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ABSTRACT
The maintenance of build systems imposes a considerable overhead
on software development. Since automated quality assurance meth-
ods are rarely applied to build specifications, the importance of the
role peer code review plays in the maintenance of build systems is
amplified. Yet prior work shows that the review process for build
systems suffers from a lack of build experts and effective tooling.

To support the understanding of changes to build specifications
(a key stage in the review process), we propose BCIA—an approach
to summarize the impact of changes to build specifications across
the build configuration space. BCIA traverses the paths through
which data and control flow in the prior and updated versions of the
build system to generate an Impact Knowledge Graph (IKG), which
describes the impact of the change across the build configuration
space. We develop BuiScout—a prototype implementation of BCIA
for CMake-based build systems. We use BuiScout to evaluate our
approach through an empirical study of 10,000 change sets that
we mine from ten large open-source projects that span a total of
28 development years. Our findings indicate that BuiScout can
detect an impact that propagates to unmodified parts of the build
system in 77.37% of the studied change sets. These changes impact
a median of 14 unmodified commands, with a median of 95.55% of
the impacted commands per change set appearing in unmodified
files. Our study suggests that dedicated approaches, such as BCIA,
have the potential to alleviate the challenges developers face when
assessing the impact of changes to build systems.
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1 INTRODUCTION
Build systems orchestrate the transformation of software sources
into executables. The maintenance of build systems is not trivial [1–
3]—it introduces a substantial overhead on software development.
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Prior work [4] shows that up to 27% of source code changes and 44%
of test code changes also update the build system. This overhead can
impact a large proportion of team members, with up to 79%–89% of
developers being affected [4]. Moreover, maintaining build systems
for software with a high degree of compile-time variability requires
a concerted effort [5].

As build systems continue to evolve, they become prone to qual-
ity decay [6], which can slow down builds [7, 8], cause build fail-
ures [7, 9, 10], or even lead to erroneous software behavior [11].
Despite these risks, systematic and automated quality assurance
practices, such as automated testing, are rarely applied to build
specifications, leaving peer code review as the primary method for
sustaining the quality of build systems. Unfortunately, the changes
to build systems are often not rigorously reviewed due to social
and technical reasons [12], such as a pervasive lack of expertise in
build systems and interest in their maintenance [12, 13].

In our prior work [12], practitioners lamented a perceived lack
of tools to support the maintenance of build systems and the review
of changes to build specifications. Understanding the implications
of changes within the complex configuration space of build systems
remains a challenging task [13]. Change Impact Analysis (CIA) has
shown potential in improving the effectiveness and efficiency of
code reviews in the context of production code by exposing the
impact of changes across the system [14–17]. Yet, automated tools
to facilitate CIA for build systems are scarce.

Inspired by the growing evidence of the benefits of adopting
CIA in the code review cycle, we conjecture that an approach to
conducting CIA on changes to build systems would help when cre-
ating and reviewing changes in build systems. Prior work [18, 19]
proposes tools to illustrate the impact of changes to source code
by tracing their propagation through the build system; however, to
the best of our knowledge, a CIA approach does not yet exist for
changes to build system itself. Such a technique would allow stake-
holders to navigate the impact of the changes to the build system
and potentially expose a missing or unintended impact of a change.

Therefore, we propose BCIA—an approach that uses data and
control flow analysis to assess the impact of changes across the
build configuration space. BCIA uses Conditional Definition-Use
(CDU) chains [20]—an augmented Definition-Use (DU) chain that,
along with the data flow information, implicitly captures control
flow by storing the reachability condition of the definition and use
points. BCIA then infers how change impact propagates within
and across CDU chains based on value- and reachability condition-
contamination patterns, storing this information in an Impact Knowl-
edge Graph (IKG).

To evaluate the applicability of BCIA, we implement BuiScout, a
prototype tool for BCIA that analyzes CMake build systems, which
are renowned for the complexity of their maintenance [21]. We
then use BuiScout to conduct an empirical study of 10,000 change
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sets that we mine from 10 large open-source projects, spanning 28
development years, to address the following research questions:
RQ1. Impact Prevalence:Howoften do build-modifying change
sets propagate their impact beyond the local scope?
Motivation: The usefulness of BCIA will depend on how often the
impact of the changes propagates in non-obvious ways. If changes
frequently propagate an impact, then the value of BCIA is clear, but
if an impact rarely propagates, then such a tool may be unneces-
sary. Therefore, we set out to understand how often BCIA detects
propagation of an impact in real-world build maintenance activity.
Results: BuiScout detects impacts that propagate to unmodified
parts of the build system in 77.37% of the 10,000 studied change
sets, suggesting that such a tool would regularly provide useful
data to stakeholders.
RQ2. Impact Characteristics:What are the characteristics of
the propagating impact of build-modifying change sets?
Motivation: The impact of changes that we detect in RQ1 may vary
in terms of their magnitude (i.e., the number of commands that
are affected) and their breadth (i.e., the location of the affected
commands with respect to the change set). Both characteristics can
influence the applicability of BCIA. For example, even if changes
regularly have an impact that propagates, if that impact is of a small
magnitude or does not propagate broadly, practitioners may not
need tool-support to assess the impact. Therefore, we set out to
understand the magnitude and breadth of the impact that BCIA
detects in real-world build maintenance activity.
Results: Change sets with a propagating impact affect an overall
median of 14 commands and that only 4.45% of these commands
are local to the files that the change set modified directly. The
remaining 95.55% of impacted commands require practitioners to
recognize how impact propagates across build specifications, which
prior work suggests is a skill that many lack [12, 13].
Contributions. Themain contributions of this paper are as follows:
- BCIA—an approach that uses data and control flow analysis to
infer how change impact propagates throughout build systems.

- BuiScout—a prototype implementation of BCIA for CMake.
- An empirical evaluation of the applicability of BuiScout (and
BCIA) to real-world build maintenance efforts.

- A replication package containing the source code of BuiScout,
the collected data set, and the analysis scripts that are required
to reproduce our empirical study.1

2 THE BUILD PROCESS
In this paper, we describe how changes to the build system affect
the build configuration space. We first define concepts related to
the build process (Section 2.1) and then present a minimal build
system example to outline the scope of the study (Section 2.2).

2.1 Key Build Concepts
The build process transforms software sources, such as source code,
into executable software. This process is executed by build tools,
which resolve dependencies that constrain the order in which build
commands should be invoked. Dependency expressions and the
commands should be invoked when outputs are out of sync and
are written in build specifications that are organized within build

1https://zenodo.org/doi/10.5281/zenodo.11505222

1 ..
2 file(GLOB SRC "src/app/*.c" "src/app/*.h")
3 ...
4 add_executable(server ${SRC} ${server_src })
5 ...
6 include(SetupFeatures.cmake)
7 ...
8 add_executable(client ${SRC} ${client_src })
9 ...

(a) The CMakeLists.txt file

1 ...
2 + list(APPEND SRC ${IRC_FILES })
3 ...

(b) The SetupFeatures.cmake file

Listing 1: A minimal example of a build system.

files. Developers create a build system, consisting of a set of build
specifications declared in one or more build files, to automate the
software build process.

2.2 Example Build System
Listing 1 provides (a) a minimal example of a CMake-based build
system with (b) a change set being applied. The example high-
lights portions of the build specifications from CMakeLists.txt
and SetupFeatures.cmake files. The example build system is in-
spired by the ET-Legacy project2 with simplifications such as mov-
ing and de-conditionalizing commands and renaming variables.

In CMake, by default, the entry point into the build system
is the CMakeLists.txt file. Commands within the build files are
evaluated sequentially to configure the build process. The cmake
build tool processes the example build system a follows:
(1) The commands in the CMakeLists.txt file are evaluated until

it encounters the file command (line 2). This command defines
the SRC variable, which stores the list of files that match the
specified patterns.

(2) The process reaches the add_executable command (line 4),
where an executable target named server is defined, which
depends on the dereferenced values of SRC (from Step 1).

(3) The include command (line 6) directs the build process to the
SetupFeatures.cmake file, such that the commands in this file
are processed within the same scope before continuing with
the remaining commands in CMakeLists.txt.

(4) In the updated build system, the SetupFeatures.cmake file is
modified by adding a list command (line 2). This command
appends the values stored in IRC_FILES to SRC (from Step 1).

(5) After processing SetupFeatures.cmake, execution returns to
CMakeLists.txt at line 7. The add_executable command (line 8),
declares a new executable target named client, which depends
on the dereferenced values of SRC (from Step 4 in the updated
version and Step 1 in the prior version).
In this example, changes made to SetupFeatures.cmake that

update the SRC variable will not impact the server executable, but
will impact the client executable. This example illustrates how
2https://github.com/etlegacy/etlegacy
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changes to build specifications may impact the build process in
non-trivial ways. For instance, if the goal is to add a feature to both
the server and client executables, the incomplete impact of the
change might not be immediately apparent to the developer.

3 RELATEDWORK
In this section, we position our work with respect to the literature
on build system maintenance and change impact analysis.
Maintenance of Build Systems. Recent work has focused on
supporting the maintenance of build systems through automated
defect detection [22–27] and repair [28–30]. For example, Macho
et al. [27] proposed an approach that incorporates method calls
within the source code into the dependency graph to detect external
dependency conflicts in a Java project. Hirebuild [29] was proposed
to fix build breakages by extracting fixing patterns from historical
data and successfully repaired 45% of their studied breakages. While
the prior work proposes promising directions, they have not yet
been implemented into practice-ready tools due to their limited
effectiveness [30] and performance [31, 32]. As a result, quality
assurance of build systems is still predominantly a manual process,
imposing a substantial cognitive load on build maintainers [13].

Another recent line of work assists build maintenance in other
ways. For example, approaches have been proposed to visualize the
dependency graph to clarify interdependencies between compo-
nents [33, 34], automate common refactoring tasks, such as renam-
ing and removing targets [22, 35], detect the addition and removal
of dependencies [35, 36], and summarize reports of build failures for
debugging purposes [34, 37]. While these approaches offer valuable
support, they are mostly concerned with guiding or automating the
application of build system changes, whereas in this paper, we pro-
pose an approach that supports developers and reviewers to under-
stand the implications of maintenance activities on build systems.

Macho et al. [38] stated that not only assisting the application
of the change is necessary, but it is also essential to understand the
details of the changes in build systems after they are applied. They
proposed BuildDiff, a tool that computes the differences between
pairs of Maven build specifications and detects the operation type,
e.g., adding or deleting a dependency or updating the version of
an artifact, to provide detailed information about what has been
modified. However, their approach is not concerned with the impli-
cations the changes may have on other portions of the build system.
In the build systems of projects with compile-time variability, the
logic that establishes dependencies among internal and external
sources can propagate in complex ways. In our study, we propose
an approach that detects the impact of changes across the build
system, facilitating change comprehension and review.
Change Impact Analysis. Change Impact Analysis (CIA) is the
process of identifying and assessing the consequences of a change
to the software to reveal their broader implications [39]. While
CIA can be applied to a broad range of software artifacts, studies
predominantly focus on code-based CIA techniques [40]. These
studies have effectively implemented CIA techniques in change
propagation [41–43], change effort estimation [44, 45], integration
testing [46], defect detection [17, 47], and code review [14, 15].
Given its wide-ranging applications and benefits, studies have pro-
posed approaches to automated CIA [40, 48–50]. Among these

Diff of
CDU chains

BCIA1. Compute
AST differences.
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CDU chains.
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Change
Set Impact
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Figure 1: Overview of BCIA.

approaches, Dai et al. [51] highlighted that methods that analyze
variable operations and trace their data flow paths yield substantial
improvements in the effectiveness of the CIA.

Studies on CIA in build systems have been limited. While prior
research has explored the effects of changes to source or test code
on build systems [52–54] or their output, such as targets [18, 19],
the impact of modifications within the build system itself on the
build configuration remains unexplored. We propose a fine-grained
approach to Build Change Impact Analysis (BCIA), which aims to
estimate the impact of such changes to support understanding the
implications of changes to build systems.

Perhaps the most similar work to ours is that of Al-Kofahi et
al. [55] where their tool, MkDiff, detects semantic changes in Make-
files. Our work differs from theirs mainly in two ways. First, MkD-
iff abstracts the build specifications into a Symbolic Dependency
Graph (SDG) [22], which may obscure the logical pathways through
which changes impact build rules. In contrast, our approach, BCIA,
provides a clear view of how changes transitively affect the entire
build system. Second, MKDiff lacks global analysis capabilities. It
analyzes semantic changes within a selected file, incorporating
other files only if the selected file depends on them. This approach
requires developers to either have extensive knowledge of the build
system to select the files that will be impacted for the analysis or
to manually check multiple files to understand the full impact of
changes. In contrast, BCIA automatically performs a global analysis
on the build system, which helps to uncover a more comprehensive
impact of changes and alleviates the need for such manual effort.

4 PROPOSED APPROACH
To understand how changes in build systems impact the build
configuration space, we propose BCIA, an approach that extracts
the semantic differences between snapshots of a build system (i.e.,
before and after a change set has been applied). Figure 1 provides an
overview of BCIA, which comprises three steps. Below, we describe
the general behaviour of each step. Section 5 provides the details
that are specific to the implementation of BuiScout, the prototype
that we produce to conduct our empirical study.

BCIA1. Compute AST differences
Changes to build files may impact the build system in ways that
developers do not expect or intend. We set out to understand how
changes to build files can impact unmodified parts of build systems.
This involves comparing two snapshots of the build system from be-
fore and after a change set that modifies build files has been applied.
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An analysis that focuses on textual differences cannot detect
features of the change set that developers often value, such as
syntactic and semantic changes [56, 57]. To detect these features
of change sets, as prior work suggests [56–61], we compute the
differences between Abstract Syntax Trees (ASTs).

To do so, we first extract two snapshots of the state of the build
system before and after the change set has been applied. We create
a first snapshot by selecting all the build files within the codebase
in its state prior to applying the change set. We then create a second
snapshot by extracting the parts of the change set that modify, add,
delete, or rename build files and apply the subset of changes to
a copy of the first snapshot. We pair the ASTs representing two
versions of each build file in the snapshots. Added and deleted files
are paired for comparison with an empty AST, whereas modified
build files are paired across the snapshots.

After pairing ASTs, differences are computed to highlight four
types of AST nodes. Added nodes appear in the updated AST, but
not in the prior one. Deleted nodes appear in the prior AST, but not
in the updated one. Moved nodes appear in both updated and prior
ASTs under parent nodes that are not matched with each other
and are linked by matching edges across the ASTs. Updated nodes
appear in both updated and prior ASTs under parent nodes that are
matched with each other and are linked by matching edges across
the ASTs. Other nodes are assumed to be unchanged and are not
highlighted, but are matched across the ASTs.

BCIA2. Compute CDU chains
While differences in ASTs offer a more detailed perspective than
textual differences, they are still limited to the change location. For
instance, it is relatively easy to automatically determine if a change
impacts the value of a variable when the assignment statement for
that variable is altered. However, comprehending the broader im-
pact of the change on distant parts of the code requires inference ca-
pabilities that are not directly supported by sets of AST differences.

Definition-Use (DU) chains extract data flow connections between
the locations where identifiers have their values set or updated,
and the locations where identifiers are dereferenced. Conditional
Definition-Use (CDU) chains [20] enhance traditional DU chains by
incorporating reachability conditions of data flow paths. In simple
terms, a DU chain links each definition to all its direct usages along
the data flow path and a CDU chain does the same while preserving
the reachability condition of the definition and usage locations.

Assume that 𝑆 is the set of statements in a snapshot where:

∀𝑖, 𝑗 ; 𝑠 [𝑖 ] , 𝑠 [ 𝑗 ] ∈ 𝑆 ∧ 𝑖 < 𝑗 ⇒ 𝑠 [𝑖 ] precedes 𝑠 [ 𝑗 ] on the execution path.

A definition point for an identifier id, in statement 𝑠 [𝑖 ] ∈ 𝑆 is de-
noted as𝑑 id𝑠 [𝑖 ] ∈ 𝐷 , where𝐷 is the set of all definition points. The use
point of 𝑑 id𝑠 [𝑖 ] in statement 𝑠 [ 𝑗 ] ∈ 𝑆 is denoted as 𝑢id𝑠 [ 𝑗 ] ∈ 𝑈 , where
𝑈 is the set of all use points.

CDU chains are constructed based on definitions and usages of
identifiers, e.g., variables or functions, and each snapshot of the
build system yields a set of CDU chains, 𝐶 . Formally, a CDU chain
for the identifier id is defined as:

𝑐 id𝑠 [𝑖 ] = (𝑑
id
𝑠 [𝑖 ] , {𝑢

id
𝑠 [𝑖+𝑗1 ]

, ..., 𝑢id𝑠 [𝑖+𝑗𝑚 ] }) ∈ 𝐶

where 𝑑 id𝑠 [𝑖 ] is considered the head of the chain and the sequence of
its use points is the tail of the chain. For each use point 𝑢id𝑠 [𝑖+𝑘 ] ;𝑘 ∈
{ 𝑗1, 𝑗2, ..., 𝑗𝑚} in 𝑐 id𝑠 [𝑖 ] , there is a data flow path from𝑑 id𝑠 [𝑖 ] that reaches
𝑢id𝑠 [𝑖+𝑘 ] where no other definition points re-define id on that path.
Note that an identifier may have multiple CDU chains, one per
defining statement.

When constructing the CDU chains for a snapshot, we store the
following data as references to their corresponding nodes in ASTs:
- The statements (𝑠 [𝑖 ] ). For each 𝑠 [𝑖 ] , we also store references to
the identifiers that 𝑠 [𝑖 ] defines and dereferences, as well as its
reachability conditions along the data flow path.

- The definition points (𝑑 id𝑠 [𝑖 ] ). For each 𝑑
id
𝑠 [𝑖 ] , we store id, which is

used to match 𝑑 id𝑠 [𝑖 ] with its use points along the data flow path,
and the type of the value that is stored within id, e.g., variable or
function. We also store references to both the defining statement
and all of its direct use points.

- The use points (𝑢id𝑠 [𝑖 ] ). For each 𝑢
id
𝑠 [𝑖 ] , we store id, the type of the

value that is stored within id, and a reference to the statement
that dereferences id.
Figure 2a provides examples of CDU chains in our storage format.

The CDU chains in Figure 2a are computed from the build system in
Section 2.2 and do not include the use points with hidden definition
points, i.e., the server_src and client_src variables. Note that
statements are not formally an element of the CDU chains [20],
however, they play an important role in detecting the impact of
changes across CDU chains in BCIA3.

In Figure 2a, 𝑆 [𝑖 ] and 𝑆 [𝑖′ ] represent the statements on the 𝑖𝑡ℎ line
of the 𝐶𝑀𝑎𝑘𝑒𝐿𝑖𝑠𝑡𝑠 .𝑡𝑥𝑡 and 𝑆𝑒𝑡𝑢𝑝𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠.𝑐𝑚𝑎𝑘𝑒 files respectively.
Moreover, in this figure:
- A bidirectional reference between a statement and a definition/use
point indicates that the statement is directly defining/dereferenc-
ing the value of the identifier.

- A reference from a definition point to a use point represents a
direct dereference of the defined value.

- A reference from a statement to a use point in one direction indi-
cates that the reachability condition for the referencing statement
relies on the referenced identifier.

- A reference from a statement to another statement in one direc-
tion indicates that the reachability condition for the referencing
statement relies on the referenced statement. More specifically,
this is when the referenced statement imports the referencing
statement onto the data flow path, e.g., an import statement.
The construction of CDU chains for a snapshot of the build

system relies on the correct detection of data flow paths such that
definition points are linked to their actual use points. This involves
extracting data flow paths that span the entire build system. To do so,
we must (1) process ASTs in the order in which the build tool would
process their corresponding build files, and (2) traverse each AST
in the order that the build tool would traverse the corresponding
statements. We construct the CDU chains for the two snapshots
of each change set independently. Instances of the stored data are
associated with their corresponding AST nodes. Therefore, the
differences between the CDU chains are obtained based on the
differences between the ASTs.
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(a) Computed CDU chains
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(b) Constructed IKG

is_directly_used_at

affects_reachability_ofis_used_in_definition_of

defines uses

(c) Notations representing the IKG relationship types.

Figure 2: The resultingCDU chains and IKG from the analysis
of the example in Listing 1.

BCIA3. Construct the IKG
The constructed CDU chains link use points to their definition point
and capture the basic impact of the change within a CDU chain, i.e.,
from the definition to its uses. However, changes can transitively
affect disjoint CDU chains, which in turn, can propagate the impact
of the change in complex ways throughout the build system. CDU
chains alone do not explicitly store such transitive impacts.

Figure 2b provides examples of how the impact of changes can
propagate across CDU chains. Below, we described the two common
patterns of cross-chain impact propagation:
- Value contamination: If use point 𝑢id𝑠 [𝑖 ] is either modified or af-
fected by the change and there exists a definition point 𝑑 id

′
𝑠 [𝑖 ] ,

statement 𝑠 [𝑖 ] uses the value of identifier id to set the value of
the identifier id′. In this case, the impact of the change propagates
from 𝑐 id𝑠 [𝑘 ] , which contains 𝑢id𝑠 [𝑖 ] in its tail, to 𝑐 id

′
𝑠 [𝑖 ] .

- Reachability condition contamination: There are two types of this
pattern. First, if a modified or affected use point 𝑢id𝑠 [𝑖 ] occurs
within a conditional statement 𝑠 [𝑖 ] , then 𝑢id𝑠 [𝑖 ] is recorded as the
reachability condition for 𝑠 [ 𝑗 ] that appear within the body of
the conditional statement 𝑠 [𝑖 ] . Second, if a modified or affected
statement 𝑠 [𝑖 ] imports other statements 𝑠 [ 𝑗 ] onto the data flow
path, then 𝑠 [𝑖 ] is recorded as the reachability condition for 𝑠 [ 𝑗 ] . In
both cases, the impact of the change propagates to 𝑠 [ 𝑗 ] through
its reachability condition, and will in turn, propagate to any
definitions made by 𝑠 [ 𝑗 ] , affecting their CDU chain.
We capture how changes impact code entities within and across

CDU chains in a knowledge graph [62], which we refer to as the

Table 1: The types of relationships in the IKG.

Relationship (𝑠 , defines , 𝑑 id𝑠 )
Description When a statement defines an identifier.

Relationship (𝑠 , uses , 𝑢id𝑠 )
Description When a statement dereferences an identifier.

Relationship (𝑢id𝑠 , is_used_in_definition_of , 𝑑 id
′

𝑠 )
Description When a use point is dereferenced by a statement

to define a definition point (value contamination).

Relationship (𝑑 id𝑠 , is_directly_used_at , 𝑢id
𝑠′ )

Description When a definition point is dereferenced in a use
point within a CDU chain (value contamination).

Relationship (𝑑 id𝑠 , is_passed_as_argument , 𝑢id
𝑠′ )

Description When an argument is passed to a user-defined
callable structure, e.g., a function, and its content
is dereferenced within the body of the callable
(value contamination).

Relationship (𝑢id𝑠 / 𝑠 , affects_reachability_of , 𝑠′)
Description When a use point (in a conditional statement) or

a statement (representing commands that import
other build files or invoke user-defined processes)
imposes a reachability condition on another state-
ment (reachability condition contamination).

Impact Knowledge Graph (IKG). IKG = (𝑁, 𝑅) is a heterogeneous
Directed Acyclic Graph (DAG) where:
- The nodes of the graph are 𝑁 ⊂ {𝑛 |𝑛 ∈ 𝑆 ∪ 𝐷 ∪𝑈 } where 𝑛 par-
ticipates in the change impact propagation. Each node is labelled
with its participation role, i.e., modified or contaminated through
value/reachability condition. A modified node is not considered
contaminated, even though the impact of changes to other entities
propagates to it.

- The edges of the graph represent the propagation relationships
𝑅 of the types listed in Table 1 among the nodes in the for-
mat (subject, relation, object), capturing relationships within and
across modified or affected CDU chains along the data flow path.
Figure 2b provides an example of an IKG that is constructed for

the build system in Section 2.2 using the CDU chains from Figure 2a.
Note that Figure 2c presents a guide for the notations representing
different relationship types in Figure 2b. To construct the IKG, we
apply Algorithm 1 on the set of CDU chains computed for each
snapshot. Lines 9–28 describe an iterative process through which
the IKG expands to cover all the CDU elements that participate in
the change impact propagation and the propagation relationships
among them, starting from the modified statements, definition
points, and use points. The iterative process is repeated until the
set of nodes stops expanding. Then, in lines 29–34, the upstream
definition points and the statements that define or dereference a
node in the IKG are added to the IKG, along with the relationships
among them, to provide a complete overview of the change impact
throughout the build system. Once we construct the IKGs for each
snapshot, we unify them into a single IKG in which the differencing
information is made available through references to the AST nodes.
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Algorithm 1: IKG construction algorithm
1 IKG = (𝑁IKG, 𝑅IKG ) ;
2 Procedure ExtendIKG(subject, relation, object)
3 𝑁IKG ← 𝑁IKG ∪ {subject, object}
4 𝑅IKG ← 𝑅IKG ∪ { (subject, relation, object ) }
5 Algorithm ConstructIKG()
6 𝑆current ← {All modified 𝑠 [𝑐 ] }
7 𝑈current ← {All modified 𝑢id𝑐

𝑠 [𝑐 ] }

8 𝐷current ← {All modified 𝑑 id𝑐
𝑠 [𝑐 ] }

9 while (𝑆current ∪𝑈current ∪𝐷current ≠ ∅) do
10 foreach (𝑠 [𝑐 ] ∈ 𝑆current ) do
11 foreach 𝑑

id𝑐
𝑠 [𝑐 ] that 𝑠 [𝑐 ] defines do

12 ExtendIKG(𝑠 [𝑐 ] , defines, 𝑑
id𝑐
𝑠 [𝑐 ] )

13 foreach 𝑠 [𝑘 ] for which 𝑠 [𝑐 ] is a reachability condition do
14 ExtendIKG(𝑠 [𝑐 ] , affects_reachability_of, 𝑠 [𝑘 ])

15 foreach (𝑢id𝑐
𝑠 [𝑐 ] ∈ 𝑈current ) do

16 foreach 𝑑
id𝑘
𝑠 [𝑐 ] that 𝑠 [𝑐 ] defines using 𝑢

id𝑐
𝑠 [𝑐 ] do

17 ExtendIKG(𝑢id𝑐
𝑠 [𝑐 ] , is_used_in_definition_of, 𝑑

id𝑘
𝑠 [𝑐 ] )

18 foreach 𝑠 [𝑘 ] for which 𝑢
id𝑐
𝑠 [𝑐 ] is a reachability condition do

19 ExtendIKG(𝑢id𝑐
𝑠 [𝑐 ] , affects_reachability_of, 𝑠 [𝑘 ])

20 foreach (𝑑 id𝑐
𝑠 [𝑐 ] ∈ 𝐷current ) do

21 foreach 𝑢
id𝑐
𝑠 [𝑘 ] that directly dereferences 𝑑 id𝑐

𝑠 [𝑐 ] do

22 ExtendIKG(𝑑 id𝑐
𝑠 [𝑐 ] , is_directly_used_at, 𝑢

id𝑐
𝑠 [𝑘 ] )

23 if 𝑑 id𝑐
𝑠 [𝑐 ] is an argument passed to a callable at call site then

24 foreach 𝑢
id𝑐
𝑠 [𝑘 ] in callable that dereferences 𝑑 id𝑐

𝑠 [𝑐 ] do

25 ExtendIKG(𝑑 id𝑐
𝑠 [𝑐 ] , is_passed_as_argument, 𝑢id𝑐

𝑠 [𝑘 ] )

26 𝑆current ← {All newly added 𝑠 [𝑐 ] in 𝑁IKG }
27 𝑈current ← {All newly added 𝑢id𝑐

𝑠 [𝑐 ] in 𝑁IKG }

28 𝐷current ← {All newly added 𝑑 id𝑐
𝑠 [𝑐 ] in 𝑁IKG }

29 foreach (𝑢id𝑐
𝑠 [𝑐 ] ∈ 𝑁IKG ∩𝑈 ) do

30 ExtendIKG(𝑠 [𝑐 ] , uses, 𝑢
id𝑐
𝑠 [𝑐 ] )

31 foreach 𝑑
id𝑐
𝑠 [𝑘 ] that 𝑢

id𝑐
𝑠 [𝑐 ] directly derefernces do

32 ExtendIKG(𝑑 id𝑐
𝑠 [𝑘 ] , is_directly_used_at, 𝑢

id𝑐
𝑠 [𝑐 ] )

33 foreach (𝑑 id𝑐
𝑠 [𝑐 ] ∈ 𝑁IKG ∩𝐷 ) do

34 ExtendIKG(𝑠 [𝑐 ] , defines, 𝑑
id𝑐
𝑠 [𝑐 ] )

35 return (𝑁IKG , 𝑅IKG )

5 IMPLEMENTATION DETAILS
To evaluate the applicability of BCIA, we develop BuiScout as its
prototype. The specific details of BuiScout are influenced by the
features of the build technology and the syntax of the language in
which build systems are described. We choose to develop BuiScout
for CMake build systems because they have proven to demand
greater maintenance effort [21]. Below, we describe the details
that are specific to the implementation of BuiScout. Our online
appendix1 contains an evaluation of BuiScout, where we assess the
correctness of its output.

BCIA1. Compute AST Differences
CMake build files are conventionally named CMakeLists.txt or
have the .cmake extension. Influenced by previous studies [12, 63],

we rely on these naming conventions to identify build files and
their corresponding modifications within change sets.

We compute theAST differences of build files usingGumTree [57].
GumTree offers a syntax-aware algorithm designed to compute dif-
ferences between two ASTs. It provides an interface for parsers to
facilitate support for new languages. To parse CMake build files,
we implement a CMake parser using Tree-Sitter.3 Tree-Sitter is a
parser generator that consumes a grammar definition and generates
a compliant parser. Our CMake grammar is derived from its syntax
documentation.4 We produce GumTree outputs in DOT format,5
which is a text-based markup for graphs. We apply minor changes
to GumTree to avoid truncation of node labels.

We post-process the DOT output using NetworkX.6 This step
ensures that changes to a subtree are reflected in its ancestor nodes.
For example, when nodes representing a statement within the body
of a function are modified, the parent node representing the state-
ment that defines the function is also highlighted as an “updated"
node to reflect the change.

BCIA2. Compute CDU chains
By computing the CDU chains, we aim to establish connections
between the definition and use points. This involves the detection
of the correct data flow path on the (1) system level, by processing
ASTs in the order in which the CMake tool would process their
corresponding build files, and (2) file level, by traversing each AST
in the order that the CMake tool would traverse the corresponding
statements. The CMake tool initiates the build process from the main
build file, conventionally a CMakeLists.txt file in the root direc-
tory of the project, and incorporates specifications from other build
files in the project as specified, i.e., when they are referenced by
the include, add_subdirectory, and find_package commands.

We extend the NetworkX library to support AST-specific op-
erations, such as the traversal of nodes in the order of execution
to reproduce the correct data flow paths. We process the ASTs of
prior- and post-change versions of the build system independently,
beginning with the main build file of the project. As we encounter
statements referring to other build files, we resolve them by follow-
ing the documented behaviour of the referencing statement.7 We
then incorporate the specified build file into the analysis.

The construction of the CDU chains also relies on the charac-
teristics of the CMake language. In CMake, values are assigned
to identifiers in a command-sensitive fashion. For example, com-
mands rely on the position of the arguments and keyword argument
settings to determine if an argument is a definition or use point.
For instance, the list command with the LENGTH keyword argu-
ment specified has the signature: list(LENGTH <list> <out-var>) and
stores the output (i.e., the length of <list>) in the <out-var> identifier.
The same command with the APPEND keyword argument specified
follows the signature: list(APPEND <list> [<element>...]) and stores
the output (i.e., the updated list) in its second argument. Referring
to the documentation of the latest CMake version,7 we recognize
definition and use points based on the command signatures.

3https://tree-sitter.github.io/tree-sitter/
4https://cmake.org/cmake/help/v3.0/manual/cmake-language.7.html#syntax
5https://graphviz.org/doc/info/lang.html
6https://networkx.org/
7https://cmake.org/cmake/help/v3.27/index.html

https://tree-sitter.github.io/tree-sitter/
https://cmake.org/cmake/help/v3.0/manual/cmake-language.7.html#syntax
https://graphviz.org/doc/info/lang.html
https://networkx.org/
https://cmake.org/cmake/help/v3.27/index.html
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Figure 3: Overview of our process for data set curation.

BCIA3. Construct the IKG
To construct the IKG, we implement Algorithm 1. As described in
Section 4, the algorithm is applied to the CDU chains constructed
for each snapshot and the two resultant IKGs are unified into a
global one, which includes the set of differences. The IKG covers
the elements that participate in the change impact propagation as
nodes and explicitly models the propagation relationships along
the data flow path in the form of directed edges.

Although it is possible to construct the IKG such that it provides
an overview of the entire build system, we choose to only include
elements that participate in the change impact propagation. This
does not harm the inference capabilities of the IKG for its intended
purposes and reduces the disk space required to preserve the out-
puts for further analyses. Our observations show our approach
reduces the disk footprint from over 2 gigabytes per commit to an
average of 10 megabytes.

6 DATA SET CURATION
To conduct our empirical evaluation of BuiScout (Section 5), we cu-
rate a data set of 10,000 change sets. Figure 3 provides an overview of
our curation process, which is composed of steps that select (DSC1)
and rank (DSC2) candidate projects, and then extract commits from
the top-ranked projects (DSC3). Below, we describe each step.

DSC1. Identify candidate projects
We obtain a set of candidate projects from theWorld Of Code (WOC)
data set—a frequently updated corpus of the open-source software
ecosystem [64]. Since our prototype supports CMake, candidate
projects must use CMake as their build technology. We identify
these projects using file naming conventions, i.e., candidate projects
must contain a CMakeLists.txt file in their root directory. Addi-
tionally, we filter out projects that: (1) are forks (because their
content is often largely redundant); (2) are archived (because those
projects are inactive); and (3) have a build system that is solely au-
thored by one contributor (because we suspect that this sole author
has a deep understanding of the build system, and is less likely
to need tool support than a build system with multiple authors).
20,143 projects survive this filtering process.

DSC2. Select studied projects
We set out to analyze changes to build systems where their main-
tenance is a concern for contributors. Therefore, we select subject
projects that actively maintain the CMake build specifications. To
do so, we rank the candidate projects based on a set of study rele-
vance heuristics that estimate:

Table 2: Overview of selected subject projects.

Project # BCa # BFb # BAc % RBFd

P1: Spectre 3,023 719 49 99.54
P2: Paddle 7,063 467 574 96.54
P3: AliceO2 3,612 500 241 98.19
P4: Krita 8,941 410 256 83.03
P5:MySQL-Server 6,011 443 349 84.03
P6: Qt-Creator 2,336 419 107 87.62
P7: Serenity 4,353 318 297 86.01
P8: Calligra 9,000 388 231 84.38
P9: VXL 6,284 669 124 96.40
P10: Swift 6,344 260 311 94.86
a Number of Build Commits
b Number of Build Files; in the latest analyzed build commit.
c Number of Build Authors.
d Percentage of Reached Build Files; average among analyzed build commits in the project.

• Activity: Projects that actively maintain their build systems
have frequent build commits, i.e., change sets that modify build
files. However, the frequency of build commits might vary over
time. Therefore, instead of the average frequency of build com-
mits, we define the Recent Build Commit (RBC) heuristic to char-
acterize build activity in the candidate projects. This heuristic
characterizes build maintenance activity based on the preva-
lence and recency of build commits. More recent commits are
assigned a greater weight to give a higher priority to projects
with more recent build maintenance activity. Inspired by Mockus
andWeiss’ [65] formulation of commit recency, we define RBC as:

𝑅𝐵𝐶 =
∑︁
𝑐∈𝐶𝐵

1
Δ𝑐 + 1

where 𝐶𝐵 is the set of build commits and Δ𝑐 is the length of the
time interval between the build commit date and the date our
data collection process began. We measure Δ𝑐 in months, where
extra days after the last complete month are discarded.
• Size: To avoid selecting projects with build systems that are
not complex, we consider the number of build files in the latest
version of each candidate project to prioritize larger build systems
for our analysis. While size is not a direct measure of complexity,
prior work [2, 3] shows that the complexity of a build system
tends to be strongly correlated with its size.
We use Activity and Size values to rank the candidate projects. To

do so, we first rank candidates by Activity and Size independently.
When two or more candidates have identical heuristic values, they
are assigned the same rank (i.e., ranks are not mutually exclusive).
The final rank order is produced by ranking candidates according
to the sum of their Activity and Size rank values. From the final
ranking, we select the top 10 projects for further analysis.

When selecting the top-ranked projects, we ensure that the order
of build file invocations can be automatically inferred. For example,
the order of build file invocations cannot be inferred for the zephyr
project8 because the paths to the invoked files are dynamically
determined based on the value of variables that store information
about the machine architecture or the system environment. In such

8https://github.com/zephyrproject-rtos/zephyr

https://github.com/zephyrproject-rtos/zephyr
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a setting, a single build run leaves many of the build files in the
project unused as they are specified for a different build setup.
Hence, to avoid projects that have build systems with numerous
unused build files and to mitigate the impact of technical limitations
in resolving file references, we remove the projects in which fewer
than 80% of their build files can be automatically inferred and
integrated into the build system in their latest 10 build commits.
We replace these projects with the next highest-ranked options. A
threshold set at 50% would retain 11 of the 47 removed projects.
However, we opt for the more rigorous 80% threshold to enhance
the accuracy of our measurements. Table 2 shows an overview of
the 10 studied projects.

DSC3. Extract build commits
We extract the latest 1,000 build commits from each of the studied
projects—a total of 10,000 (1,000×10) studied commits. When se-
lecting the build commits, we ensure that the automatic inference
of the order of build file invocations remains consistently over the
80% threshold. Fluctuations in this value are expected as the build
system evolves and some build files may become unused but persist
until a housekeeping commit deletes them. For example, commit
8785069 from the project Krita removes references among build
files resulting in instability and a drop in the file reach level.

In our dataset, we also identified six distinct build commits that
introduce syntax errors that cause our parser to fail. For example,
commit c56085a from the project Swift adds a statement with a
syntax error (missing an enclosing quotation mark). The parser
inserts error nodes into the AST when it encounters invalid syntax.
To ensure our parser is not defective, we inspect each case where
an error node is produced. We find that all cases correspond to valid
syntax issues, which were addressed in subsequent build commits.
Consequently, build commits with syntactically invalid build files
are removed from the dataset.

Finally, we observe a growing tendency to use deprecated com-
mands and signatures from older versions of CMake as we process
older build commits. For example, commit 039330f from the VXL
project is when they refactor their build specifications to elimi-
nate the use of the deprecated command subdirs and start using
the add_subdirectory command instead. Since BuiScout does not
support commands from CMake versions earlier than v3.27, more
pronounced use of unsupported commands can lead to inaccurate
measurements in our empirical study. Therefore, we restrict our
analyses to the latest 1,000 build commits in the selected projects.
Thus, from each of the top-10 projects, we extract the latest 1,000
build commits that meet the other specified criteria and date before
March 1st, 2024. This eliminates the media-driver project as it has a
total of 723 build commits but is ranked highly because its large size
(781 build files) compensates for its low RBC measure. We replace
this project with the next highest-ranked candidate project.

7 EMPIRICAL STUDY
In this section, we present an empirical study of the impact of
changes to build systems. Our goal is to evaluate the applicability
of BCIA.We analyze the prevalence of build change sets where their
impact propagates transitively (RQ1), as well as the characteristics
of the incurred impact that capture their extent (RQ2). To conduct

our study, we apply BuiScout to the 10,000 change sets in our data
set. Below, we present our results with respect to each RQ.

RQ1: Impact Prevalence
In this RQ, we explore the prevalence of build change sets where
BuiScout uncovers transitive impact propagation. Below, we de-
scribe our approach and then present our findings.
Approach: BuiScout identifies the impact set of a given change
set—a collection of unmodified CDU chain elements and statements
that are affected by the change. We adopt a strict definition to
determine what constitutes impact when retrieving an impact set:
an entity is deemed impacted if it is either value- or reachability
condition-contaminated and no modifications have been made to the
statement containing the entity or its components. We apply this
conservative criterion because when a modification is applied to
any component of a statement performing an atomic operation, the
statement, as a whole, is expected to produce a different output,
and any impact on unmodified locations within the statement is
likely expected and intentional.

To identify the impact set, BCIA traces modifications to CDU
chain elements and entities that control the reachability of build
specifications. As such, for a change set to have a potential impact,
its modifications must either involve direct changes to definition
or use points (Condition 1) or changes to commands that influence
the execution path, such as by incorporating build files into the
process (Condition 2). We label change sets that meet either of these
conditions as “change sets that may propagate", indicating that they
have the necessary characteristics to propagate impact beyond the
modified build configurations. Although such change sets can be
identified based solely on their modified locations, conducting an
impact analysis is required to determine the extent to which their
impact propagates.

If the analysis of a change set that may propagate an impact
yields an impact set, we label it as a change sets that will propagate. In
such cases, BCIA can reveal the impact of the change. The benefits
of using BCIA become more prominent in change sets that will
propagate across files, where changes in one build file influence
another. Tracing the impact of such change sets is challenging as
it requires a deep understanding of how build code is interpreted,
which our prior work suggests is not common knowledge among
developers [12].

To measure the prevalence of these change sets, we identify them
using queries that we execute on their IKGs:
• Change sets that may propagate: We query for nodes that rep-
resent modified definition/use points or modified statements
that import blocks of build code into another location, e.g., the
include command. An IKG containing such nodes indicates that
the change set may propagate.
• Change sets that will propagate: We extract the impact sets from
the IKGs of the change sets that may propagate, adhering to our
definition of what constitutes impact. A non-empty impact set
indicates that the change affects unmodified build configurations.
• Change sets that will propagate across files: We check if both
the subject and the object of all relationships in a given IKG
reside within the same build file. If they do not, the change set is
considered to have an impact that crosses files.

https://github.com/kde/Krita/commit/8785069
https://github.com/apple/swift/commit/c56085a
https://github.com/vxl/vxl/commit/039330f
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Figure 4: Prevalence of change sets that may propagate, will
propagate, and will propagate across files.

Results: Figure 4 provides a summary of our results. We structure
the rest of this section around our key observations.

Observation 1. The majority of build change sets propagate
their impact, often across files. Figure 4a provides an overview
of the studied change sets. We identify 9,292 change sets that may
propagate in our data set of the 10,000 studied build commits. Of
these, 9,226 directly modify CDU chain elements (condition 1) and
2,934 modify commands that influence the execution path (condi-
tion 2). Among the change sets that may propagate, 83.27% have
an impact that does propagate, which corresponds to 77.37% of
the studied change sets. Furthermore, 80.17% of the change sets
with an impact that propagates (62.03% of the studied change sets)
have an impact that crosses files. We also find that in 97.79% of
the change sets with an impact that crosses files, the modifications
affect locations in unmodified build files, accounting for 60.66% of
the studied change sets.

Figure 4b shows the prevalence of change sets in each category
per project. Overall, a large proportion of change sets (83.80%–
98.00%, 𝜎 = 4.42) may propagate an impact; however, the propor-
tions of change sets that do propagate their impact to unmodified
build configurations vary between projects (𝜎 = 11.92). We observe
an even broader range of the proportions of change sets that propa-
gate their impact across files (𝜎 = 21.04). For example, in the AliceO2
project (P3), 95.29% of the change sets with an impact that may
propagate do indeed propagate to unmodified build configurations,
of which 98.09% propagate their impact across files. In contrast, for
the Calligra project (P8), these values drop to 75.54% and 39.33%, re-
spectively. Despite being lower, these ratios remain non-negligible,

with more than half of the studied change sets in every project (min-
imum of 57.70%) affecting unmodified build configurations. These
quantities highlight the pervasiveness of change sets with an im-
pact that propagates, demonstrating that BuiScout will frequently
expose results beyond the visible change set.

Next, we strive to understand why in some cases BuiScout does
not detect any impact that propagates from the change sets with
the potential for it. To do so, we randomly inspect and label such
change sets until we satisfy our saturation criterion, i.e., when no
new reasons have emerged for 50 consecutive change sets. This
criterion was satisfied after inspecting 73 change sets.

Observation 2. When a change set that may propagate an
impact yields no effect, it is often because the impact cannot
propagate beyond the modified locations. In 76.71% of the in-
spected change sets, the modifications span all involved definitions
and uses of the changed identifiers, and hence, cannot propagate
their impact beyond the modification location.9 In 21.92% of the
inspected change sets, the modifications affect call sites to exter-
nal APIs.10 These API calls influence the build processes in ways
that are not immediately apparent because their definition does
not reside within the studied build system. As such, assessing the
impact of modifications to such call sites would require a cross-
project analysis, which is currently unsupported in our prototype
implementation. Additionally, we only observed one other change
set where an impact did propagate; however, it was not detected
due to limitations in our prototype implementation, specifically,
resolving the execution order of build files.11 This error occurs
when a build file is not explicitly loaded into the build process. Such
a case is uncommon in our data set because BuiScout successfully
incorporates over 80% of the build files in our studied build systems
into its analysis, with an average of 91.04%. Regardless, to prevent
such issues in practice, our prototype supports mechanisms where
build maintainers can configure specific build files to be loaded into
the build process at selected locations in the build system.

Moreover, our analysis reveals implementation and modification
patterns specific to projects, which elucidate our divergent project-
specific results. For example, in the VXL project (P9), developers
frequently use the AUX_SOURCE_DIRECTORY command. According
to its documentation,12 developers must modify the CMake file
containing this command to activate its automatic source file de-
tection feature. To trigger this behaviour, developers in the VXL
project modify a variable that is immediately overwritten by the
AUX_SOURCE_DIRECTORY command.13 Therefore, such change sets
do not technically propagate their impact. This helps to explain why
the impact of change sets in the VXL project does not propagate as
often as the other studied projects.

Conclusion of RQ1. Our prototype can detect an impact
propagating to unmodified parts of the build specification in
77.37% of the 10,000 studied change sets.

9See commit 83e13c1 in the Calligra project for an example.
10See commit 90a8496 in the Qt-Creator project for an example.
11See commit 48b6cd5 in the Swift project for an example.
12https://cmake.org/cmake/help/v3.27/command/aux_source_directory.html
13See commit 76a4374 in the VXL project for an example.

https://github.com/kde/calligra/commit/83e13c1
https://github.com/qt-creator/qt-creator/commit/90a8496
https://github.com/apple/swift/commit/48b6cd5
https://cmake.org/cmake/help/v3.27/command/aux_source_directory.html
https://github.com/vxl/vxl/commit/76a4374
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RQ2: Impact Characteristics
In this RQ, we characterize the impact of the studied build change
sets. Below, we describe our approach, followed by our results.
Approach:We characterize the impact of changes to build systems
in terms of the magnitude and breadth of the impact.

Magnitude. To estimate the magnitude of the impact of a change
set, we measure the cardinality of the impact set in terms of concrete
commands, i.e., commands that are identifiable by unique AST nodes
that represent statements. Concrete commands must include the
statement identifier and the arguments passed to it, and may span
over more than one line of code. More specifically, the cardinality
of the impact set is the number of unique AST nodes that are
associated with at least one statement that the set contains.

We measure the magnitude of impact in this fashion because it
consolidates multiple statement instances that are associated with
the same concrete command. For example, a command within the
body of a function is executed every time the function is called.
This results in several instances of the same command with varying
reachability conditions and argument values. For maintenance and
code review purposes, these instances are all viewed at once. Thus,
we count them once to avoid inflating their perceived magnitude.

Breadth. To estimate the breadth of the impact, we first label
the concrete commands in the impact set as either (a) localized, i.e.,
those that appear within the build files that the change set modifies;
or (b) dispersed, i.e., those that appear in build files that are not
included in the studied change set. We suspect that the detection
of the incurred impact on build configuration is more challenging
for dispersed concrete commands because it requires the reader to
recognize that unmodified build files are being impacted. Note that
a subset of the change sets that will propagate across files (RQ1)
have dispersed concrete commands in their impact set, whereas
any change set may have localized concrete commands.

We estimate the breadth of the incurred impact of a change set
using 𝐵 =

𝑁𝐷

𝑁𝐷+𝑁𝐿
where 𝑁𝐿 and 𝑁𝐷 are the number of affected

localized and dispersed concrete commands, respectively. A breadth
of zero indicates that all affected concrete commands appear in
modified build files, whereas a breadth of one indicates that all
affected concrete commands appear in unmodified build files. The
latter may happen, for example, when the modifications are made
to a statement that defines a variable for use in other build files.14

Interplay of Magnitude and Breadth. The independent analy-
ses of magnitude and breadth do not capture their potential interac-
tion. Our breadth measurement normalizes against the magnitude
of impact sets to control for its potentially confounding impact. To
study the extent to which magnitude and breadth interact, we mea-
sure the Spearman Rank correlation, which detects the non-linear
(monotonic) relationships between two variables [66].
Results: Figures 5 and 6 and Table 3 summarize our results. We
structure the rest of this section around our key observations.

Observation 3. The studied impact sets consist of a non-
negligible number of affected concrete commands. Figure 5
shows the distribution of the magnitude of the impact sets that we
measure from each project. We observe a median overall magnitude
of 14 concrete commands, with project-specific medians ranging

14See commit fc24909 in project Calligra for an example.
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Figure 5: The distribution of the magnitude of impact sets.
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Figure 6: The distribution of the breadth of impact sets.

between 4–27 concrete commands. In extreme cases, the magni-
tude of impact sets can reach 4,245 concrete commands. These
observed magnitude tendencies suggest that common practitioner
perceptions about the simplicity of changes to build systems [12]
may be a misconception. In our online appendix,1 we present an
investigation of the change types that result in the largest impact
sets.

Observation 4. The impact sets are predominantly char-
acterized by large breadths. Specifically, the median measured
breadth is 0.955, indicating that in 50% of impact sets, 95.55% of the
concrete commands affected by the change are not local, and are
thereby not immediately visible to developers. Extreme cases where
the breadth is zero or one are not uncommon. In 21.60% (45.97%)
of the impact sets, concrete commands affected by the change are
entirely local (non-local), having a breadth of zero15 (one16).

Figure 6 provides an overview of the distribution of the breadth of
impact sets.We observe substantial variations in themedian breadth
across projects, ranging between 0.5–1. The Calligra project (P8)
stands out with a distinctly lower density of impact sets with higher
breadth, such that the median breadth drops to zero. This is likely
due to the especially low percentage of change sets (26.00%) that
propagate their impact across files. As a result, in 60.67% of the non-
empty impact sets in P8, the incurred impact is entirely localized.

Observation 5. Magnitude and breadth are only weakly cor-
related, indicating that a small impact does not imply that the
concrete commands are localized. Table 3 provides an overview

15See commit f9c5c45 in the Swift project for an example.
16See commit 338c104 in the Krita project for an example.

https://github.com/kde/calligra/commit/fc24909
https://github.com/apple/swift/commit/f9c5c45
https://github.com/kde/krita/commit/338c104
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Table 3: The correlations between magnitude and breadth.

Project Median Spearman 𝜌 (𝛼 = 0.05) Trenda
Mgn. Brd.

P1 11 0.933 +0.054 (𝑝 = 0.11 > 𝛼)
P2 18 0.957 +0.313 (𝑝 << 𝛼)
P3 27 1.000 +0.092 (𝑝 < 𝛼)
P4 19 0.621 +0.492 (𝑝 << 𝛼)
P5 21 0.649 +0.343 (𝑝 << 𝛼)
P6 14 1.000 +0.099 (𝑝 < 𝛼)
P7 6 1.000 +0.038 (𝑝 = 0.28 > 𝛼)
P8 4 0.000 -0.002 (𝑝 = 0.96 > 𝛼)
P9 6 0.500 +0.463 (𝑝 << 𝛼)
P10 25 0.978 +0.177 (𝑝 < 𝛼)

Overall 14 0.955 +0.272 (𝑝 << 𝛼)
a LOWESS (Locally Weighted Scatterplot Smoothing) [67], the vertical axis represents the breadth
and the horizontal axis represents the magnitude (log scale).

of the correlations between magnitude and breadth across the stud-
ied projects. Although a statistically significant positive correlation
exists overall, with a weak magnitude (𝜌 = 0.272), this relationship
is not uniform across the studied projects. Specifically, the Spear-
man rank correlation coefficient shows no statistical significance
in three of the ten studied projects (P1, P7, and P8). In contrast, the
remaining seven projects show a statistically significant positive
correlation between magnitude and breadth, indicating that impact
sets with a larger magnitude tend to also have a larger breadth. The
strength of these correlations varies from very weak (P3, P6, and
P10) or weak (P2 and P5) to moderate (P4 and P9).

The observed magnitudes and breadths highlight the complexity
of the impact that propagates from changes in build systems. For
example, in commit 75f0e3c6 from the Swift project, a seemingly
small change in the build specifications transitively propagates its
impact to 167 concrete commands and reaches 4 concrete commands
that define or update deliverables. Out of the 167 affected concrete
commands, only one is local to the change, and the remaining 166
are scattered across five unmodified build files.

Conclusion of RQ2. The studied impact sets affect a me-
dian of 14 concrete commands where that impact propagates
non-locally in a median of 95.55% of cases. The magnitude
and breadth of the impact of changes share a weak positive
correlation, suggesting that changes with a small magnitude
of impact can still propagate in a broad fashion.

8 THREATS TO VALIDITY
Below, we present the threats to the validity of our study.
Internal Validity: BCIA is a static approach to detecting the im-
pact of a change set. As such, it does not capture the impact that
propagates due to dynamic programming features. For example,
in CMake, commands within the build system may produce side
effects by executing shell commands [68]. Such side effects may
propagate an impact that is only detectable at runtime. As a result,

change sets may induce a dynamic impact that substantially affects
the build process. While BCIA lacks the ability to identify such an
impact, it can help avoid a postmortem detection of unintended
build behaviour due to a statically detectable impact only after a
potentially costly build run.
Construct Validity: We define impact such that any command
that is affected by the change and participates in propagating its
impact is treated equally. However, impact may not be equally dis-
tributed, e.g., an impacted message command may not be as great
of a concern as an impacted add_executable command. There-
fore, our uniform measurement of magnitude and breadth may not
accurately represent the complexity of the incurred impact. How-
ever, assigning arbitrary weights to the affected commands could
introduce a subjective bias, reflecting our own perception of the
importance of a command within the build process.
External validity: We evaluate BCIA using BuiScout on a high-
quality dataset since we select 10 large open-source projects with
large actively maintained build systems across 10,000 build changes.
Our data set represents projects with complex build systems where
understanding changes in the build system may be challenging.

9 CONCLUSION AND IMPLICATIONS
In this paper, we propose BCIA—an approach to uncover the impact
of change sets on the build system. We also develop BuiScout—
a prototype of BCIA for CMake build systems. Using BuiScout,
we conduct an empirical study on 10,000 change sets that modify
CMake build systems, which focuses on the frequency and extent
of the impact that propagates from these change sets.

Below, we distill the key takeaway messages of our study.
Recognizing how the impact of build changes propagates is key,
but requires a deep understanding of build systems.Our results
show that in 77.37% of change sets, an impact propagates to un-
modified build configurations (Observation 1), with a considerable
median magnitude of 14 commands being affected (Observation 3),
and with 95.55% of these commands appearing in unmodified files
(Observation 4). Without a deep understanding of the design and
implementation of the build system, it would be challenging for
developers to recognize these implications and understand their
interactions. As practitioners often lack detailed insight into the
intricacies of build systems, raising awareness about the impact of
build changes is important.
Researchers and tool developers have various opportunities to
further support the understanding of changes to build sys-
tems.While Observations 1, 3, and 4 highlight the applicability and
usefulness of techniques that detect the impact of changes to build
systems, Observation 2 points out challenges that tool developers
should consider when designing such techniques. For example, de-
tecting how impact propagates across API calls in build systems
requires cross-project analysis. Furthermore, the variability that we
observe in implementation patterns across projects opens further
opportunities for future work to study the impact of these patterns
on the maintainability of the build system.
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