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ABSTRACT

Open Source Software (OSS) components form the basis for
many software systems. While the use of OSS components
accelerates development, client systems must comply with
the license terms of the OSS components that they use. Fail-
ure to do so exposes client system distributors to possible lit-
igation from copyright holders. Yet despite the importance
of license compliance, tool support for license compliance as-
sessment is lacking. In this paper, we propose an approach
to construct and analyze the Concrete Build Dependency
Graph (CBDG) of a software system by tracing system calls
that occur at build-time. Through a case study of seven
open source systems, we show that the constructed CBDGs:
(1) accurately classify sources as included in or excluded
from deliverables with 88%-100% precision and 98%-100%
recall, and (2) can uncover license compliance inconsisten-
cies in real software systems — two of which prompted code
fixes in the CUPS and FFmpeg systems.

Categories and Subject Descriptors

K.5.1 [Legal Aspects of Computing]: Hardware/Software
Protection—copyrights, licensing

Keywords

License compliance; build systems

1. INTRODUCTION

Nowadays, software developers improve development ef-
ficiency by reusing OSS components, libraries, and frame-
works. These reusable components are released under a vari-
ety of different licenses, ranging from the simple and permis-
sive BSD- and MIT-style licenses that allow client systems
to include components without publishing any source code,
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to the more restrictive GPL- and MPL-style licenses that
impose license requirements on client systems (i.e., derived
works). Due to the intricacies of OSS licenses, it may not be
legally permissible to combine certain OSS components with
client system code. Client systems that are released under
licenses that are incompatible with the licenses of the OSS
components that are used to build them are said to have a
license mismatch problem [9].

Failure to comply with the license terms of reused external
components makes the distribution of client system deliver-
ables a potential copyright violation, opening client system
distributors up to litigation by copyright holders [13] [16].
To ensure that a client system is compliant with the license
terms of reused external components, one must not only un-
derstand which licenses govern the reuse these components,
but also how they are combined with the source code of the
client system. For example, statically linking to external
components released under a GPL-style license stipulates
that the source code of the client system deliverable be re-
leased under a GPL-style license as well.

In order to perform a license compliance assessment on
a client system, one must know (for each deliverable being
created): (1) which source files of the client system are be-
ing used; (2) which external components are being used; and
(3) how the client source code and external components are
being combined. We, therefore, trace and record each step
taken during the build process in order to construct a Con-
crete Build Dependency Graph (CBDG), i.e., a graph that
represents the actual dependencies of the client system deliv-
erables. Since build specifications may not explicitly denote
all of the client system dependencies, we construct CBDGs
by tracing the operating system calls made by build tools
during their execution. We annotate the source file nodes
in the CBDG with their respective licenses, and analyze the
CBDG to detect license compliance inconsistencies.

In order to evaluate our license compliance assessment
approach, we perform a case study of seven open source
systems, and address the following two research questions:

(RQ1) Does our approach accurately identify the
sources that are included in constructed de-
liverables?

Removing the source files that appear in the CBDG
truly causes changes in build behaviour in 88%-
100% of cases (precision). Conversely, removing the



source files that do not appear in the CBDG does
not cause changes in build behaviour in 98%-100%
of cases (recall).

(RQ2) Does our approach reveal license mismatch
issues?
Analysis of the constructed CBDGs reveals license
mismatch issues that prompted rapid bug fixes in
the FFmpeg and CUPS systems.

The main technical contributions of this paper are:

e The definition of the CBDG, which explicitly describes
the steps performed when creating deliverables. Both
internal (which client system source files are being used)

and external dependencies (e.g., libraries) can be ex-
tracted from the CBDG.

e An approach for constructing a CBDG from traces of
operating system calls made during a build execution.

e An approach to analyze a CBDG to identify license
compliance inconsistencies in client systems.

Paper organization. The remainder of this paper is or-
ganized as follows. Section [2] outlines the challenges asso-
ciated with license compliance assessment. Section [3| de-
scribes our CBDG-based approach to license compliance as-
sessment. Section [ presents the design of the empirical
study that we performed to evaluate the accuracy and use-
fulness of our license compliance assessment approach, while
Section [p| presents the results. We discuss the limitations
of our approach and its empirical evaluation in Section @
Section [7] surveys related work. Finally, Section [§ draws
conclusions and discusses potential avenues for future work.

2. CHALLENGES OF LICENSE COMPLI-
ANCE ASSESSMENT

License compliance assessment, i.e., the process of detect-
ing inconsistencies in the license terms of an external compo-
nent and its reuse by a client system, is nontrivial [, 9] [1T].
Figure [1] provides an overview of the challenges of the as-
sessment, process. We briefly describe each challenge below.
Challenge 1: Identifying included source files. 0SS
packages, i.e., collections of related OSS components, are
composed of several source code files that often have dif-
ferent (potentially incompatible) licenses. In recent work,
we found that 65% of the packages in the Fedora 12 dis-
tribution are heterogeneously licensed, with more than one
license appearing in their source files [11].

Determining the license that takes precedence over the
others in heterogeneously licensed components is often de-
pendent on the configuration of the build system. For ex-
ample, the FreeBSD kernel is normally released under the
permissive BSD-2 license. However, the source code for the
FreeBSD kernel includes restrictively licensed GPLv2 source
files, which are configured to be excluded from the FreeBSD
kernel by default. If the GPLv2 code is configured to be in-
cluded in the FreeBSD kernel, its license changes from BSD-
2 to GPLv2. Hence, knowing which source files are included
in (and excluded from) the build process is an important
challenge to overcome for license compliance assessment.
Challenge 2: Identifying used external components.
While external components that are required by the client
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Figure 1: Challenges of license compliance assessment.

system are typically listed in product documentation, this
documentation is often: (1) incomplete, i.e., missing depen-
dencies, such as those recursively used to create the external
components that are used by the client system, or (2) out of
date, i.e., incorrect dependencies, such as those that are no
longer used. For example, in recent work, we identified an
error in the build system of the PHP package in Fedora 12,
where a deliverable was mistakenly being linked to a GPLv2
licensed component [I1]. Linking to this GPLv2 component
caused the GPLv2 license to take precedence over the PHP
license for several PHP deliverables. The build system was
later corrected to link the PHP deliverables with an external
component that is compatible with the PHP license. Indeed,
the external components used to assemble client system de-
liverables impose restrictions on the license that the client
system can be released under.

Challenge 3: Identify how source files and exter-
nal components are combined. The method by which
client source code is combined with external components
also has an impact on the license constraints that apply to
the client system [2 [9]. For example, external components
that are released under the GPL license transitively apply
the GPL license to client system deliverables that statically
link with them, i.e., client system deliverable must also be
distributed under the GPL license if a GPL component is
statically linked with it; however, if instead of using static
linking components are connected using RPC or a Web API,
then the resulting client system might not be required to be
licensed under the GPL [7].

2.1 Addressing the Challenges of License Com-
pliance Assessment

The challenges of license compliance assessment listed above
highlight that the legal constraints that are imposed on the
distribution of client systems depend not only upon which
internal source files and external components are used (chal-
lenges 1 and 2), but also upon how these sources are com-
bined to produce client system deliverables (challenge 3).



patchelf: patchelf.o
g++ patchelf.o -o patchelf

patchelf.o: patchelf.cc
g++ —c patchelf.cc -o patchelf.o \
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install: patchelf
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(a) The (simplified) Makefile.

@ @ Jusr/bin/patchelf

(b) The build dependency graph extracted from the Makefile.

Figure 2: The PatchELF Makefile and corresponding de-
pendency graph.

The build system of a software project specifies this pro-
cess of translating sources into deliverables. When exe-
cuted, build tools orchestrate the order-dependent execution
of compilers and other tools in order to correctly produce
deliverables according to build specifications.

While it may seem natural that one could apply static
analysis to the build system to address these challenges, this
approach is fraught with peril. First, there are several build
technologies abound, such as: (1) the countless variants of
make; (2) Ant, Maven, and Gradle for Java systems; (3)
language-specific scriptable formalisms such as Python’s Se-
tuptools or Ruby’s Rake; and (4) abstraction-based build
technologies like GNU Autotools or Perl’s MakeMaker that
allow developers to express build dependencies using ab-
stractions, and use platform and configuration specifics to
generate appropriate low-level build specifications.

Furthermore, a static analysis of the build system will
likely produce an incomplete picture of the concrete client
system dependencies. Consider, for instance, the PatchELF
utility for manipulating Unix executablesﬂ PatchELF con-
sists of a single C++ source file, patchelf.cc. Figure [2| shows
a simplified version of the build system of PatchELF (spec-
ified using make [6]). Figure [2a] shows the build specifica-
tion that describes how patchelf.cc is compiled into patchelf.o,
linked into patchelf, and installed into /usr/bin/patchelf. Static
analysis of Figure [2a] will produce a build dependency graph
(Figure [2b), i.e., a directed acyclic graph describing: (1)
the sources, deliverables, and intermediate files (as circu-
lar nodes), (2) the commands that update deliverables or
intermediate files (as square nodes), and (3) the ordering re-
quirements for these commands (as edges). While Figure
provides useful information, it does not address the license
compliance assessment challenges:

e Header file nodes are missing (Challenge 1) —
The patchelf.cc source file includes elf.h, yet since the
build system does not express this relationship, it is
missing from Figure 2B] This relationship is espe-
cially important for license compliance assessment in
this case, since the elf.h header file that was actually
copied from the GNU C library.

e External component nodes are missing (Chal-
lenges 2 and 3) — The link command that produces

Uhttp:/nixos.org/patchelf.html

the patchelf deliverable does not list automatically linked
system libraries, which also have licensing implications.

e Phony targets may mask the build step that
was performed (Challenge 3) — The install target
does not denote that it generates /usr/bin/patchelf deliv-
erable. Hence, the link between the /usr/bin/patchelf de-
liverable and the patchelf intermediate file would need
to be inferred.

A static analysis of build systems for license compliance
assessment would therefore not only need to process the
various types of build specifications, but would also need
a context-specific understanding of the source code (to un-
cover header file dependencies) and the executed commands
(to uncover implicitly linked libraries and build rule side
effects). To avoid the pitfalls of static analysis, we use dy-
namic analysis of build behaviour to perform license com-
pliance assessment. Rather than constructing a build de-
pendency graph from the build specifications, our approach
constructs a Concrete Build Dependency Graph (CBDG)
that contains all of the information that is missing in Fig-
ure Moreover, our CBDG-based approach is technology-
agnostic, and can be applied to build systems specified using
any technology.

3. LICENSE COMPLIANCE ASSESSMENT
APPROACH

In order to detect the license compliance inconsistencies,
we construct and analyze the CBDG of a software system.
As shown in Figure[3] the process is divided into four steps.
We describe each step below.

3.1 License Identification

We first identify the licenses that govern each of the source
files of a client system. To do so, we use Ninka [I0] — an open
source license identification tool that analyses sentences in
source code commentsEI Ninka is capable of identifying more
than 120 different licenses. Performing this step produces a
mapping of source files to licenses.

3.2 Build Trace Collection

In order to address the challenges of license compliance
assessment outlined in Section [2| the CBDG must describe
which client sources and external components are used, and
how they are combined to create the client system deliver-
ables. To achieve this, we record which files are read and
written by each step in the build process. Specifically, we
trace the operating system calls, i.e., calls made by user pro-
cesses to the operating system kernel, that are made while
the build is executing. These system calls provide user-
space processes with access to system resources like filesys-
tems. The necessary tools for collecting system call traces
are already available for most conventional operating sys-
tems, such as Linux, FreeBSD, Mac OS X, and Windows.

To illustrate why system call traces will be useful for li-
cense compliance assessment, we use the example of tracing
the system calls made when executing make install using the
PatchELF Makefile shown in Figure On Linux, this can
be done using the strace commancﬂ as follows: strace -f make

2 http://github.com/dmgerman/ninka
3http://strace.sourceforge.net/
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Figure 3: An overview of our license compliance assessment approach.

install. The -f flag instructs the strace command to record
system calls made by child processes of the make install com-
mand as well. The make install command will first spawn a
process to run g++ in order to compile patchelf.o. Since this
process will write to the patchelf.o file, it will at some point
issue the system call:

open("patchelf.o", O_RDWR|O_CREAT|O_TRUNC, 0666)

Furthermore, because g++ must read the patchelf.cc source
file and all of the headers that it includes, the trace will
include system calls, such as:

open("patchelf.cc", O_RDONLY)

open("/usr/include/c++/4.5.1/string",
0_RDONLY |0_NOCTTY)

open("elf.h", O_RDONLY)

After compiling, the linker needs to read patchelf.o, as

well as the libraries and object files, such as /usr/lib/libc.so,
lust/lib/libc_non-shared.a, and /usr/lib/crtn.o) in order to write
patchelf. Finally, the install command will read ./patchelf and
write /usr/bin/patchelf. Thus, the system call trace contains
all of the necessary information to derive the CBDG for the
/usr/bin/patchelf deliverable.
Narrowing the scope of traced system calls. Since
large projects have complex build systems [14] that can take
hours to build [12], the output of strace can be extremely
large. For performance reasons, we select only the following
types of system calls for CBDG construction:

e System calls that take file name arguments, e.g., open(),
rename() and execve().

e System calls related to process management, e.g., vfork(),
execve(), and vfork().

3.3 Graph Construction

We parse the collected system call traces of build processes
in order to construct the CBDG. Formally, the CBDG is

defined as CBDG = (V, E), where V = V; U V, the union
of task modes Vi (i.e., steps in the build process) and file
nodes Vy (i.e., the files that are read by or created during
the build process). The granularity of a task node can vary
depending on the level of detail required, e.g., Vi could be the
set of build commands or operating system processes. Each
task t € V; is defined as an ordered tuple (tid,...), where
tid € Tids is a symbol that uniquely identifies t. Additional
information can also be included in the task tuple (e.g., the
name of the program(s) invoked by the task). A file node
f € V; is also represented using a tuple: (fid, path, license),
where fid € Fids is a symbol that uniquely identifies f, path
is the file’s path, and license is the license that we identified
for f using Ninka (cf. Section .

Each task t € Vi represents a process that was executed
during a build. Information about each ¢ is stored in a
(tid, program, args) tuple, where program is the path of the
last program executed by the task (i.e., the last program
loaded into the process’s address space by execve(), or the
program inherited from the parent), and args is the sequence
of command-line arguments.

Our CBDG constructor assembles the CBDG by reading
each build trace line by line. When a new process is created
in the trace, a corresponding task node ¢ is added to V%.
When a task ¢ reads a file f in the trace, we add f to Vi (if
it did not already exist), and an edge from f to ¢. Similarly,
when a process opens a file for writing in the trace, we add
a file node f to V, and an edge from the task node to f.
Implementation details. There are several intricacies
of system call traces that must be carefully handled when
constructing CBDGs:

e Relative paths must be normalized with respect
to the current working directory (cwd) of the
calling process. Thus, we must keep track of the cur-
rent working directory by processing chdir() calls. Since
the cwd is inherited by child processes, our CBDG con-
structor must also keep track of parent/child process
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Figure 4: The PatchELF dependency graph. External dependencies are depicted in white.

relations, and propagate the cwd of the parent to the
child when it encounters a fork operation.

e Process IDs (PIDs) may be reused while per-
forming a build. In fact, this occurs frequently in
the build traces of large packages because PIDs are by
default limited to 32,768 in Linux. Since CBDG anal-
ysis needs to distinguish between different processes
that had the same PID, PIDs are not used as unique
TIDs in the CBDG. Instead, a unique TID is generated

every time a process creation operation is encountered.

e While we do need to track system libraries that
are dynamically linked to client system deliver-
ables, CBDGs do not need to contain dynamic
libraries that are loaded by the tools used dur-
ing the build execution. This is because the loading
of a dynamic library by a build tool rarely has license
compliance implications. We observed that after the
dynamic loader has opened all shared libraries, it is-
sues an arch_prctl() system call on x86_64 Linux systems
to set the 64-bit base for the F'S segment register that
is internally used by glibc. Thus, to filter away system
calls made due to the loading of a dynamic library,
we ignore any open() system calls performed between
a call to execve() and arch_prctl().

e Files may be written more than once during a
single build. Hence, a file’s path may not uniquely
identify an instance of a file in the CBDG. For exam-
ple, a deliverable can be written by first linking client
code with external components, and then later post-
processed by a command like strip, which removes de-
bugging symbols. Represented naively, this scenario
would yield the following subgraph:

Jusr/bin/patchelf -

Cycles in the CBDG muddle the data flow, especially
if there are multiple processes that update a file — the
order that these processes occur in is impossible to dis-
cern. Therefore, we create a new node for each mod-
ification that a file undergoes. File nodes are disam-
biguated by tagging them with the ID of the task that
created them as shown below:

Jusr/bin/patchelf Jusr/bin/patchelf

e Handling coarse-grained processes. System call
tracing identifies inputs and outputs at the granularity
of Unix processes. An underlying assumption is that
every process is part of at most one conceptual build
step. However, this is not always the case. For ex-
ample, consider the command cp foo bar /usr/bin/. This
command installs two files in the /usr/bin directory. Al-
though conceptually, these are two build steps, since
they are executed by a single process, the following
subgraph is generated:

foo /usr/bin/foo
cp
bar usr/bin/bar

This is undesirable, because foo and its sources now
appear as dependencies of /usr/bin/bar, even if the two
programs are otherwise unrelated. We handle such
coarse-grained processes that may perform multiple
build steps at once (e.g., cp and install) on a case-by-
case basis by adjusting the CBDG as follows. First, we
scan the CBDG for the set of known coarse-grained
processes that have more than one output file, and
each output file has the same base name as an input
file. We then replace this task node with a set of task
nodes, one for each pair of corresponding input and
output files, e.g.,

foo cp /usr/bin/foo
bar cp Jusr/bin/bar

Note that both cp tasks in this graph correspond to
the same process in the trace.

Example: The PatchELF CBDG. As with most Unix
packages, building the PatchELF package starts with un-
packing the source code distribution (i.e., patchelf-0.5.tar.bz2),
running its configure script, running make, and finally run-
ning make install. Figure [d] shows the CBDG resulting from
analyzing the trace of a build of this package. Comparing
Figure [4| with Figure (i.e., the graph constructed using
static analysis) shows that the CBDG exposes dependencies
that patchelf.cc not only has on elf.h, but also on numerous
header files from glibc and the Linux kernel. Similarly, the
linker loads several object files and libraries from glibc and
GCC that were invisible to the static analysis. The CBDG
also reveals that the installed version of /usr/bin/patchelf is
rewritten by strip.



Table 1: An overview of the studied systems.

Package | Version Domain Size (SLOC)}  Files
Aterm 2.5 Program transformation 21.5k 133
Opkg 0.1.8 Software package management  22.2k 132
Bash 4.1 Command shell 115.7k 1,114
CUPS 1.4.6 Printer management 142.8k 1,398
Xalan 2.71 XML processing 176.0k 1,334
OpenSSL | 1.0.0d Digital communication security 308.0k 2,105
FFmpeg 0.7-rc1 ~ Multimedia processing 442.2k 2,267

1 Non-comment, non-whitespace lines of code calculated using
SLOCCount (http://www.dwheeler.com/sloccount/)).

3.4 License Compliance Assessment

We then use the constructed CBDG to perform license
compliance assessment for a given deliverable. The process
is divided into three steps:

Step 1: Identify the files f C V; that are included in
a deliverable d. We do so using the following logic:

{f €Vy|deg (f) =0A3F apath in G from f to d}

Note that if this logic is applied to a raw CBDG, the
list of source files will include source distribution files (e.g.,
patchelf-0.5.tar.oz2) and omit the source files that were con-
tained within it (e.g., patchelf.cc). While this set of source
files is technically correct (i.e., patchelf-0.5.tar.bz2 is the sole
source of the PatchELF package), it is not useful for license
compliance assessment.

To address this, we further filter task nodes such as tar
(and its edges) out of the CBDG. Applying the search logic
to the filtered PatchELF CBDG this yields the following set
of source files:

{patchelf.cc, elf.h, errno-base.h, errno.h, ... }

Step 2: Identify the licenses of the files f C V; that
are included in deliverable d. We used Ninka to deter-
mine the licenses of each source file identified by Step 1. We
identify the licenses that govern the external components
(which we did not have source code for) by examining prod-
uct documentation. This license information is denoted in
the file node tuples in the CBDG. Hence, the CBDG nodes
selected by Step 1 also contain their license details.

Step 3: Identify how external components are com-
bined with client deliverables. Finally, we detect how
each external component is combined with client deliver-
ables by scanning the process nodes on the path connecting
an external source with a client deliverable. For instance,
some lawyers consider that statically linking external com-
ponents imposes more restrictive legal constraints than dy-
namic linking does)”| Hence, we can flag the source files
of external components that are statically or dynamically
linked into client deliverables for further analysis.

4. EMPIRICAL STUDY DESIGN

We performed an empirical study to evaluate the accu-
racy and usefulness of our license compliance assessment ap-
proach. To structure the study, we formulate the following
two research questions:

4For example, Larry Rosen shares this view [I5]; however,
the Free Software Foundation considers static and dynamic
linking to be equivalent [7].

(RQ1) Does our approach accurately identify the

sources that are included in constructed de-
liverables?
Before the results of our license compliance assess-
ment approach can be validated, we must first en-
sure that the generated CBDG accurately reflects
the build processes of the studied systems.

(RQ2) Does our approach reveal license mismatch
issues?
While license compliance assessment using the CBDG
may work in theory, it is not clear whether license
compliance inconsistencies can actually be uncov-
ered using it. Hence, we set out to detect real-world
licensing issues using our approach.

4.1 Studied Systems

We study seven open source systems in order to address
our research questions. We study systems of various sizes
and domains to combat potential bias in our results. Table[]]
provides an overview of the studied systems.

Aterm enables creation and manipulation of Annotated
TERMs in C source code. Opkg is a lightweight package
manager used to download and install OpenWrt packages.
Bash is the GNU implementation of the Bourne Again SHell
(BASH) — a Unix command shell. CUPS is a common sys-
tem for interfacing with printers developed by Apple Inc.
for Unix. Xalan is an XSLT processor for transforming XML
documents into HTML, text, or other XML document types.
OpenSSL is a toolkit implementing the Secure Sockets Layer
(SSL v2/v3) and Transport Layer Security (TLS vl) pro-
tocols. FFmpeg is a package used to record, convert, and
stream audio and video.

S. EMPIRICAL STUDY RESULTS

In this section, we present the results of our empirical
study with respect to our two research questions. For each
research question, we first present our approach to address-
ing the question, then present the results that we observe in
the studied systems, and finally, discuss the broader impli-
cations of our findings.

(RQ1) Does our approach accurately identify
the sources that are included in constructed de-
liverables?

Approach. We evaluate how accurately the constructed
CBDGs classify files as being included in or excluded from
the build process. A file is classified as included if it appears
in the CBDG, otherwise it is classified as excluded.
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Table 2: Results of RQ1: CBDGs provide very high recall and precision.

Package Files False False | Recall | Precision
All | Source files | Excluded | Included | % Included || Negatives | Positives
Aterm 133 117 60 57 49% 1 0 98% 100%
Opkg 132 106 9 97 92% 1 3 99% 97%
Bash 1,111 1,086 806 280 26% 0 34 | 100% 88%
CUPS 1,398 1,079 213 866 80% 12 0 99% 100%
Xalan 1,334 1,334 379 955 2% 0 4 | 100% 99%
OpenSSL || 2,105 2,027 1,180 847 42% 0 5| 100% 99%
FFmpeg 2,267 2,239 986 1,253 56% 0 7 100% 99%

We use the build output and status to establish the ground
truth for our evaluation by executing a clean build after
removing each source file in the studied systems. We refer
to these builds as the removed builds. If the removed build
for a source file X executes without error, then the removal
of X had no impact on the build output, and X is recorded
as excluded from the build process. On the other hand, if the
removed build for file X has an error, then X had an impact
on the build output, and we mark X as being included in
the build process.

We measure the accuracy of a CBDG by comparing the
ground truth for each file to the files that appear in the
CBDG for each studied system. We use four metrics to
measure the accuracy of a CBDG:

False negatives — Files that are excluded from the CBDG,
but actually have an impact on the build process.

False positives — Files that are included in the CBDG, but
do not have an impact on the build process.

Recall — The proportion of the files that have an impact on
the build process that are included in the CBDG.

Precision — The proportion of false positives in the CBDG.

Results. CBDGs contain very few false negatives,
and hence have very high recall. Table|2[shows that we
only observe a total of 14 false negative in the seven studied
systems. We manually investigate the root cause of these
false negatives by inspecting the build specifications.

We find that files often appear as false negatives in the
CBDG due to errors in the build specifications. For example,
the build specifications of Aterm, Opkg, and CUPS check for
the existence of these files, yet they were never read (or
written) by any of the processes spawned during the build.

On the other hand, the number of false positives
was slightly larger. We again perform an inspection of
the build specifications in order to determine the root cause
for these false positives. The inspection revealed that these
false positive files are used only if they were present. If the
false positive files were not present, no error was issued, but
the output of the build is changed. For example, in Bash,
the number of false positives was higher than the other pack-
ages because Bash contains various localization files (i.e., .po
files) that translate the Bash deliverables into many different
languages. The build system of Bash processes any .po files
that are present.

CBDGs can accurately determine whether a source file
is included in or excluded from the build process with a
recall of 98%-100% and precision of 88%-100%.

Discussion. Although beyond the scope of this paper, the
results of our false negative analysis suggest that CBDGs
may also be useful for detecting errors in build specifica-
tions. If we use the CBDG as the ground truth to evalu-
ate the removed build results (the inverse of the experiment
performed above), we could detect errors in the build speci-
fications of studied systems. We expand upon this and other
uses of the CBDG in Section

(RQ2) Does our approach reveal license mis-
match issues?

Approach. We aim to detect inconsistencies between the
license of the client deliverables and the external components
that are used to create it. A license of a deliverable is said
to be inconsistent with an external component that is used
to create it if the license of any file in an external component
contains terms that cannot be satisfied by the terms of the
license of the deliverable.

In recent work, we analyzed the Fedora 12 distribution
to understand how license auditing is performed [I1I]. One
of the challenges we faced was determining which files are
used to create a deliverable. This is particularly important
in systems that include files under different licenses that do
not allow for their composition. For example, one deliverable
that contains a file released under the BSD-4 license and
another file released under the GPLv2 license. This type of
inconsistency can be detected using the CBDG. Any file that
is a predecessor to a deliverable in the CBDG must have a
license that is compatible with the license of the deliverable.

Specifically, our license compliance assessment is performed
using the following five steps:

1. Extract the licenses of each file in each of the studied
systems using Ninka.

2. Identify the declared license of the client deliverables
by examining product documentation (i.e. the license
of the deliverables as stated by the authors of the soft-
ware).

3. Trace the build of each system and generate its CBDG.

4. Annotate the CBDG file nodes with license informa-
tion.

5. Traverse the CBDG to identify the sources that are
used to create the client deliverables.

6. Mark client deliverables that contain sources that are
released under incompatible licenses as inconsistencies.

In our prior study [11I], we identified three systems that
appear to contain license incompatibilities.



FFmpeg — The license of the FFmpeg deliverables varies de-
pending on the configuration flags that are specified
prior to executing the build. By default, its deliver-
ables are released under the LGPLv2+ license. How-
ever, when configured using the appropriate flags, the
deliverables are released under the GPLv2+ license.

CUPS — The CUPS deliverables are licensed under the per-
missive CUPS license. The studied version (1.4.6) con-
tains three files (backend/*scsi*) that are released under
the BSD-4 license, which is not compatible with the
CUPS License. It is important to know whether any
of these three files are being combined with CUPS li-
censed files during the build process.

Bash — The Bash deliverables are licensed under the GPLv3+.

However, there is a source file (examples/loadables/getconf.c)

that is released under the BSD-4 license, which is in-
compatible with the GPLv3+. Again, we would like to
know if this file is combined with the GPLv3+ licensed
files during the build process.

We perform a deeper analysis of these three systems using

our approach to detect if there are truly inconsistencies that
appear in the constructed deliverables. We identify incon-
sistencies using our license compliance assessment approach
(¢f. Section [3).
Results. We uncovered two LGPLv2+ vs GPLv2+
license compliance inconsistencies in ffmpeg. By de-
fault, FFmpeg is expected to create libraries and binary pro-
grams to be released under the LGPLv2+ license. Through
CBDG analysis, we found two inconsistencies, i.e., two files
that are released under the GPLv2+ license that were be-
ing used during the default build process. First, libpost-
proc/postprocess.h is a header file that is include throughout
the FFmpeg codebase. However, this header only contains
definitions of constants. Since constants are likely not copy-
rightable (they are likely considered facts and not creative
expression), we believe this is a low risk violation.

However, the second inconsistency in libavfilter/x86/gradfun.c
contains source code (inlined assembly) that was being com-
piled into the libavfilter library and redistributed with the
FFmpeg deliverables. By combining libavfilter/x86/gradfun.c (li-
censed under the GPLv2+) with the LGPLv2+ code re-
quires libavfilter to also be released under the GPLv2+ li-
cense. The CBDG of libavfilter is shown in Figure[5] and is a
high risk violation.

To confirm that the libavfilter/x86/gradfun.c inconsistency
was of serious concern, we contacted the FFmpeg develop-
ment team. They responded within hours. The code in ques-
tion was an optimized version of another function. A devel-
oper quickly prepared a patch to disable its use, and the orig-
inal authors of libavfilter/x86/gradfun.c were contacted to ar-
range relicensing of this file under the LGPLV2.1+E| Three
days later, this file’s license was changed to LGPLv2+, which
is compatible with the LGPLv2.1+
We identified three files that caused license compli-

ance inconsistencies in CUPS. Specifically, backend/(scsi|scsi-

iris|scsi-linux).c were released under the BSD-4 license, and

Shttp://web.archiveorange.com/archive/v/
494BhMcVOjgXyfN3wyhB
°http://FFmpeg.org/pipermail/FFmpeg-cvslog/201 1-July/039224.
html
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Figure 5: Excerpt of the CBDG of libavfilter. The library
libavfilter is licensed under the LGPLv2.14, but required
libavfilter/x86/gradfun.c (depicted in red) licensed under the
GPLv2+4+. We notified the FFmpeg team, and they quickly
corrected this inconsistency.

were incompatible with the permissive CUPS license. Ac-
cording to the CBDG, these files were used to create the
backend/scsi deliverable, which is distributed with the CUPS
deliverables. To confirm this inconsistency, we filed a bug
in the CUPS issue trackerm One day later, the bug was
resolved by removing the offending files, since SCSI devices
were no longer supported.

One license compliance inconsistency was detected
in the Bash system. The examples/loadables/getconf.c file
is released under the BSD-4 license, which is incompatible
with the other files that are released under the GPLv3+ li-
cense. According to the CBDG, this file is compiled into a
program called examples/loadables/getconf. Since this file is
only an sample program that is not part of a distributed
during product installation, this does not raise license com-
pliance concerns.

Our CBDG-based approach identifies several license com-
pliance inconsistencies in the studied systems. Two of
these inconsistencies generated prompt responses (in the
form of code fixes) from the FFmpeg and CUPS develop-
ment teams.

Discussion. The fact that a file with a non-compatible
license is used during the creation of a deliverable does not
necessarily imply a license violation. One needs to under-
stand how such a file is combined with the other source
code. This information is explicitly stated in the CBDG.
We expect that CBDGs can assist in the process of license
compliance assessment by removing files that are not in-
cluded in the build process, and by showing the processes
that read each of the files and which deliverables that they
are contained in.

“http://CUPS.org/str.php?L3509
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6. THREATS TO VALIDITY

We now discuss the threats to the validity of our analysis.

6.1 Construct Validity

Coarse-grained processes, i.e. those processes that per-
form several build steps, yield dependency subgraphs that
do not accurately portray concrete dependencies. Thus,
files may be falsely reported as dependencies, which can
in turn lead to false positives in our license compliance as-
sessment, report. While we decompose many known-to-be
coarse-grained processes, those that are unknown may intro-
duce noise in our assessment report. However, our approach
for handling coarse-grained processes is conservative, i.e.,
coarse-grained processes trigger an overestimation of the set
of source files used to produce deliverables, but it will not
underestimate it.

Processes may access files that do not have an impact
on the deliverables. Consider, for instance, if a C com-
piler opened all header files in its search path regardless of
whether they were included in the source file(s) being com-
piled. Although we have not encountered such cases, we can-
not rule out the possibility. Nonetheless, we conservatively
mark such files as being part of the build process, since they
may have an impact on the deliverables, and hence, the role
that they play in the build process should be assessed for
potential license compliance implications.

We assume that the external components that are used
by the studied systems have correctly document the licenses
that they are released under. However, due to the hetero-
geneity of licenses used by source files that make up these
components [I1], the reported licenses may not be correct.
We are actively expanding the scope of our CBDG to in-
clude source file nodes for external components by collecting
additional system call traces from their build processes. Us-
ing the expanded CBDG, our license compliance assessment
would apply directly to the licenses listed in the internal
and external source code files that compose client system
deliverables.

The CBDG constructor does not trace file descriptors and
inter-process communication (e.g. through pipes). For in-
stance, the CBDG constructor fails to detect that the patch
task in the command cat foo.patch | patch bar.c depends on
foo.patch. The CBDG constructor only detects that the patch
task reads and (re)creates bar.c.

6.2 Internal Validity

We assume that the build systems of the studied systems
are correct, whereas defective build systems may fail nonde-
terministically. Such build system defects could introduce
noise in the results of RQ1, i.e., a build execution may fail
due to a defect in the build system rather than because of
the file that we have temporarily removed. However, a man-
ual analysis of a sample of injected build failures suggests
that they are indeed caused by the removed files.

6.3 External Validity

We focus our evaluation on seven open source systems,
which threatens the generalizability of our case study re-
sults. However, we studied a variety of systems from differ-
ent domains to combat potential bias. Nonetheless, addi-
tional replication studies are needed.

The build systems of the studied systems generate (or
maintain) make specifications, which may bias our case study

results towards such technologies. Nonetheless, our approach
is agnostic of the underlying build system, operating on sys-
tem call traces, which can theoretically be extracted from
any build system.

Our approach requires access to the source code of a sys-
tem and all of its dependencies in order to completely as-
sess potential license implications. Such a constraint may
limit the usefulness of our approach to identifying license
compliance inconsistencies in the reuse of open source pack-
ages. On the other hand, software distributions that can be
completely deployed from source code are not uncommon
nowadays (e.g., Gentoo Linuxﬂ or NixOS [5]).

7. RELATED WORK

We now discuss the related work with respect to build
system analysis and licence compliance assessment.

7.1 Build System Analysis

Prior work has shown that the build system contains plenty
of information that can be leveraged for other purposes. For
example, Tu and Godfrey show that information from the
build system can be used to compose a “build-time archi-
tectural view” [I8], which they create by hand by inspecting
the build documentation of a system. We consider our work
an extension or theirs, since the CBDG is a build-time ar-
chitectural view. Moreover, we provide a method to create
and analyze CBDGs automatically.

Other work has constructed build dependency graphs to
assist in build system maintenance. Through dynamic anal-
ysis of make debugging output, Adams et al. develop the
MAKAO tool to visualize and reason about build depen-
dencies specified in Makefiles [I]. Tamrawi et al. propose a
technique for verifying Makefile behaviour by constructing
symbolic dependency graphs using static analysis [I7]. Al-
though our approach is also based on a build dependency
graph (i.e., CBDGs), our goal is to detect license compli-
ance inconsistencies rather than support build maintenance.
Hence, our approach is based on a more concrete instance of
a build dependency graph that contains dependencies that
are often omitted from the build specifications.

Others have also used operating system call traces to ex-
amine concrete build system interactions. Perhaps the most
related instance is that of “Build Audit” [3], a tool that pro-
duces a report of the processes invoked by and files involved
in the build process. Coetzee et al. also use operating system
call tracing to reliably derive dependencies for accelerating
slow builds by optimally parallelizing them [4]. However,
these tracing tools and techniques do not retain the infor-
mation in a graph — a necessary precondition for license com-
pliance assessment. Although these tracing techniques will
reveal which files were read and written during the build,
this only addresses two of the three challenges of license
compliance analysis (c¢f. Section . These traces alone do
not describe how client code and external components are
combined, which is critical for determining the licensing con-
straints that are imposed by the external components.

7.2 License Compliance Assessment

The reuse of open source in both commercial and other
open source systems has created a need for license com-
pliance assessment support. Von Willebrand and Partanen

& http://www.gentoo.org
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describe the difficulties of licensing compliance assessment,
stating that “it is not uncommon for FOSS packages to con-
tain code that causes them to pose potential or clear risks
when redistributing them” [21]. Combining components and
files governed by different licenses makes this process diffi-
cult. Bain leads a group of lawyers in the creation of a doc-
ument that explains the different ways of combining com-
ponents governed by different licenses and the legal impli-
cations [2]. German and Hassan documented the ways in
which open source systems address the combination of com-
ponents with different, potentially incompatible licenses [9].
German and di Penta have also proposed a method to per-
form license compliance assessment of Java applications [§].
They discuss three main challenges: provenance discovery,
license identification, and architectural analysis. Only the
first two challenges have been addressed.

Tuunanen et al. used a tracing approach to discover the
dependency graph for C-based projects as part of ASLA
(Automated Software License Analyzer) [19][20]. They mod-
ified the C compiler gce, the linker Id, and the archive builder
ar to log information about the actual inputs and outputs
used during the build. The resulting dependency graph is
used by ASLA to compute license information for binaries
and detect potential licensing conflicts. However, instru-
menting specific tools has several limitations. First, adding
the required instrumentation code to programs could be
time consuming (finding the “right” places to instrument the
code). Second, many tools would need to be instrumented:
compilers, linkers, assemblers, and so on. Finally, a package
might contain or build a code generator and use it to gener-
ate part of itself. On the other hand, the system call tracing
approach we propose does not require instrumentation of the
build tools and can be applied to any build environment.

The main use case for this specific information is license
compliance analysis of software systems. Understanding the
myriad of ways that “fixed works” of original authorship are
embedded, compiled, transformed, and blended into other
fixed works is crucial for understanding licenses and copy-
rights [15]. A study by German et al. showed this informa-
tion is important to owners and distributors who need to
understand the copyrights of their systems [I1]. They stud-
ied package metadata in Fedora to find license problems.
In their study, they showed that Fedora’s current package-
depends-on-package level of granularity, while helpful, is ul-
timately insufficient for understanding license interactions
in a large open source compilation such as Fedora. Only a
file-depends-on-file level of granularity can work, and this
study directly addresses that problem.

8. CONCLUSIONS

Modern software development relies heavily on the reuse
of (open source) software components, libraries, and frame-
works. However, the plethora of (potentially incompatible)
licenses that these components are distributed under impose
legal constraints on client systems. Indeed, license compli-
ance is a critical nonfunctional requirement for software sys-
tems that rely on such external components.

To assist in license compliance assessment, we propose
an approach that constructs and analyzes Concrete Build
Dependency Graphs (CBDGs) for license compliance incon-
sistencies. These CBDGs not only identify the source files
and external components that are included in client deliver-

ables, but also describes how they are combined to produce
deliverables — a detail that has critical legal implications.
To evaluate our CBDG-based license compliance assess-
ment approach, we perform an empirical study on seven
open source systems. We make the following observations:

e The CBDGs that were constructed from the studied
systems can accurately classify files that have an im-
pact on the client deliverables with a recall of 98%-
100% and a precision of 88%-100%.

e Our analysis uncovers several license compliance in-
consistencies — two of which prompted rapidly fixed
bugs in the FFmpeg and CUPS systems.

Future work. Although this paper focuses on license
compliance assessment, the CBDG is a generic data source
that can be used for a variety of other tasks. We have shown
that the CBDG is an accurate source of concrete build ex-
ecution data. In future work, we plan to use this data to
verify the correctness of build specifications. Dependencies
that appear in the CBDG@G, but are not expressed in the build
specifications may lead to incorrect build system behaviour.
Adams et al. have shown that incorrect build behaviour can
lead to defects that are frustrating and difficult to diag-
nose [1]. In prior work, we have shown that incorrect build
behaviour can even impact end-users if it permeates through
to software releases [14]. Hence, we believe that verification
of build systems is a natural next step for CBDG analysis.

An automatic license analysis of a CBDG would not only
flag potential inconsistencies/violations, but would also list
the legal requirements that the licenses being used impose on
the licensor. In order to automatically analyze CBDGs for
license compliance, it is necessary to have a calculus that is
aware of the requirements that each license has, and, given a
task node in a graph, it can make an assessment of the legal
requirements that such input files create on the resulting
file. This calculus cannot be universal: different jurisdictions
have different views on what a license requirement might
mean, and some organizations might be more sensitive to
legal risks that others. Thus, such a calculus would need to
be configurable by its user.

Due to the dynamic nature of the CBDG, it can only de-
tect licensing inconsistencies in a single build configuration.
Many modern software systems support several configura-
tions, which may vary in terms of licensing implications.
More powerful static analysis techniques for build systems
could lead to more powerful license compliance assessment
tools capable of examining several configurations at once.
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