of program
analysis product and machine learning product. Chapter 5 discloses the gap of trust-
worthiness of both products. Chapter 6 describes the mutation-guided assessment of the
trustworthiness of CI acceleration. Chapter 7 concludes the thesis and discusses promising
directions for future work.



Chapter 2

Background

In this chapter, we introduce the concepts that underpin the three key components of our
study. First, we describe fundamental steps of continuous integration (CI) and highlight
the factors that trigger the CI procedure. Then, we explain acceleration of the CI process.
Finally, we provide the rationale of mutation testing through our discussion of mutant
categories and mutation operators.

2.1 Continuous Integration

2.1.1 Continuous Integration Procedure

The CI process begins when a developer (or automated tool) introduces a change in their
version control system [19]. A CI build can then be triggered to automatically invoke a
series of steps to assess whether the change set integrates safely [22]. When a build is trig-
gered, a build job is created using project-specific criteria (e.g., compile the code then run
all tests). To process a build job, a node downloads a specified (typically, the latest) version
of the source code and initiates the build process, including acquiring dependencies [51],
compiling the code, and running tests [77]. Then, the node sends the build results to a
reporting service to broadcast them to the development team. This enables a development
feedback loop that empowers its users.



2.1.2 Software Builds

Software builds refer to the process of assembling software artifacts to create or update
installable or updated software packages, which consists of five steps [52]:

e Configuration sets the necessary parameters and user-preferred environment to
prepare for the building the software.

e Construction invokes language tools, such as compilers and linkers, to process
source code to generate raw deliverables (i.e., executable files).

e Certification executes tests to inspect the quality of raw deliverables generated from
the construction step.

e Packaging assembles the validated deliverables with the necessary libraries, docu-
mentation, and data files.

e Deployment releases the software package to the targeted platform and makes it
available for download or update.

2.2 (I Acceleration

2.2.1 CI Acceleration Techniques

There are various CI acceleration approaches. Some approaches rely on using historical
code changes [50] to train classifiers [15, 54], which are then used to select tests for exe-
cution. Indeed, the machine learning approach we explored in this thesis belongs to this
category. Other popular methods for CI acceleration rely on rule-based test case prioriti-
zation [13, 73] and test case selection [21]. These techniques accelerate builds by running
a subset of the complete test suites or skipping steps of within test cases. The program
analysis approach that we study in this thesis belongs to this category. In addition, there

are techniques that rely on greedy algorithms [79], which decompose the build targets to
make the builds faster. Finally, there are techniques that cache environments and infer
dependencies [7, 12, 28], these techniques speed up builds by exploiting the dependency

relations embedded in the dependency graphs of builds.



2.2.2 Dependency Graph

In a system, software artifacts may depend on each other. The dependency graph in a
build system records dependencies from targets to other targets or files.

As the decision-making kernel of the studied program analysis CI acceleration product
(PA-product), the dependency graph stores information that is used to accelerate subse-
quent test runs. It provides guidelines for the build with a minimal number of test runs
required. Specifically, throughout the build process, the PA-product traces the execution
path of each test, gains insights into the involved files and methods, and stores informa-
tion about them as dependencies of that test in the dependency graph. By utilizing this
graph, PA-product skips tests whose dependencies were not updated by corresponding code
changes, delivering the same test results as running the entire test suite.

2.2.3 Target and Confidence Measures

Our studied Machine learning CI acceleration product (ML-product) trains a machine
learning classifier to predict potential failures in each test. The source of the training set
is the historical test results (i.e., names and paths of test cases and test files, test status
of each test case, and the duration of each test case) and code changes (i.e., names and
paths of changed files, number of changed lines, commit hashes associated with changes,
and authors associated with changes).

The ML-product contains two types of optimization parameters: target and confidence.
The Target measure reflects how small of a subset of tasks the acceleration aims to produce.
The Confidence measure reflects how high the model-estimated likelihood needs to be
before it decides to skip a task. By aiming at different optimization targets, the ML-
product can provide recommended subsets of tests of varying levels of aggressiveness to
accelerate builds.

2.3 Mutation Testing

Mutation testing is a program analysis approach that is generally used to evaluate the
quality of test suites. It consists of artificially perturbing source code to inject (likely)
faulty behaviour. The defects introduced by mutation testing are called mutants. Mutants
(i.e., perturbed versions of the code under test) are produced, and test suites are re-executed
to determine if the mutants are killed (i.e., at least one test that passes for the unperturbed



version fails) or survive (i.e., tests continue to pass on the perturbed version). Based on
this principle, we further introduce 5 types of mutants that occur in our study context.

¢ Killed mutant: mutants that have been killed by at least one test case;
e Survived mutant: mutants that have not been killed by any test case;
e Timeout mutant: mutants where test execution exceeds an upper limit setting;

e Suspicious mutant: mutants where the test suite took 10 times as long as the
baseline;

e Skipped mutant: mutants that are skipped due to syntax errors in the mutated
code or excessive use of system resources (e.g., memory exhaustion).

2.3.1 Mutation Operators

Mutation operators are concrete rules applied to the source code of a program in mutation
testing. We provide ten types of mutation operators and their details:

e Operator Mutation: change the operators used in expressions (e.g., replacing ‘4’
Wlth 4_7, £ 3 Wlth 4/77 or (__ Wlth 4!:7);

e Keyword Mutation: modify keywords within the code (e.g., replacing ‘if’ with
‘while’ or ‘return’ with ‘break’);

e Number Mutation: change a number from positive to negative or modify its mag-
nitude;

e Name Mutation: modify variable and function names in the code;

e String Mutation: change string literals in the code (e.g., modifying the content of
a string or replacing it with a different string);

e Argument Mutation: modify function arguments (e.g., changing the order of ar-
guments or replacing arguments with different values);

e And/or Mutation: replace and’ with 'or’ or vice versa in conditional statements;

e Lambda Mutation: modify lambda expressions in the code (e.g., changing the
parameters or the body of a lambda function);

9



o Expression Mutation: change the order of operands or replace sub-expressions
with ‘None’;

e Decorator Mutation: remove or change the decorators applied to functions or
classes.

2.4 Chapter Summary

This chapter introduces the basic concepts of Continuous Integration (CI) and its accel-
eration as well as mutation testing. Specifically, we describe the CI procedure and the
definition of software builds. We also present various of CI acceleration techniques, outline
the key components of studied CI acceleration products, dependency graph and Target and
Confidence Measurements. Finally, we provide the rationale and concrete rules of mutation
testing, which we use to assess the trustworthiness of a CI acceleration product.

In the next chapter, we correspondingly survey prior research on Continuous Inte-
gration, CI acceleration and mutation testing to situate the empirical comparison and
mutation-guided assessment with respect to the broader body of knowledge.

10



Chapter 3

Related Works

This chapter concentrates on existing work related to continuous integration (CI), CI ac-
celeration techniques and their pitfalls, and mutation testing.

3.1 Continuous Integration

3.1.1 CI Procedure

Continuous Integration is best understood in terms of its process, which is composed of
four steps: build triggering events, build job creation, build job processing, and build job
reporting [24, 30]. Indeed, there are various prior studies that focus on each of these steps.
For example, Macho et al. [19] introduce the starting point where a normal CI process
begins. Dosinger et al. [22] explain that builds require a triggering event to automatically
run the CI pipelines and subsequent procedures. Macho et al. [51] also study the acquisition
of dependencies during the build process and propose an approach to repair dependency-
related build breakages. Testing is yet another key step in the CI procedure [77]. Gallaba
et al. [28] demonstrate that test execution takes up the majority of the CI process duration.
As a result, accelerating test execution is considered a best practice, to keep CI processes
short, so that feedback is provided quickly [76]. In this thesis, we concentrate on the CI
process and its acceleration.

11



3.1.2 CI Applications

The presence of CI increases the efficiency and quality of software builds [2]. This has made
it popular in both proprietary and open-source settings [33, 80]. Since the emergence of
CT services, cloud-based CI providers (e.g., TravisCL,! CircleCT> and GitHub Actions?)
have bridged the gap between professional CI services and individual users [10, 23, 57, 72].
The widespread adoption of CI has enabled improvements to software quality in various
settings [08, 78]. Due to their widespread adoption and scale, increases in the performance
of CI systems are highly sought after [59]. Gallaba et al. [29] conduct an exploratory case
study of CircleCI and propose suggestions to improve the efficiency and robustness of CI
applications. Esfahani et al. [20] introduce the mechanism to accelerate the CI procedure
that is applied in Microsoft’s internal projects. Rossi et al. [72] describe the application
of continuous deployment on mobile development in Facebook. While prior works mainly
focus on the benefit of CI, not much attention has been paid to the costs and risks that it
incurs. In this thesis, we concentrate on both costs and benefits of CI applications.

3.2 CI Acceleration

3.2.1 CI Acceleration Techniques

While CI is an improvement over a scheduled build process, if the build process itself is slow,
feedback delay can hinder development progress [32]. To reduce this delay, CI acceleration
approaches have been proposed. Some approaches rely on using historical code changes [50]
to train classifiers [15, 54], which are then used to select tests for execution. Other popular
methods for CI acceleration rely on rule-based test case prioritization [13, 73] and test
case selection [21]. These techniques accelerate builds by running a subset of the complete
test suites or skipping steps of within test cases. In addition, there are techniques that
rely on greedy algorithms [79], which decompose the build targets to make the builds
faster. Finally, there are techniques that cache environments and infer dependencies [7,

, 28], which speed up builds by exploiting dependency relations for each build. To
achieve representative observations, we respectively select two kinds of commercial-grade
CI acceleration products based on the machine learning (ML) and program analysis (PA)

https://www.travis—ci.com
?https://circleci.com
3https://github.com/features/actions
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domains for time trade-off and trustworthiness comparison, and conduct mutation-guided
assessment to the PA product.

3.2.2 CI Acceleration Costs

Although CI acceleration provides many benefits, it suffers from challenges. First, most CI
acceleration requires some preparation steps, or priming, before being ready to accelerate
a build [71]. Moreover, the efficiency of CI acceleration techniques is not always obvious.
Indeed, running a build acceleration approach on a system with few test cases may lack
meaning [16]. Even in cases where the benefits of CI acceleration are clear, applying
an acceleration approach can be a challenge in and of itself [33]. For example, some CI
acceleration techniques only support a single programming language [70]. This language
barrier can prevent developers from applying the acceleration approach to their projects,
despite their desire for rapid feedback [3].

In cases where the development language aligns with a CI acceleration approach, the
time spent on preparing the acceleration environment might have a high cost [32, 11].
However, while these costs may add up, the benefits of CI acceleration are expected to
outweigh it [33, 35].

Moreover, CI acceleration approaches are not without their pitfalls. Indeed, Gallaba
and McIntosh [30] showed that the misuse of CI services can cause additional failures.
The occurrence of test failures in software systems is unstable, and varies based on the
evaluation of the system [53, 89]. As a result, even if an acceleration approach achieves
substantial savings, if it introduces instability with respect to the unaccelerated build,
teams will likely hesitate to adopt it.

A systematic mapping study [18] found that prior research shows a preference for test
selection and prioritization approaches that make use of failure history, execution history,
and test coverage. Approaches that use failure [35, 83] and execution history [17, 58] are at
the mercy of prior failures. Furthermore, approaches based on test coverage [11] attempt
to maximize the number of faults detected in a given time period. Therefore, by design,
such approaches might miss faults due to the side effects of test case prioritization.

A systematic literature review of test case selection and prioritization [60] based on
machine learning found that these approaches concentrate only on a few, easily obtainable
features. Indeed, many approaches concentrate on code complexity metrics [60]. These

approaches would also likely suffer from low trustworthiness when issues occur in specific
components in the codebase (e.g., class properties, global variables, and constructors) since
those areas are unlikely to have low complexity yet might cause test errors. Approaches
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based on textual data such as the approach by Aman et al. [!] prioritize test cases by
targeting those that have different textual contents and, therefore, are more likely to test
different aspects of the source code. Similarly, to traditional approaches based on code
coverage, such approaches might also present low trustworthiness for issues that occur in
less efficient tests. Finally, machine learning test selection and prioritization approaches
that concentrate on code coverage are likely to suffer from similar issues as the ones pre-
sented in this thesis. Indeed, even state-of-the-art approaches [11] make use of class-level
dependency analysis, which does not prevent issues such as those covered by configuration-
purpose issues in the codebase.

3.3 Mutation Testing

Mutation testing is a program analysis approach [17] that consists of artificially perturbing
source code to inject (likely) faulty behaviour. Mutation testing is primarily used to
evaluate the quality of test suites [62, (64, 65].

In practice, mutation testing can be found in both experimental and industrial settings.
Indeed, mutation testing has been used at the experimental level to evaluate a model-based
approach for security protocols research [15, 16], to guide the input for combinatorial inter-
action testing [01], and in order to address test flakiness [36]. Meanwhile, at the enterprise
level, mutation testing has been applied to optimize Google’s deployment workflow [0, (6],
and has been integrated into a Facebook commit-oriented scenario within their production
environment [9]. In this thesis, we use mutation testing to verify the outcomes of a CI
acceleration technique.

As a white box technique, a significant feature of mutation testing is its portability [67],
which makes it possible to apply in various programming languages and multiple software
testing levels (e.g. unit, integration) [11]. Since Python became one of the mainstream
programming languages in the software development community, the application of muta-
tion testing aimed at Python projects has become widespread in recent years [19, 20]. In
this thesis, we conduct mutation tests on Python-specific CI acceleration. Specifically, we
select Mutmut,* a mature mutation tool for Python with 12 mutation strategies [27], to
generate mutants within our subject systems for the purpose of studying the impact of CI
acceleration.

The key metric of mutation testing is the percentage of killed mutants (a.k.a. mutation
score) [39, 63], which is calculated by dividing the number of killed mutants (i.e., mutants

4https://mutmut.readthedocs.io/en/latest/
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that cause test cases to fail) by the total number of generated mutants. Indeed, mutation
analysis has been used to improve various aspects of software engineering [5, 18, 11, 12].
However, to the best of our knowledge, mutation testing has yet to be applied to assess CI
acceleration approaches.

3.4 Chapter Summary

In this chapter, we present the prior work on Continuous Integration and its acceleration,
as well as mutation testing, from which we find that (1) although CI acceleration is widely
used and offers time-saving benefits, it suffers from challenges, such as its priming costs and
trustworthiness; and (2) while prior evaluations of CI acceleration have been conducted,
they have yet to capture the full variety or breadth of potential software modifications.
Moreover, (3) mutation testing is suitable for program analysis and has yet to be used for
CI acceleration assessment.

As a result, the remainder of this thesis describes our empirical studies that set out to
tackle these limitations. We begin in the next chapter, by comparing the time trade-off of
two families of CI acceleration products based on different principles.
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Chapter 4

CI Acceleration Time Trade-off

An earlier version of the work in this
chapter has been submitted to IEFEE
Software.

4.1 Introduction

To understand and compare the costs and benefits of two families of CI acceleration prod-
ucts, in this chapter, we conduct an empirical comparison of a PA and an ML acceleration
product. We specifically concentrate on readily available commercial tools to determine
the costs and benefits of products that are currently available to practitioners. We sys-
tematically evaluate the priming costs and time savings of these products with respect to
non-accelerated builds. To achieve our goal, we first select ten projects on which to run
the CI acceleration products. Using the full range of parameter settings for the PA and
ML products, we replay the builds of 50 commits from ten large and active open-source
projects in PA-accelerated, ML-accelerated, and non-accelerated settings. This results in
a total of 100,000 builds. This corpus of data allows us to answer the following research
questions:

RQ1:How do the priming costs of CI acceleration products compare?

Outcome: Unsurprisingly, the priming cost is highly correlated with the original
build time for both acceleration products; however, the priming costs of the PA-
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product is a project-wise average of 148.25 median percentage points less than
those of the ML-product.

RQ2: What are the time savings of CI acceleration products?

Outcome: The PA-product shows an improvement of 5.03 percentage points
compared with the ML-product in terms of time savings. However, the ma-
chine learning product tends to close the gap as projects accrue more data for
training.

4.2 Study Design

Below, we present how we filter (Section 4.2.1) and rank (Section 4.2.2) candidates to
obtain our set of studied projects. We then explain how we extract CI data from each
studied project (Section 4.2.3). Finally, we present the approaches that we use to answer
our research questions (Section 4.2.4).

4.2.1 Data Filtering

We begin by retrieving a dataset of GitHub repositories from Google BigQuery.! The
dataset contains the activity and property information for the repositories on GitHub.

Select python projects (DF1): To mitigate the influence of different programming
languages on our experimental results, we select projects that use single programming lan-
guage. We focus on Python because it is supported by our selected acceleration products.
We query projects that have ‘Python’ as a field within the ‘language’ table in the BigQuery
dataset. After applying our first filter, 549,098 projects survive.

Select pytest projects (DF2): After removing all non-Python projects, we use a second
filter to select projects that use the pytest framework. We select the pytest framework
because previous research demonstrated that it has a more stable performance profile than
other testing frameworks [0]. After applying our second filter, 29,849 projects survive.

https://cloud.google.com /bigquery /public-data
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4.2.2 Project Ranking

Although our experimental procedures are largely automated, repeating the experiment on
thousands of systems is untenable. We therefore apply a ranking procedure to systemati-
cally select a set of studied projects.

Compute projects relevance measures (PR1): We inspect the number of commits,
files and test cases, which respectively correspond to the repositories’ activity, scale of
production code, and scale of testing code. Repositories with a high number of commits
and files contain more code changes, and are more likely to offer an adequate volume of
data for validation. The number of test files is likely associated with the speed at which
a build completes. We expect the time consumed by the build of a studied project to be
large enough to allow us to perform a cost-benefit analysis.

Transform measures to ranking (PR2): To obtain the impact of metrics during project
selection, we sum the above indicators, and rank the surviving projects in descending order.

Select diversified projects (PR3): To gain a diverse set of projects from which reliable
conclusions can be drawn, we exclude top projects from the same domain, selecting the
next highest ranked project from another domain as a replacement. Finally we obtain 10
studied projects from different domains, which are shown in Table 4.1.

Table 4.1: The studied projects of CI Acceleration Time Trade-off

Repository # Commits # Files # Test Cases Description Domain
pst/requests 6,107 126 554 HTTP library Network
apache/airflow 15,629 14,062 9,890 Workflow management platform Workflow management
ansible/ansible 52,514 5,693 3,626 IT automation platform IT automation
asciinema/asciinema 821 91 26 Terminal session recorder Productivity
numpy/numpy 30,262 1,963 23,644 Scientific computing Python package Statistics
bokeh/bokeh 19,609 4,409 9,784 Interactive data visualization tool Visualization
dask/dask 7,280 447 593 Binary analysis platform Task scheduling
scikit-learn /scikit-learn 28,198 5,338 9,753 Machine learning library Machine learning
cloud-custodian/cloud-custodian 3,786 705 8,270 Cloud security and governance tool ~ Cloud management
explosion/spaCy 15,546 1,216 4,400 Natural Language Processing tool NLP

4.2.3 Data Extraction

After selecting the studied projects, we extract data from each using our Data Extraction
(DE) procedure. Figure 4.1 provides an overview of the procedure. We describe each step
below.
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Extract changesets (DE1): CI acceleration operate on changesets. Thus, we extract
changesets from the Git repositories of our studied projects. We separately select 50
consecutive passing-build commits and 50 failed-build commits for each studied project by
walking the commit history in reverse chronological order. The exact information for each
commit that we study is listed in our online appendix.?

Label commits with CI outcomes (DE2): We manually label each of the selected
commits according to CI outcomes (e.g., pass or fail). We conduct this manual labelling
because of the inconsistency in CI checks for different commits. The CI checks® in this
chapter refer to the GitHub’s check run for the public repository, which contains the
passed/failed outcomes from various CI services like GitHub Actions, CircleCI and Code-
cov. We obtain relevant information by checking the passed or failed label listed after the
commit date. Each commit has a different number of checks, which varies with commit
branches and build environments. GitHub’s automatic system labels commits as failed if
at least one check fails. For example, we found an inconsistency in commit f3719bf in
the project cloud-custodian/cloud-custodian. In that instance, GitHub’s automatic
system labels the commit as failed; however, the build passes when we reproduce it locally.

4.2.4 Data Analysis

For both acceleration products, we first establish a build environment for the preparation
of acceleration (i.e., the priming stage), then execute the accelerated build (i.e., the accel-
eration stage). Figure 4.1 provides an overview of our data analysis procedure. Below, we
describe each step.

Prime acceleration technology (DA1la): The priming stage for the PA-product re-
quires constructing a dependency graph to store the dependency relations between every
element in the program. The dependency graph’s construction is completed during the
execution of the cold build, i.e., the initial, complete build in which no steps are skipped.
We use the duration of the cold build to estimate the priming time.

The priming stage for the ML-product requires training the machine learning classifier
to predict potential failures in each test. The source of the training dataset comes from
past builds and their source code changes. The priming time of the ML-product contains
the time spent on creating a training set, running the full test suite, recording test results,
and subsetting the test suite based on the training results and parameter settings. The

?https://doi.org/10.5281/zenodo. 7042150
3https://docs.github.com/en/developers/apps/guides/creating-ci-tests-with-the-checks-api
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source of the training set is the historical test results (i.e., names and locations of test cases,
test status and duration of each test case) and code changes (i.e., names and locations of
changed files, number of changed lines, commit hashes and authors of changes). In this
chapter, the complete training set we applied comes from the 50 passing-build commits
we select for acceleration. We remove failing builds that do not run any tests and train
on consecutive commits to match the real-world use case of the products. Specifically, we
apply build acceleration on N commits, where we use the previous commits (i.e., from the
Ist to (N —1)th commit) for training. The acceleration of the first commit is guided by the
untrained machine learning classifier. The classifier uses the previous commits for training
starting from the second commit. We use the median of the data from the full range of
target and parameter settings to represent the priming time in each commit.

We measure the priming time by placing timers at each step of the priming process.
We compare the cost of setting up a build acceleration environment across the studied
approaches.

Execute accelerated builds (DA1b): During a warm (a.k.a., accelerated) build, the
PA-product uses the graph generated during the cold build to locate changed lines of code
and their dependencies. By traversing this graph, the approach can skip cases that are
irrelevant to a code change.

During a warm build, the ML-product creates a subset of the test suites using different
optimization targets. We select the full range of possible confidence and percentage time
targets in increments of 0.01 to study their influence on the acceleration performance.

We measure the time savings by calculating the difference between their cold and warm
build times. We then compare the time savings of both approaches.

4.3 Study Results

In this section, we present the results of our study with respect to our research questions.

4.3.1 RQ1: How do the priming costs of CI acceleration products
compare?

RQ1: Approach. To study the costs of the priming stages, we analyze a series of time
measurements. For the PA-product, we record the time spent during a cold build and the
subsequent construction of the dependency graph. For the ML-product, we record the time
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Figure 4.1: The study design for each studied project of CI Acceleration Time Trade-off

spent in preparing the training set, running the full test suite, recording test results, and
identifying a relevant subset of the test suite based on the training results.

For each of studied projects, we plot of the priming costs of both acceleration ap-
proaches. We define the priming cost for an acceleration product as the difference between
the time spent on the priming stage for a commit and the cold build time of that commit,
i.e., the extra time spent preparing the acceleration environment. We then compare the
priming costs of both products and their distributions over 50 commits for each project
by conducting Mann-Whitney U tests (two-tailed, paired, Bonferroni-corrected o = 0.005
for ten comparisons). To estimate the effect size of the difference, we use Cliff’s delta,
which is negligible when 0 < § < 0.147, small when 0.147 < ¢ < 0.33, medium when
0.33 < 6 < 0.474, and large otherwise.

RQ1: Results. Below, we present two observations with respect to the priming cost trends
among the studied approaches.

Observation 1 — The PA-product has a lower priming cost than the ML-
product. We find that in the priming process of all studied projects, the average priming
cost of the PA-product is 148.25 percentage points less than that of the ML-product.
Indeed, Figure 4.2 shows that the highest priming cost of the PA-product generally out-
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performs the lowest priming cost of the ML-product. Only the Ansible project breaks this
trend, and in that case, all of the commits used with the PA-product still have a lower
priming cost than 96% of the commits for the ML-product. Furthermore, the trend holds
across a wide range of build times. Indeed, in the shortest cold build (i.e., project asci-
inema with an average cold build time of 2 seconds), the ML-product needs more than
20 seconds on average to finish the priming stage, while the PA-product takes only 2.41
seconds on average. The largest difference occurs in the project with the longest cold build
time, (i.e., project airflow with an average cold build time of 39 min 23 second), where the
average priming cost for the ML-product is 26 minutes longer than the PA-product.

The p-value of all selected projects is much less than the assigned significance level,
indicating that the null hypothesis can be rejected and that the PA and ML samples are
different to a statistically significant degree. Furthermore, the Cliff’s delta varies from 0.80
to 0.86, indicating that the practical differences between the PA and ML priming costs are
large.

= B ML priming costs - . ML tlime savlings
10° - [ PA priming costs 103 0 PAtime savings
<
=

— 107 - -
L 2 -
2 ﬁ b= 1 9 102 —— ( -
: BB § —
g\ 10! 5 E ©
é g

10°

e ) Q (2 o g Q
RPN O SO L S & & O @ S S
RPN R RN AR AR LR L o @ S K & ¥ @
vy T Y TS & v Yy T & 5 & &

& o <& & S > < &

9 \)b ) oé

c® o

Figure 4.2: Comparison of the priming costs and time savings across 10 projects

Observation 2 — The time spent on the priming process of the two acceler-
ation products correlates with the original build time. We also find that as build
times change, both acceleration products present proportional changes in the time spent
on the priming stage. This trend holds across all projects (see our online appendix)?.

To quantify this phenomenon, we calculate the Spearman’s p correlation coefficient
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between non-accelerated build time and the time spent on the priming stages of each
product. We find that p = 0.9028 for the ML-product and p = 0.9564 for the PA-product.

Overall, the PA-product likely has a slightly higher correlation because the priming
process for this product hinges on building a dependency graph which is unlikely to face
significant changes from one commit to the next. This likely allows the product to observe
a relatively stable priming stage. Meanwhile, the ML-product may present more sporadic
fluctuations due to the internal workings of the various steps it uses to accelerate a build.
However, when exploring each product’s respective trends, we find that neither product
presents a significant increasing or decreasing trend in priming time as the build times
change.

Outcome 1: The priming cost of the PA-product is substantially less than that of
the ML-product. The priming time is highly correlated with the original build time
in all cases.

4.3.2 RQ2: What are the time savings of CI acceleration prod-
ucts?

RQ2: Approach. To measure the time savings, we first record the non-accelerated, PA-
accelerated, and ML-accelerated build times and then compute the relative and absolute
differences between the non-accelerated build time for each studied acceleration product.
We define time savings as the time difference between the accelerated and non-accelerated
build times of a commit.

For each of our ten studied projects, we compare the time savings of both products
over 50 commits for each project by conducting Mann-Whitney U tests (two-tailed, paired,
Bonferroni-corrected av = 0.005 for ten comparisons). Similar to RQ1, we use Cliff’s delta
to estimate the effect size of the difference. We also explore the range and trends in time
savings for both approaches using the builds of 50 passing commits for each project.

RQ2: Results. Below, we present two observations with respect to the time savings of our
studied approaches.

Observation 3 — The PA-product tends to provide more time savings than
the ML-product. Looking at the topmost points of the plots in Figure 4.2, we observe
that the PA-product performs better in 7/10 projects in maximum time saving and 6/10
projects in median time saving.
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The Bokeh project is one of the four projects where the ML-product provides more
time savings. The trend figure shows that starting from the 34th commit, the ML-product
outperforms the PA-product. The trend is especially clear in later commits, where the ML-
product has accrued a larger amount of training data. A similar trend is observed in the
three other projects where the ML-product outperforms the PA approach (see Section 2 of
the online appendix? for the figures). However, this improvement for the ML-product is not
always present because the content of changesets varies with each project. Furthermore,
even when the ML-product provides more time savings, the difference in savings (i.e., effect
size) is never large. As a result, the PA-product provides larger time savings in general,
and particularly when few prior data points (i.e., prior builds) are available.

Observation 4 — The ML-product shows a greater variation in time savings
over multiple commits. According to the Mann-Whitney U test results, the p-values of
eight of the ten studied projects are less than the significance level. This means the null
hypothesis can be rejected and the time savings of the acceleration products are different
to a statistically significance degree.

When referring to the practical differences between each product, there are four projects
whose statistically significant effect sizes lie in the large interval; three projects in the
medium interval; and one project in the small interval. Indeed, six of the seven projects
with large and medium effect sizes show better time savings for the PA-product. Only two
projects, scikit-learn and Dask, show statistically significant results where the ML-product
presents greater time savings. Of those, Dask shows a small effect size and scikit-learn
shows a medium effect size between the products.

Moreover, the ML-product presents a broader range of time savings for six projects.
The four projects that show a broader range of time savings for the PA-product generally
have shorter non-accelerated build times.

Outcome 2: The PA-product tends to outperform the ML-product in terms of time
savings and stability.

4.4 Chapter Summary

The rapid feedback of CI processes allows users to verify if their source code changes
integrate cleanly with their existing systems. CI acceleration promises to further accelerate
the CI process while maintaining its benefits. However, using CI acceleration is not without
costs. To evaluate the practical implications of CI acceleration technology, we conduct an
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empirical study of 100,000 builds across ten projects to compare two kinds of commercial-
grade CI acceleration products across two dimensions: priming cost and time savings. We
make four observations from which we conclude that:

e The priming costs of the PA-product are substantially less than those of the ML
approach.

e During the acceleration process, the PA-product generally provides more time savings
than the ML product.

The outcomes of this empirical study indicate that the selected PA-product currently
exhibits higher commercially practical value than the selected ML-product.

In the next chapter, we continue the empirical comparison of the same CI acceleration
products. We turn our focus to the trustworthiness of two families of CI acceleration
products. We explore which product more often align with the baseline when applied to
known failing builds
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Chapter 5

CI Acceleration Trustworthiness
Comparison

An earlier version of the work in this
chapter has been submitted to IEEE
Software.

5.1 Introduction

In this chapter, we systematically evaluate the trustworthiness of two products with re-
spect to non-accelerated builds. There are two types of errors that an acceleration approach
can make: (a) builds that should have failed, but are labelled as passing; and (b) build
that should have passed, but are labelled as failing. Previous research has shown that
CI outcomes are consistent when using CI acceleration[25] (i.e., type (b) errors are un-
common). However, builds can have failing outcomes for multiple reasons, and these may
not be consistent when using CI acceleration. This can allow some bugs to slip through
CI when acceleration is in use. Therefore, we focus on the effect of CI acceleration on
failing builds. Using the full range of parameter settings for the PA and ML products, we
replay the builds of 50 failing commits from ten large and active open-source projects in
PA-accelerated, ML-accelerated, and non-accelerated settings. This results in a total of
100,000 builds. This benchmark allows us to answer the following research question:
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RQ: How does the trustworthiness of CI acceleration products compare?

Outcome: While the performance of neither product shows a clear trend across
our studied projects, the PA-product is more trustworthy, producing rates of
agreement with non-accelerated counterparts that are 4.28-75.66 percentage
points higher than the ML-product. Furthermore, the most trustworthy ML
parameter settings vary so broadly that the best (top 10) settings are only
consistent for at most 11-25 commits out of 50 within the studied projects,
and 14-18 commits out of 50 across the studied projects.

We conclude that while there is still room for improvement for both CI acceleration
products, the selected PA-product currently provides more trustworthy results. Future
work is needed to combat the tendency of ML-based acceleration to product unstable and
untrustworthy results.

5.2 Study Design

Below, we present how we filter (Section 5.2.1) and rank (Section 5.2.2) candidates to
obtain our set of studied projects. We then explain how we extract CI data from each
studied project (Section 5.2.3). Finally, we present the approaches that we use to answer
our research questions (Section 5.2.4).

5.2.1 Data Filtering

We begin by retrieving a dataset of GitHub repositories from Google BigQuery.! The
dataset contains the activity and property information for the repositories on GitHub.

Select Python projects (DF1): To mitigate the influence of different programming
languages on our experimental results, we select projects that use a single programming
language. We focus on Python because it is the only common language that is supported
by both of our selected acceleration products. We query projects that have ‘Python’ as a
field within the ‘language’ table in the BigQuery dataset. After applying our first filter,
549,098 projects survive.

Select pytest projects (DF2): After removing all non-Python projects, we use a second
filter to select projects that use the pytest framework. We select the pytest framework

thttps://cloud.google.com/bigquery /public-data
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Table 5.1: The projects’ details and their trustworthiness performance

% of build results that fully

Project name # Commits # Files # Test Cases Description Domain align with original build results

PA build ML build
Requests 6,107 126 554 HTTP library Network 72% 0.26%
Airflow 15,629 14,062 9,890 Workflow management platform Workflow management 50% 0.03%
Ansible 52,514 5,693 3,626 IT automation platform IT automation 52% 0.84%
asciinema 821 91 26 Terminal session recorder Productivity 66% 23.79%
Numpy 30,262 1,963 23,644 Scientific computing Python package Statistics 40% 35.72%
Bokeh 19,609 4,409 9,784 Interactive data visualization tool Visualization 46% 1.24%
Dask 7,280 447 593 Binary analysis platform Task scheduling 70% 23.23%
scikit-learn 28,198 5,338 9,753 Machine learning library Machine learning 44% 36.02%
Cloud Custodian 3,786 705 8,270 Cloud security and governance tool ~ Cloud management 76% 0.34%
spaCy 15,546 1,216 4,400 Natural Language Processing tool NLP 46% 2.22%

because previous research demonstrated that it has a more stable performance profile than
other testing frameworks [0]. After applying our second filter, 29,849 projects survive.

5.2.2 Project Ranking

Although our experimental procedures are largely automated, repeating the experiment on
thousands of systems is untenable. We therefore apply a ranking procedure to systemati-
cally select a set of studied projects.

Compute projects relevance measures (PR1): We inspect the number of commits,
files and test cases, which respectively correspond to the repositories’ activity, scale of
production code, and scale of testing code. Repositories with a large number of commits
and files contain more code changes, and are more likely to offer an adequate volume of
data for validation. The number of test files is likely associated with the speed at which
a build completes. We expect the time consumed by the build of a studied project to be
large enough to allow us to perform a meaningful analysis of trustworthiness.

Transform measures to ranking (PR2): To obtain the impact of metrics during project
selection, we sum the above indicators, and rank the surviving projects in descending order.

Select diversified projects (DF3): To obtain a diverse set of projects from which
reliable conclusions can be drawn, we exclude projects from previously sampled domains,
selecting the next highest ranked project from another domain as a replacement. Finally
we obtain 10 studied projects from different domains, which are shown in Table 5.1.
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5.2.3 Data Extraction

After selecting the studied projects, we extract their data using our Data Extraction (DE)
procedure. Figure 5.1 provides an overview of the procedure. We describe each step below.

Extract changesets (DE1): CI acceleration operates on changesets. Thus, we extract
changesets from the Git repositories of our studied projects. We separately select 50
consecutive commits that pass the build and 50 non-consecutive commits that fail for for
each studied project by walking the commit history in reverse chronological order. The
exact listing of studied commits is available in our online appendix.?

Label commits with CI outcomes (DE2): We manually label each of the selected
commits according to CI outcomes (e.g., pass or fail). We conduct this manual labelling
because of the inconsistency in CI checks for different commits. The CI checks® in this
chapter refer to the GitHub’s check run for the public repository, which contains the
passed /failed outcomes from various CI services like GitHub Actions, CircleCI and Code-
cov. We obtain relevant information by checking the passed or failed label listed after the
commit date. Each commit has a different number of checks, which varies with commit
branches and build environments. GitHub’s automatic system labels commits as failed if
at least one check fails. For example, we found an inconsistency in commit f3719bf in
the project cloud-custodian/cloud-custodian. In that instance, GitHub’s automatic
system labels the commit as failed; however, the build passes when we reproduce it locally.

5.2.4 Data Analysis

Figure 5.1 provides an overview of our data analysis procedure. Below, we describe each
step in the procedure.

Execute accelerated builds (DA1): We consider builds that undergo build acceleration
to be warm builds. For the PA-product, the dependency graph’s construction is completed
during the execution of the cold build, i.e., the initial, complete build in which no steps
are skipped. During a warm build, the product uses the graph generated during the cold
build to locate changed lines of code and their dependencies. By traversing this graph, the
product can skip cases that are irrelevant to a code change.

For the ML-product, the source of the training set is the historical test results (i.e.,
names and locations of test cases, test status and duration of each test case) and code

2https://doi.org/10.5281/zenodo. 7641215
3https://docs.github.com/en/developers/apps/guides/creating-ci-tests-with-the-checks-api
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changes (i.e., names and locations of changed files, number of changed lines, commit hashes
and authors of changes). In this chapter, the complete training set we applied comes from
the 50 passing-build commits we select in DE1. Specifically, we apply build acceleration on
N commits, where we use the previous commits (i.e., from the 1st to (N —1)th commit) for
training. The acceleration of the first commit is guided by the untrained machine learning
classifier. The classifier uses the previous commits for training starting with the second
commit. During a warm build, the product creates a subset of the test suites using different
optimization targets.
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Figure 5.1: The overview of study design of CI Acceleration Trustworthiness Comparison

Acceleration outcome validation (DA2): To validate the trustworthiness of our stud-
ied build acceleration products, we conduct a comparison of failed builds between ac-
celerated and non-accelerated environments. We therefore separately explore the pytest
summary for the original build, the PA accelerated build, and the ML accelerated build.

We analyze the differences between the sources of failures and the number of failed cases
for all three outcomes. Our studied CI accelerated products are based on test skipping,
so differences in deliverables will not affect our study results. Therefore, passing builds
cannot produce mistakes in our study setting. Nevertheless, this would make an interesting
direction for future work that analyzes other CI acceleration approaches.
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We judge the trustworthiness of accelerated builds by comparing the test outputs of
the two acceleration products against the original build. To do so, we determine whether
the acceleration products’ build outcomes are consistent with the original build outcomes
(i.e., they present identical outcomes), and label them as either consistent or inconsistent.
Through automated scripts and manual spot-checks, we inspect the consistency of two
acceleration products within the 50 studied failing commits for each studied project.

5.3 Study Results

In this section, we present the results of our study with respect to our research question.
Specifically, we present the approach followed by our observations.

5.3.1 RQ: How does the trustworthiness of CI acceleration prod-
ucts compare?

Approach. To compare the trustworthiness of our selected CI acceleration products, we
compare the failed build results for 50 builds accelerated by both the PA and ML-products
for each subject project. Indeed, we select 50 failing builds for each project because we seek
to determine whether the CI acceleration products will yield the same failing test results
as non-accelerated builds. After identifying 50 failing builds for each project (Section 2,
DE2), we extract the number of errors and failures according to the test reports generated
by the pytest module. To compare the two products, we use formula (5.1), where EF,
represents the sum of errors and failures for accelerated builds and EFp; represents the
sum of errors and failures for non-accelerated builds, to represent the trustworthiness for
each commit.

EF,
EFy

trustworthiness = (5.1)

Since the studied acceleration products results in fewer tests run by the build, the
resulting acceleration cannot identify more errors and failures than the non-accelerated
build. As a result, this fraction cannot exceed 1.

To further analyze the optimal parameter setting for the ML-product, we explore how
often specific parameter settings offer highly trustworthy results. We do this for the full
range of confidence settings (i.e., how high does the model-estimated likelihood need to be
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before it decides to skip a task) and target settings (i.e., how small of a subset of tasks
should the acceleration aim to produce). Thus, we identify for which settings and how
often the ML-product’s trustworthiness ranks in the top 20% range for the 50 commits
studied for each project. The aim of this exploration is to uncover the most trustworthy
settings for ML acceleration.

Results. Below, we present three observations with respect to the trustworthiness of studied
acceleration products.

Observation 1 — The PA-product more often aligns with non-accelerated
build results. Figure 5.2 shows that the overall trustworthiness of a PA accelerated build
is higher than the trustworthiness of a ML accelerated build. As shown in Table 5.1, a PA
accelerated build can fully align with non-accelerated build results for up to 76% of builds
(i.e., the number of errors and failures for the accelerated product are equal to the number
of errors and failures in the non-accelerated build). We also observe that this alignment
fluctuates between 40% and 76% for the PA-product. We believe that this fluctuation is
caused by greedy test skipping.

While the ML test acceleration product can sometimes present a trustworthiness that
matches or even surpasses the PA-product in specific commits, this is generally not the case.
Indeed, the median value for the ML-product in Figure 5.2 is less than 80% trustworthy.
While we only present results for the Requests project, the situation is similar for other
projects. Indeed, the PA-product outperforms the ML-product in terms of overall trust-
worthiness for all of our studied projects. A complete comparison of the trustworthiness
for the two products for all studied projects is available in our online appendix.?

Observation 2 — The trustworthiness of both acceleration products is project
dependent. Neither product presents a unified trustworthiness trend in our studied
projects. Indeed, we could not identify a trend for either product when comparing their
fluctuations in trustworthiness across our studied projects.

For PA-accelerated builds, we observed that the fluctuating ranges for each projects
are different. For example, the PA trustworthiness for Requests shows a slight fluctuation
around 100%. However, the trustworthiness of the product alternates irregularly between
0 and 100% in the NumPy and asciinema projects. This could be explained by the small
number of original errors and failures in these projects. Indeed, the non-accelerated build
contains at most two failures in NumPy and three failures in asciinema. When the PA-
product skipped test cases, the accelerated build failed to run any erroneous or failing test
cases, leading to a trustworthiness value of 0%.

A small number of original errors and failures also affects the trustworthiness of ML
accelerated builds. The distribution of trustworthiness values hovers around 0% trust-
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Figure 5.2: Trustworthiness of both CI acceleration products using all parameter settings
for 50 failing Requests builds

worthiness in projects with few original errors and failures (e.g. NumPy and asciinema).
Meanwhile, in the projects with more original errors and failures, the distribution of ML
trustworthiness is located in different trustworthiness intervals (e.g., 20% - 60% in Re-
quests).

Observation 3 — The ML-product does not present any optimal parameter
setting for trustworthiness. As shown in Figure 5.3, the parameter setting with the
highest trustworthiness (i.e., 81% confidence) is only the best setting 25% of the time in the
Requests project. Indeed, this trend holds for all of our projects. The parameter setting
with the highest incidence of trustworthiness is the 67% target setting in the scikit-learn
project, and even in that case, the setting was only the best 50% of the time. We provide
the figures for our other studied projects in our online appendix.?

In Figure 5.3, we also observe that the top five trustworthiness incidences belong to the
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confidence setting. Thus, the confidence setting generally yields build results that more
closely align with non-accelerated builds in the Requests project. However, this trend does
not hold for the remaining projects. Indeed, the confidence setting presents the highest
trustworthiness in only three of nine studied projects, while the target setting presents
highest trustworthiness in five of nine projects. Both settings present the same maximum
occurrence of trustworthiness in the airflow project. Overall, the highest trustworthiness
occurs in the range of 14 to 18 commits out of 50. The situation indicates that there are no
ideal target and confidence settings in ML-accelerated builds. The top ten most frequent
trustworthiness settings, both within projects and across projects, are shown in our online
appendix.?
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Figure 5.3: Top 10 trustworthiness occurrence frequency of the ML-product using different
parameter settings for 50 failing Requests builds
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Outcome: While the performance of neither product shows a clear trend across
our studied projects, the PA-product provides more trustworthy results(4.28-75.66
percentage points). Furthermore, the optimal ML parameter settings vary so broadly
that the best (top 10) settings are consistent for at most 50% of commits within
projects, and at most 36% across projects.

5.4 Chapter Summary

Users of CI expect to obtain rapid software development feedback, allowing them to verify
if their source code changes integrate cleanly with their existing systems. CI acceleration
promises to further accelerate the CI process while maintaining its benefits. However,
using CI acceleration is not without costs. To evaluate the practical implications of CI
acceleration technology, we conduct an empirical study of 100,000 builds that span ten
projects to compare two kinds of commercial-grade CI acceleration techniques in terms of
trustworthiness. We make three observations from which we conclude the results of builds
accelerated by the PA-product more often aligns with non-accelerated build results.

The outcomes of this empirical study indicate that the selected PA-product currently
exhibits a higher degree of trustworthiness than the selected ML-product. The gap with
non-accelerated build results indicates that both acceleration products could benefit from
improvements to achieve more robust acceleration.

Indeed, this study has shown that acceleration performance may sacrifice trustworthi-
ness. Adams[!] showed that developers (at least those within the Linux kernel development
context) prefer a correct build to a fast one, so CI acceleration that sacrifices correctness
may not be appealing to stakeholders. We therefore encourage future work to explore how
the trustworthiness gap can be bridged.

Knowing that the trustworthiness of neither PA or ML-product fully align with the
baseline (non-accelerated setting), in the next chapter, we conduct an in-depth analysis of
the PA-product, to determine the reasons that hinder its trustworthiness, mutation testing
is applied to uncover the fault patterns that causes the low trustworthiness.
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Chapter 6

Mutation-Guided Assessment

An earlier version of the work in this
chapter has been submitted to an
international conference.

6.1 Introduction

In this chapter, we assess the trustworthiness of CI acceleration by comparing the outcomes
of mutation testing of accelerated and unaccelerated builds of studied change sets. We first
measure the percentage of mutants that only survive in the accelerated setting (i.e., gap
mutants) to quantify the discrepancy between the accelerated and unaccelerated settings.
Then we associate gap mutants with the dependency representation of the studied CI
acceleration product to understand the limitations of its decision-making. Finally, we
summarize patterns in these limitations by inspecting the gap mutants to identify root
causes of discrepancies that undermine the trustworthiness of the studied CI acceleration
product. Our analysis of ten open-source projects reveals 2,237 gap mutants, which can
be grouped into six patterns. This benchmark allows us to answer the following research
questions:

RQ1: How often do mutants survive due to CI acceleration?

Outcome 1: While 60% of the studied mutants survive both accelerated and
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unaccelerated settings, a gap in mutation outcomes between both settings exists
and varies from 0.11%-23.50% across the studied projects.

RQ2: How are mutants that survive due to CI acceleration mapped to the
source code?

Outcome 2: 88.95% of gap mutants can be mapped to specific source code
functions and classes using the dependency representation of the studied CI
acceleration product; however, 6.66% of gap mutants appear outside of the
scope of source code classes, and 4.38% of gap mutants are completely absent
from the dependency representation.

RQ3: What causes mutants to survive in CI acceleration?

Outcome 3: A majority (69%) of gap mutants survive in the accelerated setting
due to deterministic reasons that can be classified into six fault patterns. How-
ever, a considerable proportion (22.5%) of gap mutants survive in CI accelera-
tion because of non-deterministic build behaviour (e.g., mutants that timeout
in the unaccelerated setting and survive in the accelerated setting). An analysis
of the literature suggests that at least the six deterministic fault patterns can
apply to, and help improve, other CI acceleration approaches.

6.2 Research Questions

In this study, we verify the percentage of survived mutants in accelerated and unacceler-
ated builds to quantify the gap between accelerated and unaccelerated CI outcomes. To
structure this analysis, we formulate the following research question (RQ):

RQ1: How often do mutants survive due to CI acceleration?

Mutation testing is a code-based analysis method [62] that can complement code cov-
erage analysis [382]. Indeed, mutation testing generates mutants in the source code and
provides the precise location of each survived mutant [19]. This feature enables us to as-

sociate survived mutants with features of the programming language. Moreover, it may
help to identify limitations in the decision-making process of the CI acceleration approach.
Accordingly, we formulate this inquiry through our second research question:
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RQ2: How are mutants that survive due to CI acceleration mapped to the source
code?

Mutation testing can be used to evaluate the quality of test suites [10]. Mutation testing
can therefore allow us to compare the quality of an original unaccelerated test suite to the
quality of the same test suite when it is the target of CI acceleration. By comparing the
results of these two scenarios, we seek to gain insight into the root causes of discrepancies
that harm the trustworthiness of our studied CI acceleration product. More precisely, we
study why some mutants only survive in accelerated builds through our third research
question:

[ RQ3: What causes mutants to survive in CI acceleration?

6.3 Study Design

The goal of our study is to verify the outcomes of an emerging CI acceleration product and
uncover reasons for outcomes that can erode trust. To realize our goal, we apply mutation
testing and inspect the mutants that survive in the unaccelerated and accelerated builds.
To that end, we study the locations in which these mutants appear and reason about why
they survive in ten well-established OSS.

Below, we present how we filter (Section 6.3.1) and rank (Section 6.3.2) candidates to
obtain our studied projects. We then explain how we verify the mutation results for each
studied project (Section 6.3.3). Finally, we present the approaches that we use to answer
our research questions (Section 6.3.4).

6.3.1 Data Filtering

We begin by retrieving a dataset of GitHub repositories from Google BigQuery.! This
open-source dataset of software repositories was exported from GitHub and allows legacy
and standard SQL queries. The dataset contains the activity (e.g., commits) and property
information (e.g., programming language) for the repositories that are hosted on GitHub.

Thttps://cloud.google.com/bigquery /public-data
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Select Python Projects (DF1): To mitigate the influence of different programming
languages on our experimental results, and reduce confounding factors, we focus on the
builds of projects that are written in a single programming language.

To that end, we group candidate projects by programming language and select those
that are primarily implemented in Python. We focus on the Python programming language
because it is the programming language for which the selected CI acceleration product can
guarantee the most stable and trustworthy acceleration. We apply the filter by querying for
projects that have ‘Python’ as a field within the ‘language’ table in the BigQuery dataset.
The query returns the projects that predominantly use the Python programming language
(i.e., Python makes up the majority of the source code). After applying our first filter,
549,098 projects survive.

Select Pytest Projects (DF2): After removing all non-Python projects, we select the
Python projects that use the pytest framework.? We select the pytest framework because
previous research demonstrated that it has a more stable performance profile than other
testing frameworks [6]. After applying our second filter, 29,849 projects survive.

6.3.2 Project Ranking

Although our experimental procedures are largely automated, the execution cost for each
studied project is large. Thus, repeating the experiment on thousands of systems is un-
tenable. We therefore apply a ranking procedure to systematically select a set of subject
systems.

Compute Project Relevance Measures (PR1): We inspect the surviving projects
using three metrics, the number of commits, the number of files, and the number of test
cases. We consider the number of commits and files because repositories with a high number
of commits and files are more likely to offer an adequate volume of data for validation.
Meanwhile, the number of test files is likely associated with the speed at which a build
completes. In this chapter, we expect the time consumed by the build of a studied project
to be large enough to perform meaningful CI acceleration. Since we cannot build every
project to estimate its time cost, we therefore use the number of test files as an estimate
of this measure.

Transform Measures to Rankings (PR2): To comprehensively quantify the impact
of our three chosen measures on our project selection, we rank each subject system. The

2https://docs.pytest.org/en/7.1.x/contents.html
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details of our ranking system are shown in Figure 6.1. Given this procedure and the above
three measures, we rank the surviving projects in descending order.

Select Studied Projects (DF3): Mutation testing is computationally expensive [13, G9].
To maintain a manageable experimental process, we set an upper bound for mutation time
when selecting projects. Specifically, we set the maximum allowable mutation duration to
one week per project.

To obtain a diverse set of projects from which reliable conclusions can be drawn, we
exclude projects from any previously sampled domains, selecting the next highest-ranked
project from another domain as a replacement. For example, if the Supervisor and the
Nagstamon projects both belong to the process management domain, we select Supervisor
because it is the highest-ranked project from the domain in our ranking. We then omit
Nagstamon and any other projects that belong to the same domain. Finally, we obtain 10
studied projects from different domains, which are shown in Table 6.2.

6.3.3 Data Extraction

After selecting the studied projects, we extract their data using our Data Extraction pro-
cedure. Figure 6.1 provides an overview of the procedure. We describe each step below.

Extract Changesets (DE1): CI acceleration approaches operate on changesets. In the
case of our studied projects, we extract changesets from the Git version control system.
We select commits with release tags for each studied project. Indeed, release code usually
contains fewer failed test cases for a given project, because the release tag can indicate
that the code has undergone a rigorous testing process and has been deemed stable enough
for release. The exact information for each commit that we studied is listed in our online
appendix.?

6.3.4 Data Analysis

To determine the trustworthiness of our selected CI acceleration product, we study the
quantity, locations and reasons for the mutants that survive in the accelerated build, but
do not survive in the unaccelerated build. First, we perform an initial unaccelerated
build on the parent commit of a studied release for each studied project. This is done
to enable the CI acceleration product to generate its internal graph, which is used to
reason about build and test invocation steps that may be skipped in the future. Next,

3https://doi.org/10.5281/zenodo. 7872663
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we checkout two copies of the studied release—one for executing unaccelerated (baseline)
builds and another for executing accelerated builds. We then apply mutation testing on
the independent copies of the codebase, ensuring that the same set of mutants is generated
in both settings. Finally, we compare the mutants that we extract from the unaccelerated
and accelerated mutation reports. Figure 6.1 provides an overview of our data analysis
procedure. Below, we describe each step in the procedure.

Perform Initial Builds (DA1): We perform initial builds using two settings: (a) un-
accelerated build — the complete build of a given project release in which no steps are
skipped; (b) accelerated build — the complete build of a given project release in which our
chosen CI acceleration product skips tests based on its inferred dependency graph. During
the accelerated build, we use the inferred dependency graph generated using an instru-
mented build of the parent commit of the release. This graph from the parent commit
replicates the state that the acceleration product would be in prior to the release commit.
By traversing the graph, the CI acceleration product skips tests that are deemed irrelevant
to a particular code change.

Generate Mutants (DA2): When the initial builds are finished, we conduct mutation
testing using Mutmut.? Mutmut generates mutants according to established rules and
provides a mutation report. Most relevant to this study context, Mutmut allows us to
produce the same set of mutants that we evaluate in both accelerated and unaccelerated
settings.

Inspect Mutants (DA3): The generated mutation reports contain detailed informa-
tion about the mutation process and its outcome, such as the number of killed, timeout,
suspicious, survived and skipped mutants, as well as the mutation operator used for each
mutant, and the mutated lines of code. We inspect the mutants that survive in the acceler-
ated and unaccelerated builds of each studied project. The difference between the rates of
mutant survival in the two settings quantify the gap between accelerated and unaccelerated
CI outcomes.

Compare Mutants (DA4): When comparing the mutants that belong to the unaccel-
erated and accelerated builds of a single release, there are three kinds of mutants: (1) the
mutants that are killed in both settings, (2) the mutants that survive in both settings, and
(3) the mutants that only survived in the accelerated build. Type 1 and 2 mutants indi-
cate agreement between the two settings, indicating that the test suite is either capable of
detecting the mutant or not, respectively; however, type 3 mutants suggest that the accel-
eration procedure has erroneously omitted a test that would kill the mutant. Thus, in this

4https://mutmut.readthedocs.io/en/latest/
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Figure 6.1: The study design for each selected project of mutation-guided assessment

chapter, we concentrate on type 3 mutants, i.e., those that only survive in the accelerated
setting.

The principle for this verification is based on the assumption that in the ideal case, a
CI acceleration product should only skip test cases that can safely be skipped (i.e., would
not affect the result of the build). In this ideal case, the mutation testing outcomes for
unaccelerated and accelerated builds should be consistent (i.e., exactly the same). However,
if mutation testing were to show that an accelerated build presents different survived
mutants than an unaccelerated build, then the CI acceleration product’s trustworthiness
may be in jeopardy.

6.4 Study Results

In this section, we present the results of our study with respect to our RQs. For each RQ),
we present our approach, followed by our observations. We also extend the discussion of our

patterns from the CI acceleration product studied in RQ3 to CI acceleration approaches
presented in prior works.
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Table 6.1: Confusion Matrix for Gap Rate Calculation

Accelerated Non-accelerated

Survived a b
Killed c d
Timeout e f
Suspicious g h

6.4.1 RQ1: How often do mutants survive due to CI accelera-
tion?

RQ1: Approach. To measure the gap between accelerated and unaccelerated CI outcomes,
we calculate the percentage of survived mutants in each studied project. Specifically, we
find the number of mutants that survive in accelerated and unaccelerated CI builds in
their respective mutation reports, and use Equation 6.1 to measure the Gap Rate, which
indicates the percentage of mutants that only survive during acceleration.

Mutmut reports one of five outcomes for each mutant:

e Killed mutant: mutants that have been killed by at least one test case;
e Survived mutant: mutants that have not been killed by any test case;

e Timeout mutant: mutants where tests took a long time, but not long enough to
be fatal;

e Suspicious mutant: mutants where the test suite took 10 times as long as the
baseline;

e Skipped mutant: mutants that are skipped due to certain reasons, such as syntax
errors in the mutated code or insufficient memory.

Since there are no skipped mutants in the mutation process of all of our studied projects,
we consider the remaining four mutant outcomes in our Gap Rate formula.

laNd|

Gap Rate = ————
laUcUeUyg

(6.1)
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RQ1: Results. Here, we describe our observations pertaining to the gap between accelerated
and unaccelerated CI outcomes.

Observation 1 — While the percentage of survived mutants varies for each
project, many mutants tend to survive, even in unaccelerated builds. Table 6.2
shows the number of mutants that survive in unaccelerated and accelerated builds. We
observe that the mutant survival rate in more than half (6 out of 10) of our studied projects
is over 50 percent in both accelerated and unaccelerated builds. Indeed, for project scholia
and dvc, over 90 percent of mutants survived in both accelerated and unaccelerated builds.

The average mutant survival rate in our ten studied projects is 58.46% for the unac-
celerated builds and 62.45% for the accelerated builds. This high mutant survival rate is
important to note because it suggests that test suites of our studied projects are in general
not particularly effective at detecting mutants. Indeed, capacity of a test suite to detect
mutants may affect the trustworthiness of the CI acceleration product. If a test suite is
of poor quality, e.g., if it contains redundant, irrelevant, or flaky tests, the CI acceleration
product may erroneously skip tests that should not be skipped.

Observation 2 — CI acceleration indeed allows mutants that do not survive
unaccelerated builds to survive in an accelerated setting. The Gap Rate for our
studied projects is presented in Table 6.2. With an average Gap Rate of 7.24% and a
standard deviation of 8.17%, our ten studied projects show that the trustworthiness of CI
acceleration greatly depends on the project. Indeed, Table 6.2 illustrates that while the
gap between mutants that survive in accelerated and unaccelerated builds can be zero (see
the mackup project), it can also be as high as 23.5% (see the retext project).

In the ideal CI acceleration scenario, the Gap Rate is zero. Indeed, this is the case for
the mackup project, where there is no difference between mutants that survive accelerated
and unaccelerated builds. In this project, mutation testing provides consistent outcomes,
indicating that CI acceleration safely skips test cases, and does not affect the results of the
build. However, mackup is the only project which presented this scenario. The remaining
nine studied projects showed varying degrees of inconsistency in the mutation verification
outcomes.

A non-zero Gap Rate indicates that CI acceleration performs untrustworthy test skip-
ping. Indeed, in the case of the project retext, a Gap Rate of 23.5% was observed. This
implies that nearly a quarter of the mutants generated for this project survived in the
accelerated build, despite the fact that they could be killed by the original test suite. By
using the Gap Rate, we can identify mutants that should not survive, which we then inspect
more closely to address RQ2 and RQ3.
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Table 6.2: Survived Mutants and Gap Rate of each studied project

Projects Domain Survived Mutants (%) Total Mutants Gap Mutants Gap Rate
Unaccelerated Settings Accelerated Settings
mackup Configuration Tool 408 (86.26%) 408 (86.26%) 473 0 0
dve Data Version Control 18165 (99.69%) 18185 (99.80%) 18221 20 0.11%
scholia Organization 4295 (90.14%) 4320 (90.66%) 4765 25 0.58%
httpie Http Client 3070 (77.19%) 3150 (79.21%) 3077 80 2.54%
bottle Python Web Framework 62 (2.23%) 64 (2.30%) 2783 2 3.13%
supervisor Process Management 38 (0.42%) 40 (0.44%) 9153 2 5.00%
asciinema  Productivity 905 (86.44%) 974 (93.03%) 1047 69 7.08%
ranger File Management 7036 (62.36%) 8037 (71.23%) 11283 1001 12.45%
asciidoc Documentation 2579 (32.91%) 3147 (40.61%) 7836 568 18.05%
retext Text Editor 1530 (46.99%) 2000 (61.43%) 3256 470 23.50%

Outcome 1: The overall percentages of mutants that survive in both accelerated
and unaccelerated settings of the 10 studied projects are high. Although the quantity
varies from project to project, there exist mutants that survive in accelerated settings
and were killed in unaccelerated settings in most (9 of the 10) studied projects.

6.4.2 RQ2: How are mutants that survive due to CI acceleration
mapped to the source code?

RQ2: Approach. To study the distribution of mutants that survive due to CI acceleration
(i.e., gap mutants) in the source code, we propose four mapping categories. These categories
describe the location of each mutant with respect to the source code of the project, and
the dependency graph generated by our studied CI acceleration product.

e No Mapping: The mutated statement appears within the scope of a function, but
this mapping is absent in the dependency graph of the CI acceleration product;

e Not in Class: The mutated statement appears outside of the scope of source code
classes (e.g., in a configuration file), and is untracked in the dependency graph;

e Mapping in Class: The mutated statement appears within the scope of a class
definition (but outside of the scope of a method) and is correctly mapped in the
dependency graph;
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e Mapping in Function: The mutated statement appears within the scope of a
function and is correctly mapped in the functions of the dependency graph.

The dependency graph generated by the CI acceleration product can accurately rep-
resent the function-level granularity of a project, which consists of three components: the
project’s abstract syntax tree, known tests, and their dependencies. To classify the above
mapping relations, we first locate each gap mutant in the source code. Then we check if
the mapping exists in the dependency graph.

Specifically, if the mutated statement is within the scope of a function, we query for
it in the function level of the dependency graph and label the mutant as ‘Mapping in
Function’. Similarly, if the mutated statement is within the scope of a class but outside of
the scope of any function when we query for it in the class level of the dependency graph,
and label the mutant as ‘Mapping in Class’. Additionally, there are mutants that do not
appear within functions or classes. In these cases, the CI acceleration product is unable
to include them in the dependency graph, and they are labeled as ‘Not in Class’. The
mutant labeled as ‘No Mapping’ appears within the scope of a function, but is untracked
in the dependency graph. The ‘No Mapping’ category is a direct indication of incomplete
or missing information in the dependency graph.

This question aims to associate survived mutants with the CI acceleration dependency
graph by finding the mapping relation. Through this categorization we aim to identify the
limitations of the dependency graph generated by studied CI acceleration product.

RQ2: Results. Below, we describe our observations pertaining to the mapping of gap mu-
tants in the dependency graph.

Observation 3 — Most of the gap mutants are mapped in the function cat-
egory of the dependency graph. We extract the 2,237 gap mutants from ten studied
projects. As shown in Table 6.3, nearly 90% of gap mutants could be tracked in the de-
pendency graph. Among them, the majority (95.5%) of gap mutants are in the ‘Mapping
in Function’ category, whereas only 88 gap mutants (4.4%) are in the ‘Mapping in Class’
category. For the ‘Mapping in Function’ category, we randomly select a gap mutant to
verify its validity. We first locate the mutated statement in the source code, and confirm
the location is outside the function but inside the class scope. Then we query for the
class name in the dependency graph and successfully track the class name under the test
dependencies.

This distribution is consistent with the encapsulation feature of object-oriented pro-
gramming, i.e., keeping variables and corresponding methods (functions) together in a sin-
gle unit (class). When we inspect the source code distribution of our ten studied projects,
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Table 6.3: Category and Frequency of Gap Mutant Mapping

Mapping Category Frequency
Mapping in Function 1902 85.02%
Mapping in Class 88  3.93%
Not in Class 149  6.66%
No Mapping 98  4.38%
e Statement in function 90  4.02%
e Statement in class 8 0.36%

we find that, on average, 11.50% of the code (lines of code) is written outside the scope of
classes and functions. This effectively indicates that around 90% of gap mutants should
be tracked in the dependency graph. However, this also implies that the CI acceleration
product is making mistakes despite having dependency graph data.

Observation 4 — Incomplete information exists in the dependency graph.
According to the Table 6.3, the ‘No Mapping’ category is rare. Specifically, 4.02% of gap
mutants located in function scope and 0.36% of gap mutants located in class scope could
not be mapped within the dependency graph generated by the CI acceleration product.

We also study the distribution of the ‘No Mapping’ mutants across the studied projects.
As shown in the Table 6.4, the highest project-specific ‘No Mapping’ rate is 100%. All
mutants from both the bottle and supervisor projects could not be mapped within the
dependency graph. Conversely, all of the gap mutants in the dvc and scholia projects
could be mapped within the dependency graph. For the remaining six projects, the ‘No
Mapping’ rate ranges between 1.45% and 4.70%. We believe that alternative ways to
identify test cases in the ‘No Mapping’ category are needed. Indeed if we could force the
CI acceleration product not to skip these tests, trustworthiness would be improved. The
detailed mapping information for each studied project is shown in our online appendix.?

Observation 5 — A small number of gap mutants are not mapped within
the dependency graph due to their source code locations. There are 6.66% of gap
mutants whose mutated statements are neither within the scope of functions nor the scope
of classes (e.g., global variable initialization). Since the dependency graph of the studied
acceleration product only records function and class-level information, the dependencies
for these mutants cannot be traced within the dependency graph. These may therefore
result in unsafe test skipping, and therefore lower trustworthiness. We consider this to be
a limitation of the CI acceleration product that should be considered by future products.
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Table 6.4: No Mapping Distribution for Studied Projects

Projects Gap Mutant No Mapping

mackup 0 0 0
bottle 2 2 100.00%
supervisor 2 2 100.00%
dvc 20 0 0
scholia 25 0 0
asciinema, 69 1 1.45%
httpie 80 3 3.75%
retext 470 18 3.83%
asciidoc 568 25 4.40%
ranger 1001 47 4.70%

Another test acceleration approach [31] bypasses this type of limitation by using data-

flow tracing instead of class or method tracing. Specifically, this approach records depen-
dencies using a data-flow model without any location constrains for the statements when
deciding the starting point of the data-flow. As a result, this approach is able to track
statements outside the scope of classes and functions.

Outcome 2: Most of the gap mutants are traceable within the dependency graph.
Incomplete dependency data and the locations where mutations are applied mutants
explain only a small proportion of the gap mutants that lack mappings.

6.4.3 RQ3: What causes mutants to survive in CI acceleration?

RQ3: Approach. To uncover the reasons that cause mutants to survive in CI acceleration,
we conduct a qualitative analysis of 200 mutants. Through our analysis, we uncover
categories of fault patterns that exist in our studied CI acceleration product. Before
conducting this analysis, we first design a priming procedure to associate the gap mutants
with the dependency graph constructed by the CI acceleration product. The priming
procedure consists of three steps:

(1) Reproduce failure in the unaccelerated build: To verify the integrity of gap
mutants (and reduce the impact of flaky tests), for each gap mutant, we first re-apply the
suspect mutation on the codebase and re-execute the build without acceleration;
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Table 6.5: Reasons and Frequency of Gap Mutant Survival

Reasons Frequency

Dependencies untracked by the CI 138 69.00%
acceleration product

e (lass properties 40  20.00%
e Global variable 31 15.50%
e Constructor 23 11.50%
e Static method decorator 17 8.50%
e Conditional statement 14 7.00%
e Configuration-purpose string 13 6.50%

Non-deterministic build behaviours 45 22.50%

e Inconsistent Labeling 24 12.00%
e Flaky Tests 21 10.50%
Other (Failed to classify) 17 8.50%

(2) Confirm the test is skipped by CI acceleration: By rerunning the mutated
code, we can locate failed tests and verify if the test is skipped in the accelerated build;

(3) Associate the mutant-exposing test case with the gap mutant: We inspect
the test and the source code being tested to determine why the test was skipped.

This priming procedure, and more specifically the inspection in step (3), is onerous.
Indeed, it is impractical to inspect all 2,237 identified gap mutants using our approach.
Therefore, to achieve analytical generalization [25], we use the principle of saturation.
Specifically, we continue to check new gap mutants until no new patterns of survival have
been discovered for 50 consecutive gap mutants. In the end, using this criterion, we inspect
200 gap mutants, covering all studied projects except mackup, since there is no gap between
accelerated and unaccelerated settings in this project.

RQ3: Results. Below, we describe the observations that we make with respect to the reasons
why gap mutants survive in the accelerated build. Table 6.5 provides an overview of the
patterns that we observe from the 200 inspected cases. For each pattern, we provide its
definition and a mutant example.

Observation 6 — 69% of the inspected gap mutants that survive in the ac-
celerated build had dependencies that were untracked by the CI acceleration
product.

The inspected gap mutants in this category fall into six patterns, which we define and
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characterize below.

Class properties: The most common (20% of the time) pattern is the mishandling of class
properties. Indeed, a missing class-related dependency (e.g., a mishandled class property)
in the dependency graph would cause the CI acceleration product to incorrectly label test
cases that depend on this code as independent. Therefore, the CI acceleration product
would erroneously label these test cases as safe to skip. We uncovered this issue during
our analysis when checking the dependencies of class properties, where we discovered class
fields with null values in the CI acceleration product’s dependency graph. In those cases, if
a skipped test case depends on the variable initialization in the class property, it can lead to
a mutant surviving mutation testing when it should not, implying a lack of trustworthiness
for the CI acceleration product.

./supervisor /options.py

5 @Q —69,7 +69,7 @QQ

®

S N

Options:
—  stderr = sys.stderr
+  stderr = None
stdout = sys.stdout
exit = sys.exit
warnings = warnings

Pattern 6.1: The gap mutant survived due to class properties

Static method decorator: 17% of inspected gap mutants had code statements mutated
in a function annotated with @staticmethod. @staticmethod is a decorator in Python that
defines a static method within a class. Static methods belong to a class rather than its
objects, and can be called without creating an instance of the class. This can cause the
static method dependencies to be inaccurately captured by CI acceleration.

./asciidoc/asciidoc.py
Q@@ —1693,7 +1693,6 Q@Q

999

skipsubs:
Title.attributes|'title’] = Title.dosubs(Title.attributes|'title’])

—  @staticmethod
dosubs(title):

Pattern 6.2: The gap mutant survived due to static method decorator

20



Global variable: 15.5% of the inspected gap mutants survive because of a lack of, or
incomplete dependencies due to, global variables. Indeed, in these cases, the CI acceleration
product fails to correctly record the dependency relations of the global variables in the
source code. Changes made to global variables can affect the behaviour of the code under
test, and skipping tests that depend on those variables can lead to erroneous results. In our
experiments, this can occur when global variables are mutated and tests are erroneously
skipped. Indeed, if the CI acceleration product cannot accurately record global variable
dependencies, it may skip tests that are necessary to ensure the trustworthiness of the
accelerated build.

./supervisor /options.py

5 @Q —60,7 +60,7 QQ

version_txt = os.path.join(mydir, 'version.txt’)
with (version_txt, 'r7) as f:
f.read().strip()
—VERSION = _read_version_txt()
+VERSION = None

normalize_path(v):
os.path.normpath(os.path.abspath(os.path.expanduser(v)))

Pattern 6.3: The gap mutant survived due to incorrect handling of global variables

Constructor: 11.5% of the inspected gap mutants survived because the CI acceleration
product did not detect the dependency between test cases and a constructor. Specifi-
cally, these failures occur when the mutated statements are located within the scope of a
constructor. In those cases, the dependency graph fails to record the dependency informa-
tion for the constructor, and thus, the test cases that test these methods are erroneously
skipped.

asciinema/pty_.py

; @@ —153,7 +153,7 @QQ

SignalFD:
__init__(self, signals: List[signal.Signals]) —> None:
— self.signals = signals

+ self.signals = None
self.orig_handlers: List[Tuple[signal.Signals, Any]] = []
self.orig_wakeup_fd: Optional[ ] = None

Pattern 6.4: The gap mutant survived due to constructor
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Conditional statement: 7% of inspected gap mutants survive due to complex conditional
statements in the source code. Specifically, these mutated statements typically involve
multiple conditions that are combined using logical operators such as ‘and’, ‘or’, and ‘not’.
Mutmut generates mutants in these logical keywords and we use these mutations to discover
incomplete information for the functions that contain these complex conditional statements
in the dependency graph. We find that the dependencies for the complex conditional
statements are not captured accurately by the CI acceleration product, as a result, the
mutants survive during acceleration.

./ReText /tab.py
Q@@ —185,7 +185,7 Q@

errMsg = errMsg.replace('<a href=""%¢s">", "").replace(’</a>", ")
'<p style="color: red” >%s< /p>" % errMsg
headers = "
— includeStyleSheet self.p.ss None:
+ includeStyleSheet self.p.ss ~ None:
headers += ’<style type="text/css”>\n’ + self.p.ss + '</style>\n’
includeStyleSheet:

Pattern 6.5: The gap mutant survived due to conditional statement

Configuration-purpose string: 6.5% of inspected gap mutants have mutated statements
(e.g., version and date strings) belonging to the configuration files. These strings are often
separate from the body of functional code; however, configurations can also affect the
behaviour of the program and the tests that need to be executed. The CI acceleration
product does not track changes in the strings of configuration files, so it skips tests that
are relevant to the changes made in the configuration file, further leading to the survival
of gap mutants.

httpie/__init__.py
Q@ —4,7 +4,7 Q@

__version__ = '3.2.1°

; —__date__ = '2022—05—06’

+__date_. = "XX2022—05—-06XX’
__author__ = "Jakub Roztocil’
_licence__ = 'BSD’

Pattern 6.6: The gap mutant survived due to configuration-purpose string

Observation 7 — 22.5% of the inspected gap mutants survive due to non-
deterministic build behaviour originating from test flakiness and inconsistent
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mutation outcomes.

Flaky Tests: 10.5% of the inspected gap mutants survive due to flaky tests. These tests
produce non-deterministic outcomes when executing on the same program version [3].
Flakiness is often caused by test code that has external dependencies or relies on non-
deterministic algorithms [34]. These flaky tests can cause mutants to survive (i.e., the
build passes) for a mutant that should have been killed (i.e., the build should have failed).
Flakiness can therefore causes mutants to be incorrectly labeled as gap mutants.

Inconsistent Labeling: Inconsistent labeling from our selected mutation tool also results
in non-deterministic build behaviour between accelerated and unaccelerated builds. When
running mutation testing on both unaccelerated and accelerated builds, some mutants
are classified as ‘suspicious’ or ‘timeout’ in the unaccelerated build, and are meanwhile
classified as ‘survived’ in the accelerated build. This causes such mutants to be labeled
as gap mutants by our approach. These gap mutants, caused by non-deterministic build
behaviour, cannot be used to reason about the trustworthiness of CI acceleration. Indeed,
it is possible to reduce the impact of such issues by repeating the experiment, but there is
no guarantee that such experimental noise can be fully eradicated.

In addition, 17 (8.5%) mutants in our qualitative analysis were not classifiable based on
our taxonomy. These mutants survive because of project-specific situations. For example,
in the httpie project, an http request failed because of a mutated URL. In other cases,
we lack the domain knowledge to diagnose the issue. We attempt to keep this “Other”
category as small as possible by using a cyclic procedure when analyzing the mutants.
Specifically, whenever a new category appears, we repeatedly re-check whether any of the
“Other” mutants belong to this new category.

Outcome 3: Most (69%) mutants survive CI acceleration due to deterministic
reasons that can be generally classified into six fault patterns. However, a smaller,
but not insignificant proportion (22.5%) of mutants survive CI acceleration because
of non-deterministic build behaviour (e.g., flaky tests).

Discussion — Generalizability of the observations. According to the systematic
literature review for CI acceleration costs (Section 3.2.2), prior research shows a preference
for test selection and prioritization approaches that make use of failure history [35, 8%],
execution history [17, 58], and test coverage [11]. We believe that rare failures are therefore
potential pitfalls for these approaches. All the causes for gap mutant survival could also
occur in rarely modified code. Using mutation-based testing to analyze the trustworthiness
of these approaches might therefore allow the simulation of rarer failure cases and improve
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the trustworthiness of these approaches. Overall, by design, such approaches might miss
some faults due to the side effects of test case prioritization. Indeed, while other issues
might exist as well, all the reasons for gap mutant survival found in our research might also
exist in these approaches if the tests to detect these reasons are judged to be inefficient.
Therefore, while our chosen approach specifically makes use of program analysis for test
selection, we firmly believe that our methodology, as well as the issues that we detected
could help improve other traditional test selection approaches.

The takeaways of this chapter could be extended to additional types of CI acceleration
techniques other than program analysis techniques. A systematic literature review aimed
at machine learning acceleration [60] found that these test selection or prioritization ap-
proaches concentrate only on a few, easily obtainable features. Indeed, these ML-based
approaches that concentrate on code coverage are likely to suffer from similar issues as
the ones presented in this chapter. Moreover, even state-of-the-art approaches [11] make
use of class-level dependency analysis, which does not prevent issues such as those covered
by configuration-purpose issues. Therefore, while we make use of a traditional program
analysis CI acceleration approach, our methodology, and the issues that we detected could
also help improve machine learning test selection and prioritization approaches.

6.5 Threats to Validity

Below, we describe the threats to the validity of our study.

6.5.1 Construct Validity

We apply the default setting for the selected mutation tool without any customization.
The default mutation strategy was not originally designed for the purpose of assessing
the trustworthiness of CI acceleration. Within the pre-established strategy, we analyze a
limited number of mutants. An analysis of the impact of different configuration settings
may prove fruitful; however, we believe that our results have already demonstrated the
promise of our mutation-based approach to assessing the trustworthiness of CI acceleration.

6.5.2 Internal Validity

Our capacity to discover fault patterns is based on the inspection of gap mutants. If the
mutation tool fails to generate mutants that relate to the changed code, we cannot detect
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trustworthiness problems associated with this part of the code. This, in turn, prevents us
from detecting the complete set of fault patterns in the CI acceleration decision-making.
However, in principle, the selected mutation tool (i.e., Mutmut) applies mutations to a
broad range of statements.

6.5.3 External Validity

We set an upper bound of mutation time to select projects for our experiment that can
be analyzed within practical time limits. This choice constrains the scale of the studied
projects. Moreover, we study GitHub-hosted open-source projects that use Python and
pytest. Because GitHub is one of the most popular hosts for open source projects and
Python is one of the most popular programming languages, our findings apply to a wide
range of projects. Similarly, pytest is one of the most popular unit testing frameworks
for Python and mutation testing is a mature program analysis approach. Nonetheless, we
encourage extensions of our study using other approaches, projects, languages, and test
frameworks.

6.6 Chapter Summary

Users of CI expect to obtain rapid and reliable feedback, allowing them to verify if their
source code changes integrate cleanly with their existing systems. CI acceleration promises
to further accelerate the CI process while maintaining its trustworthiness. However, the
trustworthiness of CI acceleration is not guaranteed. To evaluate the trustworthiness of a
commercial-grade CI acceleration product, we apply mutation testing within accelerated
and unaccelerated settings across ten projects to measure the gap between accelerated
and unaccelerated builds. We make seven observations (see Section 6.4) from which we
conclude that:

e 90% of studied projects contain mutants that survive in accelerated settings although
they are killed in unaccelerated settings.

e 88.95% of the mutants that only survive in the accelerated setting are traceable
within the dependency graph of the chosen CI acceleration product.

e While 22.5% of mutants only survive in the accelerated setting because of non-
deterministic build behaviour, 69% survive because of deterministic reasons, and
can be broadly classified into six categories.
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In conclusion, this study shows that while CI acceleration may sacrifice trustworthiness,
it is possible to use techniques such as mutation testing to evaluate this sacrifice and
identify improvements for current approaches. For future work, our study demonstrates
that the following improvements for PA-based CI acceleration approaches would improve
their trustworthiness: (1) depending on the size and complexity of the codebase, it may
be necessary to manually refine the dependency graph, especially by concentrating on
class properties, global variables, and constructor components; and (2) solutions should be
added to detect and bypass flaky test during CI acceleration to minimize the impact of
flakiness.

6.7 Data Availability

To enable replication and foster further enhancements of our results, we make a detailed
online appendix available to the research community.?
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Chapter 7

Conclusion

Continuous Integration (CI) is a practice that allows developers to quickly integrate and
verify projects modifications. CI acceleration products are a boon to developers seeking
rapid feedback. However, using CI acceleration is not without costs. Indeed, the priming
stage of CI acceleration incurs a time cost, which hinders the efficiency of CI acceleration
products. Furthermore, even if a product provides an enticing trade-off between time costs
and benefits, if the outcomes vary between accelerated and non-accelerated settings, the
trustworthiness of the acceleration is called into question.

In this thesis, to understand the trade-offs between costs and benefits of two commercial-
grade CI acceleration products, we conduct an empirical comparison of a program analysis
and a machine learning acceleration product. We also conduct a fine-grained assessment
of the decision-making guidelines (e.g., the dependency graph of changed code) of the
program analysis product. The outcomes of this thesis show that achieving acceleration
may be accompanied by a loss of trustworthiness, suggesting that users of CI acceleration
techniques should carefully weigh their trade-offs.

7.1 Contribution and Findings

Prior works that focus on the performance evaluation of CI acceleration are mostly high-
level evaluations (e.g., Gallaba et al. [28] directly compare the CI acceleration outcomes
with the traditional CI service CircleCI, but do not inspect the internal decision-making).
Prior to the work conducted for this thesis, a fine-grained analysis of the fault patterns
that exist in CI acceleration decision-making was lacking. To uncover the in-depth factors
that affect the practicality of CI acceleration products, we claim that:
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Thesis Statement: CI acceleration is not free. Replay analysis can be leveraged to
evaluate the costs and benefits in terms of time and trustworthiness. Furthermore, mu-
tation testing can complement replay analysis to provide a fine-grained assessment of the
limitations that hinder CI acceleration.

The empirical comparisons of two families of CI acceleration products and the mutation-
guided assessment reveal that:

o CI Acceleration Time Trade-off
The empirical study of 100,000 builds across ten projects to compare PA and ML CI
acceleration products indicates that the selected PA-product currently exhibits lower
priming cost and greater time savings than the selected ML-product (Chapter 4).

o CI Acceleration Trustworthiness Comparison
The result from re-executing 50 failing builds from ten open-source projects in non-
accelerated (baseline), PA-accelerated, and ML-accelerated settings indicates both
acceleration approaches still have potential to achieve more robust acceleration, while
the selected PA-product currently exhibits a higher degree of trustworthiness than
the selected ML-product (Chapter 5).

o Mutation-Guided Assessment
The fine-grained analysis of the PA-product shows that while CI acceleration may
sacrifice trustworthiness, it is possible to use techniques such as mutation testing to
evaluate this sacrifice and identify improvements for current approaches (Chapter 6).

7.2 Opportunities for Future Research

Our research shows that there is still room for improvement for both PA and ML-based
CI acceleration approaches. Aiming at closing the trustworthiness gap and reducing the
priming cost, we describe the path for future work to improve the performance of each CI
acceleration product.

7.2.1 Program analysis based CI acceleration

We summarize the fault patterns that hinder the trustworthiness of a PA product. By
concentrating on class properties, global variables, and constructors, the components with
the greatest frequency of missing dependencies in our analysis, it may be necessary to
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manually refine the dependency graph if the the size and complexity of the codebase is
simple. Future work may complement our fault pattern set by conducting a larger scale
of mutation-guided assessment. Additionally, some solutions could be added to detect and
bypass flaky test during CI acceleration to minimize the impact of flakiness.

7.2.2 Machine learning based CI acceleration

We select 50 past build commits as the sample for our time-related comparisons. It is
possible that the acceleration approaches do not have enough data to reach steady-state,
and that we are actually measuring the models while they are still being trained rather than
fully accelerating. The ML product does show an improvement in time savings as projects
accrue build data beyond our initial training. Future work may investigate whether the
accelerated builds more frequently align with the non-accelerated builds by feeding the
machine learning model with additional training data.
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