The Cost of Downgrading Build Systems
A Case Study of Kubernetes

Gareema Ranjan*, Mahmoud Alfadel’, Gengyi Sun*, Shane McIntosh*
*Software REBELSs, University of Waterloo, Canada; TUniversity of Calgary, Canada
E-mail: *{granjan, gengyi.sun, shane.mcintosh}@uwaterloo.ca, fmahmoud. alfadel@ucalgary.ca

Abstract—Since developers invoke the build system frequently,
its performance can impact productivity. Modern artifact-based
build tools accelerate builds, yet prior work shows that teams
may abandon them for alternatives that are easier to maintain.
While prior work shows why downgrades are performed, the
implications of downgrades remain largely unexplored.

In this paper, we describe a case study of the Kubernetes
project, focusing on its downgrade from an artifact-based build
tool (Bazel) to a language-specific solution (Go Build). We
reproduce and analyze the full and incremental builds of change
sets during the downgrade period. On the one hand, we find
that Bazel builds are faster than Go Build, completing full
builds in 23.06-38.66 % less time and incremental builds in
up to 7519 % less time. On the other hand, Bazel builds
impose a larger memory footprint than Go Build of 81.42-
351.07 % and 118.71-218.22 Y% for full and incremental builds,
respectively. Bazel builds also impose a greater CPU load at
parallelism settings above eight for full builds and above one
for incremental builds. We estimate that downgrading from
Bazel can increase CI resource costs by up to 76 %. We
explore whether our observations generalize by replicating our
Kubernetes study on four other projects that also downgraded
from Bazel to older build tools. We observe that while build time
penalties decrease, Bazel consistently consumes more memory.
We conclude that abandoning artifact-based build tools, despite
perceived maintainability benefits, tends to incur considerable
performance costs for large projects. Our observations may help
stakeholders to balance trade-offs in build tool adoption.

I. INTRODUCTION

Build tools (i.e., tools that automate the process of trans-
forming source code into deliverables) are a key development
resource [1l]. Developers frequently invoke builds in their
local environments as they modify the codebase. Automated
builds are also triggered by pull requests, build hooks, or
nightly scheduled workflows. Since developers invoke builds
frequently, build tool performance can boost or hinder devel-
oper productivity [2} 3} 14} 5] 16]].

Artifact-based build tools, such as Bazel, Buck, Pants, and
CloudBuild [[7], have emerged to accelerate builds by enabling
features like remote execution and caching. Unlike traditional
tools (e.g., Make [8]]) or language-specific ones (e.g., Go
Build), artifact-based tools maintain full control over the build
process by explicitly tracking inputs, intermediate artifacts,
and outputs. By constructing complete dependency graphs,
these tools determine which tasks can be run in parallel and
which artifacts can be fetched from a central cache, thereby
minimizing repetitive build activity.

Despite these benefits, it is not uncommon for projects to
abandon artifact-based tools. For instance, in prior work [9]],

we found that 11.62 % of projects that adopted Bazel (a
popular artifact-based build tool) later downgraded to simpler
build tools, such as Make or Go Build. These decisions
are often driven by concerns over maintainability, contributor
onboarding, and platform compatibility rather than build per-
formance. While prior work describes motivations for down-
grades, abandoning artifact-based tools may incur performance
penalties. In other words: are teams that downgrade sacrificing
build speed and efficiency for maintainability?

In this paper, we investigate the performance and cost trade-
offs of abandoning artifact-based build tools by asking:

Are there performance or cost penalties
associated with build tool downgrades?

To address this central question, we conduct a case study
of Kubernetes—one of the most popular modern open-source
systems for orchestrating containerized applications. Kuber-
netes is an ideal case for our study because the team down-
graded to Go Build after over four years of using Bazel.
During the transition, the project maintained both build tools
concurrently, providing us with the unique opportunity to
compare both tools in a real-world setting.

We replay full and incremental buildsﬂ for commits recorded
before the downgrade event. Our experiments consumed ap-
proximately 3,402 computational hours—equivalent to over
four continuous months of execution.Through these experi-
ments, we address the following Research Questions (RQs):
RQ; How does the downgrade impact build duration?
Build duration is a central factor in developer productiv-
ity. Bazel and similar tools are designed to reduce build
time [10], but it remains unclear whether downgraded
tools retain similar performance. We observe that Bazel
builds are consistently faster than Go Build, with a
23.06-38.66 % speedup for full builds and up to 75
% for incremental builds at higher parallelism levels.
How does the downgrade impact resource usage?
Performance gains may come at the cost of increased
resource usage. We measure memory and CPU usage
under various parallelism settings. We observe that Bazel
builds require significantly more memory—up to 351.07
% more for full builds—and exert greater CPU load
under higher parallelism. Go Build, in contrast, is more
memory-efficient at lower parallelism levels.

RQ:

'Full builds run all build commands, whereas incremental builds only invoke
commands that are (transitively) impacted by changed inputs.

RQ3; How does the downgrade impact the costs of contin-
uous integration?
Build-related costs in CI environments can be substan-
tial, especially for large systems [2| [I1]. We estimate
these costs using resource pricing models from CI
providers. We observe that Bazel builds cost 22.62—
39.14 % less than Go Build for full builds and up to
75.92 % less for incremental builds.

While Kubernetes offers a unique opportunity to study build
downgrades in a large-scale setting, its monorepo structure and
scale may limit generalizability. To mitigate this and assess the
generalizability of our findings, we replicate the case study
on four open-source projects drawn from the dataset of our
prior work [9]. Our replication demonstrates that although
the performance gap between Bazel and Go Build narrows in
smaller projects, Bazel consistently imposes a larger memory
footprint than its replacement.

Our study implies that downgrading from artifact-based
tools, such as Bazel, can introduce significant hidden costs,
even in projects that made the change deliberately. While
maintainability and onboarding concerns often motivate such
downgrades, our results suggest that these decisions may
come at a steep performance and financial cost, especially
at scale. For practitioners, our findings serve as a caution
against assuming that simpler build tools will scale effectively
without consequences. Teams considering a downgrade should
carefully evaluate performance and CI cost implications using
project-specific benchmarks. For researchers and tool builders,
our study highlights a growing need for build systems that
strike a better balance between performance and maintain-
ability. Bridging this gap remains an open challenge, and an
opportunity for the next generation of build tooling.

To our knowledge, this is the first study to combine build
duration, resource usage, and CI cost to quantify the penal-
ties of downgrading from an artifact-based build system to
a language-specific one. Prior work documented downgrade
events [9], but did not measure their concrete costs. Also, we
do not intend to use the term ‘downgrade’ to imply a migration
to an inferior tool. For homogeneous Go projects, Go Build
can simplify onboarding and maintenance [9] while providing
most of the key features of an artifact-based build tool.

Data Availability. To foster replication, our data set, as well as
our data collection and analysis scripts are available online
II. STUDY DESIGN

This section provides our rationale for selecting Kubernetes
as our main subject system (Section , and describes the
Data and Environment Preparation (Section and Replay
Execution (Section stages in our study design.

A. Primary Subject System
We study the main project of the Kubernetes organizatioﬂ
because it offers a unique opportunity to investigate the

Zhttps://doi.org/10.5281/zenodo. 15533609
3https://github.com/kubernetes/kubernetes

cost and performance impact of shifting from an artifact-
based build tool (Bazel) to a less feature-rich build one (Go
Build). The Kubernetes project initially used both Bazel and
Go Build to define their build process in 2017. Four years
later, they downgraded to Go Build (on February 28, 202 IEI).
The remainder of this section describes the inclusion criteria
that we considered and explains how the Kubernetes project
satisfies each criterion.

Criterion 1: Fair base of comparison. We set out to control
for confounding factors to the largest extent possible when
comparing the studied build tools. To that end, the studied tools
must build the same versions of the codebase in an identical
computing environment. The Kubernetes project enables us
to perform a quantitative analysis of build tool performance,
having officially maintained both Bazel and Go Build simul-
taneously for over four years, i.e., we can use official project
configurations to compare the performance of Bazel and Go
Build on the same list of change sets (commits).

Criterion 2: Usage and community adoption. Studying
the performance of build tools in projects with extensive
community adoption ensures that our findings will have rel-
evance to a real-world setting of significance. Kubernetes,
with 3.8K unique contributors, 115K stars, and 40.6K forks
on GitHub, exhibits such widespread usage and popularity.
Moreover, the abandonment of Bazel by the main project
of Kubernetes notably impacted other projects, leading to
Bazel being abandoned by several subprojects within the same
organization, as well as projects from other organizations [9].

Criterion 3: Detailed documentation. To replicate historical
builds exactly as performed by the project contributors, we rely
on the official documentation available in the studied project
repository. The detailed documentation of Kubernetef] ensures
that we use the same versions of tools and dependencies that
have been recommended by the community, enabling reliable
reproduction of builds in our experimental environment.

B. Data and Environment Preparation (DEP)

We set out to analyze the two build tools by collecting a
list of commits where the performance of the tools can be
compared (DEP1). In addition, we create a stable environment
for building the collected list of commits using both tools
(DEP2). Below, we describe each step.

(DEP1) Select commits. We study the three-month period
from December 1, 2020 to February 27, 2021, before the
downgrade event on February 28, 2021. During this period,
2,161 commits were recorded on the main branch of the
Kubernetes project. Since evaluating all 2,161 commits would
require 3,781 computational days (or 10.35 computational
years)E] we sample commits on a daily basis by selecting the
latest commit with a passing build status (according to the

4https://github.com/kubernetes/kubernetes/pull/99561
Shttps://github.com/kubernetes/community/blob/fbef72efb89bb06b4df 76858
a88655736653042/contributors/devel/

62,161 change sets x 12 settings x 3 repetitions x 2 build tools x 35 average
compute minutes per change set

https://doi.org/10.5281/zenodo.15533609
https://github.com/kubernetes/kubernetes/pull/99561
https://github.com/kubernetes/community/blob/fbef72efb89bb06b4df7e6858a88655736653042/contributors/devel/
https://github.com/kubernetes/community/blob/fbef72efb89bb06b4df7e6858a88655736653042/contributors/devel/

GitHub AP for each day in the studied period. Applying this
step selects 81 change sets for analysis. Note that we exclude
commits that only modified documentation or configuration
files. The median number of files changed among the studied
commits is 22 (Q1=7, Q3=46).

(DEP2) Prepare build environment. We prepare a build
environment to replay builds by creating a Docker image that
serves as an isolated environment for both Bazel and Go Build.
The Kubernetes community maintains official documentation
and hosts artifacts, such as the base Docker image{ﬂ used for
official Kubernetes builds. We extend this base image with
a layer that iterates over the list of studied commits by: (1)
checking out the studied commit and (2) invoking the specified
build type, while (3) collecting performance metrics. Since a
central artifact cache has not been configured for Kubernetes,
we do not configure our builds to use an artifact cache apart
from the default settings of the two studied build tools. We
discuss the implications of this choice in Section [V}

C. Replay Execution (RE)

We evaluate full and incremental build scenarios because
both play important roles in development [12]]. Full builds
are used to initialize developer environments and are a com-
mon failsafe solution when build dependencies are not care-
fully maintained [13]. Moreover, many CI solutions invoke
full builds for each job [14]. Conversely, incremental builds
quickly integrate and test only the artifacts that have changed
with respect to either the previous build that was executed
locally [12], or with respect to a shared cache of artifacts [[15]].

For build replay execution, we first configure the parallelism
settings before running the builds (RE1). Next, we invoke
full builds (RE2-F) and incremental builds (RE2-I) for the
selected change sets. While the builds are being performed, we
collect performance metrics for analysis (RE3). We perform
our analysis using two machines, each with an AMD EPYC
9174F 16-core processor, 128 GB RAM, and a PCle storage
device. Below, we describe each step in detail.

(RE1) Configure parallelism. Build tools run independent
tasks concurrently. Thus, the number of available CPU cores
can impact build performance. CI platforms also factor in the
number of CPU cores allocated to a build job when computing
service charges. Since Kubernetes does not specify the level
of parallelism used for running their builds, we perform builds
with parallelism set to 1, 2, 4, 8, 16, and 32 to study how this
setting impacts build performance. Throughout the paper, this
setting is referred to as the parallelism setting.

(RE2-F) Perform full builds. In this step, we check out
a studied commit and build it using a specified build tool
(Bazel or Go Build) and parallelism setting, while recording
performance metrics. We then inspect the logs to determine the
build outcome (success or failure). Since we focus on commits
known to have passed, any failing builds are assumed to be
due to flakiness, and we re-invoke the build.

https:/docs.github.com/rest/commits/statuses
8registry.k8s.io/build-image/kube-cross:v1.15.5-1

(RE2-I) Perform incremental builds. To replicate incremen-
tal builds, we use the first commit in our list as a base
and perform a full build. Subsequent commits are built after
applying their change sets to the prior copy of the codebase,
thereby ensuring that only the updated artifacts are rebuilt.

To study whether full and incremental builds produce the
same results, we include a hash-based output comparison. We
generate MD5 checksums of all files in the output directories
of Bazel and Go. For each examined commit, we compute the
set of checksums once after the full build completes and again
after the incremental build completes.

For Bazel, full and incremental outputs for the same
commit were always byte-for-byte identical, with all MD5
checksums matching. For Go, 93 commits (93.93 %) also
produced identical output files, with differences being ob-
served in six commits. These mismatches were confined to
non-functional metadata, such as build IDs, debug paths,
and timestamps in intermediate files. When rebuilding these
commits with —trimpath (to strip absolute paths) and —
buildvcs=false (to omit VCS stamping), these mis-
matches were eliminated. Thus, the mismatches that we ob-
serve in Go can be attributed to toolchain-specific metadata
rather than correctness issues.

Finally, to ensure consistency, all builds were executed
inside a Docker container of the same image, and the same
commit was checked out for both full and incremental builds.
(RE3) Prepare metrics. While each studied build is executing,
we measure its duration (wall-clock time) using the Unix
time command. We also collect data on CPU usage (as a
load percentage) and memory consumed by the build tools. We
collect these metrics using docker stats for each Docker
container. For each iteration of each build, we collect these
metrics as time series data with a sampling frequency of four
seconds. Then, we analyze the descriptive median values to
lift our analysis to the build iteration level. For incremental
builds, we ensure that memory consumption is not affected by
previous commits by subtracting the memory consumed at the
end of the prior commit from that of the new one.

III. PRIMARY STUDY RESULTS

This section presents the results of executing full and
incremental builds of the Kubernetes project using Bazel and
Go Build with respect to our two RQs. For each RQ, we first
present our approach, and then discuss our findings.

RQI. How does the downgrade impact build duration?

Approach: We measure the wall-clock time required with
each build tool. As described in Section [[I for each studied
commit, we perform both full and incremental builds using
Bazel and Go Build, with parallelism settings of 1, 2, 4, 8, 16,
and 32. To counteract fluctuations in system load, we repeat
each build three times and report the median value. Since we
observe an average standard deviation of 4.61 % for full builds
and 7.24 % for incremental builds for the studied commits, we
believe that our median build durations are stable enough to
draw meaningful conclusions after three iterations.

https://docs.github.com/rest/commits/statuses

Build Tech [l Bazel Go Build

Full Build Incremental Build

1 Aa _— g
£ 2 A -
T 4 A P S
S 5 y) /
o 16 / /

2 |/ Jj

0 50 100 150 200 0 50 100 150

Build Duration (minutes)

Fig. 1: Median full and incremental build durations for Kubernetes.

Results: Figure [T]shows the distributions of build durations.

Observation 1. Across all parallelism settings, full builds of
Kubernetes executed using Bazel have significantly shorter
durations than those using Go Build. In the baseline paral-
lelism setting of one, Bazel has a median build duration of
112.40 minutes, whereas Go Build has a median of 182.70
minutes. Although the gap between Bazel and Go Build
narrows as the parallelism setting increases, Bazel maintains
shorter build durations than Go Build. Specifically, the median
build durations for Bazel are 60.40, 24.19, 13.00, 9.46, and
9.13 minutes for parallelism settings of 2, 4, 8, 16, and
32, respectively. In contrast, Go Build records median build
durations of 93.76, 39.65, 21.23, 14.11, and 11.77 minutes.
Wilcoxon signed-rank tests (paired, two-tailed, o = 0.0ﬂ
indicate a statistically significant difference in build durations
between the two build tools across all parallelism settings.
Furthermore, the Cliff’s delta effect size measure [[17] indi-
cates that the magnitude of the difference is large across all
parallelism settings. The average overhead in build duration
per commit when using Go Build compared to Bazel ranges
between 23.06-38.66 % across parallelism settings.

We analyze how each build tool processes individual targets
across ten randomly selected commits to understand why
Bazel achieves shorter overall build durations than Go Build.
We examine build profiles and action graphs using the -
profile and —-debug-actiongraph options for Bazel
and Go Build, respectively. These options reveal task execution
times, dependencies, and sequencing, shedding light on the
build strategy employed by each tool. They also highlight
where each tool spends its processing time.

We find that Go Build processes targets a median of 2.1 x—
3.4x faster than Bazel for parallelism settings of 1 to 16,
and a median of 6.1x faster at a parallelism setting of 32.
Although Go Build processes targets more quickly, Bazel
achieves shorter overall build durations by decomposing tasks
at a finer granularity. Those finer-grained tasks can better
leverage the resources that are available for the concurrent
execution of independent tasks.

We adjust « to 0.0083 (%) using the Bonferroni method [16] to account
for the six comparisons that we perform.

Observation 2. When parallelism is set to one or two,
the difference in the incremental build durations between
Bazel and Go Build is negligible; however, at parallelism
settings greater than two, Bazel achieves significantly shorter
build durations compared to Go Build. Bazel incremental
builds have median durations of 48.01 and 27.19 minutes
at parallelism settings of one and two, respectively, whereas
Go Build has median durations of 44.63 and 22.27 minutes,
respectively. Wilcoxon signed-rank tests (paired, two-tailed, o
= 0.0ﬂ) indicate that the difference is statistically significant
at the parallelism setting of one, but insignificant at the
parallelism setting of two. Moreover, Cliff’s delta is negligible
in both cases, suggesting that the magnitude of difference is
minimal when parallelism is set to one or two.

As parallelism increases, the gap between incremental
builds executed with Bazel and Go Build increases. The differ-
ences become statistically significant for parallelism settings
of four and above. Cliff’s delta for the parallelism setting
of four is medium and is large for parallelism settings of
eight and above. The median build durations of Bazel at
parallelism settings of 4, 8, 16, and 32 are 9.64, 4.27, 2.33,
and 1.93 minutes, respectively. In contrast, Go Build achieves
median build durations of 12.71, 9.43, 8.47, and 8.13 minutes
at the same parallelism settings. Thus, the average overhead
for abandoning Bazel is -3.69, -7.51, 29.17, 55.73, 69.84,
and 75.19 % at parallelism settings of 1, 2, 4, 8, 16, and
32, respectively. Indeed, Bazel is particularly beneficial for
incremental builds when parallelism is set above two.

Analysis of the action graphs reveals that parallelization
is also a key factor in speeding up incremental builds as
well. For individual targets, Go Build is 2.3x-3.2x faster than
Bazel for the parallelism settings of 1 to 8. At parallelism
settings of 16 and 32, Go Build provides a speedup of 4.0x
and 5.9x, respectively. Thus, despite processing targets more
slowly, parallelization helps Bazel achieve shorter overall build
durations when parallelism is set to four or more.

To explore how caching mechanisms in Bazel contribute
to its efficiency in incremental builds, we further analyze
the time spent in each build phase using the analyze-
profile option. Bazel’s build process is divided into launch,
init, loading and analysis, execution, and finish phases. In the
loading and analysis phase, Bazel constructs a dependency
graph, identifying necessary dependencies, while the execution
phase performs the build actions.

For full builds, Bazel spends 22.4-48.9 % of its execution
time in the loading and analysis phase, with 61.2-78.7 %
spent on execution, varying based on the parallelism setting.
This workload shifts substantially for incremental builds, with
Bazel spending 1.0-3.4 % of execution time in the loading
and analysis phase and 97.5-98.8 % on execution. This shows
that Bazel conducts extensive dependency analysis and writes
a substantial amount to caches during full builds with the goal
of accelerating subsequent (incremental) builds. In contrast,
Go Build follows a simpler, phase-less design [18]], compiling
source code directly based on import statements, without
leveraging caching for incremental optimization.

Answer to RQ1

Full builds executed using Bazel are significantly faster
than Go Build ones, across all parallelism settings. Choos-
ing Go Build over Bazel introduces an overhead ranging
from 23.06-38.66 %. For incremental builds, the differ-
ence in build durations between Bazel and Go Build is
negligible when parallelism is set to one or two; however,
as the parallelism setting increases, Bazel consistently
maintains shorter build durations than Go Build. Indeed,
the overhead for choosing Go Build over Bazel reaches as
high as 75.19 % at the parallelism setting of 32.

RQ?2. How does the downgrade impact resource usage?

Approach: To analyze the impact on resource consumption,
we monitor both memory consumption and CPU usage. We
execute both full builds and incremental builds for each
studied commit, repeating each build three times with different
parallelism settings. We collect time series data for resource
consumption for each such build run using docker stats.
We then compile the time series data into an aggregate time
series representing the build metrics for each commit grouped
according to the build tool. From these two sets of time series’,
we analyze both memory consumption and CPU usage for
each commit at each parallelism setting.

Results: Figures 2] and 3] provide an overview of the results.

Observation 3. Across all parallelism settings, Bazel has a
significantly larger memory footprint than Go Build for both
full and incremental builds. Figure [2] presents the distribution
of the median memory consumption for full and incremental
builds. For full builds, the median values range from 19.49—
24.15 GiB for Bazel, and from 5.34-5.57 GiB for Go Build.
The median memory consumption of Bazel is 281.42-351.07
% higher than that of Go Build across different parallelism
settings. Wilcoxon signed-rank tests (paired, two-tailed, o
= 0.0ﬂ) indicate that a statistically significant difference
in memory consumption (with a large Cliff’s delta) exists
between Bazel and Go Build at all parallelism settings.

The higher memory consumption by Bazel can be attributed
to two primary factors. First, its advanced caching mechanisms
that increase memory consumption when Bazel optimizes
build efficiency by caching build actions, including storing
content hashes of source codeF_G] Second, Bazel’s analysis of
the build dependency graph [10] results in a larger memory
footprint for full builds. It uses available system memory to
speed up dependency graph analysis, and cache build artifacts
and dependencies as they are being created/downloaded.

Observation 2 explains that Bazel has distinct phases of
build execution. Bazel spends a considerable proportion of
its execution time in the loading and analysis phase. For full
builds, Bazel spends an average of 22.4-48.9 % in the loading
and analysis phase, where it constructs and analyzes the build
dependency graph and downloading (external) dependencies.
This correlates with the larger memory footprint that is being

10https://nicolovaligi.com/articles/faster-bazel-remote-caching-benchmark/

Build Tech [l Bazel Go Build

Full Build Incremental Build

1 A] k

g 2 A L
T 4 A - -
% 8 . o .
o 16 - N -,
32 e AR

5 10 30 50 03 10 3.0 10.0 30.0

Memory Consumption (GiB)

Fig. 2: Median memory consumption (in GiB) for full builds and
incremental builds for Kubernetes.

Build Tech [l Bazel Go Build

Full Build Incremental Build
1
o 4
% 8 N A
o 16 a— i,
32 -~
0 500 1000 1500 0 1000 2000

CPU Usage (%)

Fig. 3: Distribution of median values of CPU usage (%) for full builds
and incremental builds for Kubernetes.

generated by Bazel during full builds. In contrast, Go Build
does not have a distinct and aggressive build graph analysis
phase, and it resolves dependencies on-demand based on the
import statements present in the code.

For incremental builds, the median memory consumption
of Bazel ranges from 3.61-5.83 GiB, whereas Go Build uses
between 1.8-2.39 GiB. Bazel consumes 118.71-218.22 %
more memory on average than Go Build at any parallelism
setting. Wilcoxon signed-rank tests (paired, two-tailed, o =
0.0ﬁﬂ) indicate a statistically significant difference in memory
consumption between the two tools with a large Cliff’s delta
at all parallelism settings.

Similar to full builds, Bazel has a larger memory footprint
than Go Build due to its caching and dependency analysis
mechanisms. The memory consumption of both the build
tools has reduced due to a decrease in the number of build
actions and external dependencies being downloaded during
incremental builds. Bazel spends a smaller proportion of its
execution time in its load and analysis phase, 1.0-3.4 %,
respectively. Instead, Bazel spends more time on the execution
of actual build tasks.

Observation 4. Go Build uses significantly more CPU re-
sources than Bazel when running full builds at parallelism
settings of four or less; however, the differences decrease
when the parallelism setting is greater than four. Figure
presents the distributions of CPU usage. For full builds, Go

https://nicolovaligi.com/articles/faster-bazel-remote-caching-benchmark/

Build has higher CPU usage than Bazel at the parallelism
settings of 1, 2, and 4. Wilcoxon signed-rank tests (paired, two-
tailed, o = 0.0ﬂ indicate that Go Build incurs significantly
more CPU usage at these parallelism settings, with a large
effect size; however, this difference becomes insignificant with
a negligible effect size when parallelism reaches eight. At the
higher parallelism settings of 16 and 32 (i.e., with greater
resource availability), CPU usage stabilizes for both tools,
and Go Build has lower CPU usage than Bazel, with small
and medium effect sizes, respectively. Note that a parallelism
setting of 32 is likely to be excessive for both tools, as
the percentage of CPU usage decreases when the parallelism
setting increases from 16 to 32.

We suspect that Go Build has greater CPU usage at low
parallelism settings due to its adoption of goroutines for
lightweight concurrent task execution within a single process,
even on single-core systems [19]. This model allows Go Build
to handle multiple tasks with fewer processes [20]].

To better understand the strategy of the two build tools when
managing tasks, we analyze the number of processes used
by each tool. Table [I] shows the median number of unique
child worker Process IDs (PIDs) within Bazel and Go Build
runs at each parallelism level. The table shows that Go Build
consistently creates fewer processes than Bazel. For full builds,
as parallelism increases, Bazel creates more PIDs, while Go
Build creates fewer. Go Build manages multiple tasks within
a single process, which does not scale well (generating greater
CPU usage) until the parallelism setting reaches eight. At
that point, the Go scheduler handles more tasks with fewer
PIDs, reducing CPU usage as the parallelism setting increases.
Conversely, for full builds performed using Bazel, the number
of PIDs stabilizes from the parallelism settings of 2 to 16 and
slightly increases at the parallelism setting of 32. With more
CPU cores available beyond the parallelism setting of four, the
parallel build tasks created by Bazel consume a larger amount
of CPU resources.

Observation 5. Bazel incurs greater CPU usage than Go
Build for incremental builds unless parallelism is set to one.
At the parallelism setting of one, Go Build uses more CPU
resources than Bazel. Wilcoxon signed-rank tests (paired, two-
tailed, a = 0.05%) indicate a statistically significant difference
at this parallelism setting, with a medium Cliff’s delta effect
size. For greater parallelism settings, Bazel uses more CPU
resources than Go Build. Statistical tests also reveal significant
differences in the CPU usage at these settings, with a large
Cliff’s delta effect size. Similar to full builds, CPU usage does
not increase at the parallelism setting of 32 compared to that
of 16 for both build tools. Indeed, the median CPU usage for
Bazel is 1451.3 % at the parallelism setting 16 and 1641.93
% at 32, whereas for Go Build, it is 300.64 % and 290.22 %,
respectively. This again suggests that the parallelism setting
of 32 is not beneficial for incremental builds in this context.

We also study how the two build tools distribute and manage
build tasks by studying the number of unique child worker
processes they create (PIDs). Table [I| shows the number of

TABLE I: The median number of PIDs across parallelism settings.

Parallelism Setting

Build Tool 1 2 4 8 16 32
Full Go Build 237 268 252 220 130 94
u Bazel 579 687 691 689 686 718
Go Build 142 134 92 81 78 77

Incremental

Bazel 617 673 684 696 691 711

PIDs created by each tool. Bazel consistently creates more
PIDs, indicating a larger number of worker processes. This
typically leads to greater CPU usage for Bazel, especially
during incremental builds, due to its fine-grained parallelism
and the overhead associated with managing and scheduling
numerous processes. At the parallelism setting of one, the par-
allelism capabilities of Bazel are not being leveraged, resulting
in less CPU usage than Go Build. We attribute Bazel’s higher
CPU load at parallelism settings larger than two to its worker-
based scheduling—a property of its architecture rather than its
implementation language (Java). Rewriting Bazel in Go would
be unlikely to reduce its CPU usage.

Answer to RQ2

Bazel has a significantly larger memory footprint than Go
Build, with overhead ranging from 281.42-351.07 % for
full builds and 118.71-218.22 % for incremental builds. In
terms of CPU usage, Bazel effectively leverages available
resources to accelerate its execution through concurrency,
imposing a significantly higher CPU load for full builds
when parallelism is eight or higher. For incremental builds,
Bazel imposes a higher CPU load unless its operation is
serialized, i.e., parallelism is set to one.

RQ3. How does the downgrade impact the costs of continuous
integration?

Approach: The CI resource consumption cost of running
builds is not directly proportional to the rate charged by CI
providers. Specifically, the cost of full builds can be calculated
as N x T x r, where:

N represents the number of builds that are triggered each
month. For Kubernetes, we derive the number of monthly
full builds the project runs from Proa CI platform
used by the main Kubernetes project and its community
to orchestrate build jobs. Since Prow only maintains the
latest three months of build data, we could not retrieve
the exact number of Kubernetes builds invoked during our
selected study period (Section [[I-B)). Instead, we estimate
N using the median of 23 end-to-end full build executions
per day (or 690 per month), that we find when we mine
the most recent build data from Prow[]

https://prow.k8s.io/
12https://prow.k8s.io/job- history/gs/kubernetes- jenkins/logs/ci- kubernetes- bui

https://prow.k8s.io/
https://prow.k8s.io/job-history/gs/kubernetes-jenkins/logs/ci-kubernetes-build
https://prow.k8s.io/job-history/gs/kubernetes-jenkins/logs/ci-kubernetes-build

TABLE II: GitHub Actions pricing based on virtual CPU count.

0S vCPUs Rate (USD/min)
Linux 2 $0.008
Linux 4 $0.016
Linux 8 $0.032
Linux 16 $0.064
Linux 32 $0.128

T represents the duration of each build. To estimate the
duration of a full build, we calculate the median build
duration for each parallelism setting based on the results
of RQ1.

r represents the rate of charge. Due to the absence of any
pricing information for Prow, we approximate r using the
pricing model of GitHub Actiona broadly adopted
service provider for CI [21} 22]. Table [[I| shows that this
pricing model factors in both the number of virtual CPUs
allocated for build execution and the duration of the build
process. Note that GitHub Actions does not provide a
charge amount for processes running on a single CPU
core. Hence, we exclude the parallelism setting of one
from our cost analysis.

To illustrate our approach using an example, consider the
scenario of running full builds at the parallelism setting of
two using Bazel. According to our findings in Section
the median full build duration for this setting is 7' = 60.40
minutes. With the median number of monthly full builds
derived from Prow data being 690, and the rate charged by
GitHub Actions for this configuration being $0.008 per minute,
the monthly costs would be an estimated $333.41 USD (i.e.,
690 x 60.40 x $0.008). Similarly, we compute the costs for
other parallelism settings using their respective median build
durations and the corresponding rates of charge in Table

Although Kubernetes maintainers do not directly implement
incremental builds for their CI environment, they still aim to
reduce build times by using caching for Bazel, and skipping
Go Builds if artifacts do not change. Bazel supports the
caching of intermediate and final build artifacts in a shared
location['] If that cache were stored in a persistent (exter-
nal) location that CI builds could access, CI builds would
essentially be performed incrementally. Moreover, different
CI services and tools such as GitHub Action{?] and Cir-
cleC can be used with tools to implement incremental
builds by caching dependencies and artifacts. Recent research
has also focused on the acceleration of builds by caching
build environments and skipping unaffected build steps in CI,
similar to an incremental build [14]. Therefore, we perform a
speculative cost analysis for the costs if a varying proportion
of Kubernetes’ CI builds had been incremental.

Bhttps://docs.github.com/en/billing/managing- billing- for- github- actions/abo
ut-billing-for- github-actions

https://bazel.build/remote/caching

Shttps://docs.github.com/en/actions/writing- workflows/choosing- what- you
r-workflow-does/

16https://circleci.com/docs/caching/

Incremental builds cannot run independently and depend
on full builds as their starting point. The need for full
builds varies, affecting the frequency of subsequent incre-
mental builds. We estimate the cost by simulating various
scenarios with different proportions of full builds support-
ing the incremental ones. The monthly CI resource con-
sumption costs for these scenarios can be calculated as
[B % Ttun + (1 = B) X Tine] X N x 7, where (3 is the proportion
of times that a full build is run.

After calculating the cost of both Bazel and Go Build, we
calculate the relative difference in costs of builds using Bazel
and Go Build with respect to Go Build. A positive difference
indicates that Bazel is more costly than Go Build, while a
negative difference indicates the opposite.

Results: Observation 6. Bazel incurs lower costs than
Go Build when executing both full and incremental builds
for parallelism settings greater than two. Figure [Aa] presents
the estimated monthly costs for full builds of Kubernetes
using Bazel and Go Build. From the figure, we observe that
Bazel consistently incurs lower costs than Go Build, with CI
cost savings ranging from 22.62-39.14 % across parallelism
settings. Moreover, as the parallelism setting increases, so
does the monthly cost for both build tools; however, an
exception occurs when increasing the parallelism setting from
two to four. In that scenario, the CI cost decreases. Despite
incurring a higher per-minute price, the substantial reduction
of build duration at the parallelism setting of four reduces the
overall financial cost, i.e., the time savings from the enhanced
processing power outweighs the increased cost per minute.
From the results of RQ1 for full builds, we observe that when
increasing the parallelism setting from two to four both Bazel
and Go Build have the maximum speedup—2.5x for Bazel
and 2.4x for Go Build.

Figure [4blillustrates the differences in cost (Y axis) between
Bazel and Go Build as the proportion of full builds varies
(X axis). From the figure, we observe that as the parallelism
setting increases (plotted as different lines), Bazel becomes
more cost-effective than Go Build. For instance, at a paral-
lelism setting of two and with the proportion of full builds
8 = 0.4, Bazel is 21.95 % more cost-effective than Go Build.
This increases to 52.03 % when the parallelism setting is 32.

The benefit of using Bazel is most pronounced at the highest
observed parallelism setting of 32, when £ is as low as 0.01,
resulting in savings of 75.96 %. In contrast, at the lowest
studied parallelism setting of two, Bazel incurs more cost than
Go Build when 8 < 0.13.

Additionally, Figure [4b| shows that as the proportion of full
builds increases, the cost difference between Bazel and Go
Build narrows. This can likely be attributed to the diminishing
optimization of the build process of Bazel when transitioning
from incremental to more full builds, as discussed in Observa-
tions 1 and 2. Despite this convergence, negative percentages
of cost difference indicate that Bazel incurs less cost overall.

Finally, we note that CI providers charge for CPU-minutes,
so the cheapest configuration is not always the fastest. For
example, four CPU setting minimizes cost even though greater

https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions
https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions
https://bazel.build/remote/caching
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/
https://circleci.com/docs/caching/

1000, == Go Buia Proportion ?\flncremental builds (1 - B)
_ Borel RIS I SRR ST O
-
9) 800 § 0 Parallelism
2 [2
< © 20
8 600 §
9]
2 400 g
e =
g =
o _
= 200 g
%—80 zt
0 -

2 4 81632 R R IR R

Parallelism Proportion of full builds (B)

(a) Monthly costs for full
builds.

(b) Cost differences for full vs. incremental
builds.

Fig. 4: Build cost analysis for Kubernetes using Bazel and Go Build.

parallelism settings produce faster results. This highlights that
this analysis provides unique budget guidance that cannot be
inferred directly from build duration measurements.

Answer to RQ3

Bazel is more cost-effective than Go Build across all paral-
lelism settings, achieving savings from 22.62-39.14 % for
full builds and up to 75 % for incremental builds. While
its advantage decreases as the proportion of full builds
increases, Bazel generally remains more cost-efficient.

IV. ANALYTIC GENERALIZABILITY

Our study has thus far focused on the downgrade event
within the main Kubernetes project, where Bazel was replaced
by Go Build. To evaluate the generalizability of our findings,
we expand the analysis along three complementary dimen-
sions. First, we replicate our experiments on a larger and more
recent time window of Kubernetes commits, to test whether
our observations (01-06) remain valid (Section [[V-A). Sec-
ond, we replicate our measurements on additional open-source
projects to assess whether the observed trade-offs extend
beyond Kubernetes (Section [[V-B). Finally, we conduct a
qualitative comparison of build tools, based on documentation
of Bazel, Buck, Pants, Go Build, and Maven, to understand
which features are shared across artifact-based systems and
which are specific to language-specific tools (Section [[V-C).

A. Replication on Another Time Window

To assess whether our findings hold beyond the original
three-month window (81 commits), we replicate our analysis
on a larger and more recent period of Kubernetes development.
We apply the same commit sampling strategy as we describe in
Section |11} i.e., we select the last commit of each day. Starting
from January 2023, we sequentially executed builds for each
sampled commit using both Bazel and Go Build across the
studied parallelism settings for both full and incremental
builds. For this analysis, we sample another 14 commits, which
required approximately 14,000 minutes (=233 hours, more
than nine days) of computation time.

TABLE III: Results for smaller projects. H = Holds, NH = Not Hold

Project Lang Alt Tool Commits Obs1 Obs2 Obs3 Obs4
trilliad”] Go Go Build 2620 NH H H H
emergen Go Go Build 724 NH NH H NH
firedance C Make 576 NH H H NH
enttf] C+ Make 1,193 H H H H

Overall, we find that this replication confirms our main
trend, i.e., Bazel achieves faster full and incremental builds
across most parallelism levels. The only difference is that at
the highest parallelism setting (32 cores), the performance
gap between Bazel and Go Build becomes much smaller,
with the two tools showing nearly comparable build times.
These runs also support our earlier observations for resource
consumption, ie., the performance advantage of Bazel comes
at the cost of a substantially larger memory footprint and
heavier CPU load, whereas Go Build uses less memory, but
shows different CPU utilization behavior without consistent
performance gains. In the appendix of our replication pack-
age we provide the detailed results, which are omitted here
due to space constraints.

Comparison with original study. Overall, our replication
results largely confirm our original observations, i.e., Bazel
achieves shorter full and incremental build times than Go
Build (O1, O2), but at the cost of higher memory and CPU
usage (O3-05). The key difference lies in the maximum
studied parallelism setting of 32 cores, where the performance
gap between the two tools narrows substantially, with build
times becoming nearly comparable. In contrast, Section [III]
shows that Bazel maintains a clearer advantage even at high
parallelism. This shift may be attributed to the growth and
restructuring of the Kubernetes codebase, which increases
orchestration overhead in Bazel while allowing the simpler
model of Go Build to close the gap. Nonetheless, the overall
conclusion holds; artifact-based systems like Bazel provide
consistent performance benefits, while language-specific tools
like Go Build remain more resource-efficient but less capable
of sustaining speedups at scale.

B. Replication on Other Projects

We replicate our measurements on four other open-source
projects. To select projects for our analysis, we revisit the
dataset that we compiled in prior work [9]. We select projects
with at least 500 commits before abandoning Bazel to ensure
that each project has undergone a considerable amount of
change so that the build tools can be compared. Since we aim
to characterize performance penalties, we exclude projects that
configure the build tools to compile specific targets, rather than
the entire codebase.

We find that nine candidate projects satisfy these criteria.
Of these, we could successfully replay the builds of the four
projects that are listed in Table [ITI}

Thttps://github.com/google/trillian/pull/2743
18https://github.com/emer/emergent/commit/968d99
9https://github.com/firedancer-io/firedancer/pull/157
20https://github.com/skypjack/entt/commit/99f8 1 ¢

https://github.com/google/trillian/pull/2743
https://github.com/emer/emergent/commit/968d99
https://github.com/firedancer-io/firedancer/pull/157
https://github.com/skypjack/entt/commit/99f81e

Build Tech ll Bazel ~ Go Build Make

googleftillian

o s N
>
-

Parallelism

Qe
85

Full Build Duration (minutes)

googleftrillian fired:

y - v
A - " v
A oA W W
B _a A A
1 L. A I I _)
32 L. A L . ! —_ 1

1e-03 1e-02 1e-01 1e+00 1e+01

Parallelism
SRS

1.00 1e-03 1e-02 1e-01 1e+00 le+01 1e-03 1e-01 le+0l
Incremental Build Duration (minutes)

googleftillian

1 ‘ A A A
£ 2 ‘ . A — ‘
3 4 \ — — A
g 8 ‘ - ah -~
6 VN - o~a A

32 oA A } Al A
01 03 10 30 05 10 30 05 10 30 50 01 03 10 30
Median Memory Consumption (GiB)
googleftrillian P v

: A A
£ 2 Py ‘ A
i f \ I\
T A —-a ‘ N
) —— A ﬁ ‘ —

32 - _ ‘ —

100 300 1000 100 300 500 100 300 1000 100 300 1000

Median CPU Usage (%)

Fig. 5: Performance metrics for analytic generalizability analysis.

Table |III) provides an overview of Observations 1-4 across
the set of additional studied projects. For example, Bazel’s
higher memory footprint (O3) holds consistently, while
speedups (O1, O2) vary with project size. Note that two
of these projects perform a downgrade of the same type as
Kubernetes (i.e., Bazel to Go Build), and two downgrade to a
different technology (i.e., Bazel to Make).

Unlike Kubernetes, changes to build specifications are
needed to replay builds for this set of projects. We modify
the build specifications to address dependency issues due
to the evolution of externally maintained packages. Prior
work [23| 24] also observed that replayed historical builds
failed at a high rate of 71.36-91.26 %, and a common problem
was the evolution of external dependencies. We provide these
required changes as patches within our replication package

Since the selected projects are considerably smaller than
Kubernetes, the build duration is shorter than one second
for up to 22 % of the studied incremental builds. As our
evaluation setup is not sensitive enough to measure fluctuations
in resource consumption for such short builds, we omit the
analysis of incremental builds. Moreover, such short builds
are unlikely to fluctuate enough to generate a meaningful
difference in costs. Hence, we do not perform our cost analyses
(RQ3) on this set of projects.

Below, we explore whether Observations 1-4 (Section
hold for these smaller projects. Figure [5] provides an overview
of the results for this new set of projects.

(Observation 1) Bazel has shorter full build durations
across all parallelism settings. This observation does not
generally apply to smaller projects. Wilcoxon signed-rank tests

(paired, two-tailed, o = 0.0ﬂ indicate that builds executed us-
ing Go Build tend to have significantly shorter build durations
than those executed using Bazel in both google/tril-
lian and emer/emergent. For projects downgrading to
Make, the observation does not hold for firedancer-—
io/firedancer, but for skypjack/entt, we find sim-
ilar trends in full build duration as Kubernetes at parallelism
settings of four or more.

(Observation 2) Bazel has shorter incremental build du-
rations except at low parallelism settings. We note that
this observation holds for three out of the four selected
projects. Incremental builds run using Bazel are signifi-
cantly shorter at all parallelism settings in google/tril—
lian and firedancer—-io/firedancer. In skyp-
jack/entt, similar to Kubernetes, the incremental build
durations using Bazel are significantly shorter when the paral-
lelism is set to four or above as indicated by Wilcoxon signed-
rank testsH whereas for emer/emergent, the difference is
insignificant between the two tools for incremental builds.

(Observation 3) Bazel has a larger memory footprint across
all parallelism settings for full builds. We note that this
observation holds for all projects across all parallelism settings
and Bazel consistently has a higher memory footprint. In fact,
the Bazel community is developing tools to balance memory
footprint with build flexibility as a trade-off T[]

(Observation 4) Bazel has higher CPU usage only at
higher parallelism settings for full builds. We observe
different variations of this observation across projects. In
google/trillian, the trends of CPU usage are similar
to Kubernetes until the parallelism setting of 16 with Bazel
consuming more when parallelism is set to four or above.
In skypjack/entt, we observe similar trends as Kuber-
netes; however, for emer/emergent and firedancer-
io/firedancer, other tools tend to have a higher CPU
usage than Bazel as the parallelism settings increase.

In summary, these replications show that while Bazel’s
memory overhead (O3) holds across all projects, speedups
(01, 02) vary with project size. Thus, we believe that Ku-
bernetes provides an example of a downgrade at scale, while
smaller projects experience weaker penalties. Moreover, the
benefits of fine-grained task parallelization within Bazel are
often outweighed by its overhead, particularly for full builds.
Go Build generally outperforms Bazel in terms of full build
duration and memory usage. Make, when used with its —3j
option, can also offer faster full builds and lower memory
usage; however, Bazel retains an advantage in incremental
builds across several projects. CPU usage patterns vary across
projects according to their build configuration, but Bazel
consistently incurs higher memory consumption.

2lhttps://bazel.build/about/roadmap#project-skyfocus
22https://bazel.build/advanced/performance/memory#trade-flexibility

https://bazel.build/about/roadmap#project-skyfocus
https://bazel.build/advanced/performance/memory#trade-flexibility

C. Qualitative Comparison of Build Tools

To qualitatively compare build systems, we review their
official documentation. We conduct this analysis on BazelE]
BuckFE] PantsE] Go Build@ and Maverﬂ focusing on how
each tool structures builds, manages dependencies, caches
artifacts, and exploits concurrency, to identify key features
that drive build performance. From this review, we identify
five recurring architectural features that explain the trade-offs
observed in our empirical results (O1-06).

In our replication packageB we provide a table that sum-
marizes these features, links them to our observations, and
contrasts how they manifest in artifact-based with how they
manifest in language-specific tools. The table is omitted here
due to space constraints. Below, we describe each feature.

Directed action graphs and parallelism. Artifact-based tools
(Bazel, Buck, Pants) represent builds as Directed Acyclic
Graphs (DAGs) of fine-grained tasks—a feature that enables
extensive parallel scheduling. This design contributes to why
Bazel achieved shorter full builds (O1) and faster incremental
builds (02). Buck and Pants use similar DAG-based schedul-
ing, whereas language-specific tools (Go Build, Maven) track
dependencies more coarsely, and as such, cannot exploit
parallelism as broadly.

Aggressive caching. Bazel reuses build artifacts through both
local and remote caches. In our single-user experiments, only
local caching is relevant, as Bazel avoids recomputing tasks
when inputs remain unchanged, yielding significant incremen-
tal speedups (O2). Buck implements a similar mechanism
using RuleKeys (hashes of inputs) to decide cache hits, while
Pants supports both local and remote caches. By contrast,
language-specific tools, such as Go Build and Maven, only
support simple local caching (e.g., avoiding recompilation
of unchanged packages or modules), which limits reuse and
reduces incremental build gains.

Dependency graph overhead (memory). Loading a fine-
grained DAG will have a larger memory footprint than a
coarse-grained DAG. Indeed, O3 shows that Bazel’s footprint
was up to 351 % larger than Go Build’s. Buck and Pants
are likely to behave similarly because they must also load
a fine-grained DAG, whereas language-specific tools resolve
dependencies at a coarser granularity.

Worker process model (CPU). Artifact-based tools launch
many worker processes to exploit parallelism, resulting in
higher CPU utilization in both full (O4) and incremental
(O5) builds. Buck and Pants share this model. By contrast,
language-specific tools parallelize within a package or phase,
using fewer processes overall. Thus, language-specific tools
impose a smaller CPU load, but cannot scale concurrently to
the same degree as artifact-based tools.

Zhttps://bazel.build/docs

24https://buck.build/setup/getting_started.html
2https://www.pantsbuild.org/dev/docs/introduction/welcome-to-pants
26https://pkg.go.dev/icmd
2Thttps://maven.apache.org/guides/introduction/introduction-to- the-pom.html

10

V. THREATS TO VALIDITY

This section describes the threats to the validity of our study.

Construct validity. A potential threat lies in how we define
and measure performance impact. We do not evaluate build
hermeticity or CI/CD integration. These dimensions are impor-
tant, but orthogonal to our goal of quantifying performance and
cost penalties. Our focus on duration, memory footprint, CPU
usage, and CI cost follows prior work and reflects practitioner
concerns about productivity and budgets.
Internal validity. Environmental factors like system load or
network delays could affect our measurements. To mitigate
this, we use identical hardware, isolate builds in Docker
containers, and ensure no competing processes run during
execution. We repeat builds three times; for Kubernetes, the
standard deviation was 4.61 % (full) and 7.24 % (incremental),
suggesting that our results are relatively consistent.

Another threat is bias in tool configuration. We address
this by selecting projects where both tools compile the full
codebase and build identical targets.

We do not configure a remote cache for Bazel, as it mainly

benefits repeated builds across users. Since our focus is on
sequential incremental builds by a single user, omitting the
remote cache does not compromise our results.
External validity. Our primary subject is Kubernetes—a
large-scale, resource-intensive system with a stable build
pipeline and widespread adoption. To improve generalizability,
we replicate our analysis on four smaller projects that also
downgraded from Bazel (Section [[V)).

VI. RELATED WORK

In this section, we position our work with respect to
the literature on build migration (Section [VI-A) and build
performance (Section [VI-B).

A. Build Migration

Previous studies have explored migration between build
tools [25 126, 127, 28]]. For example, Mclntosh et al. [26]]
studied projects that migrate upwards toward more feature-
rich build tools (i.e., Ant to Maven and Make/Autotools
to CMake), observing that they often pay off in terms of
build maintenance activity (e.g., churn rate, logical coupling
with source code). Suvorov et al. [27] mined the developer
mailing lists of KDE and the Linux kernel to understand their
build migration projects. They found that build migrations
are often prolonged and error-prone, complicated by unclear
requirements, communication bottlenecks, and the trade-off
between performance gains and increased complexity.

Other studies have proposed methods to aid with build
migrations [29) 30]. For instance, Al-Kofahi et al. [29] in-
troduced the AutoHaven platform that analyses and extracts
the semantics of the GNU Autotools build tool, which can
be further used to reduce manual migration effort. Gligoric et
al. [30]] proposed a dynamic solution to automate the transition
of build specifications to a different build tool.

Recent work has also demonstrated the tradeoffs in adopting
the latest build technologies [9, 131]]. For example, Alfadel

https://bazel.build/docs
https://buck.build/setup/getting_started.html
https://www.pantsbuild.org/dev/docs/introduction/welcome-to-pants
https://pkg.go.dev/cmd
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

and Mclntosh [9] studied a phenomenon of projects migrating
away from build tools like Bazel. They found that developers
using Bazel encountered technical, integration, and team co-
ordination challenges, which have led them to downgrade to
simpler, language-specific alternatives. Similar to build tools,
CI tools compete for adoption in the development marketplace.

Our work takes inspiration from past work on build mi-
grations and build tool downgrades, but differs by focusing
specifically on the performance penalties that can realistically
be associated with downgrading from a feature-rich build tool
to a more traditional one.

B. Build Performance

Prior work has explored the impact of an efficient build pro-
cess on developers [} 12} 13} 4} |5, 32]. For example, Rasmusson
[32] analyzed how prolonged build durations negatively impact
development workflows and found that long build durations
impact developer productivity and team spirit. Hilton et al.[1]]
found that long build durations are a frequently referenced
bottleneck, and developers argue that builds should take no
more than 10 minutes to sustain a productive flow. Maudoux
and Mens [3] found that inefficient build systems in large
projects result in longer build durations, directly impacting
day-to-day developer productivity by increasing downtime
between tasks. A case study at Google [S] also suggested
that slow builds cause developers to lose context, reducing
the number of changes they complete daily.

Given the substantial impact of slow builds on developer
productivity, researchers have sought to understand and mit-
igate their causes [33, [34)]. For example, Rogers [33] sug-
gested strategies such as deciding on a maximum acceptable
build duration, dividing build tasks into individual concurrent
processes, and reducing test execution time to reduce build
duration. Ghaleb et al. [|34] examined factors affecting build
durations. They found that beyond common factors like project
size, team size, and test density, build duration can also
be influenced by the configurations of artifact caching, the
automated re-invocation of failing commands, and the timing
of when builds are triggered.

Other studies have explored solutions to improve the per-
formance of build tools by optimizing different aspects of the
build process [4, [14} 35 136]. For example, Gallaba et al. [14]]
proposed a language-agnostic approach, Kotinos, to infer data
from which build acceleration decisions can be taken. They
found that at least 87.9 % of the 14,364 studied CI build
records contained at least one Kotinos acceleration in their pro-
duction setting. Sotiropoulos et al.[35] developed BuildFS to
detect inconsistent build specifications for incremental builds,
and helped achieve an average speedup of 74x when analyzing
Make projects. Lebeuf et al. [4] designed BuildExplorer to
debug and analyze build performance for distributed build
tools with caching capabilities, such as CloudBuild.

Recent studies have explored various dimensions of the
performance of artifact-based build tools, particularly Bazel
[10) 136, 37]. For example, Wang et al. [37] proposed a
build target batching service (BTBS) that reduces errors in

11

Bazel builds by optimizing memory usage and task execution,
thereby improving the reliability of Bazel builds. Zheng et
al. [10] evaluated the performance of Bazel, focusing on
its parallel and incremental build optimizations. Their study
showed significant build speedups for long-build duration
projects, with parallel builds achieving up to 12.8x improve-
ment and incremental builds providing a 4.71x speedup. These
findings highlight the potential of Bazel to improve build
performance and highlight the need for better adoption and
understanding of the latest build technologies. Our study,
however, analyzed the performance and cost implications of
downgrading from a feature-rich build tool (i.e., Bazel) to a
traditional one (e.g., Make and Go Build). We examine the
consequences of abandoning Bazel in favour of a traditional
build tool by comparing Bazel’s performance under different
parallelism settings with that of the other tool they adopted af-
ter abandoning Bazel. Our performance measurement extends
beyond build duration to include an examination of resource
consumption, such as memory and CPU usage, as well as CI
resource consumption cost for full and incremental builds.

VII. FINAL REMARKS AND LESSONS LEARNED

In this paper, we study the impact of build tool downgrades
through an empirical study to compare the performance (speed,
computational footprint) of the prior artifact-based build tech-
nology (i.e., Bazel) with the less feature-rich replacement
(i.e., Go Build). Furthermore, we explore the generalizability
of our findings from Kubernetes to four smaller projects.
Distilled from our empirical observations, the following points
summarise how our results translate into actionable advice for
build-system choice.

Base decisions on project-specific measurements. Before
standardising on a tool, measure build duration, memory use
and CI cost on representative commits; Bazel’s cost advantage
appears only at higher parallelism and with many incremental
builds (O6). Hence, developers should benchmark their own
projects under realistic workloads and compare the results to
make an informed choice.

Opt for simplicity under resource constraints. When build
agents have limited RAM or when builds run with low
parallelism, the much lower memory footprint of Go Build and
its simpler maintenance make it a sensible choice (O3). Hence,
developers working with smaller codebases or constrained
infrastructure are advised to use simpler, language-specific
build tools like Go Build or Make.

Prioritize build speed when resources permit. For large
projects where full-build duration is the bottleneck or where
many high-parallelism incremental builds are executed, Bazel
offers substantial speedups (Ol and O2). Hence, developers
seeking shorter build times should select Bazel when sufficient
memory and CPU resources are available. A key trade-off,
however, is between speed and CI cost. Our results (0O6) show
that four CPUs minimize CI cost while still providing sub-
stantial speedups, whereas higher parallelism further reduces
build duration at greater financial expense. Developers should
calibrate parallelism to their budget and workload priorities.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

REFERENCES

M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and
D. Dig, “Trade-offs in continuous integration: Assurance,
security, and flexibility,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 197-207.

M. Hilton, T. Tunnell, K. Huang, D. Marinov, and
D. Dig, “Usage, costs, and benefits of continuous inte-
gration in open-source projects,” in Proceedings of the
31st IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p.
426-437.

G. Maudoux and K. Mens, “Correct, efficient, and tai-
lored: The future of build systems,” IEEE Software,
vol. 35, no. 02, pp. 32-37, mar 2018.

C. Lebeuf, E. Voyloshnikova, K. Herzig, and M.-A.
Storey, “Understanding, debugging, and optimizing dis-
tributed software builds: A design study,” in 2018 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), 2018, pp. 496-507.

H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and
R. Bowdidge, “Programmers’ build errors: A case study
(at google),” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: Association for Computing Ma-
chinery, 2014, p. 724-734.

M. Nejati, M. Alfadel, and S. MclIntosh, “Understanding
the implications of changes to build systems,” in Pro-
ceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering, 2024, pp. 1421-
1433.

H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan,
E. Mavrinac, W. Schulte, N. Sanches, and S. Kandula,
“Cloudbuild: Microsoft’s distributed and caching build
service,” in Proceedings of the 38th International Con-
ference on Software Engineering Companion, ser. ICSE
’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 11-20.

S. I. Feldman, “Make—a program for maintaining com-
puter programs,” Software: Practice and experience,
vol. 9, no. 4, pp. 255-265, 1979.

M. Alfadel and S. MclIntosh, “The Classics Never Go Out
of Style: An Empirical Study of Downgrades from the
Bazel Build Technology,” in Proc. of the International
Conference on Software Engineering (ICSE), 2024, p.
To appear.

S. Zheng, B. Adams, and A. E. Hassan, “Does using
bazel help speed up continuous integration builds?” arXiv
preprint arXiv:2405.00796, 2024.

G. Pinto, F. Castor, R. Bonifacio, and M. Rebougas,
“Work practices and challenges in continuous integration:
A survey with travis ci users,” Software: Practice and
Experience, vol. 48, no. 12, pp. 2223-2236, 2018.

12

[12]

[15]

[22]

[23]

Q. Cao, R. Wen, and S. Mclntosh, “Forecasting the
duration of incremental build jobs,” in 2017 IEEE In-
ternational Conference on Software Maintenance and
Evolution (ICSME), 2017, pp. 524-528.

P. A. Miller, “Recursive make considered harmful,” AU-
UGN Journal of AUUG lInc., vol. 19, no. 1, pp. 14-25,
1998.

K. Gallaba, J. Ewart, Y. Junqueira, and S. Mclntosh,
“Accelerating continuous integration by caching environ-
ments and inferring dependencies,” IEEE Transactions
on Software Engineering, vol. 48, no. 6, pp. 2040-2052,
2022.

S. Spall, N. Mitchell, and S. Tobin-Hochstadt, “Forward
build systems, formally,” in Proceedings of the 11th
ACM SIGPLAN International Conference on Certified
Programs and Proofs, ser. CPP 2022. New York, NY,
USA: Association for Computing Machinery, 2022, p.
130-142.

C. C. Heyde and E. Seneta, Statisticians of the Centuries.
Springer, 2001.

J. Gibbons and S. Chakraborti, Nonparametric Statistical
Inference, 6th ed. Chapman and Hall/CRC, 2020, https:
//doi.org/10.1201/9781315110479.

J. Whitney, C. Gifford, and M. Pantoja, “Distributed ex-
ecution of communicating sequential process-style con-
currency: Golang case study,” The Journal of Supercom-
puting, vol. 75, no. 3, pp. 1396-1409, 2019.

M. J. Sottile, T. G. Mattson, and C. E. Rasmussen,
Introduction to concurrency in programming languages.
CRC Press, 2009.

N. Togashi and V. Klyuev, “Concurrency in go and
java: performance analysis,” in 2014 4th IEEE interna-
tional conference on information science and technology.
IEEE, 2014, pp. 213-216.

M. Golzadeh, A. Decan, and T. Mens, “On the rise and
fall of ci services in github,” in 2022 IEEE International
Conference on Software Analysis, Evolution and Reengi-
neering (SANER), 2022, pp. 662—-672.

T. Kinsman, M. Wessel, M. A. Gerosa, and C. Treude,
“How do software developers use github actions to
automate their workflows?” in 2021 IEEE/ACM 18th In-
ternational Conference on Mining Software Repositories
(MSR). 1EEE, 2021, pp. 420-431.

M. Tufano, F. Palomba, G. Bavota, M. Di Penta,
R. Oliveto, A. De Lucia, and D. Poshyvanyk, “There and
back again: Can you compile that snapshot?” Journal of
Software: Evolution and Process, vol. 29, no. 4, p. e1838,
2017.

M. Maes-Bermejo, M. Gallego, F. Gortazar, G. Robles,
and J. M. Gonzalez-Barahona, “Revisiting the building
of past snapshots—a replication and reproduction study,”
Empirical Software Engineering, vol. 27, no. 3, p. 65,
2022.

A. Mokhov, N. Mitchell, S. Peyton Jones, and S. Marlow,
“Non-recursive make considered harmful: Build systems
at scale,” SIGPLAN Not., vol. 51, no. 12, p. 170-181,

https://doi.org/10.1201/9781315110479
https://doi.org/10.1201/9781315110479

[26]

[27]

(28]

[29]

[30]

[31]

sep 2016.

S. MclIntosh, M. Nagappan, B. Adams, A. Mockus, and
A. E. Hassan, “A large-scale empirical study of the
relationship between build technology and build main-
tenance,” Empirical Software Engineering, vol. 20, 08
2014.

R. Suvorov, M. Nagappan, A. E. Hassan, Y. Zou, and
B. Adams, “An empirical study of build system migra-
tions in practice: Case studies on kde and the linux
kernel,” in 2012 28th IEEE International Conference on
Software Maintenance (ICSM), 2012, pp. 160-169.

M. Yin, Y. Kashiwa, K. Gallaba, M. Alfadel, Y. Kamei,
and S. Mclntosh, “Developer-applied accelerations in
continuous integration,” 2024.

J. Al-Kofahi, T. N. Nguyen, and C. Kistner, “Escaping
autohell: A vision for automated analysis and migration
of autotools build systems,” in Proceedings of the 4th
International Workshop on Release Engineering, ser.
RELENG 2016. New York, NY, USA: Association for
Computing Machinery, 2016, p. 12-15.

M. Gligoric, W. Schulte, C. Prasad, D. Van Velzen,
I. Narasamdya, and B. Livshits, “Automated migration
of build scripts using dynamic analysis and search-based
refactoring,” ACM SIGPLAN Notices, vol. 49, no. 10, pp.
599-616, 2014.

D. G. Widder, M. Hilton, C. Kistner, and B. Vasilescu,
“A conceptual replication of continuous integration pain
points in the context of travis ci,” in Proceedings of the
2019 27th ACM Joint Meeting on European Software En-

13

[34]

[37]

gineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2019. New
York, NY, USA: Association for Computing Machinery,
2019, p. 647-658.

J. Rasmusson, “Long build trouble shooting guide,” in
XP/Agile Universe, 2004.

R. O. Rogers, “Scaling continuous integration,” in Ex-
treme Programming and Agile Processes in Software En-
gineering, J. Eckstein and H. Baumeister, Eds. Springer
Berlin Heidelberg, 2004, pp. 68-76.

T. A. Ghaleb, D. A. Da Costa, and Y. Zou, “An em-
pirical study of the long duration of continuous integra-
tion builds,” Empirical Softw. Engg., vol. 24, no. 4, p.
2102-2139, aug 2019.

T. Sotiropoulos, S. Chaliasos, D. Mitropoulos, and
D. Spinellis, “A model for detecting faults in build
specifications,” Proc. ACM Program. Lang., vol. 4, no.
OOPSLA, nov 2020.

L. Jendele, M. Schwenk, D. Cremarenco, 1. Janicijevic,
and M. Rybalkin, “Efficient automated decomposition of
build targets at large-scale,” in 2019 [2th IEEE Con-
ference on Software Testing, Validation and Verification
(ICST). IEEE, 2019, pp. 457-464.

K. Wang, D. Rall, G. Tener, V. Gullapalli, X. Huang, and
A. Gad, “Smart build targets batching service at google,”
in 2021 IEEE/ACM 43rd International Conference on

Software Engineering: Software Engineering in Practice
(ICSE-SEIP). 1EEE, 2021, pp. 160-169.

	Introduction
	Study Design
	Primary Subject System
	Data and Environment Preparation (DEP)
	Replay Execution (RE)

	Primary Study Results
	Analytic Generalizability
	Replication on Another Time Window
	Replication on Other Projects
	Qualitative Comparison of Build Tools

	Threats to Validity
	Related Work
	Build Migration
	Build Performance

	Final Remarks and Lessons Learned

