
Rechecking Recheck Requests in Continuous
Integration: An Empirical Study of OpenStack

Yelizaveta Brus∗, Rungroj Maipradit∗§, Earl T. Barr‡, Shane McIntosh∗
∗Software REBELs, University of Waterloo, Canada; ‡University College London, UK; §Corresponding author

E-mail: ∗{ybrus, rungroj.maipradit, shane.mcintosh}@uwaterloo.ca; ‡e.barr@ucl.ac.uk

Abstract—Continuous Integration (CI) is a process for automat-
ically checking patch sets for errors. CI periodically fails due to
non-deterministic (a.k.a., “flaky”) behaviour. Since a patch set may
not be the cause of a flaky failure, developers can issue a “recheck”
command to request retesting a patch set. Developers waste time
considering whether or not to issue a recheck after a CI failure.
Prior work also shows that rechecks are issued liberally, wasting
up to 187.4 compute years when CI continues to fail. To save
developer time and avoid wasteful rechecks, we fit and analyze
statistical models that discriminate between successful and failing
rechecks, i.e., those rechecks that will change a failing CI run
into a successful one and those that will fail again. Through an
empirical study of 314,947 recheck requests from OpenStack, we
find that our model can differentiate successful and failed rechecks
well, outperforming baseline approaches by 23.6 percentage points
in terms of AUROC (0.736).

Analysis of our model suggests that, in terms of explanatory
power, past behaviour of jobs, bots, and users dominate static
characteristics of patch sets. Applying our model to automatically
request rechecks for those predicted to succeed would have saved
roughly 247 years of elapsed developer time for OpenStack.
Applying our model to skip recheck requests when they are
predicted to fail would avoid 86.49% of wasted rechecks, saving
roughly 262 years of compute time.

I. INTRODUCTION

Continuous Integration (CI) [1] systems automatically exe-
cute routine checks (e.g., compilation, testing) when develop-
ers submit change sets for integration. CI systems provide
developers with early feedback on code changes, helping
to identify mistakes before changes are merged into the
main codebase. Prior work has associated CI adoption with
accelerated development [2], improved code quality [3], and
the adoption of best practices for automated testing [4].

Despite their benefits, CI systems are imperfect, periodically
generating an unreliable pass/fail signal [5]. CI runs fail due
to infrastructure failures [6], service outages [5], or non-
deterministic (a.k.a., “flaky”) build behaviour [7]–[9]. When a
CI run fails, reports are sent to developers who may attempt
to diagnose and fix the issue.

Developers waste time debugging flaky CI results, especially
when they attempt to diagnose and fix correct code. When
their diagnosis suggests that a failure is unrelated to the code,
developers may request the re-execution of a CI run without
modifying the patch set. Durieux et al. [10] found that 27,006
of 583,415 Travis CI failures were restarted, while Maipradit
et al. [11] found that 55% of OpenStack code reviews included
at least one recheck request.

Issuing a recheck request may not resolve the problem.
Indeed, 20 of 24 OpenStack contributors surveyed by Maipradit
et al. [11] reported that they still debug manually after filing
recheck requests. When the root cause is flakiness, this follow-
up debugging effort can further waste developer time.

To counteract the waste of developer time, rechecks may be
requested without thoroughly scrutinizing CI failures; however,
this can generate a substantial waste of compute resources.
For example, Maipradit et al. [11] estimated 187.4 years of
compute time were wasted by injudicious recheck requests.
Durieux et al. [10] further note that 54.42% of restarts occur
within an hour, suggesting that many retries may be requested
before failures have been fully diagnosed.

In this paper, we characterize recheck outcomes by fitting and
analyzing statistical models. Our study uncovers patterns that
drive recheck outcomes, offering insights to support decision-
making and highlighting factors to prioritize during recheck
requests. For our analysis, we examine historical CI data to
identify patterns that differentiate successful rechecks from
failed ones, focusing on the behaviour of bots that react to
development events by performing CI, jobs that represent
concrete tasks (like executing a test or running an analysis
tool) that a bot performs, and users, who initiate CI requests.
We conduct an empirical study of 314,947 recheck requests
from the OpenStack community. We structure our study by
addressing the following two Research Questions (RQs):
RQ1. How effectively can our model differentiate successful

and failed rechecks?
Our model achieves an Area Under the Receiver Opera-
tor Characteristic (AUROC) curve of 0.736, surpassing
the baseline of random guessing by 23.6 percentage
points, demonstrating its strong discriminatory power.
The model also achieves a Brier score of 0.191, indicat-
ing that its risk estimates are well-calibrated compared
to a random guessing model, outperforming the baseline
by 5.9 percentage points. In terms of the precision-recall
tradeoff, the model achieves an Area Under the Precision
Recall Curve (AUPRC) of 0.604, outperforming a
random guessing baseline by 25.5 percentage points.
The optimism penalties for performance metrics are
all near zero, indicating that the model is stable and
unlikely to be overfitted. Our model correctly identifies
177,399 out of 205,122 recheck failures, which if they
were skipped, would avoid 86.49% of all failed rechecks
and save a substantial amount of build resources.

RQ2. What are the most important characteristics of builds
that should be repeated?
Feature families that characterize bot history, job history,
patch information, user history, and timing of a recheck
request all contribute at least one feature that contributes
a significant amount of explanatory power to the model.
The job history and bot history families contribute
the largest amount of the explanatory power, alone
accounting for 60.19%. More specifically, the job
success ratio and bot success ratio features account
for 50% of the explanatory power, highlighting that
past behaviour dominates when determining whether a
recheck will pass. This underscores the importance of
focusing on improving misbehaving jobs and bots to
reduce unnecessary rechecks and optimize resource use.

Inspired by the impact of past behaviour on recheck
outcomes, we explore whether recent data trends are being
overshadowed by the long history of past data. We analyze how
sensitive past behaviour features are to the window size, i.e.,
the time period considered when calculating these features. We
experiment with window sizes of one day up to one year, and
find that model fitness remains stable, with AUROC varying
only 0.59%. Brier scores improve slightly with larger windows,
while AUPRC decreases, suggesting better precision-recall
trade-offs for smaller windows. The optimism values remain
near zero, indicating low optimism bias. Feature importance
for key features like job success ratio and bot success ratio
remains consistent. The insensitivity of both model fitness and
feature importance suggests that both recent and longer-term
data are suitable for generating actionable recommendations.

Our findings may dishearten individual contributors, since
they are powerless to change the characteristics of their patch
that influence the likelihood of a recheck to pass. Instead of
integrating model feedback at the patch set level, we advocate
using its findings to guide collective action, such as focusing
process improvement efforts on bots, jobs, and users that
misbehave. Misbehaving bots can be throttled to limit their
access to resources (e.g., by reducing their execution frequency),
misbehaving jobs can have their voting power revoked (e.g., by
lowering their status from mandatory to optional), and users
who recheck efficiently should be rewarded (e.g., by offering
recheck efficiency badges on social coding platforms).

Our key finding is that classifiers like ours can optimize
rechecks. Applying our model to automatically request rechecks
for those predicted to succeed would have saved roughly 247
years of elapsed developer time for OpenStack. Applying our
model to skip recheck requests when they are predicted to fail
would avoid 86.49% of wasted rechecks, saving roughly 262
years of compute time.

II. CORE RECHECK CONCEPTS

The CI process starts when a developer submits to a change
set, i.e., a collection that includes all proposed changes to
the codebase of a project. A change set may contain several
patch sets, i.e., atomic code changes. Each patch set may
elicit general discussion or inline review comments from other

developers. In addition to the message content itself, each
comment submitted to a code review platform like Gerrit
includes metadata, describing when the comment was recorded
and who submitted the comment.

Once a patch set is submitted, it is common practice for bots
to initiate a build, i.e., a series of routine steps that may compile,
link, assemble, and test code to ensure that the new changes
do not introduce regression. This process is managed by CI
bots, which may interact with external systems like Jenkins and
Zuul, or may implement custom logic specified by developers.
Each bot may perform one or more jobs, each representing a
concrete task (e.g., executing a suite of unit or integration tests,
running static code analysis, or performing security checks).
Each job produces an outcome, which describes the result of
running a job as either successful or failed. The outcome of a
CI bot is successful only if all of its jobs are successful (failed
otherwise). Similarly, the outcome of a build is successful if
all of its voting CI bots are successful (failed otherwise). If
the build of a patch set is successful, it is considered validated,
and presuming reviewers are also satisfied, the patch set can
be queued for integration.

Build failures can occur due to issues unrelated to the
code, such as flaky tests that produce inconsistent results,
or environmental issues, such as network outages. In these
situations, a user can recheck the build by issuing a “recheck”
request, which repeats the build for the same patch set. In this
study, we focus on rechecks of build failures, as developers
who recheck successful builds are likely doing so intentionally,
prioritizing other factors over concerns about waste or flakiness.

Rechecking a build failure can have two possible outcomes. A
“failing” recheck is one where the build fails again. Conversely,
a “successful” recheck is one where the build eventually
succeeds. A “failing” recheck does not provide new information
to the developer but consumes additional CI resources. We
consider such rechecks wasteful and recommend skipping them
to save resources and improve efficiency.

III. STUDY DESIGN

In this section, we provide our reasons for studying the
OpenStack community, and describe our procedures for curating
the dataset (DC), fitting the model (MF), and performing model
analysis (MA). Figure 1 shows an overview of our study design.
Below, we describe each procedure.

OpenStack Community

We select the OpenStack community for our study because it
supports recheck functionality, and provides detailed guidelines
about its use.1 Unlike other projects, OpenStack emphasizes the
responsible use of the “recheck” command with its guidelines,
emphasizing that “CI test resources are very scarce (and
becoming more so), so please be extremely sparing when
asking the system to re-run tests”. In contrast, even though
Travis CI also offers the same functionality using the “restart”
button, it does not provide such advice about minimizing use

1https://docs.openstack.org/project-team-guide/testing.html

https://docs.openstack.org/project-team-guide/testing.html

Change
Sets DB

(MF) Model Fitting

(DC) Data Curation

(MA) Model Analysis

Recheck builds
key ... before

recheck
after

recheck
(14151, 7) ... failure failure

(15104, 10) ... success success

(21946, 20) ... failure success

(21946, 25) ... success failure

DC-5

Select
Rechecks for
Prior Failures

Gerrit

Recheck Builds
key ... before

recheck
after

recheck
(14151, 7) ... failure failure

(21946, 20) ... failure success

Model

MF-3

Estimate
Budget for
Degrees of
Freedom

MF-4

Allocate
Degrees

of Freedom

MF-5

Fit Regression
Model

MF-2

Perform
Redundancy

Analysis

MA-1

Estimate
Model

Performance

MA-2

Interpret the
Model

F1 F2 ... F16
1
2
...
N

MF-1

Perform
Collinearity

Analysis

Change
Sets with

Bot label DB

DC-1

Collect
Change

Sets

DC-2

Label Authors
as Bot or

User

DC-3

Identify
Rechecks

Recheck
Builds

DC-4

Identify
Recheck

Outcomes

DC-6

Construct
Features

Fig. 1: An overview of our Data Curation (DC), Model Fitting (MF), and Model Analysis (MA) procedures.

of rechecks (likely because the financial incentives are reversed,
i.e., the service provider benefits from the use of CI resources).

Even in the stringent OpenStack environment, Maipradit
et al. [11] found that ill-advised rechecks produced up to
187.4 compute years of waste. It would be reasonable to
expect similar if not worse rates of waste being produced
in CI services without guidelines. As recheck data is used for
model fitting, collecting high-quality data is essential. A model
trained using an overabundance of wasteful rechecks would
likely capture basic patterns that are already covered by the
community guidelines of more stringent communities.

It is for these reasons that we choose to focus our study
on the OpenStack community. OpenStack is an open-source
software project for cloud computing infrastructure, ranking
among the top three most active open-source projects globally.2

As an open-source project, OpenStack provides data that is
openly accessible. Its large community ensures that we can
collect sufficient data for our analysis.

(DC) Data Curation

In this stage, we collect change sets from projects that are
developed by the OpenStack community (DC-1). Then, we
categorize authors as bots or users (DC-2) to identify recheck
builds (DC-3) and extract recheck outcomes (DC-4). Finally, we
filter the data to focus on rechecks initiated after a failing build
(DC-5) and compute features that we suspect may correlate
with the likelihood of a recheck build passing (DC-6). We
describe each step below. We also make our dataset and the
replication package available online.3

(DC-1) Collect Change Sets. Our prior work [11] studied re-
peated builds in the OpenStack community. Following a similar
procedure [11], we collect change sets and user information
from projects developed by the OpenStack community using
the RESTful API of the Gerrit code review tool.4 To avoid
analyzing unfinished or abandoned work, we select the closed

2https://www.openstack.org/
3https://doi.org/10.5281/zenodo.13755309
4https://www.gerritcodereview.com/

change sets that were merged into the “master” branch of
each project. We also collect metadata describing the owner,
reviewers, patch, and repository name. The previous version of
our dataset [11] included 66,932 change sets from four selected
projects. The version of the dataset that we now study contains
665,137 change sets, 2,254,332 patch sets (i.e., revisions of
change sets), and 15,112,495 comments that span 2,285 projects.
We study the historical activity that was recorded between May
1, 2014 and April 30, 2024.
(DC-2) Label Authors as Bot or User. To check whether
the author is a bot or a user, we detect authors that have bot
characteristics. Among those authors, we manually evaluate
their comments. We consider authors as potential bots if:

• Any of the four fields related to author information (i.e.,
“name”, “email”, “username”, or “display name”) contain
either the “ci” or “bot” keywords, e.g., IBM Storage CI,
OpenStack Proposal Bot.

• The email field is empty, e.g., Jenkins, Zuul.
As a result, we narrowed the list for manual verification

to 7.29% (1,082) of all authors (14,838). During manual
verification, the first author inspects the comments of each bot
candidate, classifying them as a user if they contain human text
(i.e., include information that is not related to a build outcome)
such as code review comments. Otherwise, we classify them
as a bot. The outcome of the assessment of the first author can
also be uncertain, in which case, the second author inspects
the result. In total, we detect 328 (2.21%) bot accounts and
14,510 (97.79%) user accounts.
(DC-3) Identify Rechecks. To identify rechecks, we search
for user-initiated comments that contain the term “recheck”.
This query produces a set of 487,131 comments. We consider
the comment to be issuing a recheck request if it receives
a response from a bot. We find that 412,518 of the 487,131
comments issue recheck requests.
(DC-4) Identify Recheck Outcomes. To identify the status of
a recheck request, we analyze the bot-initiated comments that
appear following the recheck comment in the same patch set.
The outcome of a recheck request is considered successful only

https://www.openstack.org/
https://doi.org/10.5281/zenodo.13755309
https://www.gerritcodereview.com/

TABLE I: Definitions for and rationale of the selected features that we use to model the likelihood of recheck success.

Family Feature Description Rationale
B

ot
hi

st
or

y

bot success ratio The ratio of successful bot outcomes to the total number of bot calls. For
multiple CI bots in one build, we take the minimum.

We hypothesize that a higher ratio in-
creases the likelihood of bot success.

flip ratio The ratio of flips from failure to success to the total flips (failure to success
and failure to failure). For multiple CI bots in one build, we take the minimum.

We assume a higher ratio increases the
likelihood of the bot flipping to success.

difference from
average rechecks
to success

The difference between the average number of rechecks leading to success and
the current number. For multiple CI bots in one build, we take the maximum.

If the current number of rechecks is
higher than average, it is more likely to
succeed.

difference from
average rechecks
to failure

The difference between the average number of rechecks leading to failure and
the current number. For multiple CI bots in one build, we take the minimum.

If the current number of rechecks is
higher than average, it is less likely to
succeed.

Jo
b

hi
st

or
y job success ratio The ratio of successful job outcomes to the total number of job calls. For

multiple jobs in one build, we take the minimum.
We hypothesize that a higher ratio in-
creases the likelihood of current job
success.

Pa
tc

h
in

fo

insertions The total number of inserted lines of code. The size of the change corresponding
to the build may have some relation to
the outcome of the build [12], [13].

deletions The total number of deleted lines of code.
file numbers The number of unique files touched.
files success ra-

tio
The ratio of successful build outcomes for the file to all builds including the
file. For multiple files, we take the minimum.

We assume a higher ratio increases the
likelihood of the current build contain-
ing the file to succeed.

W
he

n

recheck month The month when the recheck was issued. Recheck requests made at specific
times may have a higher or lower
likelihood of resulting in success [14].

recheck day The day of the week when the recheck was issued.
recheck hour The hour when the recheck was issued.
recheck minute The minute when the recheck was issued.

U
se

r

user success ra-
tio

The ratio of successful outputs after the user called for a build recheck to the
total number of rechecks called by the user.

We hypothesize that a higher ratio in-
creases the likelihood of success.

user status The position of the user within the team (owner, reviewer, or none). We assume that a higher status raises
the chance of successful rechecks [15].

experience The number of messages produced by the user, including discussions, code
reviews, comments, etc.

We assume that experienced users have
a higher chance of a successful build.

if the results of all re-invoked bots are successful; otherwise,
it is considered failed.

We use a regular expression to identify the bot result. If the
bot result is not available, we summarize the outcome of its
job results using regular expressions. Note that jobs may be
non-voting. The outcomes of non-voting jobs do not affect the
outcome of a bot. Hence, we exclude non-voting jobs when
determining bot outcomes, only indicating that a bot has failed
if at least one of its voting jobs fails.
(DC-5) Select Rechecks for Prior Failures. We select recheck
requests issued after failed builds, resulting in a total of 353,700
rechecks out of 412,518 rechecks. This final dataset includes
238,293 (67.37%) failed rechecks and 115,407 (32.63%)
successful rechecks.
(DC-6) Construct Features. Our features are inspired by
previous studies [14] of build outcome and defect prediction.
As a result, we formulate 16 features, which are explained in
detail in Table I along with their feature families.5 The features
are grouped into different families based on their characteristics.
These families include bot history, job history, patch content
and metadata, the timing of recheck requests, and features that
characterize the user who requested the recheck. For the “when”

5We only consider the flip ratio for bots because 15.42% (54,534) of the
values for the flip ratio of jobs cannot be computed due to division by zero.

family we use UTC timestamps. We compute the feature values
using the database of change sets.

We normalize features belonging to the “patch info” family,
including “insertions”, “deletions”, and “file numbers”, as
well as “experience” features from the “user” family. This
normalization is performed using the L2 norm, also known
as the Euclidean norm [16]. It is particularly suitable for our
context because it penalizes large values more heavily, reducing
the influence of outliers and ensuring that features with larger
numeric ranges do not disproportionately affect the analysis.

(MF) Model Fitting

Before fitting the model, we aim to ensure that the dataset is
robust and that we have mitigated issues that could weaken the
predictive models. To do so, we perform collinearity analysis
(MF-1), redundancy analysis (MF-2), and estimate a budget
for degrees of freedom (MF-3). After addressing these issues,
we appropriately allocate degrees of freedom (MF-4) and fit
the model to the data (MF-5). The steps are described below.
(MF-1) Perform Collinearity Analysis. Collinear features can
distort each other’s importance, and interfere with each other
when fitting the model [15], [17]. To address this, we apply
Spearman’s rank correlation (ρ) [18] due to its ability to detect
nonlinear correlation compared to other types of correlation
measures (e.g., Pearson). Similar to previous studies, we set

the threshold as ρ = 0.7 [14], [19]–[21], i.e., for any pair of
features with ρ > 0.7, we select only one feature to include in
our model fit.

The hierarchical overview of the correlations among the
features is shown in Figure MF1.1 in our online appendix.3

From the pairs with ρ > 0.7, we select “lines inserted” and
“bot success ratio”, therefore “number of unique files touched”
and “bot flip success ratio” are removed.
(MF-2) Perform Redundancy Analysis. While initial correla-
tion analysis helps to identify and remove directly correlated
features, redundancy analysis is still necessary to capture and
address more complex multicollinear relationships among the
remaining features. Multicollinearity arises when a feature can
be accurately predicted by other features, leading to redundancy
and adding noise to model interpretation. To address this, we
conduct a redundancy analysis on the remaining 14 features.
The analysis fits a set of 14 models where each explains one
feature using the 13 other features. A feature is considered
redundant if the model fit to explain its values exceeds an R2

of 0.9 as recommended by Hanley et al. [22]. In our analysis,
none of the 14 features exceed the threshold.
(MF-3) Estimate Budget for Degrees of Freedom. To
capture non-monotonic or nonlinear associations, we allocate
additional degrees of freedom to features [23]. A feature with
a single Degree of Freedom (DoF) can only represent linear
monotonic relationships with the likelihood of a successful
recheck. Allocating additional degrees of freedom allows the
model to account for more complex relationships between
features and the build outcome; however, allocating too many
degrees of freedom can lead to overfitting, where the model
becomes overly specific to the training data [24].

To balance the trade-off between model complexity and the
risk of overfitting, a DoF budget can be established [25], [26].
The purpose of a DoF budget is to limit the total number
of degrees of freedom that can be safely spent during model
fitting. For logistic regression models, one approach to estimate
the DoF budget is by considering the number of records in
the minority class. For logistic regression models, this budget
can be estimated using a common rule of thumb [25], given
in Equation (1), which allocates 15 samples per degree of
freedom to mitigate overfitting:

budgetDoF =
n

15
(1)

where n is the number of records in the minority class [25].
(MF-4) Allocate Degrees of Freedom. The relationship
between features and the likelihood of a successful recheck
based on Spearman’s multiple ρ2 is shown in Figure MF4.1
in our online appendix.3 We select features that have higher
ρ2 values than others when allocating additional degrees of
freedom. In our case, we conservatively assign three degrees
of freedom to the six features with the highest ρ2 values (i.e.,
“user success ratio’, “build success ratio”, “job success ratio”,
“file success ratio”, “diff avg success” and “diff avg failure”).
(MF-5) Fit Regression Model. We use traditional statistical
analysis rather than machine learning to fit the models that we

analyze in this paper because we prioritize interpretability and
explainability. Indeed, our primary aim is to derive insights from
features and their influence. Moreover, our online appendix
includes a comparison with four traditional machine learning
classifiers, suggesting that they achieve similar fitness scores.3

We fit our regression model by selecting the relevant
explanatory features and strategically allocating the degrees
of freedom. We then fit the model to our data using restricted
cubic splines [24] for the features with additional degrees
of freedom. Restricted cubic splines are used to fit relations
between variables that are non-linear in nature. They relax the
linearity assumption between features and outcome, allowing
for the relation to evolve in complex ways spanning the range
of variable values. Restricted cubic splines retain straight tails,
which tends to improve fitness at lower and upper extremes
where a purely cubic curve would tend to curl away from
observed values.

(MA) Model Analysis

In this stage, we analyze the model performance (MA-1)
and interpret the model (MA-2). We describe each step below.
(MA-1) Estimate Model Performance. We assess the per-
formance of our logistic regression model according to its
discriminatory power, the reliability of its risk predictions, and
its capacity to balance the precision-recall trade-off.

We measure discriminatory power, i.e., the capacity of
the model to distinguish between different classes using
the Area Under the Receiver Operating Characteristic Curve
(AUROC). An AUROC of 0.5 would be achieved by a random
guessing model, whereas an AUROC of 1.0 indicates perfect
discrimination, and an AUROC of 0 indicates the worst
discrimination, therefore the higher the AUROC the better [22].

To evaluate precision and recall, we use the Area Under the
Precision-Recall Curve (AUPRC). The AUPRC is particularly
useful for imbalanced datasets, as it focuses on correctly
identifying positive cases [27]. The AUPRC is between 0
and 1, with higher values indicating better performance. We
compare our AUPRC to a baseline determined by the positive
class prevalence. The baseline is calculated using Equation (2):

AUPRCbaseline =
tp

tp+ tn
(2)

where tp and tn are the numbers of true positives and
negatives, respectively [27]. For a balanced class distribution,
AUPRCbaseline = 0.5.

To evaluate the reliability of the predicted probabilities
of the model, we use the Brier score, which measures the
mean squared difference between the predicted probabilities
and the actual outcomes. A lower Brier score indicates better
calibration, meaning the predicted probabilities closely match
the observed outcomes. A Brier score of 1 indicates the worst
calibration, whereas 0 indicates the perfect calibration—the
lower Brier score the better.
(MA-2) Interpret the Model. Similar to our prior work [14],
[15], to interpret the models that we fit, we study its features
using Wald χ2 maximum likelihood tests (a.k.a., “chunk”), and

plot the response curve of each feature with respect to the
likelihood of a recheck being successful.

Wald χ2 maximum likelihood tests help us to understand the
overall contribution of a feature by comparing the performance
of the model with and without it. A higher Wald χ2 value
indicates a greater contribution of the feature to the performance
of the model. We also test the statistical significance of the
contribution of features using the p-value.

Additionally, we plot response curves for the most significant
features. These curves illustrate how the probability of a
successful recheck changes as the value of the feature varies,
with all other features being held constant at their “typical”
values (median for numeric features and mode for categorical
features). The plots also show 95% confidence intervals for
the probabilities, calculated from 1,000 bootstrap iterations.

IV. OVERALL PERFORMANCE

In this section, following an initial assessment of the fitness
of our model, we characterize recheck builds that result in
a change of outcome by examining the significance of the
features of our model.

(RQ1) How effectively can our model differentiate successful
and failed rechecks?

Before fitting the model, we compute features. During this
process, we encounter some entries for the first time, such as
a patch introducing a new file, a user submitting their first
recheck request, or the appearance of a new bot or job. In
such cases, we assign a special value, N/A, to represent the
absence of historical data. As our model cannot complete
calculations without crashing when N/A values are present, we
explore replacing them with 0 (i.e., the minimum replacement
strategy), 1 (i.e., the maximum replacement strategy), or
removing them entirely. The model is fitted for each strategy.
We observe that all three strategies achieve similar AUROC
(maximum difference of 2.1 percentage points) and Brier
score values (all values within one percentage point).6 The
maximum replacement strategy has an AUPRC that is 5.9 and
7.3 percentage points lower than the minimum replacement
and remove N/A strategies, respectively. Hence, we continue
using the strategy that removes observations with N/A values.
We reason that removal is a more appropriate choice because
an N/A value indicates that a feature has not yet been observed,
and replacement would create data that does not exist.

After dropping observations with N/A values, 314,947
observations remain, with 109,825 belonging to the minority
class (i.e., successful rechecks). Based on Equation (1), we
can allocate up to 109,825

15 = 7, 321 degrees of freedom without
raising concerns about overfitting. Using Equation (2), we
estimate the baseline to which the AUPRC of our models
should be compared to be 109,825

314,947 = 0.349.
To assess our model, we use AUROC, AUPRC, and Brier

score along with assessing the stability of the model fit using
bootstrap-calculated optimism [28]—a robust model validation

6The results for each strategy are available in our online appendix at
https://doi.org/10.5281/zenodo.13755309.

TABLE II: Performance metrics for traditional ML models.

ML models AUROC Brier Score AUPRC

Statistical model 0.736 0.191 0.604
Logistic regression 0.733 0.192 0.572
Random Forest 0.731 0.190 0.583
XGBoost 0.725 0.193 0.581
SVM 0.729 0.194 0.562

technique akin to k-fold cross-validation. First, we draw a
bootstrap sample of length 314,947 from our original dataset
with replacement. Next, we refit the logistic regression model
to this sample, using the same degrees of freedom. We then
evaluate the AUROC, Brier score, and AUPRC of the bootstrap-
trained model both on the bootstrap sample and the original
dataset. The difference in these performance metrics provides
an estimate of the optimism of the model fitness, i.e., the
degree to which these performance scores are overestimated.
We repeat this process 1,000 times and calculate the mean
optimism values. Smaller optimism values shows a model fit is
more robust to natural fluctuations in the shape of the dataset.

In direct response to peer review feedback, we expanded our
evaluation to include specific machine learning models (i.e.,
Logistic Regression, SVM, XGBoost, and Random Forest) as
advised. Table II shows the evaluation of traditional machine
learning methods using time-based 10-fold cross-validation,
avoiding single-repetition holdout due to its bias and variance
issues [29]. Time-based 10-fold cross-validation sequentially
splits data into ten parts, training on earlier data and testing
on unseen later data. Compared to our bootstrap-calculated
optimism scores for logistic regression, AUROC and Brier
Score differ by less than one percentage point, while AUPRC
drops by 3.2 points at most. We also find that the machine
learning methods all achieve performance values that vary by
two percentage points at most. As different learning approaches
do not substantially outperform statistical regression, we focus
on the regression results in the paper.

To estimate developer impact, we calculate the elapsed
developer time between receiving a build result and initiating
a recheck, acknowledging that this likely overestimates actual
decision time, and interpret it as an upper bound on time
savings. We also examine the trade-off between compute and
elapsed developer time savings. Compute time is measured by
summing job durations from bot build messages. Developer
time is saved when the model correctly predicts a successful
recheck, preventing unnecessary manual rechecks. Compute
time is saved when failing rechecks are accurately predicted,
avoiding wasted job executions.

To balance automation with prediction certainty, we apply a
hybrid thresholding strategy. In our evaluation, we set the lower
certainty threshold to 0.2 and the upper certainty threshold to
0.7 as an example. Predictions with probabilities below 0.2
are automatically treated as failures, while those above 0.7
are treated as successes. Predictions within the intermediate
range [0.2, 0.7] are left for manual developer intervention. This
design enables the system to automate decisions when the

https://doi.org/10.5281/zenodo.13755309

Fig. 2: In this figure, the threshold balances correctly identifying
failing rechecks (precision) against identifying them all (recall).
At the threshold 0.2, for instance, 88% of the rechecks that
we skip failed, and we skip 33% of all failed rechecks.

model has high confidence while preserving human oversight
for uncertain cases. The selected thresholds serve as an example;
they can be adjusted to reflect different organizational trade-
offs between developer time savings and compute resource
utilization. Figure 3 plots saved elapsed developer and compute
time as model thresholds vary.

Observation 1: Our model outperforms naı̈ve baselines in
terms of discriminatory power and calibration. Our model
achieves an AUROC of 0.736, outperforming random guessing
(AUROC of 0.5) by 23.6 percentage points or 47.2%. This
suggests that our model can differentiate between successful
and failed rechecks. Furthermore, our model achieves a Brier
score of 0.191. Since random guessing would achieve a Brier
score of 0.25, our model achieves 5.9 percentage points or
23.6% better calibration of risk estimates. Our model also
achieves an AUPRC of 0.604, outperforming the baseline
determined by the prevalence of the positive class (AUPRC
of 0.349) by 25.5 percentage points or 73%. This highlights
the effectiveness of our model in identifying positive instances
while minimizing false positives, which is crucial given the
imbalanced nature of our dataset where positive observations
(i.e., successful rechecks) outnumber the negative ones.

Observation 2: The fit of our model is stable and its
explanatory power is robust. The mean optimism value for
the AUROC measure is 0.00008, indicating that the AUROC
values derived from bootstrap samples are nearly identical
to those calculated from the original dataset [25]. The mean
optimism value for Brier score measure is -0.00002, and for
the AUPRC is 0.00014. These small optimism scores suggest
a low likelihood of the model overfitting the training data.

Observation 3: The model could skip 86.49% of failed
rechecks, saving substantial CI resources. Figure 2 shows
the threshold effects on the balance between saving through
skipping failed rechecks (recall) and minimizing lost successes
by ensuring that actual failures are skipped (precision). At the
default threshold of 0.5, which provides a balanced trade-off
between precision and recall, our model could drop 86.49%

Fig. 3: In this figure, the threshold balances saved elapsed
developer time with saved compute time. The shaded areas
show how much time can be saved by automatically handling
the most certain cases, while letting developers decide in
situations where the model is less sure.

of all failed rechecks (i.e., 177,399 of the 205,122 recheck
failures), saving substantial build resources. For cases where
the priority is to minimize developer distractions (i.e., by
prioritizing precision in identifying successful rechecks), a
threshold of 0.2 can be selected with a recall of 0.33 and a
precision of 0.88. In contrast, if the goal is to save resources
(i.e., recall) a threshold of 0.7 is a better choice with a recall
of 0.99 and a precision of 0.67.

Observation 4: The model could save roughly 247 years
of elapsed developer time and roughly 262 years of compute
time. Figure 3 shows how varying the prediction threshold
affects the trade-off between saved elapsed developer and
compute time. Using the default threshold of 0.5, the model can
save roughly 247 years of elapsed developer time and roughly
262 years of compute time. We also apply a threshold strategy
that automates decisions at both low and high extremes, i.e.,
when the model is highly confident. When the lower threshold
is set to 0.2, the model saves roughly 145 years of compute
time. When the upper threshold is set to 0.7, the model saves
roughly 90 years of developer time at the cost of only 0.3
years of compute.

(RQ2) What are the most important characteristics of builds
that should be repeated?

We analyze the importance of individual features and feature
families using Wald χ2 maximum likelihood tests. We also
analyze response curves for the two features that account for
50% of the explanatory power of our model. The response
curves for all features are available in our online appendix.3

Table III presents the Wald χ2 values for each family of
features and individual features in our model. The “Overall”
column shows the explanatory power of all degrees of freedom
that we allocate to a family or feature, while the “Nonlinear”
column shows the explanatory power that is provided by
relaxing linearity assumptions between the feature/family and
the likelihood of a recheck being successful. A dash (-) is

TABLE III: Importance of families and their individual features
based on Wald χ2.

Family Overall
(Family)

Nonlinear
(Family)

Feature Overall Nonlinear

Job D.F 2 1
job success ratiopb

D.F 2 1
historyχ2 16, 247.20∗∗∗ 2, 631.09∗∗∗ χ2 16, 247.20∗∗∗ 2, 631.09∗∗∗

bot success ratiopb
D.F 2 1
χ2 3, 789.65∗∗∗ 78.17∗∗∗

Bot D.F 6 3
diff avg failurepb

D.F 2 1
historyχ2 7, 866.04∗∗∗ 1, 008.33∗∗∗ χ2 2, 089.11∗∗∗ 698.57∗∗∗

diff avg successpb
D.F 2 1
χ2 52.22∗∗∗ 0.68 ◦

User

user success ratiopb
D.F 2 1
χ2 1, 592.01∗∗∗ 81.84∗∗∗

D.F 4 1
status

D.F 1 -
χ2 1, 747.41∗∗∗ 81.84∗∗∗ χ2 91.23∗∗∗ -

experience
D.F 1 -
χ2 15.40∗∗ -

file success ratiopb
D.F 2 1
χ2 1, 320.56∗∗∗ 157.57∗∗∗

Patch D.F 4 1
insertions

D.F 1 -
info χ2 1, 327.20∗∗∗ 157.57∗∗∗ χ2 0.38 ◦ -

deletions
D.F 1 -
χ2 0.12 ◦ -

When

queued hour
D.F 1 -
χ2 50.55∗∗∗ -

queued month
D.F 1 -

D.F 4 - χ2 2.09 ◦ -
χ2 54.09∗∗∗ -

queued day
D.F 1 -
χ2 1.81 ◦ -

queued minute
D.F 1 -
χ2 0.07 ◦ -

Entire D.F 20 6
- - -

model χ2 40,060.51 *** 3,808.05 ***

◦ p ≥ 0.05; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; pb - past behaviour

shown in the “Nonlinear” column if no additional degrees of
freedom are allocated, i.e., the feature fit is linear.

To assess the stability of feature ranking, we repeat Wald
χ2 maximum likelihood tests 20 times, each time using 90%
of the data selected at random. Table IV presents the range of
Wald χ2 values for each individual feature in our model.

The Wald χ2 value for a family of features may not be equal
to the sum of the features that comprise its Wald χ2 values.
This is because feature importance is estimated by removing
each feature or family and assessing the impact on the model.
When a feature is removed, its explanatory power may, in part,
be subsumed by other features, resulting in a family χ2 value
that differs from the sum of that of its features.

Along with Wald χ2 values, we use a nomogram to visualize
and analyze the results of our model. Each horizontal scale
corresponds to a feature and the topmost scale represents the
“points” attributed to specific values of these features. The
bottom-most scale shows the final predicted probability of
an outcome based on the total points accumulated from the
values of the features. We drop features with a small impact on
points to optimize vertical space, though a complete version is
available in our replication package.3

Observation 5. All families contribute at least one
significant feature to the model fit. Table III shows all families
are significant and contribute meaningfully to the overall fit
of the model, which supports our hypotheses about each
family (see Table I). Overall, “job history” and “bot history”

job success ratio

Fig. 4: Job success ratio vs.
successful recheck prob.

bot success ratio

Fig. 5: Bot success ratio vs.
successful recheck prob.

families together account for 60.19% (16,247.20+7,866.04
40,060.51) of

the explanatory power of the model.
Table III also shows that while each family significantly

contributes to the model fit, individual features within these
families do not always play a significant role. Specifically,
features from the “patch info” family, such as “insertions” and
“deletions”, and from the “when” family, such as “queued
month”, “queued day”, and “queued minute”, are not signif-
icant. Collectively, these features account for 0.01% of the
explanatory power of the model.

Observation 6. Past behaviour is the dominant explana-
tory factor. Table III shows that the most important contributor
to the explanatory power of the model is past behaviour, rather
than characteristics of the patch set, the timing of the recheck,
or the role of the user. This finding aligns with prior research
on defect prediction [30], which showed that the number of
faults in the initial release of source files is an early and
strong indicator of future defect rates and reliability. Similarly,
in our study, the “file success ratio” feature is one of the
key explanatory factors, underscoring the importance of past
behaviour in predicting recheck outcomes. The principle “faulty
once, faulty forever” applies not only to files but also to jobs,
bots, and users, highlighting that the changes to the patch set
alone are not enough and require collective action.

Observation 6. Feature importance results are stable
across bootstrap iterations. Table IV shows that the top
six features (“job success ratio”, “bot success ratio”, “diff
avg failure”, “user success ratio”, “file success ratio”, and
“user status”) consistently remained in the top positions across
all runs in the same order. Minor shuffling occurred only
among low-ranked features, which contribute little to the overall
explanatory power. These low variances and the unchanged set
of top features confirm that our conclusions about the dominant
factors driving recheck success are robust to natural fluctuations
in the dataset.

Observation 7. Features related to bots and jobs are the
strongest in explaining the likelihood of a successful recheck.
Features closely linked to the build process, specifically the
“job success ratio” and “bot success ratio”, account for 50% of
the explanatory power of our model. Notably, the “job success
ratio” contributes significantly to this, accounting for 40.56%

Variable Initial χ2 σ(χ2) Initial Min Max Rank
Rank Rank Rank Range

job success ratio 16,247.20 64.73 1 1 1 0
bot success ratio 3,789.65 30.11 2 2 2 0
diff avg failure 2,089.11 20.40 3 3 3 0
user success ratio 1,592.01 23.95 4 4 4 0
file success ratio 1,320.56 24.80 5 5 5 0
user status 91.23 4.72 6 6 6 0
diff avg success 52.22 5.03 7 7 8 1
queued hour 50.55 3.25 8 7 8 1
user experience 15.40 2.63 9 9 9 0
queued month 2.09 0.91 10 10 11 1
queued day 1.81 0.96 11 10 13 3
lines inserted 0.38 0.26 12 11 14 3
lines deleted 0.12 0.20 13 12 14 2
queued minute 0.07 0.33 14 11 14 3

TABLE IV: Variable ranking results with initial χ2, standard
deviation, and rank ranges.

of the total explanatory power. We further analyze these two
features using response curves.

Figure 4 presents the response curve, showing a strong
relationship between the “job success ratio” and the probability
of a successful recheck, with narrow confidence intervals.
Notably, the response curve shows an exponential increase,
particularly after the “job success ratio” exceeds 0.6. This
occurs because of how a sample of our dataset supports
the trend, e.g., in the dataset, the ratio of failed rechecks
to successful ones is 4.36 when the “job success ratio” is
below 0.6, and the ratio drops to 1.34 when the “job success
ratio” exceeds 0.6. This shows how past behaviour (i.e., past
successes or failures) strongly influences recheck outcomes.

The “bot success ratio” follows a similar pattern, highlighting
the importance of past behaviour. Figure 5 shows a strong
relationship between the “bot success ratio” and the probability
of a successful recheck, though the confidence intervals begin
to widen once the ratio exceeds 0.62. This broadening occurs
because a sample of our dataset is likely to have few data
points with a “bot success ratio” higher than 0.62, similar to
the entire dataset, where only 1.6% of data points exceed a
“bot success ratio” of 0.62.

Observation 8. The “diff avg failure” feature becomes a
deciding factor when values are at its extremes. Figure 6
shows that even though the “diff avg failure” feature is ranked
third by importance, it becomes a deciding factor when values
are at its extremes. As the “diff avg failure” feature value
increases, the nomogram shows a nonlinear relationship, with
a larger gap between values above zero. The difference in
predicted probability between 0.1 and 0.9 is 36 points (i.e.,
from 72 to 108), which makes up 22.5% of the total points.
This shows that small changes in feature values can result in
substantial differences in the predicted outcome.

V. ANALYSIS

In Section IV, we observe that past behaviour features are
highly important in determining recheck outcomes. These past
behaviours have been measured using ten years of data. Since
more recent trends may be outweighed by the bulk of historical
data, in this section, we set out to study how sensitive past

Points
0 10 20 30 40 50 60 70 80 90 100

user success ratio

file success ratio

diff avg success
20 0 −25

0 0.5

bot success ratio
0 0.2 0.5 0.9

job success ratio
0 0.7 0.9

0 1

diff avg failure
−60 −45 −30 −15 0 5 10 15

Total Points
0 20 40 60 80 100 120 140 160

Predicted Probability
0.001 0.01 0.10.250.50.750.9 0.99 0.999

Fig. 6: A nomogram without features with a small impact.

behaviour features are to the window size, i.e., the amount of
time considered when computing the measures. We refit our
recheck outcome model using window sizes of one day up to
one year. During feature extraction, we calculate feature values
based on data available within a given window. For example,
if the window size is set to one day, we use data from the day
before a recheck request to calculate features. To ensure that
the features of each observation have been recomputed using
the full span of the window size of data, we exclude the first
year of observations from model fitting. Note that the first year
of data is still used to compute feature values.

Following the approach in RQ1, we exclude observations
with N/A values before fitting the model. As the window size
decreases, the number of observations also declines, since past
behaviour features (e.g., “job success ratio”) rely on historical
data for their calculation.

In addition to studying the fitness of the refit models, we
rank features based on their Wald χ2 importance scores using
the non-parametric Scott-Knott Effect Size Difference (ESD)
test [31], as it does not assume normality or homogeneity of
distributions. For each window size, we collect the distribution
of Wald χ2 values for each feature from 1,000 bootstrap
iterations. Unlike traditional ranking methods, which strictly
order features by individual values, the Scott-Knott ESD test
groups features with similar explanatory power.

Observation 9: Our model fitness is not sensitive to
window size. The model performance across the studied
window sizes is shown in Table 5.1 in the online appendix.3

AUROC varies minimally across window sizes (e.g., 0.74243
for one day vs. 0.73806 for two weeks), suggesting that
window size has little impact on the discriminatory power
of the model. Brier scores similarly have a small difference,
showing negligible variation. In contrast, the AUPRC decreases
with larger window sizes, with the highest at 0.64046 for one

Fig. 7: Statistically distinct feature ranks based on the Scott-
Knott ESD test applied to the Wald χ2 estimates of explanatory
power. Top ranked feature families (e.g., success ratios) quickly
climb to and hold top ranks consistently across window sizes.

day, suggesting better precision-recall trade-offs with smaller
windows. We suspect that AUPRC increases with smaller
window sizes are driven by a higher ratio of successful rechecks,
as smaller window sizes exclude more N/A failures, raising
the success ratio. Optimism values for AUROC, Brier score,
and AUPRC range from -0.00005 to 0.00032, indicating stable
fits across the studied window sizes.

Observation 10: Feature importance is not sensitive to
window size. Figure 7 shows that the “job success ratio”,
“bot success ratio”, “diff avg failure”, “user success ratio”,
“file success ratio” are consistently top-ranked features across
window sizes. This suggests that tendencies appear rather
quickly, and users of this modelling approach need little
historical data to produce an actionable model. The only feature
to displace a feature from the top is “bots flip success ratio”,
which is collinear with “bot success ratio” in all fits other than
the one-day fit, suggesting that the information that it provides
is highly similar to the features in our top-ranked list.

We also analyze response curves for the most important
feature (i.e., “job success ratio”) across window sizes and
observe no substantial changes in the shape of curves. It
suggests that either recency or quantity of the data can be
used for identifying recheck build outcome. Due to limited
space, we provide response curves for the “job success ratio”
for each window size in the online appendix.3

VI. THREATS TO VALIDITY

Construct Validity. We may not fully capture the real-world
performance and oversimplify the complex interactions between
CI bots, jobs, and rechecks. For example, we assume that for
builds involving multiple bots, the “bot success ratio” is the
minimum success ratio across those bots. We justify this by
noting that if one bot fails, the recheck request will also fail.

Internal Validity. We identify the recheck requests based
on the author of the comment being a human user, and not

a bot. We may miss recheck requests if we mistake a human
for a bot. To mitigate this, the first author manually labels
authors as humans or bots, and the second author inspects
its results. We draw conclusions based on the current set of
features; however, this set is not exhaustive. For instance,
adding features that capture information about network or
service status could impact the fit of our model, potentially
changing the importance of features affected by these factors.
OpenStack does not publicly provide data on network or service
status, which prevents us from exploring these aspects.

External Validity. As our study focuses on the OpenStack
community, it may not generalize to open-source communities
or technologies other than Gerrit. We select the OpenStack
community as it supports a recheck functionality and offers
stringent guidelines about its use. Nonetheless, replication to
other environments may prove useful.

VII. RELATED WORK

Waste in CI. Prior work has proposed areas of improvement
for the CI user experience. Gallaba et al. [5] analyzed
CircleCI builds, observing that non-signal-generating failures
(i.e., failures that do not indicate quality concerns with the
change under scrutiny) may occur due to misconfigurations or
a lack of service availability. Weeraddana et al. [14] studied
timeout builds in CI systems, observing their strong tendency
to occur in clusters. Bouzenia and Pradel [32] analyzed GitHub
Actions workflows, finding that 91.2% of CI/CD resource usage
is tied to testing and building. While existing optimizations
like caching help, their adoption remains limited.

Broadly, these studies show that build failures, timeouts, and
their associated costs negatively affect CI operations and user
experience. Building on them, this paper shows that, if a model
such as ours were adopted, 86.49% of the CI waste generated
by failing rechecks could be avoided.

Build outcome prediction. Several methods have been
proposed to predict build outcomes, with the goal of skipping
unnecessary builds. Jin and Servant [33], [34] proposed Smart-
BuildSkip and PreciseBuildSkip, which skip builds predicted
as successful and execute ones predicted as failures. Kwan
et al. [35] studied the effects of socio-technical congruence
on build outcomes, observing complex relationships. Saidani
et al. [36] applied evolutionary search algorithms to predict
build failures using historical data and code metrics. Pan and
Pradel [12] proposed a model to predict test suite failures on a
continuous basis, while Sun et al. [37] introduced the Raven-
Build model, which integrates contextual and dependency-
aware features to predict CI build outcomes.

Previous studies found that historical data played a significant
role in predicting build outcomes [36], [38], [39]. Ni and Li [38]
identified committer and project history as key predictors.
Similarly, Chen et al. [39] developed BuildFast—a history-
aware approach to predict build outcomes. Rausch et al. [40]
linked overall stability in the recent build history to outcomes.
Hassan and Zhang [41] combined project attributes to predict
success with 95% accuracy.

Like prior work, our study highlights the important role
historical data plays in understanding build outcomes. Just
as build outcome prediction needed to adapt from a regime
in which build requests were infrequent (e.g., daily or even
less frequent [41]) to modern continuous settings [33], our
application scenario—minimizing wasted CI resources and
developer time on failing rechecks—presents new challenges
for build outcome prediction.

Test case selection and prioritization. Prior work intro-
duced test case prioritizing methods to rank test cases by their
tendency to lead to build failures, and executed the test cases
in the order of highest tendency to the least [42], [43]. Elbaum
et al. [44] focused on deciding which test cases to include in a
CI job and in what order they should be executed. For the same
task, Ling et al. [45] compared how test case prioritization
works in open-source and closed-source projects.

Our work focuses on a different part of the CI process,
which is deciding whether to rerun a failed build (i.e., a set
of jobs) at all. Instead of focusing on which tests to run or in
what order, we study whether a recheck request is likely to
succeed. This question has not been addressed in the papers
mentioned and adds a new perspective to CI research.

Flaky test detection. To reduce the need for costly reruns
to determine if tests are flaky, researchers have developed flaky
test detection methods based on historical test execution data.
Herzig et al. [46] used historical test execution data, combining
features such as test identifiers with pass/fail outcomes, to
identify patterns of flakiness through association rule learning.
Kowalczyk et al. [47] analyzed temporal variations in test
results to detect flakiness statistically. Gruber et al. [48] relied
on historical data related to code evolution and test history,
incorporating code evolution and pull request metrics.

Unlike these studies, which focus on test-level flakiness, this
paper processes recheck requests at the build level, where mul-
tiple factors beyond individual test behaviour may influence the
outcome. This difference makes a direct comparison between
our approach and prior work impractical and inappropriate.

Repeated execution of CI. Durieux et al. [10] studied flaky
builds on Travis CI, observing that only 46.77% of 56,522
re-executed builds changed failing builds into passing ones
(or vice versa). In prior work [11], we observed that 55% of
OpenStack code reviews included at least one recheck request,
generating 187.4 years of computational waste.

Recent studies on the repeated execution of CI builds focus
primarily on their impact, offering limited insights into how
to mitigate the waste that they produce. Our work expands
this line of research by identifying predictive features that
can determine when recheck requests are likely to succeed
(or continue to fail), enabling more efficient CI operations by
avoiding developer interruptions for successful rechecks and
saving CI resources for unnecessary rechecks.

VIII. CONCLUDING REMARKS

In this paper, we characterize rechecks in CI. We analyze a
dataset of 314,947 rechecks spanning a ten-year period. We use
statistical models to access the impact of bots, jobs, patches,

user, and timestamp characteristics on recheck outcomes.
Building on these findings, we outline how our model could
be used to enforce dynamic penalties and rewards to mitigate
misbehaviour and incentivize good practice. For instance, bots
whose rechecks our model predicts will fail more than a
threshold could have their jobs or rechecks rate-limited or by
lowering their status from mandatory to optional. Conversely,
users or bots that consistently issue effective rechecks could be
rewarded through preferential treatment or increased execution
priority. Below, we recommend directions for future work:

Understanding the impact of human factors on recheck
requests. During our analysis of recheck requests, we find
comments that reveal insights into human thoughts and emo-
tions during the recheck process. For example, the recheck
requests, “recheck day 2, the monster still hunts me, but I
can’t give up, I know I need to handle this”7 and comment,
“Shoot, I rechecked against the wrong bug. It should have
been bug 1292105”.8 Sentiment analysis of such comments
could offer deeper insights into the human factor influencing
recheck outcomes. Previous studies on commit messages and
Self-Admitted Technical Debt (SATD) code comments support
this idea. Souza and Silva [49] found a correlation between
negative sentiment in commit messages and build outcomes,
while Fucci et al. [50] discovered that certain types of SATD
(e.g., functional and on-hold SATD) exhibit more negative
sentiment compared to others, suggesting a link between human
emotion and software development. We hypothesize that a
similar relationship may exist for recheck outcomes.

Another influencing factor is user expertise, as experienced
developers may show overconfidence bias [51], relying on
personal judgment over data, potentially triggering unnecessary
rechecks. Agile team pressures, especially near sprint deadlines,
can also drive wasteful rechecks in an attempt to speed up the
integration process. Investigating emotions, expertise, and time
pressure may help to further reduce unnecessary rechecks and
optimize CI efficiency.

Analyzing developers perception on automated recheck
prediction. Given the predictive power of our model, it is
important to evaluate how best to integrate the predictive model
into the CI process. One approach could be fully automating
the decision, allowing the model to determine whether a failed
build should be rechecked without requiring a request from the
developer. Alternatively, the model could serve as a decision-
support tool, providing suggestions with a rationale when a
developer attempts a recheck. Since developers may not always
consider the cost of rechecks, another option is to give team
leads or managers the authority to approve rechecks, allowing
them to weigh the potential costs before proceeding. Each
approach offers a different balance between automation and
human oversight.

7https://review.opendev.org/c/openstack/tripleo-ci/+/620063
8https://review.opendev.org/c/openstack/tripleo-incubator/+/92749

https://review.opendev.org/c/openstack/tripleo-ci/+/620063
https://review.opendev.org/c/openstack/tripleo-incubator/+/92749

REFERENCES

[1] M. Fowler and M. Foemmel, “Continuous integration,” 2006.
[2] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,

costs, and benefits of continuous integration in open-source projects,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE ’16, (New York, NY, USA),
p. 426–437, Association for Computing Machinery, 2016.

[3] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, (New York, NY, USA), p. 805–816,
Association for Computing Machinery, 2015.

[4] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The impact
of continuous integration on other software development practices: A
large-scale empirical study,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 60–71, 2017.

[5] K. Gallaba, M. Lamothe, and S. McIntosh, “Lessons from eight years of
operational data from a continuous integration service: an exploratory case
study of circleci,” in Proceedings of the 44th International Conference on
Software Engineering, ICSE ’22, (New York, NY, USA), p. 1330–1342,
Association for Computing Machinery, 2022.

[6] D. Olewicki, M. Nayrolles, and B. Adams, “Towards language-
independent brown build detection,” in Proceedings of the 44th Interna-
tional Conference on Software Engineering, ICSE ’22, (New York, NY,
USA), p. 2177–2188, Association for Computing Machinery, 2022.

[7] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of
flaky tests,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, (New
York, NY, USA), p. 643–653, Association for Computing Machinery,
2014.

[8] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: the developer’s perspective,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2019, (New York, NY, USA), p. 830–840, Association for Computing
Machinery, 2019.

[9] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study on
the lifecycle of flaky tests,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ICSE ’20, (New
York, NY, USA), p. 1471–1482, Association for Computing Machinery,
2020.

[10] T. Durieux, C. Le Goues, M. Hilton, and R. Abreu, “Empirical study
of restarted and flaky builds on travis ci,” in Proceedings of the
17th International Conference on Mining Software Repositories, MSR
’20, (New York, NY, USA), p. 254–264, Association for Computing
Machinery, 2020.

[11] R. Maipradit, D. Wang, P. Thongtanunam, R. Kula, Y. Kamei, and
S. McIntosh, “Repeated builds during code review: An empirical study
of the openstack community,” in 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE), (Los Alamitos,
CA, USA), pp. 153–165, IEEE Computer Society, sep 2023.

[12] C. Pan and M. Pradel, “Continuous test suite failure prediction,” in
Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2021, (New York, NY, USA),
p. 553–565, Association for Computing Machinery, 2021.

[13] I. Saidani, A. Ouni, M. Chouchen, and M. W. Mkaouer, “On the prediction
of continuous integration build failures using search-based software
engineering,” in Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion, GECCO ’20, (New York, NY,
USA), p. 313–314, Association for Computing Machinery, 2020.

[14] N. Weeraddana, M. Alfadel, and S. McIntosh, “Characterizing timeout
builds in continuous integration,” IEEE Transactions on Software
Engineering, vol. 50, no. 6, pp. 1450–1463, 2024.

[15] S. Mcintosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software quality,”
Empirical Softw. Engg., vol. 21, p. 2146–2189, oct 2016.

[16] K. Cabello-Solorzano, I. Ortigosa de Araujo, M. Peña, L. Correia, and
A. J. Tallón-Ballesteros, “The impact of data normalization on the
accuracy of machine learning algorithms: A comparative analysis,” in
International Conference on Soft Computing Models in Industrial and
Environmental Applications, pp. 344–353, Springer, 2023.

[17] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target? a
longitudinal case study of just-in-time defect prediction,” in Proceedings

of the 40th International Conference on Software Engineering, ICSE ’18,
(New York, NY, USA), p. 560, Association for Computing Machinery,
2018.

[18] C. Spearman, “The proof and measurement of association between two
things,” The American Journal of Psychology, vol. 15, no. 1, pp. 72–101,
1904.

[19] T. A. Ghaleb, D. A. Da Costa, and Y. Zou, “An empirical study of the
long duration of continuous integration builds,” Empirical Softw. Engg.,
vol. 24, p. 2102–2139, aug 2019.

[20] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, (New
York, NY, USA), p. 345–355, Association for Computing Machinery,
2014.

[21] X. Tan, M. Zhou, and Z. Sun, “A first look at good first issues on github,”
in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, (New York, NY, USA), p. 398–409,
Association for Computing Machinery, 2020.

[22] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a
receiver operating characteristic (roc) curve.,” Radiology, vol. 143, 1982.

[23] J. G. Eisenhauer, Degrees of Freedom in Statistical Inference. Springer
Berlin Heidelberg, 2011.

[24] F. E. Harrell et al., Regression modeling strategies: with applications to
linear models, logistic regression, and survival analysis, vol. 608. 2001.

[25] F. E. Harrell Jr, K. L. Lee, R. M. Califf, D. B. Pryor, and R. A. Rosati,
“Regression modelling strategies for improved prognostic prediction,”
Statistics in medicine, vol. 3, 1984.

[26] F. E. Harrell Jr, K. L. Lee, D. B. Matchar, and T. A. Reichert, “Regression
models for prognostic prediction: advantages, problems, and suggested
solutions.,” Cancer treatment reports, vol. 69, 1985.

[27] T. Saito and M. Rehmsmeier, “The precision-recall plot is more
informative than the roc plot when evaluating binary classifiers on
imbalanced datasets,” PloS one, vol. 10, 2015.

[28] B. Efron, “How biased is the apparent error rate of a prediction rule?,”
Journal of the American Statistical Association, vol. 81, no. 394, pp. 461–
470, 1986.

[29] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, “An
empirical comparison of model validation techniques for defect prediction
models,” IEEE Transactions on Software Engineering, vol. 43, no. 1,
pp. 1–18, 2017.

[30] M. Pighin and A. Marzona, “An empirical analysis of fault persistence
through software releases,” in Proceedings of the 2003 International
Symposium on Empirical Software Engineering, ISESE ’03, (USA),
p. 206, IEEE Computer Society, 2003.

[31] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“The impact of automated parameter optimization on defect prediction
models,” IEEE Transactions on Software Engineering, vol. 45, no. 7,
pp. 683–711, 2019.

[32] I. Bouzenia and M. Pradel, “Resource usage and optimization opportuni-
ties in workflows of github actions,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, ICSE ’24, (New
York, NY, USA), Association for Computing Machinery, 2024.

[33] X. Jin and F. Servant, “A cost-efficient approach to building in continuous
integration,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ICSE ’20, (New York, NY, USA),
p. 13–25, Association for Computing Machinery, 2020.

[34] X. Jin and F. Servant, “Which builds are really safe to skip? maximizing
failure observation for build selection in continuous integration,” J. Syst.
Softw., vol. 188, jun 2022.

[35] I. Kwan, A. Schroter, and D. Damian, “Does socio-technical congruence
have an effect on software build success? a study of coordination in a
software project,” vol. 37, p. 307–324, may 2011.

[36] I. Saidani, A. Ouni, and M. W. Mkaouer, “Improving the prediction of
continuous integration build failures using deep learning,” Automated
Software Engg., vol. 29, may 2022.

[37] G. Sun, S. Habchi, and S. McIntosh, “Ravenbuild: Context, relevance,
and dependency aware build outcome prediction,” Proc. ACM Softw.
Eng., vol. 1, jul 2024.

[38] A. Ni and M. Li, “Cost-effective build outcome prediction using cascaded
classifiers,” in 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pp. 455–458, 2017.

[39] B. Chen, L. Chen, C. Zhang, and X. Peng, “Buildfast: History-aware
build outcome prediction for fast feedback and reduced cost in continuous

integration,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’20, (New York,
NY, USA), p. 42–53, Association for Computing Machinery, 2021.

[40] T. Rausch, W. Hummer, P. Leitner, and S. Schulte, “An empirical
analysis of build failures in the continuous integration workflows of java-
based open-source software,” in Proceedings of the 14th International
Conference on Mining Software Repositories, MSR ’17, p. 345–355,
IEEE Press, 2017.

[41] A. E. Hassan and K. Zhang, “Using decision trees to predict the certifi-
cation result of a build,” in 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE’06), pp. 189–198, 2006.

[42] M. Bagherzadeh, N. Kahani, and L. Briand, “Reinforcement learning for
test case prioritization,” IEEE Trans. Softw. Eng., vol. 48, p. 2836–2856,
Aug. 2022.

[43] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static test
case prioritization using topic models,” Empirical Softw. Engg., vol. 19,
p. 182–212, Feb. 2014.

[44] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, (New York, NY, USA),
p. 235–245, Association for Computing Machinery, 2014.

[45] X. Ling, R. Agrawal, and T. Menzies, “How different is test case
prioritization for open and closed source projects?,” IEEE Transactions
on Software Engineering, vol. 48, no. 7, pp. 2526–2540, 2022.

[46] K. Herzig and N. Nagappan, “Empirically detecting false test alarms
using association rules,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2, pp. 39–48, 2015.

[47] E. Kowalczyk, K. Nair, Z. Gao, L. Silberstein, T. Long, and A. Memon,
“Modeling and ranking flaky tests at apple,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering:
Software Engineering in Practice, ICSE-SEIP ’20, (New York, NY,
USA), p. 110–119, Association for Computing Machinery, 2020.

[48] M. Gruber, M. Heine, N. Oster, M. Philippsen, and G. Fraser, “ Practical
Flaky Test Prediction using Common Code Evolution and Test History
Data ,” in 2023 IEEE Conference on Software Testing, Verification
and Validation (ICST), (Los Alamitos, CA, USA), pp. 210–221, IEEE
Computer Society, Apr. 2023.

[49] R. Souza and B. Silva, “Sentiment analysis of travis ci builds,” in
Proceedings of the 14th International Conference on Mining Software
Repositories, MSR ’17, p. 459–462, IEEE Press, 2017.

[50] G. Fucci, N. Cassee, F. Zampetti, N. Novielli, A. Serebrenik, and
M. Di Penta, “Waiting around or job half-done? sentiment in self-admitted
technical debt,” in 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), pp. 403–414, 2021.

[51] R. Mohanani, I. Salman, B. Turhan, P. Rodrı́guez, and P. Ralph,
“Cognitive biases in software engineering: A systematic mapping study,”
IEEE Transactions on Software Engineering, vol. 46, no. 12, pp. 1318–
1339, 2020.

	Introduction
	Core Recheck Concepts
	Study Design
	Overall Performance
	Analysis
	Threats to Validity
	Related Work
	Concluding Remarks
	References

