
Developer-Applied Accelerations in Continuous Integration
A Detection Approach and Catalog of Patterns

Mingyang Yin

Software REBELs

University of Waterloo

Canada

mingyang.yin@uwaterloo.ca

Yutaro Kashiwa

Nara Institute of Science and

Technology

Japan

yutaro.kashiwa@is.naist.jp

Keheliya Gallaba

Centre for Software Excellence,

Huawei

Canada

keheliya.gallaba@huawei.com

Mahmoud Alfadel

Department of Computer Science

University of Calgary

Canada

mahmoud.alfadel@ucalgary.ca

Yasutaka Kamei

POSL Lab

Kyushu University

Japan

kamei@ait.kyushu-u.ac.jp

Shane McIntosh

Software REBELs

University of Waterloo

Canada

shane.mcintosh@uwaterloo.ca

ABSTRACT
Continuous Integration (CI) provides a feedback loop for the change

sets that developers produce. It is crucial that CI processes change

sets quickly to provide timely feedback to developers and enable

teams to release software updates rapidly. Prior work has made

several advances in proposing automated approaches to speed up

CI builds. While these approaches have been broadly adopted, CI

platforms are flexible enough to enable teams to produce custom

strategies to optimize or omit unnecessary or redundant tasks (i.e.,

developer-applied accelerations). Exploring developer-applied ac-

celerations and identifying recurrent patterns within them may

enable broader reuse and can inform recommendations to enhance

software development efficiency.

In this paper, we set out to detect and catalog developer-applied

CI accelerations. First, we propose clustering, rule-based, and en-

semble approaches to detect developer-applied accelerations in a

dataset of 2,896 CircleCI build jobs, which achieve an F1-score of

up to 0.64. We then conduct a qualitative analysis of the detected

developer-applied accelerations to create a detailed catalog of 14

patterns spanning four categories of purposes, 16 patterns spanning

five categories of mechanisms, and three categories of magnitudes,

fromwhich we infer actionable implications for both the consumers

and the providers of CI platforms. Developers can leverage our iden-

tified patterns to audit their CI pipelines for inefficiencies, such

as redundant invocations of costly external services and rebuilds

triggered by minor corrections. Additionally, developers can use

our identified patterns to create templates that detect non-impactful

changes to specific files, such as .yml and .json.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE’24, October 27–November 1, 2024, Sacramento, California
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

KEYWORDS
Continuous Integration, Build Systems, Empirical Software Engi-

neering

ACM Reference Format:
Mingyang Yin, Yutaro Kashiwa, Keheliya Gallaba, Mahmoud Alfadel, Ya-

sutaka Kamei, and Shane McIntosh. 2024. Developer-Applied Accelera-

tions in Continuous Integration: A Detection Approach and Catalog of

Patterns. In Proceedings of IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE’24). ACM, New York, NY, USA, 12 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Continuous Integration (CI) is a software development practice

involving frequent integration of code changes into a shared reposi-

tory [6]. Its main goal is to provide developers with timely feedback

about whether the change sets that they produce integrate cleanly

with the existing codebase and the change sets that other team

members have produced concurrently [8]. Prior work shows that

the adoption of CI is associated with improvements in developer

productivity [12, 29] and software quality [14, 30, 32].

Using a CI process that is suboptimally configured can delay

feedback and waste computational resources [10, 33], which can

frustrate developers and increase the effective cost of operating

the service. Indeed, Widder et al. [36] found that developers often

complained about slow feedback caused by long CI processes.

To reduce time-to-feedback and computation costs, CI acceler-

ation approaches have been proposed (e.g., [2, 3, 17, 20, 25, 31]).

They reduce time-to-feedback and computation costs by skipping

jobs, phases, or steps that are deemed unnecessary or unlikely to

provide value based on the change set or its characteristics. Since

a failure signal from CI is richer (providing log data that can aid

in diagnosis) and of greater importance (typically calling for the

immediate attention of team members), acceleration techniques

focus on skipping jobs, phases, and steps that are likely to pass.

While off-the-shelf CI acceleration approaches exist, popular CI

platforms like CircleCI are flexible enough to allow teams to im-

plement their own. Indeed, it is common for CI platforms to allow

consumers (e.g., developers) to specify the behaviour of their CI pro-

cess using YAML configuration files that denote script commands

to be invoked in a shell. As such, developers may leverage the full

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ASE’24, October 27–November 1, 2024, Sacramento, California Mingyang Yin, Yutaro Kashiwa, Keheliya Gallaba, Mahmoud Alfadel, Yasutaka Kamei, and Shane McIntosh

1 test-go-race-remote-docker:
2 ...
3 steps:
4 - run:
5 command: |
6 # If the branch being tested starts with

ui/ or docs/ we want to exit the job without
failing

7 [["$CIRCLE_BRANCH" = ui/* || "
$CIRCLE_BRANCH" = docs/*]] && {

8 # stop the job from this step
9 circleci-agent step halt
10 }
11 # exit with success either way
12 exit 0
13 name: Check branch name
14 working_directory: ~/

Listing 1: A real-world example of a developer-applied
acceleration from the hashicorp/vault project.

flexibility of the shell to conditionally invoke/skip commands or

terminate the CI process early when conditions are or are not met.

Such acceleration practices with flexibility in controlling the work-

flow based on contextual conditions or requirements are what we

refer to as developer-applied accelerations. For instance, Listing 1

provides an example of such a developer-applied acceleration in the

CircleCI specification of the hashicorp/vault project, which

checks the branch on which the change set has landed, skipping

steps of the process if the branch is focused on the development of

the user interface or product documentation.

Studying developer-applied accelerations can yield insights for

enhancing the efficiency and effectiveness of CI practices. For ex-

ample, CI platforms, such as CircleCI can consider promoting re-

current accelerations to built-in acceleration features. Moreover, a

catalog of recurrent developer-applied acceleration patterns can

serve as a useful reference to promote reuse among CI consumers.

Therefore, in this paper, we set out to detect and catalog developer-

applied accelerations. Specifically, we perform an empirical study

of developer-applied accelerations in a corpus of 2,896 CircleCI jobs.

To structure our study, we formulate and address the following two

research questions:

RQ1: To what extent can developer-applied accelerations be
detected automatically?
Motivation: Developer-applied accelerations may include

clever solutions to recurring problems. Developer-applied

accelerations, unlike platform-provided accelerations, are

rarely documented and are hard for developers from other

projects to discover. Therefore, to foster reuse, we set out to

automatically discover developer-applied accelerations.

Results: We propose a clustering-based solution, a rule-based

solution, and an ensemble solution that combines the two.

When applied to a manually curated set of 2,896 jobs, our

ensemble approach achieves the best performance, yielding a

maximumF1-score of 0.64with a recall of 0.67 and a precision

of 0.62 when the tunable acceleration threshold is optimized.

RQ2: Are there recurring patterns of developer-applied ac-
celerations?
Motivation: To further foster reuse, we set out to identify ac-

celeration patterns within the set of accelerated examples. By

inspecting a large sample of developer-applied accelerations,

we set out to catalog recurrent patterns, which may inform

recommendations about when accelerations are likely to be

beneficial.

Results: Our catalog documents the purpose, mechanism,

and magnitude of each pattern. We discover 14 patterns

spanning four categories in purposes, 16 patterns spanning

five categories in mechanisms, and three categories in magni-

tudes of developer-applied accelerations. For example, steps

are often skipped because the change set being built includes

or excludes specific files or based on the availability of ex-

ternal packages (or lack thereof) and tools in the build envi-

ronment (purpose). Environment variable settings, Git com-

mands, and even external APIs are used to make acceleration

decisions (mechanism). While it is typical for all subsequent

job steps to be skipped, step or sub-step skipping behaviour

is not uncommon (magnitude).

Contributions. In summary, this paper makes the following con-

tributions: (1) empirical evidence of the phenomenon of developer-

applied CI accelerations; (2) an approach to detecting developer-

applied acceleration; and (3) a catalog of emergent patterns that
summarizes the characteristics of developer-applied accelerations.

Data Availability. To aid in future replication of our results, we

make a replication package publicly available.
1

2 CORE CONCEPTS IN CIRCLECI
In this paper, we choose to focus on the community of users who

adopt CircleCI as their CI platform. According to GitHub Market-

place,
2
CircleCI has the largest number of installations on GitHub.

In this section, we describe the basic concepts of the CircleCI plat-

form and how its users configure their CI processes.

CircleCI uses YAML
3
as their CI specification format. CI speci-

fications contain a series of workflows, which each have triggers

(i.e., when to run the workflow), jobs to run, and other configura-

tion data (e.g., arguments passed to the jobs). Each workflow may

define the dependencies between jobs, so that order-sensitive jobs

can be appropriately orchestrated by the provider.

A build job, or simply job, consists of multiple steps. Each step

could invoke a command from an orb,
4
execute a script, or perform

any other shell operation. All steps within a job run consecutively

in the same environment. Hence, any data (e.g., files) produced

during one step are automatically available in the subsequent steps.

When a job runs, data such as the start time and the logs of each step

are stored. Each run of a job is called a build invocation, or simply

an invocation, and all of the data produced by an invocation is

called a build record.

1
https://github.com/software-rebels/Developer-Applied-Accelerations-in-

Continuous-Integration

2
https://github.com/marketplace?category=continuous-integration&query=sort%

3Apopularity-desc

3
https://yaml.org/

4
https://circleci.com/orbs/

https://github.com/software-rebels/Developer-Applied-Accelerations-in-Continuous-Integration
https://github.com/software-rebels/Developer-Applied-Accelerations-in-Continuous-Integration
https://github.com/marketplace?category=continuous-integration&query=sort%3Apopularity-desc
https://github.com/marketplace?category=continuous-integration&query=sort%3Apopularity-desc
https://yaml.org/
https://circleci.com/orbs/

Developer-Applied Accelerations in Continuous Integration ASE’24, October 27–November 1, 2024, Sacramento, California

Extract jobs

Data overview v3

CircleCI
dataset

All jobs
42,284 jobs 28,968 jobs

Contain success

Final dataset
2,896 jobs

Top 10%

Figure 1: An overview of data collection and data filtering.

3 STUDY DESIGN
In this section, we present our approaches to data collection (Section

3.1) and filtering (Section 3.2).

3.1 Data Collection
To address our research questions, we require a rich and diverse

set of real-world CI specifications. As CI has been widely adopted

as a practice, there are many CI services available. While GitHub

Actions may have a larger installation base on GitHub, it is used to

perform any sort of routine action, and is not limited to the CI use

case. Thus, considering the popularity of CircleCI, and its explicit

focus on CI workflows, we choose to focus our analysis on it.

We begin with the dataset that was collected by Gallaba et al. [9].

They retrieve the dataset by crawling historical build records using

the CircleCI API.
5
The primary data collection process involved

retrieving all GitHub repositories, locating CircleCI configurations

(.circleci/config.yml files), and querying the CircleCI API to obtain

build records. After this process was finished, a dataset of 42,284

build jobs and 21,597,023 build records was created. The stored

build records occurred during the period from June 2017 to January

2022, spanning 7,795 repositories. The dataset we used comprises

7,795 projects, written in several languages (e.g., Python, JavaScript,

C++).

3.2 Data Filtering
The goal of the Gallaba et al. [9] study was to analyze the CI

provider’s perspective. Therefore, the dataset that was collected

aimed to be as complete as possible. Our study aims to focus on the

perspective of the invested CI consumer. As such, we apply filters

to the Gallaba et al. dataset to identify meaningful and well-tested

accelerations that are ready for reuse. Figure 1 shows the overview

of our data filtering process. Below, we explain each step.

3.2.1 Unsuccessful invocations. Since build invocations may termi-

nate prior to completion (e.g., failed or canceled invocations), build

records will not always be complete. These prematurely terminated

build records will not accurately reflect the duration of a complete

build. Hence, we first filter out all build records that do not have a

result setting of success. 16,970,889 records spanning 28,968 build

jobs survive this filter. In the remainder of the paper, we refer to

the build records that survive the filter simply as records.

3.2.2 Jobs with too few records. A job with few records may not

have established a clear trend in execution time. Moreover, it is

difficult to reason about the impact of an acceleration on such jobs

with low cardinality. Figure 2 plots the cardinality of jobs in the

records that survive our prior filter. The figure shows a clearly

skewed distribution with a long tail.

5
https://circleci.com/docs/api/v2/index.html

0 10000 20000 30000 40000
Number of jobs

100

101

102

103

104

105

Re
co

rd
 c

ou
nt

Figure 2: The long-tail distribution of build jobs. This figure
shows that most build jobs only have a small number of build
invocations.

To exclude the jobs with low cardinality, we select for future

analysis only those jobs in the top 10% in terms of build record

count.
6
The filter reduces our dataset to 2,896 jobs with at least 1,391

invocations. Finally, 13,292,279 records (78%) survive our filter.

4 RQ1: DEVELOPER-APPLIED ACCELERATION
DETECTION

In this section, we present our approach to detecting developer-

applied acceleration and the results of an empirical evaluation. We

propose a clustering-based solution, a rule-based solution, and an

ensemble solution that combines the two (Sections 4.1, 4.2, and

4.3), and present the results of the evaluation that compares the

accuracy of the proposed approaches (Section 4.4).

4.1 Clustering-Based Solution
The key intuition behind this solution is that when a build job is

accelerated, build durations will naturally cluster around acceler-

ated and non-accelerated central points, respectively. When the

acceleration is substantial, the two groups should be distinct.

The clustering-based solution divides build records into two

groups according to build duration. Then, a ratio is computed be-

tween the sum of the two within-group standard deviations and

the distance between the centers of these groups. When the ratio

is small, it suggests that the records truly belong to two distinct

groups in terms of build duration, and that an acceleration is likely

being employed. To group records by their duration, we apply

k-means—an unsupervised approach that splits examples into 𝑘

mutually exclusive clusters.

4.1.1 Pre-processing Prior to Clustering. Before applying k-means,

we need to control for the tendency of build duration to grow over

time (i.e., data drift), and the impact of outliers.

(1) Data drift. The duration of a build record tends to grow

as projects age [22]. As a result, accelerated records that

occur later in a project’s history may spend as much time

as (or even more time than) the non-accelerated records

that occur earlier in the project’s history. Figure 3 shows

an example of this phenomenon in the spotify/scio
project. To control for this confounding factor, we calculate

the clusters individually in monthly periods. Some months

6
A sensitivity analysis shows that the F1-score drops from 0.73 to 0.64 if we increase

the top 5% to 10%. The F1-score is presented in later sections.

https://circleci.com/docs/api/v2/index.html

ASE’24, October 27–November 1, 2024, Sacramento, California Mingyang Yin, Yutaro Kashiwa, Keheliya Gallaba, Mahmoud Alfadel, Yasutaka Kamei, and Shane McIntosh

2019-09 2019-11 2020-01 2020-03 2020-05 2020-07 2020-09 2020-11
Date

0:00:00

0:01:00

0:02:00

0:03:00

0:04:00

0:05:00

0:06:00

Bu
ild

 d
ur

at
io

n

Figure 3: Evolution of build duration. Note that later ac-
celerated invocations can take more time than earlier non-
accelerated invocations.

have abnormal ratio values because these months only have

too few records to produce stable k-means clusters. To reduce

the impact of extreme magnitudes, we compute the median

ratios weighted by the record count for each month.

(2) Outliers. In extreme cases, the duration can appear to be

misleadingly long (e.g., due to transient network issues) [4,

19]. This creates outliers that impact the performance of the

k-means approach. For example, k-means may be misled

to treat outliers as one group and all other invocations as

another. Through experimentation, we find that excluding

the top 5% of records substantially improves the performance

of the k-means approach. We also find outliers that have a far

shorter duration than other invocations, but they are much

fewer in number than slow outliers. Thus, only excluding

the fastest 1% of invocations is sufficient to counteract that

noise.
7

4.1.2 Computing Clusters. Figure 4 shows an overview of the

clustering-based solution that we apply. We apply k-means with

𝑘 = 2 to attempt to split build durations into accelerated and non-

accelerated clusters. The only feature that we provide to the k-
means algorithm is the build duration, because it is the most dis-

tinct feature between accelerated and non-accelerated invocations.

To determine whether the two clusters are distinct, we use the

ratio between the standard deviations of build duration in each

group and the distance between the two cluster centers. We use

sklearn.cluster.KMeans, a widely used machine learning

library for Python [24], to implement our approach.

More precisely, let 𝐴 and 𝐵 denote the collection of slower and

faster invocations divided by k-means. 𝜎𝐴 denotes the standard

deviation of build duration in𝐴, and so for 𝐵.𝐶𝐴 denotes the cluster

center of 𝐴, which is build duration because that is the only feature

that we use, and so for 𝐶𝐵 . Then, we define inter-cluster ratio as:

Ratio =
𝜎𝐴 + 𝜎𝐵

|𝐶𝐴 −𝐶𝐵 |
This ratio intuitively measures the proximity of two clusters

relative to their standard deviations. When two distinct groups

indicate acceleration, they typically yield a low ratio. To detect

whether acceleration is present or not, we need to apply a threshold

𝑡 to the ratio measurement. The build job is considered accelerated if

and only if 𝑅𝑎𝑡𝑖𝑜 < 𝑡 . Arbitrary selection of 𝑡 is unlikely to produce

7
Note that excluding the outliers improves the F1-score from 0.44 to 0.64.

useful results. Thus, we perform a preliminary analysis to select 𝑡

empirically (see Section 4.4 for details).

Like any learning-based solution, our clustering-based solution

will produce false positives. In our setting, false positives are likely

because the approach cannot distinguish between the developer-

applied accelerations (which are desired) and platform-provided

accelerations, such as built-in caching (which are not desired).

Nonetheless, our goal is not to develop an approach with perfect

discriminatory power, but rather to aid in detecting acceleration

candidates among the 2,896 jobs, and to facilitate our furthermanual

inspection to build a catalog of developer-applied accelerations.

4.2 Rule-Based Solution
The key intuition behind this solution is that developer-applied

accelerations can often be identified by their use of certain com-

mands or keywords within the CI specification file. In fact, CircleCI

provides developers with a suite of commands to craft custom accel-

eration scripts. For instance, developers might use the circleci
halt command to skip unnecessary steps in the CI workflow. By lo-

cating specifications that include such commands or keywords, we

can identify jobs that are likely to be accelerated by the developer.

Parsing built-in service provider commands within CI specifica-

tions presents challenges due to the YAML-based script structure.

YAML includes features like anchors and aliases, which enable de-

velopers to reuse configuration logic blocks by expanding stored

statements at dereference locations within the CI specification. To

handle this complexity, our approach performs a dynamic analysis

that leverages the unfolded CI specification (still in the same YAML

format but with all anchors and aliases dereferenced) that is stored

in the CircleCI logs.

Listing 2 shows an example of an unfolded CircleCI specification.

To extract the executed commands within a job, we traverse the list

of values associated with the command key (line 10). This produces

a list of strings, which may each span multiple lines. For each entry

in the list, we analyze each line to determine whether any of them

start with the keyword circleci. When such lines are detected,

we label the job as having been accelerated.

4.3 Ensemble Solution
The key intuition behind this solution is that the clustering-based

and rule-based solutions can complement each other by capturing

different types of developer-applied accelerations. For example,

the clustering-based solution can detect accelerations that do not

use CircleCI commands, such as Bash scripts, while the rule-based

solution can detect accelerations that use CircleCI commands. By

combining both solutions, we may improve the completeness of

our detection of developer-applied accelerations.

Our ensemble approach classifies a CI job as accelerated if it

is flagged as such by the rule-based approach, regardless of the

finding produced by the clustering-based approach. In cases where

the rule-based solution indicates that the job is not accelerated, the

ensemble approach relies on the ratio generated by the clustering-

based approach. If 𝑅𝑎𝑡𝑖𝑜 < 𝑡 , the ensemble approach labels the job

as accelerated.

Developer-Applied Accelerations in Continuous Integration ASE’24, October 27–November 1, 2024, Sacramento, California

Ratio per
month

Group by
month

July: 0.1

Aug: 0.2

Sep: 0.25
….

Perform k-means clustering
and calculate ratio by month

Select weighted
medium

Standard Deviation
Distance

Per-month
builds

0.1, 30 builds

0.2, 40 builds

0.25, 50 builds
 …..

0.2

Final
ratioBuilds

Aug Sep

Figure 4: An overview of the k-means approach and ratio measurement.

1 # Orb 'circleci/shellcheck@1.3.16' resolved to '
circleci/shellcheck@1.3.16'

2 version: 2
3 jobs:
4 docker-pre-publish:
5 ...
6 steps:
7 ...
8 - run:
9 name: should pre build docker images (

targeting a release branch)?
10 command: |
11 eval `.circleci/get_pr_info.sh -b`
12 if [[! "$TARGET_BRANCH" =~ "^release

-[0-9|.]+$"]] && [[! "$TARGET_BRANCH" =~ "^
test-[0-9|.]+$"]] ; then

13 echo Targeting branch $TARGET_BRANCH
will not publish docker images.

14 circleci step halt
15 fi
16 ...

Listing 2: Example of unfolded YAML file from the
diem/diem project.

4.4 Evaluation
We conduct an evaluation to compare the performance of our three

approaches in identifying jobs with developer-applied accelerations.

The evaluation requires a ground truth to which the solutions can be

compared. Hence, we first manually label a sample of jobs to deter-

mine if they contain developer-applied accelerations (Section 4.4.1).

Then, we evaluate our solutions (Sections 4.4.2 and 4.4.3).

4.4.1 Ground Truth Establishment. Webeginwith our initial dataset

of 2,896 jobs (Section 3.2). Sincemanual inspection of all 2,896 jobs is

too onerous, we select a random sample of 339 build jobs for inspec-

tion. The size of this sample ensures that we have 95% confidence

that the measures we compute will generalize to the population of

2,896 jobs within a ± 5% margin of error.

For each sampled job, we first plot its build duration over time

(see Figure 3 for an example) for visual indications of multimodality.

We also inspect the CI specification file of the project to check if

the job contains further evidence of developer-applied acceleration.

Given the potential for frequent changes to the CI specification,

we retrieve the most up-to-date version of the CI specification file

by identifying the branchwhere themajority of CI build invocations

take place. To achieve this, we mine the build records of a job and

1 if git log --name-status --exit-code --format=
oneline "$GIT_BASE_REVISION..$CIRCLE_SHA1" --
.circleci/config.yml home package.json yarn.
lock; then

2 echo "No changes found in watched paths. Ending
job."

3 circleci-agent step halt
4 else

Listing 3: An example of developer-applied acceleration.

retrieve the most recent 1,000 invocations based on their dates of

invocation. If there are fewer than 1,000 invocations available, we

consider all of them. From these 1,000 invocations, we analyze the

branch onwhich each invocation occurred and compute the number

of invocations associated with each branch. The branch with the

highest count of invocations is selected. We then extract and inspect

the CI specification corresponding to the latest invocation on the

most active branch.

Listing 3 shows an example of a job that we label as acceler-

ated.
8
The script in this listing examines file changes (as indicated

in line 1) and, based on the outcome, may skip subsequent steps

by invoking circleci-agent step halt (line 3). This be-

haviour leads us to label the job as accelerated. Note that there are

accelerated jobs that do not have clear indications of acceleration

in the specification. To counteract this, we conduct an in-depth

manual analysis of the scripts that are linked to the job specification.

For instance, consider the integration_tests_artifacts
job in the gatsbyjs/gatsby repository. The CI specification in

the footnote
9
indicates that the job consists of only one step (line

271). However, this step invokes a developer-applied command.
10

An inspection of the command definition (line 149) reveals that

this command invokes external scripts (line 171). Upon reviewing

the external scripts, we discover an example with indications of

acceleration (lines 29–34).
11

Finally, to mitigate potential bias in our manual inspection, two

authors independently label the build jobs. In cases of disagreement

(where one author labels a job as “accelerated” and the other as

“non-accelerated”), a third author casts the deciding vote. Upon

resolving all disagreements and excluding five jobs because their

8
https://github.com/expo/expo/blob/009ab81e2f27b6b79a1a18c895acb0d40c921bfa/

.circleci/config.yml#L71

9
https://github.com/gatsbyjs/gatsby/blob/14d3be3fd4009a7f24ea9ed9c92b26ae5e8e4940/

.circleci/config.yml

10
https://circleci.com/docs/configuration-reference/#commands

11
https://github.com/gatsbyjs/gatsby/blob/14d3be3fd4009a7f24ea9ed9c92b26ae5e8e4940/

scripts/assert-changed-files.sh

https://github.com/expo/expo/blob/009ab81e2f27b6b79a1a18c895acb0d40c921bfa/.circleci/config.yml#L71
https://github.com/expo/expo/blob/009ab81e2f27b6b79a1a18c895acb0d40c921bfa/.circleci/config.yml#L71
https://github.com/gatsbyjs/gatsby/blob/14d3be3fd4009a7f24ea9ed9c92b26ae5e8e4940/.circleci/config.yml
https://github.com/gatsbyjs/gatsby/blob/14d3be3fd4009a7f24ea9ed9c92b26ae5e8e4940/.circleci/config.yml
https://circleci.com/docs/configuration-reference/#commands
https://github.com/gatsbyjs/gatsby/blob/14d3be3fd4009a7f24ea9ed9c92b26ae5e8e4940/scripts/assert-changed-files.sh
https://github.com/gatsbyjs/gatsby/blob/14d3be3fd4009a7f24ea9ed9c92b26ae5e8e4940/scripts/assert-changed-files.sh

ASE’24, October 27–November 1, 2024, Sacramento, California Mingyang Yin, Yutaro Kashiwa, Keheliya Gallaba, Mahmoud Alfadel, Yasutaka Kamei, and Shane McIntosh

original repositories are inaccessible, we label 24 (7.1%) jobs as

accelerated with developer-applied accelerations and 310 (91.4%)

as non-accelerated.
12

4.4.2 Performance Measurement. Upon establishing the ground

truth, we evaluate our detection approach based on the established

ground truth and compute the accuracy.

Let 𝐽 denote all sampled 339 jobs, 𝑔 𝑗 denote the ground truth

of a job 𝑗 . 𝑔 𝑗 = 1 when the job is accelerated; 𝑔 𝑗 = 0 otherwise.

Similarly, 𝑑 𝑗 denotes the detection result of a job 𝑗 . 𝑑 𝑗 = 1when the

job is detected by our approach as accelerated; 𝑑 𝑗 = 0 otherwise.

We perform our evaluation using precision, recall, and F1-score

metrics, which are calculated as follows:

Precision =
|{ 𝑗 ∈ 𝐽 : 𝑔 𝑗 = 1 and 𝑑 𝑗 = 1}|

|{ 𝑗 ∈ 𝐽 : 𝑑 𝑗 = 1}|

Recall =
|{ 𝑗 ∈ 𝐽 : 𝑔 𝑗 = 1 and 𝑑 𝑗 = 1}|

|{ 𝑗 ∈ 𝐽 : 𝑔 𝑗 = 1}|

F1-score = 2 × Precision × Recall
Precision + Recall

Additionally, we calculate the F1-score of Zero-R —a naïve clas-

sification approach that labels all jobs as accelerated— to serve as a

baseline.

4.4.3 Results. In Figure 5, we present the performance metrics for

our approaches. The x-axis shows the settings of the threshold 𝑡

that is used within the clustering-based approach. Note that the

rule-based solution is equivalent to the ensemble solution with

𝑡 = 0.

Starting with a threshold of 0, the recall of the ensemble approach

is already at 0.33 due to the rule-based solution that can alone detect

33% of the truly accelerated jobs. As we increase the threshold, recall

steadily rises until it reaches 1. Conversely, precision begins at 0.53

and reaches its peak of 0.63 at 𝑡 = 0.19. These results highlight the

tradeoff between more liberal thresholds that improve recall at the

cost of precision.

The F1-score, which balances precision and recall, reaches its

highest point of 0.64 at 𝑡 = 0.27, indicating an optimal setting of 𝑡

(assuming that precision and recall are of equal importance in the

deployment setting).

In contrast, the clustering-based solution reaches its highest

F1-score at 𝑡 = 0.55 with a recall of 0.54 and a precision of 0.57;

the rule-based solution reaches an F1-score of 0.41 with a recall of

0.33 and a precision of 0.53. The ensemble solution combines the

advantages of both solutions and is superior to them.

Answer to RQ1: Our ensemble approach achieves the

strongest performance of the evaluated solutions for iden-

tifying developer-applied accelerations based on the selected

threshold. The approach yields a maximum F1-score of 0.64

with a recall of 0.67 and a precision of 0.62 when the threshold

for the inter-cluster ratio is set to 0.27.

12
The repositories of 5 (1.5%) jobs were no longer accessible at the time of inspection.

5 RQ2: DEVELOPER-APPLIED ACCELERATION
PATTERNS

The goal of RQ2 is to identify recurring patterns in the accelera-

tions that developers apply. To do this, we first apply the ensemble

detection approach introduced in RQ1 to collect jobs with poten-

tial developer-applied accelerations (Section 5.1). Then, we use an

open-coding process to (a) confirm that accelerations are truly be-

ing applied; and (b) manually categorize them to construct a catalog

of developer-applied accelerations (Section 5.2). Finally, we present

the constructed catalog of developer-applied acceleration patterns

(Section 5.3).

5.1 Collection of Job Candidates
We use our ensemble approach to identify candidate build jobs that

might have developer-applied accelerations. After evaluating our

approach in RQ1 (as discussed in Section 4.4.3), we set a thresh-

old of 0.27 for the ratio measurement — jobs with a ratio below

0.27 are flagged as potentially having accelerations. Figure 6 shows

how the studied build jobs are distributed with respect to the ra-

tio measurement. When threshold 𝑡 = 0.27, our approach detects

280 candidate jobs with potential accelerations, which we plan to

inspect manually. Considering that the precision of our ensemble

approach is 0.62, we expect that roughly 174 of the candidate jobs

will contain developer-applied accelerations; however, considering

that the recall of our ensemble approach is 0.67, we also expect

that we are missing roughly 86 accelerated jobs. The 86 potential

accelerations are dispersed among the remaining 2,616 jobs, making

them impractical to identify without excessive effort and cost. To

enhance our dataset with jobs featuring developer-applied acceler-

ations, we include an additional 24 jobs. These jobs were identified

during manual inspections in RQ1.

In total, we have 304 candidate build jobs to inspect — 280 de-

tected by our ensemble approach and 24 identified through RQ1. It

is important to note that some jobs overlap between these two sets,

i.e., jobs labeled as accelerated in RQ1 may also be detected as ac-

celerated by the ensemble approach. After removing 17 duplicates,

the total count of unique build job candidates is 287.

5.2 Categorization of Developer-Applied
Accelerations

After collecting the set of candidate jobs, we first validate if these

candidates truly include developer-applied accelerations. Then,

we categorize the confirmed accelerations to build a catalog of

developer-applied acceleration patterns. To achieve this goal, we

adopt an open-coding approach. Figure 7 provides an overview

of the approach, which includes (i) labeling candidate jobs (Sec-

tion 5.2.1), (ii) assessing agreement and resolving conflicts (Sec-

tion 5.2.2), and (iii) constructing a catalog of developer-applied

acceleration patterns (Section 5.2.3). Below, we describe each step

in the approach.

5.2.1 Label job candidates. Our open-coding approach is composed

of procedure discovery and code discovery steps. Procedure discov-

ery is required because of the lack of pre-existing categories for job

classification. During this phase, we inspect each of the 287 jobs

under consideration in two passes. In the first pass, we inspect a

Developer-Applied Accelerations in Continuous Integration ASE’24, October 27–November 1, 2024, Sacramento, California

0.0 0.2 0.4 0.6 0.8 1.0
Threshold (ensemble)

0.0

0.2

0.4

0.6

0.8

1.0

Recall
Precision
F1-Score
F1-Score of Zero-R

0.0 0.2 0.4 0.6 0.8 1.0
Threshold (clustering-based)

0.0

0.2

0.4

0.6

0.8

1.0

Recall
Precision
F1-Score
F1-Score of Zero-R

Figure 5: Comparison of detection performance between approaches. The rule-based solution equals the ensemble solution
with 𝑡 = 0.

0 500 1000 1500 2000 2500 3000
Number of detected jobs

0.0

0.2

0.4

0.6

0.8

1.0

Th
re

sh
ol

d

Figure 6: The vertical axis shows the threshold ratio and
the horizontal axis counts jobs detected as accelerated per
threshold. A solid line displays jobs our solution detects,
while dash-dotted lines indicate the chosen threshold and
job numbers.

RQ2 overview

287 jobs Label job
candidates

Labels
Resolve conflicts Build catalog of

developer-applied
accelerations

Figure 7: An overview of the open-coding approach.

randomly selected subset of 50 jobs. The first two authors of the

paper independently analyze the sampled jobs, focusing on relevant

artifacts that could potentially explain patterns of developer-applied

acceleration within the jobs. The inspectors begin with the CircleCI

specifications to understand its logic and determine if it contains

any developer-applied acceleration logic. If a decision cannot be

made solely based on the specification, the inspectors also check

related issues, pull requests, discussions, etc.

Following this, the two inspectors meet with the third author

to establish a clear procedure for subsequent inspections of each

job. All three inspectors agree on a procedure that includes the

following steps when checking each job:

(1) Validate acceleration. The goal of this step is to confirm

whether the job under examination contains any form of

acceleration. To achieve this, we follow the same approach

that we use for labeling accelerations in RQ1 (Section 4).

(2) Assign labels. If we label the job as having developer-

applied acceleration (from the previous step), we assign la-

bels describing (a) the objective of the acceleration, (b) the

mechanism used for inducing acceleration, and (c) the extent

or degree of the acceleration. We describe each label below.

(a) Purpose. This label explains the reason why developers

chose to use acceleration for the job being studied. For

instance, developers might decide to skip certain tasks

in the CI pipeline if a new commit only alters project

metadata, such as documentation.

(b) Mechanism. This label explains the method that developers

use to perform acceleration.

(c) Magnitude. This label explains the extent to which the job

is accelerated.

To assign each of these labels, we first inspect the CircleCI

specification, focusing on the job definition section. Often,

the combination of comments and implementation in this

section is sufficient for us to understand the rationale of the

developer-applied acceleration in the job. When the specifi-

cations refer to other scripts, we also inspect those scripts

to understand their roles in and mechanisms of perform-

ing the acceleration. Moreover, we inspect referenced issues,

pull requests, and discussions to gain a more complete un-

derstanding of the acceleration context. Additionally, our

dataset incorporates the duration of each job step, allowing

us to draw comparisons between shorter and longer invoca-

tions. This allows us to identify the step(s) that contribute

the bulk of the savings, helping to understand the varying

magnitude of acceleration present within the jobs.

Then, in the second pass, the first two authors independently

apply the above procedure to each of the 287 candidate jobs. They

each provide a detailed summary of each label to facilitate sub-

sequent discussions and the resolution of conflicts related to the

produced labels.

5.2.2 Compute agreement and resolve conflicts. Conflicts may arise

in the independently produced labels for the studied jobs. More

specifically, in our context, validation-type or category-type con-

flicts may arise. Validation-type conflicts occur when one inspector

labels a job as having developer-applied acceleration, while the

other labels it as non-acceleration. To assess the rate of validation-

type conflicts, we calculate the Cohen’s Kappa coefficient [21, 23]

and obtain a Kappa score of 0.79, which is considered to be a “sub-

stantial” level of agreement. Category-type conflicts occur when

ASE’24, October 27–November 1, 2024, Sacramento, California Mingyang Yin, Yutaro Kashiwa, Keheliya Gallaba, Mahmoud Alfadel, Yasutaka Kamei, and Shane McIntosh

the two inspectors apply semantically different labels to a job.
13

To

assess the rate of category-type conflicts, we calculate the Cohen’s

Kappa coefficient again and obtain a Kappa score of 0.74, which is

also considered to be a “substantial” level of agreement.

To resolve both types of conflicts, the two inspectors meet with

the third to inspect all conflicting labels. During the meeting, the

authors articulate the rationale behind their assigned labels and

incorporate feedback from the other author. All three inspectors

discuss to determine the final labels based on the records that

were produced during the initial inspection, such as build duration

data, annotated CI specifications, and referenced scripts. Using this

process, we achieve an agreement for each of the final labels.

The final set of labels identifies 169 (59%) jobs as having developer-

applied accelerations. This rate is roughly in line with the precision

of our ensemble approach in RQ1 (0.62), substantiating the use-

fulness of our detection approach and showcasing its prospective

utility in identifying developer-applied accelerations.

5.2.3 Build catalog. Similar to prior work [16, 28], we apply open-

card sorting of the consolidated list of labels to construct a catalog of

patterns of developer-applied acceleration. We first group patterns

based on label similarity and then assign descriptive names to each

of these groups to describe the higher-level category to which they

belong.

5.3 Catalog of Developer-Applied Acceleration
Patterns

In this section, we present the constructed catalog of developer-

applied acceleration patterns. Specifically, we present the catalog

of patterns in terms of the purpose (Section 5.3.1), mechanism (Sec-

tion 5.3.2), and magnitude (Section 5.3.3) of developer-applied ac-

celerations.

5.3.1 Purposes. Table 1 presents an overview of the 14 patterns

in the purpose of developer-applied accelerations that we discover.

Those patterns span four high-level categories. Note that a single

job may include more than one developer-applied acceleration,

which may span more than one pattern and/or category. As a result,

the total number of jobs in a given category may not align with the

sum of jobs within those patterns. Below, we describe each category

in more detail.

P1. File changes (102 jobs). This category represents the most

prevalent set of purpose patterns. CI jobs need not be triggered

when a change set solely consists of a specific set of (non-code)

files. When modifications are limited to files unrelated to the pri-

mary task at hand, it is probable that a CI job will yield identical

results to previous runs. Executing such jobs repetitively not only

wastes computational resources but could also distract developers,

especially if the jobs generate (failing) outcome notifications.

This category comprises two distinct patterns. The first pattern

skips CI jobs when there are no changes to specific files, whereas

the second pattern skips CI jobs when change sets solely consist

of changes to a list of specified files. The choice between these

patterns is often contingent upon the CI workflow being applied

13
Note that semantically similar labels, albeit phrased differently, are not deemed

conflicts. For example, one job was labeled as “skip creating cache when the cache has

already been made” by one author and “skip if the cache to build already exists” by

the other.

Table 1: Catalog of purpose patterns.

Purpose # Jobs

P1: File changes 102

Skip build, test, publish, etc., when specific files are

not changed.

53

Skip build, test, publish, etc., when only specific files

are changed.

52

P2: Externals 45

Skip build, test, publish, etc., when a branch/fork/PR

does not satisfy specific conditions.

19

Skip build, test, publish, etc., when explicitly specified

by developers.

15

Skip builds that have specific schedules. 5

Skip full packaging in specific branches. 3

Skip tasks under specific build-related conditions. 3

Skip full packaging in specific tags. 1

P3: Environmentals 38

Skip build if the artifact/cache/target already made. 23

Skip commands using external compilation cache. 10

Skip build, test, etc. when infrastructure is not ready. 4

Skip installing software if it is already installed. 1

P4: Miscellaneous 2

Skip frequent invocations. 1

Skip multiple parallel tests. 1

1 if [["$(git log --format=oneline -n 1
$CIRCLE_SHA1 | grep -i -E '\[skip[_]?docs\]'
)" != ""]]; then

2 echo "Skipping doc building job"
3 circleci step halt
4 fi

Listing 4: Example of a job for the skip-related keyword
pattern (P2).

and its requirements. Listing 3 provides an example of the pattern

“skip build, test, publish, etc., when specific files are not changed.”

This listing scans the change set for a set of “watched files”, skipping

the subsequent steps if those files remain unchanged.

P2. Externals (45 jobs). This category represents the second

most prevalent set of purpose patterns. The predominant pattern

within this category is “skip build, test, publish, etc., when a branch/-

fork/PR does not satisfy specific conditions.” While the examples

of this pattern target different development events, they share a

common practice. For instance, certain examples skip CI jobs that

are triggered by fork invocations. Other examples target skipping

on designated branches, i.e., there are specific branches (e.g., dev
branches) within the code repository where certain CI jobs or steps

within the job are carried out, which do not need to be performed

on other branches. Other examples target skipping on pull requests

(PRs) that meet specific conditions, e.g., PRs that are submitted to

forks (i.e., not the main repository), can be skipped.

Another pattern is “skip build, test, publish, etc., when explicitly

specified by developers.” This pattern provides developers with

flexibility to specify whether each triggered CI job is necessary

using a keyword in the commitmessage. Listing 4 shows an example

of this pattern, which checks whether the Git commit message

matches a pattern, and if so, the job skips documentation steps.

Developer-Applied Accelerations in Continuous Integration ASE’24, October 27–November 1, 2024, Sacramento, California

Table 2: Catalog ofmechanism patterns.

Mechanism # Jobs

M1: Environmental variables and parameters 82

Check branch name, PR number, repository name, etc.

from CircleCI environmental variables.

77

Check developer-applied environmental variables. 3

Check pipeline parameters. 3

Use command arguments to control the acceleration. 1

M2: Git commands 68

Check file changes using Git commands. 56

Check metadata using Git commands. 12

M3: External tools and APIs 47

Check GitHub APIs. 38

Use external compilation cache tools. 8

Check Docker image tag from API. 1

M4: File commands 36

Check flag files. 34

Check target files. 11

Use shell commands. 3

Use commands defined in package manager files. 1

M5: Logs/outputs 4

Check trace log. 2

Check test log. 1

Check program output. 1

P3. Environmentals (38 jobs). This category encompasses

patterns in which jobs are skipped based on the setting in which

the CI job is being executed. Acceleration of CI jobs is contingent on

the presence of output or dependencies within the CI environment.

For example, developers often skip CI steps when the output of the

step can be reused from a prior CI job. The most common pattern

in this category involves skipping steps or entire jobs when the

artifact, cache, or target already exists. For instance, CI jobs may

create dependencies that are used by other jobs. developer-applied

accelerations that fit this purpose pattern can determine if these

dependencies are up-to-date, potentially allowing them to skip the

build phase.

P4. Miscellaneous (2 jobs). We categorize the remaining two

jobs under the miscellaneous category. Such jobs have context-

specific conditions that make them unique to certain platforms

or situations. The “skip frequent invocations” pattern involves a

condition where a CI job is skipped if it is not its first invocation

of the day. Similarly, the pattern “skip multiple parallel tests” is

specific to a feature offered by CircleCI.
14

5.3.2 Mechanisms. Table 2 presents an overview of our catalog of

16 patterns in themechanisms that are applied to perform developer-

applied accelerations, which span five categories. As previously

noted, multiple patterns may apply to a single CI job. Below, we

present each mechanism category.

M1. Environmental variables and parameters (82 jobs). This
category (i.e., the most common mechanism category) incorporates

mechanisms that review environmental variables, including those

listed in CircleCI documentation and those created by developers,

as well as pipeline and program parameters. An example of this

mechanism is when jobs extract job-relevant details from environ-

mental variables that are created by the CircleCI platform. These

14
https://circleci.com/docs/parallelism-faster-jobs/

1 if ["$USE_SCCACHE" == "true"]; then
2 # https://github.com/mozilla/sccache
3 SCCACHE_PATH="$PWD/src/electron/

external_binaries/sccache"
4 echo 'export SCCACHE_PATH="'"$SCCACHE_PATH"'"'

>> $BASH_ENV
5 if ["$CIRCLE_PR_NUMBER" != ""]; then
6 #if building a fork set readonly access to

sccache
7 echo 'export SCCACHE_BUCKET="electronjs-

sccache-ci"' >> $BASH_ENV
8 echo 'export SCCACHE_TWO_TIER=true' >>

$BASH_ENV
9 fi
10 fi

Listing 5: Example of a job accelerated using cache tools (M3).

variables hold details about the CI job and its context.
15

Addition-

ally, CircleCI users have the option to create their own variables

within CI and/or build specifications.
16

Users also can use pipeline

parameters
17

to shape the behaviour of a CI job that spans multi-

ple pipelines. Listing 2 provides an example of this category. The

specification in the listing examines the name of the branch. If the

branch name, retrieved from environmental variables, does not

begin with “release” or “test,” the subsequent steps are skipped.

M2. Git commands (68 jobs). This category (i.e., the second

most prevalent mechanism category) encapsulates two patterns.

The first pattern analyzes change sets using Git commands, such as

git diff. Those in the second pattern analyze commit metadata,

such as the commit message. Listings 3 and 4 provide examples of

this category of mechanism.

M3. External tools and APIs (47 jobs). These accelerations
use external tools and APIs to decide whether to skip or accelerate

CI steps within a job. An example of this mechanism involves using

external caching tools like ccache.18 Listing 5 illustrates how

ccache is initialized. First, the job examines if the environmental

variable is analyzed on line 1 to determine whether the CI job

should use sccache, followed by its setup on lines 2–9.

M4. File commands (36 jobs). To perform the acceleration, this

category of mechanism relies on an inspection of file properties

using Bash commands on Linux and PowerShell commands on

Windows. The most frequently occurring pattern in this category is

“check flag files.” These flag files act like on/off switches, determining

whether the acceleration should be enabled. Listing 6 provides an

example of this pattern. In lines 16–20 of the listing, the build date

is stored in a file, which is persisted using the cache feature of

the CI platform. In future CI job invocations, the file is retrieved

from the cache (lines 1–3), and its content is checked. If the date

stored in the file matches the current date, the job is skipped (lines

4–15). In the “check target files” pattern, jobs are associated with

specific files. For example, in certain tasks, the “target file” is the

dist folder. If the dist folder already exists, it means the required

15
https://circleci.com/docs/variables/#built-in-environment-variables

16
https://circleci.com/docs/env-vars/

17
https://circleci.com/docs/pipeline-variables/

18
https://ccache.dev/

https://circleci.com/docs/parallelism-faster-jobs/
https://circleci.com/docs/variables/#built-in-environment-variables
https://circleci.com/docs/env-vars/
https://circleci.com/docs/pipeline-variables/
https://ccache.dev/

ASE’24, October 27–November 1, 2024, Sacramento, California Mingyang Yin, Yutaro Kashiwa, Keheliya Gallaba, Mahmoud Alfadel, Yasutaka Kamei, and Shane McIntosh

1 - restore_cache:
2 name: restore daily latch cache file.
3 key: code-coverage-daily
4 - run:
5 name: Halt job if already built code coverage

today.
6 command: |
7 NOW=`date +%Y-%m-%d`
8 LAST=`cat /home/circleci/lastbuild` || true
9 if [["$LAST" == "$NOW"]]; then
10 echo Last build occured today, halting.
11 circleci step halt
12 else
13 echo Last build occured $LAST, building.
14 date +%Y-%m-%d > /home/circleci/lastbuild
15 fi
16 - save_cache:
17 name: store updated daily latch file.
18 key: code-coverage-daily-{{ epoch }}
19 paths:
20 - /home/circleci/lastbuild

Listing 6: Example of a job accelerated under pattern (M4).

1 SHOULD_LINT_ALL=$(./Tests/scripts/should_lint_all.
sh)

2 mkdir ./unit-tests
3 if [-n "$SHOULD_LINT_ALL"]; then
4 echo -e "----------\nLinting all because:\n${

SHOULD_LINT_ALL}\n----------"
5 demisto-sdk lint -p 8 -a -q --test-xml ./unit-

tests --log-path ./artifacts --failure-report
./artifacts

6 else
7 demisto-sdk lint -p 8 -g -v --test-xml ./unit-

tests --log-path ./artifacts --failure-report
./artifacts

8 fi

Listing 7: Example of a job that skips a partial step.

distribution artifacts (e.g., the generated website files) are ready,

and steps within the job can be skipped.

M5. Logs/outputs (4 jobs). Jobs classified under this category

perform acceleration according to the outputs or logs of certain

build procedures, i.e., by analyzing standard output/error streams
19

or the logs that are generated during job execution. For instance, a

step within a job might review previous step logs to decide whether

to skip tests, particularly when a test log already exists.

5.3.3 Magnitudes. Our inspection reveals that jobs can be classi-

fied into three categories based on their acceleration magnitude:

• Remaining steps (78%): This is the most prevalent category.

Jobs under this category skip all subsequent steps.

• Current step (12%): Jobs under this category skip the remain-

der of the step that is currently being executed.

• Partial step (10%): Jobs under this category skip certain tasks

within the current step.

19
https://en.wikipedia.org/wiki/Standard_streams

In the “remaining steps” category, CircleCI command-line tools,

such as using “circleci step halt”, are commonly used. An

example of this acceleration can be seen in Listing 4, where the halt

command appears on line 3. The “current step” category typically

involves operations that terminate the currently executing script.

For instance, the exit command can be used to skip the remaining

statements in a script. The “partial step” pattern involves executing

specific commands only on a particular branch. Listing 7 is an

example from the demisto/content project, where conditions

are checked to decide whether to run the full linting procedure

(line 3) or a subset (specified using the arguments on lines 5 & 7).

Answer to RQ2: Emergent patterns that explain developer-

applied accelerations include file changes (P1), where specific
job steps are skipped due to changes made to specific files,

as well as externals (P2) and environmentals (P3), where job
acceleration occurs based on external and environmental fac-

tors. Developers use various mechanisms to perform these

accelerations, such as analyzing the state of environmental
variables (M1), issuing commands (M2, M4) and integrating

external tools and APIs (M3). In the majority of examined jobs

(78%), developer-applied accelerations result in the complete

skipping of all subsequent job steps; however, step (12%) or

sub-step (10%) skipping behaviour is not uncommon.

6 RELATEDWORK
Below, we situate our work with respect to the literature on CI.

CI provides numerous benefits to the software teams that adopt

it [15, 32]. For example, Hilton et al. [15] explored the adoption and

implications of CI across 34,544 open-source projects, revealing

that 40% of these projects adopt CI. Surveys of developers within

these projects indicated that early bug detection capabilities and

preventing contributors from releasing breaking builds are major

motivations for CI adoption. Additionally, Vasilescu et al. [32] stud-

ied a dataset of 246 open-source projects that use CI and found that

CI was associated with increased developer productivity.

Adopting CI presents its challenges. Several studies have dis-

cussed the hurdles that developers face [11–13]. For example, Hilton

et al. [12] surveyed 523 developers to identify barriers that devel-

opers face, with 50% of the respondents reporting problems trou-

bleshooting CI builds, and 52% of them preferring simplified config-

uration options for CI tools. Ghaleb et al. [11] modeled long build

durations using a dataset of 104,442 builds that span 67 projects.

Other studies proposed approaches to reduce CI build time by

skipping unnecessary builds or stepswithin builds [1, 2, 7, 18, 34, 35].

For example, Gallaba et al. [7] proposed a language-agnostic ap-

proach (Kotinos) to infer data from which build acceleration de-

cisions can be made. They found that at least 87.9% of the 14,364

studied CI build records contained at least oneKotinos acceleration

in their production setting. Abdalkareem et al. [2] examined 1,813

commits where developers requested for CI builds to be skipped.

This analysis revealed reasons for skipping CI builds (e.g., skip

builds when changes are made to documentation). Based on those

reasons, they proposed a rule-based method (CI-Skipper) that au-

tomatically identifies commits that could be CI skipped. In another

https://en.wikipedia.org/wiki/Standard_streams

Developer-Applied Accelerations in Continuous Integration ASE’24, October 27–November 1, 2024, Sacramento, California

study, Abdalkareem et al. [1] trained a decision tree classifier to

detect CI-skippable commits. Jin and Servant [18] proposed Pre-

ciseBuildSkip—an enhanced CI-Skipper that considers additional

rules to maximize the rate of build failure observation.

Other studies explored ways to speed up CI using testing meth-

ods. They focused on reducing the number of tests being invoked

(i.e., test case selection), yet ensuring the most likely-to-fail tests

are run [5, 26, 27, 37]. For example, Shi et al. [26] proposed a tool

(iFixFlakies) to mitigate the inefficiency of build rerunning, specif-

ically in the context of flaky tests. Durieux et al. [5] analyzed a

dataset of 3,286,773 builds, and found that 56,522 of those builds

were restarted due to timeouts and flaky tests.

Previous research has primarily focused on the benefits of and

obstacles to CI adoption, as well as proposing approaches to acceler-

ate CI processes. However, to the best of our knowledge, the concept

of developer-applied accelerations remains unexplored. Inspired

by these prior studies, we bridge that gap by proposing a detection

approach, which we use to identify developer-applied accelerations.

Our inspection of detected examples yields a catalog of reusable

patterns of developer-applied accelerations. Furthermore, our study

enhances the current understanding of CI acceleration by providing

empirical evidence that goes beyond the anecdotal insights typi-

cally found in grey literature. While blog posts offer practical tips

for accelerating CI processes,
20

they do not typically include the

kind of systematic validation across diverse real-world scenarios

that our paper includes. Our study not only documents but also

evaluates CI acceleration techniques that developers have imple-

mented within the CircleCI platform in open-source projects. One

such example is the strategy of skipping unaffected steps. While

this technique is mentioned both in our research and in various blog

posts,
21

there is a lack of clarity regarding its actual adoption in

practice. For example, specific patterns, such as categories that are

related to skipping builds when particular files remain unchanged,

are commonly adopted by developers (31.4%). In contrast, patterns

that are related to skipping builds on specific schedules (3.0%) are

not yet widely adopted.

7 THREATS TO VALIDITY
Construct Validity. Construct validity is concerned with the de-

gree to which our measurements capture what we aim to study.

Our procedure for producing the catalog of developer-applied ac-

celerations is based on the opinions of the inspectors, and as such,

is subject to inspector bias. We address this by having multiple

authors label job samples, achieving a substantial Cohen’s Kappa

score of +0.79. We mitigate this threat by having multiple authors

label a sample of jobs, yielding a Cohen’s Kappa agreement score

of +0.79 (considered “substantial” agreement), suggesting that our

catalog is robust to inspector bias.

Internal Validity.We categorize the accelerations based on 280

acceleration-prone jobs and the 24 accelerated jobs from samples.

Since the majority is from detection, the categorization may be

biased because some categories may be more likely to be caught by

our detection. We mitigate this threat by involving the 24 samples.

Involving the 24 samples is the way we mitigate this threat.

20
https://dev.to/zenika/gitlab-ci-optimization-15-tips-for-faster-pipelines-55al

21
https://claroty.com/blog/engineering-speed-up-your-ci-cd-pipeline

External Validity. Our study is based on projects that adopt

CircleCI. Hence, our results may not generalize to projects that

use other CI providers. Nonetheless, CI providers typically use

YAML-based configurations that are highly similar to CircleCI

(e.g., .circleci/config.yml for CircleCI, .travis.yml
for Travis CI), and hence, our results may likely generalize to other

CI providers.

8 CONCLUSION & LESSONS LEARNED
This paper proposes approaches to detect developer-applied CI ac-

celerations. We evaluate our approaches using a large-scale dataset

of 2,896 CircleCI jobs, observing that our ensemble approach achieves

an F1-score of 0.64 with a recall of 0.67 and a precision of 0.62. Hav-

ing achieved reasonable performance scores, we conduct a quali-

tative analysis of the detected developer-applied accelerations to

create a detailed catalog of patterns. We conjecture that this catalog

will provide the following benefits for CI consumers and providers:

• CI consumers can leverage the patterns in our catalog
to access tailored strategies for CI accelerations. Our
study reveals a catalog of patterns that developers leverage

to enhance the CI process in their projects, especially less

recognized patterns (e.g., P2 & P3 in Section 5.3). For ex-

ample, developers can use our patterns to accelerate their

CI by removing costly redundancies, such as unnecessary

external service calls or rebuilds triggered by minor typos.

They can also explore beyond standard CI documentation by

inspecting unique aspects of build metadata, like timestamps

and commit messages.

• CI providers (platforms) can leverage the patterns in
our catalog to promote built-in acceleration features.
Our catalog can serve as a resource for enhancing CI plat-

forms by aligning with identified patterns and introducing

new features. For example, CI platforms can use branch

filters to decide if a job should run on specific branches,

thus reducing unnecessary resource use and feedback de-

lays. Additionally, CI platforms can develop new acceleration

features inspired by our catalog. Features such as allowing

developers to skip builds based on environmental variable

analysis and integration with APIs could be essential. For

example, developers could specify job skipping in commit

messages, a feature not currently offered by CircleCI, despite

a clear demand for such capabilities.
22

DECLARATIONS
Funding. This work was supported by the Natural Sciences and

Engineering Research Council (NSERC) of Canada, the financial

support of JST for PRESTO grant JPMJPR22P3, the financial support

of JSPS for the Bilateral Program grant JPJSBP120239929, and the

Inamori Research Institute for Science via the InaRIS Fellowship.

Disclaimer. The findings and opinions in this paper belong solely

to the authors, and are not necessarily those of Huawei. Moreover,

our results do not in any way reflect the quality of Huawei products.

22
https://circleci.canny.io/cloud-feature-requests/p/add-ability-to-filter-by-commit-

messages-in-workflows

https://dev.to/zenika/gitlab-ci-optimization-15-tips-for-faster-pipelines-55al
https://claroty.com/blog/engineering-speed-up-your-ci-cd-pipeline
https://circleci.canny.io/cloud-feature-requests/p/add-ability-to-filter-by-commit-messages-in-workflows
https://circleci.canny.io/cloud-feature-requests/p/add-ability-to-filter-by-commit-messages-in-workflows

ASE’24, October 27–November 1, 2024, Sacramento, California Mingyang Yin, Yutaro Kashiwa, Keheliya Gallaba, Mahmoud Alfadel, Yasutaka Kamei, and Shane McIntosh

REFERENCES
[1] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. 2020. A machine learning

approach to improve the detection of ci skip commits. Transactions on Software
Engineering (2020).

[2] Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, and Juergen Rilling. 2019.

Which commits can be CI skipped? Transactions on Software Engineering 47

(2019).

[3] Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng. 2020. Buildfast: History-

aware build outcome prediction for fast feedback and reduced cost in continuous

integration. In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering. 42–53.

[4] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,

and Harald C Gall. 2017. An empirical analysis of the docker container ecosystem

on github. In Proceedings of the 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories (MSR’17). 323–333.

[5] Thomas Durieux, Claire Le Goues, Michael Hilton, and Rui Abreu. 2020. Empir-

ical study of restarted and flaky builds on Travis CI. In Proceedings of the 17th
International Conference on Mining Software Repositories.

[6] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:
improving software quality and reducing risk.

[7] Keheliya Gallaba, John Ewart, Yves Junqueira, and Shane Mcintosh. 2020. Accel-

erating continuous integration by caching environments and inferring depen-

dencies. Transactions on Software Engineering (2020).

[8] Keheliya Gallaba, Maxime Lamothe, and Shane McIntosh. 2022. Lessons from

eight years of operational data from a continuous integration service: an ex-

ploratory case study of CircleCI. In Proceedings of the 44th International Conference
on Software Engineering.

[9] Keheliya Gallaba, Maxime Lamothe, and Shane McIntosh. 2022. Lessons from

Eight Years of Operational Data from a Continuous Integration Service: An

Exploratory Case Study of CircleCI. In Proceedings of the 44th International Con-
ference on Software Engineering (ICSE’22). 1330–1342. https://doi.org/10.1145/

3510003.3510211

[10] Keheliya Gallaba and Shane McIntosh. 2018. Use and misuse of continuous

integration features: An empirical study of projects that (mis) use Travis CI. IEEE
Transactions on Software Engineering 46, 1 (2018), 33–50.

[11] Taher Ahmed Ghaleb, Daniel Alencar Da Costa, and Ying Zou. 2019. An empirical

study of the long duration of continuous integration builds. Empirical Software
Engineering 24 (2019), 2102–2139.

[12] Michael Hilton, Nicholas Nelson, Danny Dig, Timothy Tunnell, Darko Marinov,

et al. 2016. Continuous integration (CI) needs and wishes for developers of

proprietary code. (2016).

[13] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny

Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexibility.

In Proceedings of the 11th Joint Meeting on Foundations of Software Engineering.
[14] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.

2016. Usage, costs, and benefits of continuous integration in open-source projects.

In Proceedings of the 31st International Conference on Automated Software Engi-
neering.

[15] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.

2016. Usage, Costs, and Benefits of Continuous Integration in Open-Source

Projects. In Proceedings of the 31st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE’16). 426–437. https://doi.org/10.1145/2970276.

2970358

[16] Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto. 2019. The

Review Linkage Graph for Code Review Analytics: A Recovery Approach and

Empirical Study. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (FSE’19). 578–589. https://doi.org/10.1145/3338906.3338949

[17] Xianhao Jin and Francisco Servant. 2020. A cost-efficient approach to building

in continuous integration. In Proceedings of the 42nd International Conference on
Software Engineering. 13–25.

[18] Xianhao Jin and Francisco Servant. 2022. Which builds are really safe to skip?

Maximizing failure observation for build selection in continuous integration.

Journal of Systems and Software 188 (2022).
[19] Eero Laukkanen, Juha Itkonen, and Casper Lassenius. 2017. Problems, causes and

solutions when adopting continuous delivery—A systematic literature review.

Information and Software Technology 82 (2017), 55–79.

[20] Mateusz Machalica, Alex Samylkin, Meredith Porth, and Satish Chandra. 2019.

Predictive test selection. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP).

[21] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica 22, 3 (2012), 276–282.

[22] Shane McIntosh, Bram Adams, and Ahmed E. Hassan. 2012. The evolution of

Java build systems. Empirical Software Engineering 17, 4-5 (2012), 578–608.

[23] Mahtab Nejati, Mahmoud Alfadel, and Shane McIntosh. 2023. Code Review of

Build System Specifications: Prevalence, Purposes, Patterns, and Perceptions.

In Proceedings of the 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE’23). 1213–1224. https://doi.org/10.1109/ICSE48619.2023.00108

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[25] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem Mkaouer. 2021.

Bf-detector: an automated tool for ci build failure detection. In Proceedings of
the 29th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1530–1534.

[26] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:

A framework for automatically fixing order-dependent flaky tests. In Proceed-
ings of the 27th Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering.

[27] August Shi, Peiyuan Zhao, and Darko Marinov. 2019. Understanding and Im-

proving Regression Test Selection in Continuous Integration. In Proceedings of
the 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE’19). 228–238. https://doi.org/10.1109/ISSRE.2019.00031

[28] Mini Shridhar, Bram Adams, and Foutse Khomh. 2014. A Qualitative Analysis of

Software Build System Changes and Build Ownership Styles. In Proceedings of the
8th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM’14). Article 29, 10 pages. https://doi.org/10.1145/2652524.

2652547

[29] Daniel Ståhl and Jan Bosch. 2013. Experienced benefits of continuous integration

in industry software product development: A case study. In Proceedings of the
12th IASTED International Conference on Software Engineering. 736–743.

[30] Daniel Ståhl and Jan Bosch. 2016. Industry application of continuous integration

modeling: a multiple-case study. In Proceedings of the 38th International Conference
on Software Engineering Companion.

[31] Gengyi Sun, Sarra Habchi, and Shane McIntosh. 2024. RavenBuild: Context,

Relevance, and Dependency Aware Build Outcome Prediction. Proceedings of the
ACM on Software Engineering 1, FSE (2024), 996–1018.

[32] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir

Filkov. 2015. Quality and productivity outcomes relating to continuous integra-

tion in GitHub. In Proceedings of the 10th joint meeting on foundations of software
engineering.

[33] Carmine Vassallo, Sebastian Proksch, Harald C. Gall, and Massimiliano Di Penta.

2019. Automated Reporting of Anti-Patterns andDecay in Continuous Integration.

In Proceedings of the 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE’19). 105–115. https://doi.org/10.1109/ICSE.2019.00028

[34] Nimmi Weeraddana, Mahmoud Alfadel, and Shane McIntosh. 2024. Character-

izing Timeout Builds in Continuous Integration. IEEE Transactions on Software
Engineering 50, 6 (2024), 1450–1463.

[35] Nimmi Rashinika Weeraddana, Mahmoud Alfadel, and Shane McIntosh. 2024.

Dependency-Induced Waste in Continuous Integration: An Empirical Study of

Unused Dependencies in the npm Ecosystem. Proceedings of the ACM on Software
Engineering 1, FSE (2024), 2632–2655.

[36] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu.

2019. A Conceptual Replication of Continuous Integration Pain Points in the

Context of Travis CI. In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (FSE’19). 647–658. https://doi.org/10.1145/3338906.3338922

[37] C. Zhu, O. Legunsen, A. Shi, and M. Gligoric. 2019. A Framework for Check-

ing Regression Test Selection Tools. In Proceedings of the 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE’19). 430–441. https:

//doi.org/10.1109/ICSE.2019.00056

https://doi.org/10.1145/3510003.3510211
https://doi.org/10.1145/3510003.3510211
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1145/3338906.3338949
https://doi.org/10.1109/ICSE48619.2023.00108
https://doi.org/10.1109/ISSRE.2019.00031
https://doi.org/10.1145/2652524.2652547
https://doi.org/10.1145/2652524.2652547
https://doi.org/10.1109/ICSE.2019.00028
https://doi.org/10.1145/3338906.3338922
https://doi.org/10.1109/ICSE.2019.00056
https://doi.org/10.1109/ICSE.2019.00056

	Abstract
	1 Introduction
	2 Core Concepts in CircleCI
	3 Study Design
	3.1 Data Collection
	3.2 Data Filtering

	4 RQ1: Developer-Applied Acceleration Detection
	4.1 Clustering-Based Solution
	4.2 Rule-Based Solution
	4.3 Ensemble Solution
	4.4 Evaluation

	5 RQ2: Developer-Applied acceleration patterns
	5.1 Collection of Job Candidates
	5.2 Categorization of Developer-Applied Accelerations
	5.3 Catalog of Developer-Applied Acceleration Patterns

	6 Related Work
	7 Threats to Validity
	8 Conclusion & Lessons Learned
	References

