
Why Did This Reviewed Code Crash?
An Empirical Study of Mozilla Firefox

Le An and Foutse Khomh
Polytechnique Montréal

{le.an, foutse.khomh}@polymtl.ca

Shane McIntosh
McGill University

shane.mcintosh@mcgill.ca

Marco Castelluccio
Mozilla Corporation and Università Federico II

mcastelluccio@mozilla.com

Abstract—Code review, i.e., the practice of having other team
members critique changes to a software system, is a pillar of
modern software quality assurance approaches. Although this
activity aims at improving software quality, some high-impact
defects, such as crash-related defects, can elude the inspection of
reviewers and escape to the field, affecting user satisfaction and
increasing maintenance overhead. In this research, we investigate
the characteristics of crash-prone code, observing that such code
tends to have high complexity and depend on many other classes.
In the code review process, developers often spend a long time on
and have long discussions about crash-prone code. We manually
classify a sample of reviewed crash-prone patches according to
their purposes and root causes. We observe that most crash-
prone patches aim to improve performance, refactor code, add
functionality, or fix previous crashes. Memory and semantic
errors are identified as major root causes of the crashes. Our
results suggest that software organizations should apply more
scrutiny to these types of patches, and provide better support for
reviewers to focus their inspection effort by using static analysis
tools.

Index Terms—Crash analysis, Code review, Software mainte-
nance, Mining software repositories

I. INTRODUCTION

A software crash refers to an unexpected interruption of
software functionality in an end user environment. Crashes
may cause data loss and frustration of users. Frequent crashes
can decrease user satisfaction and affect the reputation of a
software organization. Practitioners need an efficient approach
to identify crash-prone code early on, in order to mitigate
the impact of crashes on end users. Nowadays, software
organizations like Microsoft, Google, and Mozilla are using
crash collection systems to automatically gather field crash
reports, group similar crash reports into crash-types, and file
the most frequently occurring crash-types as bug reports.

Code review is an important quality assurance activity
where other team members critique changes to a software
system. Among other goals, code review aims to identify
defects at early stages of development. Since reviewed code is
expected to have better quality, one might expect that reviewed
code would tend to cause few severe defects, such as crashes.
However, despite being reviewed, many changes still introduce
defects, including crashes. For example, Kononenko et al. [21]
find that 54% of reviewed code changes still introduce defects
in Mozilla projects.

In this paper, we intend to understand the reasons why
reviewed code still led to crashes. To achieve these goals, we

mine the crash collection, version control, issue tracking, and
code reviewing systems of the Mozilla Firefox project. More
specifically, we address the following two research questions:

RQ1: What are the characteristics of reviewed code that is
implicated in a crash?

We find that crash-prone reviewed patches often contain
complex code, and classes with many other classes de-
pending on them. Crash-prone patches tend to take a
longer time and generate longer discussion threads than
non-crash-prone patches. This result suggests that review-
ers need to focus their effort on the patches with high
complexity and on the classes with a complex relationship
with other classes.

RQ2: Why did reviewed patches crash?
To further investigate why some reviewed code crashes,
we perform a manual classification on the purposes and
root causes of a sample of reviewed patches. We observe
that the reviewed patches that crash are often used to
improve performance, refactor code, address prior crashes,
and implement new features. These findings suggest that
software organizations should impose a stricter inspection
on these types of patches. Moreover, most of the crashes
are due to memory (especially null pointer dereference)
and semantic errors. Software organizations can perform
static code analysis prior to the review process, in order
to catch these memory and semantic errors before crashes
escape to the field.

The rest of the paper is organized as follows. Section II
provides background information on Mozilla crash collection
system and code review process. Section III describes how we
identify reviewed code that leads to crashes. Section IV de-
scribes our data collection and analysis approaches. Section V
discusses the results of the two research questions. Section VI
discloses the threats to the validity of our study. Section VII
discusses related work, and Section VIII draws conclusions.

II. THE MOZILLA CRASH COLLECTING SYSTEM AND
CODE REVIEW PROCESS

In this section, we describe approaches of Mozilla on crash
report collection and code review.

A. The Mozilla Crash Collection System

Mozilla integrates the Mozilla Crash Reporter, a crash report
collection tool, into its software applications. Once a Mozilla

Figure 1: An example of crash report in Socorro.

application, such as the Firefox browser, unexpectedly halts,
the Mozilla Crash Reporter will generate a detailed crash
report and send it to the Socorro crash report server [35]. Each
crash report includes a stack trace of the failing thread and
the details of the execution environment of the user. Figure 1
shows an example Socorro crash report. These crash reports
are a rich source of information, which provide developers
and quality assurance personnel with information that can help
them to reproduce the crash in a testing environment.

The Socorro server automatically clusters the collected crash
reports into crash-types according to the similarity of the top
method invocations of their stack traces. Figure 2 shows an
example Mozilla crash-type. The Socorro server ranks crash-
types according to their frequency, e.g., Socorro publishes
a daily top 50 crash-types, i.e., the crash-types with the
maximum number of crash reports, for each of the recent
releases of Firefox.

Socorro operators file top-ranked crash-types as issue re-
ports in the Bugzilla issue tracking system. Quality assurance
teams use Socorro to triage these crash-related issue reports
and assign severity levels to them [1]. For traceability pur-
poses, Socorro crash reports provide a list of the identifiers of
the issues that have been filed for each crash-type. This link
is initiated from Bugzilla. If a bug is opened from a Socorro
crash, it is automatically linked. Otherwise, developers can
add Socorro signatures to the bug reports. By using these
traceability links, software practitioners can directly navigate
to the corresponding issues (in Bugzilla) from the summary
of a crash-type in the web interface of Socorro. Note that
different crash-types can be linked to the same issue, while
different issues can also be linked to the same crash-type [19].

B. The Mozilla Code Review Process

Mozilla manages its code review process using issue reports
in Bugzilla. After writing a patch for an issue, the developer
can request peer reviews by setting the review? flag on the
patch. At Mozilla, the reviewers are often chosen by the patch
author herself [16]. If the patch author does not know who
should review her patch, they can consult a list of module
owners and peers. Senior developers can also often recommend
good reviewers. The designated reviewers need to inspect a
patch from various aspects [29], such as correctness, style,

Figure 2: An example of crash-type in Socorro.

security, performance, and compatibility. Once a developer
has reviewed the patch, they can record comments with a
review flag, which also indicates their vote, i.e., in support
of (+) or in opposition to (-) the patch. Mozilla applies a
two-tiered code review process, i.e., review and superreview.
A review is performed by the owner of the module or peer
who has expertise in a specific aspect of the code of the
module [7]; while a superreview is required for certain types
of changes, such as significant architectural refactoring, API
or pseudo-API changes, or changes that affect the interactions
of modules [38]. Therefore, to evaluate patches, there are four
possible voting combinations on a reviewed patch: review+,
review-, superreview+, and superreview-.

A code review may have several iterations. Unless the
patch receives only positive review flags (review+ or
superreview+), it cannot be integrated into the VCS of
Mozilla. In this case, the patch author needs to provide a
revised patch for reviewers to consider. Some Mozilla issues
are resolved by a series of patches. Since the patches are used
to address the same issue, reviewers need to inspect the entire
series of patches before providing a review decision. In the
trial review platform of Mozilla, ReviewBoard, the patches
of an issue are automatically grouped together [28]. Thus,
in this paper, we examine the review characteristics at the
issue level. Finally, the Tree Sheriffs [41] (i.e., engineers who
support developers in committing patches, ensuring that the
automated tests are not broken after commits, and monitoring
intermittent failures, and reverting problematic patches) or the
patch authors themselves will commit the reviewed patches to
the VCS.

III. IDENTIFYING REVIEWED CODE THAT CRASHES

In this section, we describe our approach to identify re-
viewed code that is implicated in a crash report. Our ap-
proach consists of three steps: identifying crash-related issues,
identifying commits that are implicated in future crash-related
issues, and linking code reviews to commits. Below, we
elaborate on each of these steps.

A. Identifying Crash-related Issues

Mozilla receives 2.5 million crash reports on the peak day of
each week. In other words, the Socorro server needs to process
around 50GB of data every day [36]. For storage capacity and

privacy reasons, Socorro only retains those crash reports that
occurred within the last six months. Historical crash reports
are stored in a crash analysis archive1. We mine this archive
to extract the issue list, which contains issues that are linked
to a crash, from each crash event. These issues are referred as
to crash-related issues in the rest of this paper.

B. Identifying Commits that are Implicated in Future Crash-
related Issues

We apply the SZZ algorithm [34] to identify commits that
introduce crash-related issues. First of all, we use Fischer et
al.’s heuristic [13] to find commits that fixed a crash-related
issue I by using regular expressions to identify issue IDs from
commit messages. Then, we extract the modified files of each
crash-fixing commit with the following Mercurial command:

hg log --template {node},{file_mods}

By using the CLOC tool [6], we find that 51% of the
Firefox codebase is written in C/C++. Although JavaScript
and HTML (accounts for respectively 20% and 14% in the
code base) are the second and third most used languages.
Code implemented by these languages cannot directly cause
crashes because it does not have direct hardware access. Crash-
prone Javascript/HTML changes are often due to the fault of
parsers, which are written in C/C++. Therefore, in this paper,
we focus our analysis on C/C++ code. Given a file F of a
crash-fixing commit C, we extract C’s parent commit C ′, and
use the diff command of Mercurial to extract F ’s deleted
line numbers in C ′, henceforth referred to as rm_lines. Next,
we use the annotate command of Mercurial to identify
the commits that introduced the rm_lines of F ′. We filter
these potential crash-introducing candidates by removing those
commits that were submitted after I’s first crash report. The
remaining commits are referred to as crash-inducing commits.

As mentioned in Section II-B, Mozilla reviewers and release
managers consider all patches together in an issue report dur-
ing the review process. If an issue contains multiple patches,
we bundle its patches together. Among the studied issues
whose patches have been approved by reviewers, we identify
those containing committed patches that induce crashes. We
refer to those issues as crash-inducing issues.

IV. CASE STUDY DESIGN

In this section, we present the selection of our studied
system, the collection of data, and the analysis approaches
that we use to address our research questions.

A. Studied System

We use Mozilla Firefox as the subject system because at
the time of writing of this paper, only the Mozilla Foundation
has opened its crash data to the public [42]. It is also the
reason why in most previous empirical studies of software
crashes (e.g., [20], [19]), researchers analyzed data from the
Mozilla Socorro crash reporting system [35]. Though Wang
et al. [42] studied another system, Eclipse, they could obtain

1 https://crash-stats.mozilla.com/api/

0

50

100

150

Ap
r 0

7
Ju

l 0
7

O
ct

 0
7

Ja
n

08
Ap

r 0
8

Ju
l 0

8
O

ct
 0

8
Ja

n
09

Ap
r 0

9
Ju

l 0
9

O
ct

 0
9

Ja
n

10
Ap

r 1
0

Ju
l 1

0
O

ct
 1

0
Ja

n
11

Ap
r 1

1
Ju

l 1
1

O
ct

 1
1

Ja
n

12
Ap

r 1
2

Ju
l 1

2
O

ct
 1

2
Ja

n
13

Ap
r 1

3
Ju

l 1
3

O
ct

 1
3

Ja
n

14
Ap

r 1
4

Ju
l 1

4
O

ct
 1

4
Ja

n
15

Ap
r 1

5
Ju

l 1
5

O
ct

 1
5

Time period

C
ra

sh
−

in
du

ci
ng

 c
om

m
its Periods Removed Selected

Figure 3: Number of crash-inducing commits during each three
months from March 2007 to September 2015. Periods with low
number of crash-inducing commits are removed.

crash information from the issue reports (instead of crash
reports). However, the exact crash date cannot be obtained
from the issue reports, which hampers our ability to apply the
SZZ algorithm. Dang et al. [11] proposed a method, ReBucket,
to improve the current crash report clustering technique based
on call stack matching. The studied collection of crash reports
from the Microsoft Windows Error Reporting (WER) system
is not accessible for the public.

B. Data Collection

We analyze the Mozilla crash report archive. We collect
crash reports that occurred between February 2010 (the first
crash recorded date) until September 2015. We collect issue
reports that were created during the same period. We only
take closed issues into account. We filter out the issues that do
not contain any successfully reviewed patch (i.e., patch with
a review flag review+ or superreview+). To select an
appropriate study period, we analyze the rate of crash-inducing
commits throughout the collected timeframe (March 2007 until
September 2015). Figure 3 shows the rate of crash-inducing
commits over time. In this figure, each time point represents
one quarter (three months) of data. We observe that the rate of
crash-inducing commits increases from January 2007 to April
2010 before stabilizing between April 2010 and April 2015.
After April 2015, the rate suddenly drops. Since the last issue
report is collected in September 2015, there is not enough
related information to identify crash-inducing commits during
the last months. Using Figure 3, we select the periods between
April 2010 and April 2015 as our study period and focus our
analysis on the crash reports, commits, and issue reports during
this period. In total, we analyze 9,761,248 crash-types (from
which 11,421 issue IDs are identified), 41,890 issue reports,
and 97,840 commits. By applying the SZZ algorithm from
Section III-B, we find 1,202 (2.9%) issue reports containing
reviewed patches that are implicated in crashes.

C. Data Extraction

We compute metrics for reviewed patches and the source
code of the studied system. Figure 4 provides an overview of
our data extraction steps. To aid in the replication of our study,
our data and scripts are available online.2

2 https://github.com/swatlab/crash_review

Crash Database
(Socorro)

Data analysis

RQ1

RQ2Issue Repository
(Bugzilla)

Identification
of crash-

related issues

Version Control
System

(Mercurial)

Identification of
issue fixing commits

Extraction of commit metrics
& code-related metrics

Identification of crash-
inducing commits

Crash reports

Issue reports

Commit logs

Extraction of review-
related metrics

Identification of reviewed
code that crashes

Section III-A

Section III-B

Section III-B Section III-B

Section IV

Section IV

Section V

Figure 4: Overview of our approach to identify and analyze reviewed code that crashed in the field.

1) Review Metrics: For each reviewed patch, we extract the
names of the author and reviewer(s), as well as its creation
date, reviewed date, patch size, and the votes from each of the
review activities. We also extract the list of modified files from
the content of the patch. Although main review activities of
Mozilla are organized in Bugzilla attachments, we can also
extract additional review-related information from Bugzilla
comments and transaction logs. If a comment is concerned
with an attachment like a patch, Bugzilla provides a link to
the attachment in the comment. We can use this to measure
the review discussion length of a patch. Bugzilla attachments
only contain votes on review decisions, such as review+
and review-. To obtain the date when a review request for a
patch was created, we search for the review? activity date in
the issue discussion history. As we consider all of the patches
of an issue together, we use the mean to aggregate patch-
specific values to the issue-level. Unlike other systems, such
as Qt [40], Mozilla does not allow self-review, i.e., the author
of a patch cannot act as a reviewer of that patch. However,
Mozilla patch authors may set the review+ score themselves,
from time to time, when reviewers are generally satisfied with
the patch with the exception of minor changes. Thus in this
paper, we remove the patch author from the reviewer list of
each of the studied issues. More details on our review metrics
are provided in Section V.

2) Code Complexity Metrics: To analyze whether reviewed
code that crashed in the field is correlated with code complex-
ity, we compute code complexity metrics using the Understand
static code analysis tool [32]. We wrote a script to compute five
code complexity metrics for each C/C++ file using Understand,
i.e., Lines Of Code (LOC), average cyclomatic complexity,
number of functions, maximum nesting level, and the propor-
tion of comment lines in a file. More details on our complexity
metrics are provided in Section V.

3) Social Network Analysis Metrics: To measure the rela-
tionship among classes, we apply Social Network Analysis
(SNA) [14] to measure the centrality [33] of each C/C++
class, i.e., the degree to which other classes depend on a
certain class. A high centrality value indicates that a class
is important to a large portion of the system, and any change
to the class may impact a large amount of functionality. We

compute centrality using the class-to-class dependencies that
are provided by Understand. We combine each .c or .cpp
file with its related .h file into a class node. We use a pair
of vertices to represent the dependency relationship between
any two mutually exclusive class nodes. Then, we build an
adjacency matrix [2] with these vertex pairs. By using the
igraph network analysis tool [10], we convert the adjacency
matrix into a call graph, based on which we compute the
PageRank, betweenness, closeness, indegree, and outdegree
SNA metrics.

V. CASE STUDY RESULTS

In this section, we present the results of our case study. For
each research question, we present the motivation, our data
processing and analysis approaches, and the results.

RQ1: What are the characteristics of reviewed code that is
implicated in a crash?

Motivation. We intend to compare the characteristics of the
reviewed patches that lead to crashes (Crash) with those
that did not lead to crashes (Clean). Particularly, we want
to know whether patch complexity, centrality, and developer
participation in the code review process are correlated with the
crash proneness of a reviewed patch. The result of this research
question can help software organizations improve their code
review strategy; focusing review efforts on the most crash-
prone code.

Approach. We extract information from the source code to
compute code complexity and SNA metrics and from issue
reports to compute review metrics. Tables I to III provide
descriptions of each of the studied metrics.

We assume that changes to complex classes are likely to lead
to crashes because complex classes are usually more difficult
to maintain. Inappropriate changes to complex classes may
result in defects or even crashes. The SNA metrics are used
to estimate the degree of centrality (see Section IV-C3) of a
class. Inappropriate changes to a class with high centrality may
impact dependent classes; thus causing defects or even crashes.
For each SNA metric, we compute the mean of all class values
for the commits that fix an issue. Regarding the review metrics,
we assume that patches with longer review duration and more

Table I: Code complexity metrics used to compare the char-
acteristics of crash-inducing patches and clean patches.

Metric Description Rationale

Patch size Mean number of lines of the
patch(s) of an issue. We include
context lines and comment lines
because reviewers need to read
all these lines to inspect a patch.

The larger the code changes, the
easier it is for reviewers to miss
defects [21].

Changed
file
number

Mean number of changed
C/C++ files in the issue fixing
commit(s).

If a change spreads across mul-
tiple files, it is difficult for re-
viewers to detect defects [21].

LOC Mean number of the lines of
code in the changed classes to
fix an issue.

Large classes are more likely to
crash [20].

McCabe Mean value of McCabe cyclo-
matic complexity [22] in all
classes of the issue fixing com-
mit(s).

Classes with high cyclomatic
complexity are more likely to
lead to crashes [20].

Function
number

Mean number of functions in
all classes in the issue fixing
commit(s).

High number of functions indi-
cates high code complexity [3],
which makes it difficult for re-
viewers to notice defects.

Maximum
nesting

Mean of maximum level of
nested functions in all classes in
the issue fixing commit(s).

Code with deep nesting
level is more likely to cause
crashes [20].

Comment
ratio

Mean ratio of the lines of com-
ments over the lines of code in
all classes of the issue fixing
commit(s)

Reviewers may have difficulty
to understand code with low ra-
tio of comment [17], thus miss
crash-prone code.

Table II: Social network analysis (SNA) metrics used to
compare the characteristics of crash-inducing patches and
clean patches. We compute the mean of each metric across the
classes of the fixing patch(es) within an issue. Rationale: An
inappropriate change to a class with high centrality value [33]
can lead to malfunctions in the dependent classes; even cause
crashes [20].

Metric Description

PageRank Time fraction spent to “visit” a class in a random walk in the
call graph. If an SNA metric of a class is high, this class may be
triggered through multiple paths.

Betweenness Number of classes passing through a class among all shortest
paths.

Closeness Sum of lengths of the shortest call paths between a class and all
other classes.

Indegree Numbers of callers of a class.

Outdegree Numbers of callees of a class.

review comments have higher risk of crash proneness. Since
these patches may be more difficult to understand, although
developers may have spent more time and effort to review and
comment on them. We use the review activity metrics that were
proposed by Thongtanunam et al. [40]. In addition, we also
take obsolete patches into account because these patches were
not approved by reviewers. The percentage of the obsolete
patches that fix an issue can help to estimate the quality and
the difficulty of the patches on an issue, as well as developer
participation.

We apply the two-tailed Mann-Whitney U test [15] to com-
pare the differences in metric values between crash-inducing
patches and clean patches. We choose to use the Mann-

Table III: Review metrics used to compare the characteristics
of crash-inducing patches and clean patches. We compute the
mean metric value across the patches within an issue.

Metric Description Rationale

Review
iterations

Number of review flags on a
reviewed patch.

Multiple rounds of review
may help to better identify
defective code than a single
review round [40].

Number of
comments

Number of comments related
with a reviewed patch.

Review with a long
discussion may help
developers to discover more
defects [40].Comment

words
Number of words in the mes-
sage of a reviewed patch.

Number of
reviewers

Number of unique reviewers
involved for a patch.

Patches inspected by multiple
reviewers are less likely to
cause defects [30].

Proportion of
reviewers
writing
comments

Number of reviewers writing
comments over all reviewers.

Reviews without comments
have higher likelihood of de-
fect proneness [40], [23].

Negative
review rate

Number of disagreement re-
view flags over all review
flags.

High negative review rate may
indicate a low quality of a
patch.

Response
delay

Time period in days from the
review request to the first re-
view flag.

Patches that are promptly re-
viewed after their submission
are less likely to cause de-
fects [30].

Review
duration

Time period in days from the
review request until the re-
view approval.

Long review duration may in-
dicate the complexity of a
patch and the uncertainty of
reviewers on it, which may
result in a crash-prone patch.

Obsolete patch
rate

Number of obsolete patches
over all patches in an issue.

High proportion of obsolete
patch indicates the difficulty
to address an issue, and may
imply a high crash proneness
for the landed patch.

Amount of
feedback

Quantity of feedback given
from developers. When a de-
veloper does not have enough
confidence on the resolution
of a patch, she would request
for feedback prior to the code
review.

The higher the amount of
feedback, the higher the un-
certainty of the patch author,
which can imply a higher
crash proneness.

Negative
feedback rate

Quantity of negative feedback
over all feedback.

High negative feedback rate
may imply high crash prone-
ness for a patch.

Whitney U test because it is non-parametric, i.e., it does not
assume that metrics must follow a normal distribution. For
the statistical test of each metric, we use a 95% confidence
level (i.e., α = 0.05) to decide whether there is a significant
difference among the two categories of patches. Since we
will investigate characteristics on multiple metrics, we use the
Bonferroni correction [12] to control the familywise error rate
of the tests. In this paper, we compute the adjusted p-value,
which is multiplied by the number of comparisons.

For the metrics that have a significant difference between the
crash-inducing and clean patches, we estimate the magnitude
of the difference using Cliff’s Delta [5]. Effect size measures
report on the magnitude of the difference while controlling for
the confounding factor of sample size [8].

To further understand the relationship between crash prone-
ness and reviewer origin, we calculate the percentage of crash-
inducing patches that were reviewed by Mozilla developers,

Table IV: Median metric value of crash-inducing patches
(Crash) and clean (Clean) patches, adjusted p-value of Mann-
Whitney U test, and Cliff’s Delta effect size.

Metric Crash Clean p-value effect size

Code complexity metrics

Patch size 406 111 <0.001 0.53 (large)

Changed files 4.8 2.0 <0.001 0.49 (large)

LOC 1259.3 1124.5 0.2 –

McCabe 3.0 3.0 0.5 –

Function number 45.8 43.0 0.3 –

Maximum nesting 3.0 3.0 1 –

Comment ratio 0.3 0.2 <0.001 0.24 (small)

Social network analysis metrics

PageRank 4.4 3.2 <0.001 0.17 (small)

Betweenness 50,743.5 22,011.3 <0.001 0.16 (small)

Closeness 2.2 2.1 <0.001 0.12 (negligible)

Indegree 12.0 7.5 <0.001 0.15 (small)

Outdegree 27.3 26.0 0.02 0.05 (negligible)

Review metrics

Review iterations 1.0 1.0 0.001 0.03 (negligible)

Number of comments 0.5 0 <0.001 0.15 (small)

Comment words 2.5 0 <0.001 0.16 (small)

Number of reviewers 1.0 1.0 1 –

Proportion of review-
ers writing comments

1 1 <0.001 0.10 (negligible)

Negative review rate 0 0 0.03 0.01 (negligible)

Response delay 14.2 8.1 <0.001 0.14 (negligible)

Review duration 15.2 8.2 <0.001 0.15 (small)

Obsolete patch rate 0 0 1 –

Amount of feedback 0 0 0.03 0.02 (negligible)

Negative feedback
rate

0 0 1 –

external developers, and by both Mozilla and external devel-
opers. Previous work, such as [26], used the suffix of an email
address to determine the affiliation of a developer. However,
many Mozilla employees use an email address other than
mozilla.com in Bugzilla, when they review code. To make
our results more accurate, an author of the paper, who is
working at Mozilla, used a private API to examine whether a
reviewer is a Mozilla employee.

Results. Table IV compares the reviewed patches that lead to
crash (Crash) to those that do not crash (Clean). Statistically
significant p-values and non-negligible effect size values are
shown in bold. Figure 5 visually compares crash-inducing and
clean patches on the metrics (after removing outliers because
they can bury the median values), where there is a statistically
significant difference and the effect size is not negligible. In
this figure, the red bold line indicates the median value on the
crash-inducing patches (or clean patches) for a metric. The
dashed line indicates the overall median value of a metric.
The width variation in each plot shows the variation of the
data density.

5
10

20
50

20
0

50
0

20
00

patch size

0
5

10
15

20
25

changed files

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

comment ratio

0
5

10
15

20
25

PageRank

0e
+0
0

1e
+0
5

2e
+0
5

3e
+0
5

4e
+0
5

betweenness

0
20

40
60

indegree

0
2

4
6

of comments

0
20

40
60

80

comment words

0
50

10
0

15
0 review duration

Figure 5: Comparison between crash-inducing patches (left
part, grey) vs. clean patches (right part, white). Since we
removed outliers from the plots, the median values may not
correspond to the values in Table IV, which includes the
outliers.

For the code complexity metrics, crash-inducing patches
have a significantly larger patch size, higher number of
changed files, and higher comment ratio than clean patches.
The magnitude of the differences on patch size and changed
files is large; while the magnitude of the differences on com-
ment ratio is small. This result implies that the related files of
the reviewed patches that crash tend to contain complex code.
These files have higher comment ratio because developers may
have to leave more comments to describe a complicated or
difficult problem. Our finding suggests that reviewers need to
double check the patches that change complex classes before
approving them. Investigators also need to carefully approve
patches with intensive discussions because developers may not
be certain about the potential impact of these patches.

In addition, crash-inducing patches have significantly higher
centrality values than clean patches on all of the social network
analysis metrics. The magnitude of closeness and outdegree is
negligible; while the magnitude of PageRank, betweenness,
and indegree is small. This result suggests that the reviewed
patches that have many other classes depending on them are
more likely to lead to crashes. Reviewers need to carefully
inspect the patches with high centrality.

Regarding the review metrics, compared to clean patches,
crash-inducing patches have significantly higher number of
comments and comment words. This finding is in line with the
results in [21], where the authors also found that the number of
comments have a negative impact on code review quality. The
response time and review duration on crash-inducing patches

Table V: Origin of the developers who reviewed clean patches
and crash-inducing patches.

Origin Total Crash Crash rate

Mozilla 38,481 1,094 2.8%

External 2,512 55 2.2%

Both 897 53 5.9%

Total 41,890 1,202 2.9%

tend to be longer than clean patches. These results are expected
because we assume that crash-inducing patches are harder
to understand. Although developers spend a longer time and
comment more on them, these patches are still more prone to
crashes. In terms of the magnitude of the statistical differences,
crash-inducing and clean patches that have been reviewed only
have a small effect size on number of comments, comment
words, and review duration; while the effect sizes of other
statistical differences are negligible.

Table V shows the percentage of the patches that were
reviewed by Mozilla developers, external developers, and by
both Mozilla and external developers. Regarding the crash-
inducing rate of the studied patches, the patches reviewed by
both Mozilla and external developers lead to the highest rate
of crashes (5.9%). On the one hand, there are few patches
that were reviewed by both Mozilla and external developers,
this result may not be representative. One the other hand,
Mozilla internal members and external community members
do not have the same familiarity on a specific problem,
such collaborations may miss some crash-prone changes. We
suggest patch authors to choose reviewers with the same level
of familiarity on the changed module(s) and the whole system.
In the future, we plan to further investigate the relationship
between crash proneness and the institution that the reviewers
represent.

Reviewed patches that crash tend to be related with large
patch size and high centrality. These patches often take
a long time to be reviewed and are involved with many
rounds of review discussions. More review effort should be
invested on the patches with high complexity and centrality
values.

RQ2: Why did reviewed patches crash?

Motivation. In RQ1, we compared the characteristics of
reviewed code that crashes with reviewed code that does not
crash. To more deeply understand why reviewed patches can
still lead to crashes, we perform a qualitative analysis on
the purposes of the reviewed patches that crash and the root
causes of their induced crashes.

Approach. To understand why developers missed the crash-
inducing patches, we randomly sample 100 out of the 1,202
issues that contain reviewed patches that crash. If we use
a confidence level of 95%, our sample size corresponds to

Table VI: Patch reasons and descriptions (abbreviation are
shown in parentheses).

Reason Description

Security Security vulnerability exists in the code.

Crash Program unexpectedly stops running.

Hang Program keeps running but without response.

Performance
degradation (perf)

Functionalities are correct but response is slow or
delayed.

Incorrect rendering
(rendering)

Components or video cannot be correctly rendered.

Wrong functionality
(func)

Incorrect functionalities besides rendering issues.

Incompatibility
(incompt)

Program does not work correctly for a major website
or for a major add-on/plug-in due to incompatible APIs
or libraries, or a functionality, which was removed on
purpose, but is still used in the wild.

Compile Compilation errors.

Feature Introduce or remove features.

Refactoring (refactor) Non-functional improvement by restructuring existing
code without changing its external behaviour.

Improvement (improve) Minor functional or aesthetical improvement.

Test-only problem (test) Errors that only break tests.

Other Other patch reasons, e.g., data corruption and adding
logging.

Table VII: Crash root causes and descriptions.

Reason Description

Memory Memory errors, including memory leak, overflow, null pointer
dereference, dangling pointer, double free, uninitialized memory
read, and incorrect memory allocation.

Semantic Semantic errors, including incorrect control flow, missing func-
tionality, missing cases of a functionality, missing feature, incor-
rect exception handling, and incorrect processing of equations
and expressions.

Third-party Errors due to incompatibility of drivers, plug-ins or add-ons.

Concurrency Synchronization problems between multiple threads or processes,
e.g., incorrect mutex usage.

a confidence interval of 9%. Inspired by Tan et al.’s work
[39], we classify the purposes of patches (patch reasons) into
13 categories based on their (potential) impact on users and
detected fault types. The “incorrect functionality” category
defined by Tan et al. is too broad, so we break it into more
detailed patch reasons: “incorrect rendering”, “(other) wrong
functionality”, and “incompatibility”. In addition, since we do
not only study defect-related issues as Tan et al., we add more
categories about the reason of patches, such as “refactoring”,
“improvement”, and “test-only problem”. Table VI shows the
patch reasons used in our classification. We conduct a card
sorting on the sampled issues with the following steps: 1)
examine the issue report (the title, description, keywords,
comments of developers, and the patches). Two authors of this
paper individually classified each issue into one or more cat-
egories; 2) created an online document to compare categories
and resolved conflicts through discussions; 3) discussed each
conflict until a consensus was reached.

Then, from the results of the SZZ algorithm, we find the
crash-related issues caused by the patches of the sampled

0

5

10

15

20

pe
rf

re
fac

to
r

cr
as

h

fea
tu

re
fu

nc

se
cu

rit
y

ot
he

r

im
pr

ov
e

co
m

pil
e

inc
om

pa
t

re
nd

er
ing

ha
ng

Figure 6: Distribution of the purposes of the reviewed issues
that lead to crashes.

0

10

20

30

40

memory semantic third−party concurrency

Root causes
null pointer

other memory

other cause

Figure 7: Distribution of the root causes of the reviewed issues
that lead to crashes.

issues. Following the same card sorting steps, we classify the
root causes of these crash-related issues into five categories,
as shown in Table VII.

Results. Figure 6 shows the distribution of patch reasons
obtained from our manual classification. Among the reviewed
patches that lead to crashes, we find that most patches are
used for improving Firefox’ performance, refactoring code,
fixing previous crashes, and implementing new features. These
results imply that: 1) improving performance is the most
important purpose of the reviewed patches that crash; 2)
some “seemingly simple” changes, such as refactoring, may
lead to crashes; 3) fixing crash-related issues can introduce
new crashes; 4) many crashes were caused by new feature
implementations. The classification suggests that reviewers
need to scrutinize patches due to the above reasons, and
software managers can ask a super review inspection for these
types of patches.

Figure 7 shows the distribution of our manually classified
root causes. According to the results, most crashes are due
to memory and semantic errors. To further understand the
detailed causes of the memory errors, we found that 61%
of these errors are as a result of null pointer dereferences.
By studying the issue reports of the null pointer crashes, we
found that most of them were eventually fixed by adding check

for NULL values, e.g., the issue #1121661.3 This finding is
interesting because some memory faults can be avoided by
static analysis. Mozilla has planned to use static analysis tools,
such as Coverity [9] and Clang-tidy [4], to enhance its quality
assurance. We suggest that software organizations can perform
static analysis on a series of memory faults, such as null
pointer dereference and memory leaks, prior to their code
review process. Our results suggest that static code analysis
can not only help to mitigate crashes but also certain security
faults. Even though the accuracy of the static analysis cannot
reach 100%, it can help reviewers to focus their inspection
efforts on suspicious patches. In addition, semantic errors are
also an important root cause of crashes. Many of these crashes
are eventually resolved by modifying the if conditions of the
faulty code. Semantic errors are relatively hidden in the code,
we suggest reviewers to focus their inspections on changes of
control flow, corner cases, and exception handling to prevent
potential crashes. Software organizations should also enhance
their testing effort on semantic code changes.

Reviewers should focus their effort on patches that are
used to improve the performance of the software, refactor
source code, fix crashes, and introduce new features, since
these types of patches are more likely to lead to crashes.
If possible, a super review or inspection from additional
reviewers should be conducted for these patches. Memory
and semantic errors are major causes of the crashes;
suggesting that static analysis tools and additional scrutiny
should be applied to semantic changes.

VI. THREATS TO VALIDITY

Internal validity threats are concerned with factors that may
affect a dependent variable and were not considered in the
study. We choose steady periods for the studied commits by
analyzing the distribution of crash-inducing commit numbers.
We eliminate the periods where the numbers of crash-inducing
commits are relatively low because some crash-inducing code
has not been filed into issues at the beginning and at the end
of our collected data.

The SZZ algorithm is a heuristic to identify commits that
induce subsequent fixes. To mitigate the noise introduced by
this heuristic, we removed all candidates of crash-introducing
commits that only change comments or whitespace. We val-
idate the accuracy of the algorithm by comparing changed
files of a crash-inducing commit with the information in its
corresponding crash-related issue report. As a result, 68.1% of
our detected crash-inducing commits changed at least one file
mentioned in the crashing stack trace or comments of their
corresponding issues. The remaining commits might change a
dependent class of the code in the stack trace, or developers do
not provide any stack trace in their corresponding issue reports.
Therefore, we believe that the SZZ algorithm can provide a
reasonable starting point for identifying crash-prone changes.

3 https://bugzilla.mozilla.org/show_bug.cgi?id=1121661#c1

Finally, in RQ1, we use some time-related metrics (e.g.,
review duration), which measures the period since a review for
a patch was requested until the patch was approved. Although
a review duration of two months does not mean that developers
really spent two months to review a patch, it can reflect the
treatment time of a development team (including pending time,
understanding time, and evaluation time) to the patch. For
example, when the review queue of a reviewer is long, her
assigned patches may be pending for a long time before she
begins to inspect them [37].

Conclusion validity threats are concerned with the relationship
between the treatment and the outcome. We paid attention not
to violate the assumptions of our statistical analyses. In RQ1,
we apply the non-parametric test, the Mann-Whitney U test,
which does not require that our data be normally distributed.

In our manual classifications of root causes of the reviewed
patches that crashes, we randomly sampled 100 reviewed
issues and the crashes that were induced. Though a larger
sample size might yield more nuanced results, our results
clearly show the most crash-prone types of patches, and the
major root causes of the reviewed patches that crash.

Reliability validity threats are concerned with the replicability
of the study. To aid in future replication studies, we share our
analytic data and scripts online: https://github.com/swatlab/
crash_review.

External validity threats are concerned with the generalizabil-
ity of our results. In this work, we study only one subject
system, mainly due to the lack of available crash reports
and code review data. Thus, our findings may not generalize
beyond this studied system. However, the goal of this study
is not to build a theory that applies to all systems, but rather
to empirically study the relationship between review activi-
ties and crash proneness. Nonetheless, additional replication
studies are needed to arrive at more general conclusions.

VII. RELATED WORK

In this section, we discuss the related research on crash
analysis and code review analysis.

A. Crash Analysis

Crashes can unexpectedly terminate a software system,
resulting in data loss and user frustration. To evaluate the
importance of crashes in real time, many software organiza-
tions have implemented automatic crash collection systems to
collect field crashes from end users.

Previous studies analyze the crash data from these systems
to propose debugging and bug fixing approaches on crash-
related defects. Podgurski et al. [27] introduced an automated
failure clustering approach to classify crash reports. This
approach enables the prioritization and diagnosis of the root
causes of crashes. Khomh et al. [19] proposed an entropy-
based approach to identify crash-types that frequently occurred
and affect a large number of users. Kim et al. [20] mined
crash reports and the related source code in Firefox and
Thunderbird to predict top crashes for a future release of a

software system. To reduce the efforts of debugging crashing
code, Wu et al. [43] proposed a framework, ChangeLocator,
which can automatically locate crash-inducing changes from
a given bucket of crash reports.

In this work, we leverage crash data from the Mozilla
Socorro system to quantitatively and qualitatively investigate
the reasons why reviewed code still led to crashes, and make
suggestions to improve the code review process.

B. Code Review & Software Quality

One important goal of code review is to identify defective
code at early stages of development before it affects end users.
Software organizations expect that this process can improve
the quality of their systems.

Previous studies have investigated the relationship between
code review quality and software quality. McIntosh et al. [23],
[24] found that low code review coverage, participation, and
expertise share a significant link with the post-release defect
proneness of components in the Qt, VTK, and ITK projects.
Similarly, Morales et al. [25] found that code review activity
shares a relationship with design quality in the same studied
systems. Thongtanunam et al. [40] found that lax code reviews
tend to happen in defect-prone components both before and
after defects were found, suggesting that developers are not
aware of problematic components. Kononenko et al. [21]
observed that 54% of the reviewed changes are still implicated
in subsequent bug fixes in Mozilla projects. Moreover, their
statistical analysis suggests that both personal and review
participation metrics are associated with code review quality.
In a recent work, Sadowski et al. [31] conducted a qualitative
study on the code review practices at Google. They observed
that problem solving is not the only focus for Google reviewers
and only a few developers said that code review have helped
them catch bugs.

The results of [23], [24], [40], [21], [31] suggest that despite
being reviewed, many changes still introduce defects. There-
fore, in this study, we investigate the relationship between the
rigour of the code review that a code change undergoes and
its likelihood of inducing a software crash – a type of defect
with severe implications. We draw inspiration from these prior
studies to design our set of metrics [40], [18]. We also draw
inspiration from Tan et al.’s work [39] to conduct a qualitative
study by identifying the root causes of the reviewed patches
that induce crashes and the purpose of these patches.

VIII. CONCLUSION

The code review process helps software organizations to
improve their code quality, reduce post-release defects, and
collaborate more effectively. However, some high-impact de-
fects, such as crash-related defects, can still pass through
this process and negatively affect end users. In this paper,
we compare the characteristics of reviewed code that induces
crashes and clean reviewed code in Mozilla Firefox. We
observed that crash-prone reviewed code often has higher
complexity and centrality, i.e., the code has many other classes
depending on it. Compared to clean code, developers tend to

spend a longer time on and have longer discussions about the
crash-prone code; suggesting that developers may be uncertain
about such patches (RQ1). Through a qualitative analysis, we
found that the crash-prone reviewed code is often used to
improve performance of a system, refactor source code, fix
previous crashes, and introduce new functionalities. Moreover,
the root causes of the crashes are mainly due to memory and
semantic errors. Some of the memory errors, such as null
pointer dereferences, could be likely prevented by adopting
a stricter organizational policy with respect to static code
analysis (RQ2). In the future, we plan to investigate to which
extent static analysis can help to mitigate software crashes.
We are also contacting other software organizations in order
to study their crash reports to validate the results obtained in
this work.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In Pro-
ceedings of the 28th International Conference on Software Engineering
(ICSE), pages 361–370, New York, NY, USA, 2006. ACM.

[2] N. Biggs. Algebraic graph theory. Cambridge university press, 1993.
[3] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. Does

distributed development affect software quality?: an empirical case study
of windows vista. Communications of the ACM, 52(8):85–93, 2009.

[4] Clang-Tidy tool. http://clang.llvm.org/extra/clang-tidy, 2017. Online;
Accessed March 31st, 2017.

[5] N. Cliff. Ordinal methods for behavioral data analysis. Psychology
Press, 2014.

[6] CLOC. http://cloc.sourceforge.net, 2017. Online; Accessed May 22nd,
2017.

[7] Firefox code review. https://wiki.mozilla.org/Firefox/Code_Review,
2016. Online; Accessed March 31st, 2016.

[8] R. Coe. It’s the effect size, stupid: What effect size is and why it is
important, 2002.

[9] Coverity tool. http://www.coverity.com, 2017. Online; Accessed March
31st, 2017.

[10] G. Csardi and T. Nepusz. The igraph software package for complex
network research. InterJournal, Complex Systems, 1695(5):1–9, 2006.

[11] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel. Rebucket:
a method for clustering duplicate crash reports based on call stack
similarity. In Proceedings of the 34th International Conference on
Software Engineering (ICSE), pages 1084–1093. IEEE Press, 2012.

[12] A. Dmitrienko, G. Molenberghs, C. Chuang-Stein, and W. Offen. Anal-
ysis of Clinical Trials Using SAS: A Practical Guide. SAS Institute,
2005.

[13] M. Fischer, M. Pinzger, and H. Gall. Populating a release history
database from version control and bug tracking systems. In Proceedings
of the 29th International Conference on Software Maintenance (ICSM),
pages 23–32. IEEE, 2003.

[14] R. A. Hanneman and M. Riddle. Introduction to social network methods,
2005.

[15] M. Hollander, D. A. Wolfe, and E. Chicken. Nonparametric statistical
methods. John Wiley & Sons, 3rd edition, 2013.

[16] How to submit a patch at Mozilla. https://developer.mozilla.org/en-US/
docs/Mozilla/Developer_guide/How_to_Submit_a_Patch, 2017. Online;
Accessed May 31st, 2017.

[17] H. Hulkko and P. Abrahamsson. A multiple case study on the impact
of pair programming on product quality. In Proceedings of the 27th
International Conference on Software Engineering (ICSM), pages 495–
504. IEEE, 2005.

[18] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi. A large-scale empirical study of just-in-time quality
assurance. IEEE Transactions on Software Engineering, 39(6):757–773,
2013.

[19] F. Khomh, B. Chan, Y. Zou, and A. E. Hassan. An entropy evaluation
approach for triaging field crashes: A case study of Mozilla Firefox. In
Proceedings of the 18th Working Conference on Reverse Engineering
(WCRE), pages 261–270. IEEE, 2011.

[20] D. Kim, X. Wang, S. Kim, A. Zeller, S.-C. Cheung, and S. Park.
Which crashes should I fix first?: Predicting top crashes at an early
stage to prioritize debugging efforts. IEEE Transactions on Software
Engineering, 37(3):430–447, 2011.

[21] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey.
Investigating code review quality: Do people and participation matter?
In Proceedings of the 31st International Conference on Software Main-
tenance and Evolution (ICSME), pages 111–120. IEEE, 2015.

[22] T. J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, SE-2(4):308–320, 1976.

[23] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects. In Proceedings of the
11th Working Conference on Mining Software Repositories (MSR), pages
192–201. ACM, 2014.

[24] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. An empirical
study of the impact of modern code review practices on software quality.
Empirical Software Engineering, 21(5):2146–2189, 2016.

[25] R. Morales, S. McIntosh, and F. Khomh. Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects. In
Proceedings of the 22nd International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 171–180. IEEE, 2015.

[26] M. Pinzger and H. C. Gall. Dynamic analysis of communication and
collaboration in oss projects. In Collaborative Software Engineering,
pages 265–284. Springer, 2010.

[27] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun,
and B. Wang. Automated support for classifying software failure
reports. In Proceedings of the 25th International Conference on Software
Engineering (ICSE), pages 465–475. IEEE, 2003.

[28] Creating Commits and Submitting Review Requests with Re-
viewBoard. http://mozilla-version-control-tools.readthedocs.io/en/latest/
mozreview/commits.html, 2017. Online; Accessed May 31st, 2017.

[29] Mozilla Reviewer Checklist. https://developer.mozilla.org/en-US/docs/
Mozilla/Developer_guide/Reviewer_Checklist, 2017. Online; Accessed
May 31st, 2017.

[30] P. C. Rigby, D. M. German, and M.-A. Storey. Open source software
peer review practices: a case study of the apache server. In Proceedings
of the 30th International Conference on Software Engineering (ICSE),
pages 541–550. ACM, 2008.

[31] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli.
Modern code review: a case study at google. In Proceedings of
the 40th International Conference on Software Engineering: Software
Engineering in Practice, pages 181–190. ACM, 2018.

[32] Understand tool. https://scitools.com, 2016. Online; Accessed March
31st, 2016.

[33] J. Scott. Social network analysis. SAGE publications, 2012.
[34] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce

fixes? In ACM sigsoft software engineering notes, volume 30, pages
1–5. ACM, 2005.

[35] Socorro: Mozilla’s Crash Reporting Server. https://crash-stats.mozilla.
com/home/products/Firefox, 2016. Online; Accessed March 31st, 2016.

[36] Socorro: Mozilla’s crash reporting system. https://blog.mozilla.org/
webdev/2010/05/19/socorro-mozilla-crash-reports/, 2016. Online; Ac-
cessed March 31st, 2016.

[37] Mozilla discussion on speeding up reviews. https://groups.
google.com/forum/?hl=en#!msg/mozilla.dev.planning/hGX6vy5k35o/
73b3Vw9GmS8J, 2017. Online; Accessed May 31st, 2017.

[38] Super-review policy. https://www.mozilla.org/en-US/about/governance/
policies/reviewers/, 2016. Online; Accessed March 31st, 2016.

[39] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai. Bug characteristics
in open source software. Empirical Software Engineering, 19(6):1665–
1705, 2014.

[40] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Investigating
code review practices in defective files: An empirical study of the qt
system. In Proceedings of the 12th Working Conference on Mining
Software Repositories (MSR), pages 168–179, 2015.

[41] Mozilla Tree Sheriffs. https://wiki.mozilla.org/Sheriffing, 2017. Online;
Accessed February 1st, 2017.

[42] S. Wang, F. Khomh, and Y. Zou. Improving bug management using cor-
relations in crash reports. Empirical Software Engineering, 21(2):337–
367, 2016.

[43] R. Wu, M. Wen, S.-C. Cheung, and H. Zhang. Changelocator: locate
crash-inducing changes based on crash reports. Empirical Software
Engineering, pages 1–35, 2017.

