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Abstract Software developers rely on a build system to compile their source code changes
and produce deliverables for testing and deployment. Since the full build of large software
systems can take hours, the incremental build is a cornerstone of modern build systems.
Incremental builds should only recompile deliverables whose dependencies have been
changed by a developer. However, in many organizations, such dependencies still are iden-
tified by build rules that are specified and maintained (mostly) manually, typically using
technologies like make. Incomplete rules lead to unspecified dependencies that can prevent
certain deliverables from being rebuilt, yielding incomplete results, which leave sources and
deliverables out-of-sync. In this paper, we present a case study on unspecified dependen-
cies in the make-based build systems of the GLIB, OPENLDAP, LINUX and QT open source
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projects. To uncover unspecified dependencies in make-based build systems, we use an
approach that combines a conceptual model of the dependencies specified in the build sys-
tem with a concrete model of the files and processes that are actually exercised during the
build. Our approach provides an overview of the dependencies that are used throughout the
build system and reveals unspecified dependencies that are not yet expressed in the build
system rules. During our analysis, we find that unspecified dependencies are common. We
identify 6 common causes in more than 1.2 million unspecified dependencies.

Keywords Build systems · Unspecified dependencies

1 Introduction

Build systems (such as those specified using make (Feldman 1979)) describe how source
code, libraries and data files are transformed into deliverables (targets), such as executables
that are ready for deployment or testing. They consist of a set of build files (e.g., makefiles)
containing targets and the rules that specify how to generate targets from their dependencies.
Initially, the build system performs a full build to compile all targets. Afterwards, for exam-
ple upon a local code change or an update to the latest file revisions from the version control
system, an incremental build can be used to rebuild only the targets of which at least one
dependency has changed. Such incremental builds substantially reduce the time required to
wait for a build to finish, which is important since build systems range in size from hun-
dreds to thousands lines of code (McIntosh et al. 2014b). Recent research has shown that
the maintenance of build systems exhibits similar characteristics as maintenance of source
code (McIntosh et al. 2011).

The essential ingredient for incremental compilation, i.e., dependency management, is
a unique concept for build systems, which makes them difficult for development teams to
maintain. When build maintenance is neglected, inconsistencies between the build system
and source code may be introduced (McIntosh et al. 2014a). These inconsistencies typically
manifest themselves as unspecified dependencies, i.e., dependencies that should be specified
in the build system, but are not. These unspecified dependencies are subtle and difficult to
detect.

Unspecified dependencies are problematic for two main reasons. First, incremental
builds will omit build commands even though they are necessary. These incremental builds
are incorrect, since changes to the sources will not be completely reflected in the deliver-
ables. Second, parallel execution of build commands (a technique that is often used to speed
up slow incremental build processes) will not preserve the correct order of these commands
(Miller 1998). Indeed, since build tools like make decide which rules can be executed in
parallel by checking the specified dependencies, unspecified dependencies will not be taken
into account. Hence, rules that should have been executed sequentially may be executed
simultaneously, causing race conditions. The importance of specifying all dependencies in a
build system is emphasized by Michael Chastain, the maintainer of the Linux build system,
who states: “correctness trumps efficiency” (Chastain 1999).

For example, recently such an unspecified dependency was discussed and patched by
developers on the fa.linux.kernel newsgroup (Yamada 2015). In the build system of the
Linux kernel, the target uImage depends on the target zImage, but there was no dependency
explicitly specified. As a result, when the rule for the uImage target was executed in parallel,
uImage was invalid at random times, depending on the execution order chosen by the build
system. Since unspecified dependencies do not necessarily generate build error messages,
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and the build seemingly randomly generates incorrect deliverables, such problems can only
be found during testing, at which time the link to incorrect build specifications is hard to
make. This bug was fixed by adding an explicit dependency for uImage on zImage.

Several build technologies, e.g., fabricate (Hoyt 2009) and memoize (Leslie 2008), have
been developed that are able to automatically resolve unspecified dependencies. While these
build technologies may be more advanced than make with respect to dependency man-
agement, McIntosh et al. (2014b) show that make-based build systems are still by far the
most often used. Hence, the projects that rely on these make-based build systems remain
susceptible to unspecified dependencies.

In this paper, we present a case study on the unspecified dependencies in four popular
open source projects (GLIB, OPENLDAP, LINUX and QT) that use make-based build sys-
tems. To enable our study of unspecified dependencies, we first present our approach for
uncovering unspecified dependencies in make-based build systems. The foundation of our
approach is a consolidated view that combines the conceptual dependency model, which is
specified in the build system itself, with the concrete dependency model, which is implied
by the read and write behaviour of the processes that are executed during the build process.

The main contributions of this paper are:

– An empirical analysis of unspecified dependencies in the build systems of four popular
open source projects.

– A discussion of the root causes of over 1.2 million unspecified dependencies that we
uncovered during our analysis.

– A theoretical foundation using Tarski algebra for detecting unspecified dependencies.
– A prototype tool that is built upon this theoretical foundation.

The outline of this paper is as follows. Section 2 provides background information,
presents a motivational example for our work, and situates this paper with respect to the
build systems literature. Section 3 presents our methodology and its implementation. Sec-
tions 4 and 5 describe our case study and its results. Section 6 discloses the threats to the
validity of our study. In Section 7, we discuss the broader implications of our results. Finally,
Section 8 draws conclusions.

2 Background

2.1 Build Systems

Build systems use rules to specify how targets must be (re)built. These rules define the
dependencies that a target depends on (e.g., which files must exist before the target can be
created), as well as the commands that are required to generate the target once its depen-
dencies exist. These dependencies are used to keep a target up-to-date with the rest of the
system — if a dependency changes, targets that depend on it must be rebuilt.

In this paper, we focus on make-based build systems because make is the most pop-
ular file-based build technology (McIntosh et al. 2014b). Our focus includes technologies
that use make as its backend, such as KitWare’s CMake, GNU’s Autotools or the
LINUX kernel’s build system (kbuild). These ‘higher-level’ build technologies generate
makefiles from higher-level configuration files, which are easier to maintain for develop-
ers. Figure 1 demonstrates the process of using such a higher-level build technology to
generate a makefile. The configuration is triggered by a script that takes a configuration tem-
plate as input (e.g., the configure.ac file for autoconf). The configuration template
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Fig. 1 The process of using a higher-level build technology to generate a makefile from a configuration file

specifies which variables need to be configured, such as the compiler or the libraries on
which the build depends. During the configuration, the script automatically scans the sys-
tem for the variables in the configuration template. After scanning the system, the variable
values are entered in the Makefile-template (e.g., the makefile.in for automake)
and a makefile is generated. The generated makefiles are used by make to build the system.

In a file-based build system, such as make, targets are either files in the filesystem or are
phony. A phony target does not produce a file directly, but instead is used to trigger other
targets. The all target in Listing 1 is phony as it only triggers the app.o rule.

The build process is initiated by the make ‘target’ command. Then, for every
dependency that causes a rule to be triggered, a child process is spawned to execute the
commands that are specified in that rule. This results in a hierarchical tree of build processes.

Initially, a full build is performed to compile all of the targets that are specified in the
build system. After that, incremental builds are usually performed, rebuilding only the tar-
gets of which at least one of the dependencies have changed. In large systems with long full
build processes, incremental builds save developers’ time by minimizing the idle time spent
waiting for builds to complete.

Because all targets are rebuilt during a full build, they are usually correct and consis-
tent. In an incremental build, problems may arise when targets have a rule with unspecified
dependencies. In that case, a target is missing a dependency. If the missing dependency is
modified, the target will not be rebuilt, even though it should be. In the next section, we will
present a motivating example of a situation in which such unspecified dependencies become
a problem.

2.2 Motivating Example

Listing 1 shows a makefile depicting targets all, app.o and app.c and their correspond-
ing rules. The phony target all triggers the build for target app.o. The rule for app.o
explicitly defines that app.o depends on app.c and app.h— only if app.c or app.h
are updated, app.o must be rebuilt. The rule for app.c shows that it has no dependencies
specified and that its contents are generated by generator.

Looking at the source code for app.h in Listing 2, we see that app.h includes
header.h. Hence, if header.h changes, all targets depending on app.h should be
updated as well. Listing 1 however, does not show any dependency on header.h. There-
fore, app.o is not rebuilt when header.h is changed, causing app.o to remain outdated.
The unspecified dependency on header.h from app.o is a bug in the build system.

In addition, app.c is generated by the generator script but it does not depend on
generator. If the source code of generator changes, app.c is not regenerated, even
though it should be. In this case, there is an unspecified dependency on generator from
app.c, which is another bug in this build system.
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Listing 1 Makefile

The current ‘industry standard’ for dealing with problems associated with unspecified
dependencies is to remove all generated files and perform a full build (instead of an incre-
mental one), or to run the incremental build multiple times until a fixed point is reached
(no more rules are triggered) (Miller 1998). As described above, if header.h changes,
the unspecified dependencies would cause app.o and app.c not to be rebuilt during an
incremental build; but the full build recompiles all targets, regardless of what their depen-
dencies are. While this approach may be feasible for smaller systems, it is not practical for
large systems that take hours or even days (Hassan and Zhang 2006) to perform a full build.
In addition, because a full build is dependent on the build order of components, unspecified
dependencies limit the ability of a build to be parallelized (Miller 1998) or might lead to
non-deterministic results.

In larger systems, this type of bug is difficult to detect. One of the reasons is that this
type of bug cannot always be detected by inspecting the build file only, as demonstrated
by Listings 1 and 2. In addition, in many modern systems, at least part of the build code is
generated based on a template. As a result, if this template contains a bug, this bug can be
found in many instances throughout the application, making it difficult to find all instances
that share the same root cause. Finally, build systems change often (McIntosh et al. 2011,
2014a), which makes the risk of forgetting to add a dependency even larger.

The bugs in Listings 1 and 2 can be easily fixed by adding a dependency on header.h
for app.o and on generator for app.c. The main problem is detecting such bugs in a
larger build system, which requires an automated approach. In the remainder of this paper,
we first present the approach that we will use to uncover unspecified dependencies in our
empirical study of unspecified dependencies in make-based build systems.

2.3 Tarski Algebra

To avoid ambiguity in the presentation of our approach and of the findings of our empirical
analysis, we formalize the notions of build dependency graphs and unspecified dependen-
cies using Tarski’s algebra (Tarski 1941). Tarski’s algebra defines a set of operators and
algebraic rules for binary relations. The algebra’s core concept is that of a relation R defined
as {(x : X, y : Y )} ∈ R, which corresponds to a set of tuples where entities x : X are in a
relationR with an entity y : Y . For example, we can define the relation depends ⊆ file×file,
where every tuple (a,b) ∈ depends implies that a depends on b. The notation n : t refers to
an entity with identifier n ∈ N and a type t ∈ T . Typically, the name of a relation, such as
depends, is used as shorthand for the set of all tuples involved in that relation.

Listing 2 app.h
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Relational algebra allows us to perform set operations on relations R1 and R2, such as
taking set difference (−), union (∪) and intersection (∩):

R1 − R2 = {(x : X, y : Y )|(x : X, y : Y ) ∈ R1

∧ (x : X, y : Y ) /∈ R2}
R1 ∪ R2 = {(x : X, y : Y )|(x : X, y : Y ) ∈ R1

∨ (x : X, y : Y ) ∈ R2}
R1 ∩ R2 = {(x : X, y : Y )|(x : X, y : Y ) ∈ R1

∧ (x : X, y : Y ) ∈ R2}

Given the definition of a relation as a set of tuples, and the ability to combine relations
using the union operator, one can then define a graph G = ⋃

i∈SG
Ri with Ri ∈ R. We

call SG the schema of graph G, as it specifies which relations (kinds of edges) are allowed.
Basically,each edge of the graph corresponds to an entity tuple of a particular relation.

The transitive closure R+ ⊆ X × X of a relation contains all the tuples (x : X, y : X)

that are on a directed path of R ⊆ X × X relations, i.e.:

R+ = {(x : X, y : X)|∃n ∈ N ≥ 0 s.t.

(x : X, x0 : X), (x0 : X, x1 : X), ..., (xn : X, y : X) ∈ R}

2.4 Modeling Dependencies

Using Tarski’s relational algebra, we model the dependency graph as a set of relations on
two different sets: targets (which can be phony or files, which may or may not be created
by the build process) and operating system processes (which read or write targets, e.g.,
files). We model the conceptual dependencies (i.e., those specified explicitly in the build
system) as relations between two targets, while we model the concrete dependencies (i.e.,
those implied by read-write behaviour of processes that are executed by the build system)
as relations between a process and a file. The intuition behind these two models is that the
conceptual model contains the high-level dependencies between files and targets, while the
concrete model covers every single fileaccess during build execution, including all required
files by a build. More specifically: (a, b) ∈ depends if a depends on b, as specified in a
makefile; (p, a) ∈ reads if process p reads file a; (a, p) ∈ writtenBy if file a is written by
process p; and (p, q) ∈ executes if process p executes process q.

To illustrate these concepts of Tarski’s relational algebra, we use Fig. 2 as an example.
Figure 2 represents a conceptual model consisting of two rules: target x depends on phony
target y and target y depends on file a. This conceptual model is exercised by process p

that reads files a and b and writes x, and process q that executes process p (this part of the
graph reflects the concrete model). Hence:

depends = {(x, y), (y, a)}
depends+ = {(x, y), (y, a), (x, a)}

reads = {(p, a), (p, b)}
writtenBy = {(x, p)}

executes = {(q, p)}
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Fig. 2 Tarski algebra example (squares represent phony targets, ellipses represent files, diamonds represent
processes, blue elements occur in the conceptual model only, red elements occur in the concrete model only
and green elements occur in both models)

As described in Section 2.3, we can convert these relations into a graph G = (V ,E) as
follows: assume Fs is the set of all the source files, Ft is the set of temporary files created
and deleted during the build process, Ff the set of files that are explicitly specified and
created during and kept after the build, and Fh the set of files that are not specified but
created during the build and kept after the build; T will be the set of phony targets present
in the makefiles of the system; finally, P is the set of processes executed during the build
system. Hence:

V = Fs ∪ Ft ∪ Ff ∪ Fh ∪ T ∪ P

E = depends ∪ reads ∪ writtenBy ∪ executes

Each edge is labelled according to the relation set it belongs to. The resulting graph of the
example above is depicted in Fig. 2. Figure 3 shows how the sets of files and targets used to
create G relate to each other.

We can use Tarski operations to identify properties of interest in this graph. For example,
we can use set difference to determine the indirect transitive dependencies:

dependsindirect � depends+ − depends

which for our running example is {(x, a)}.
The compositional relation (◦) is used to merge relations with each other:

R1 ◦ R2 = {(x : X, y : Y )|∃z ∈ Z s.t. (x : X, z : Z) ∈ R1

∧ (z : Z, y : Y ) ∈ R2}

Fig. 3 Venn diagram of the
relations between the sets used to
create G
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Using the compositional relation, we can find the pairs of all files that are being read and
written by the same process (effectively extracting a dependsactual relation from the concrete
graph) as follows:

dependsactual = writtenBy ◦ reads = {(x, a), (x, b)}
This relation matches each target with every file that is being read in order to produce the
target.

2.5 Related Work

In this section, we describe the research that is related to the work presented in this paper,
an analysis of unspecified dependencies in build systems.

Exploratory Studies Neitsch et al. (2012) study the issues that arise in build systems of
multilanguage software, i.e., software written in multiple programming languages. Neitsch
et al. find that many such build systems require manual intervention to build the default
targets, and also they present a set of (anti-)patterns that describe the observed issues.

Seo et al. (2014) analyze 26.6 million builds to explore the causes, types of errors made
and resolution efforts to fix the builds. Their findings show that approximately one-third of
all executed builds fail and that most of these failures are caused by dependency issues.

Miller (1998) present a type of bug that is caused by designing make-based build sys-
tems using recursion. make is often used this way, i.e., with a separate makefile in each
directory, to keep makefiles manageable and lower build times for components. However,
as Miller explains, separating makefiles forces recursive makefiles to become dependent on
the execution order of each other. As discussed in Section 2.2, recursive makefiles limit the
parallelizability of the build when there are unspecified dependencies in the build system.

Unspecified Dependency Detection in Build Systems Gunter (2000) presents a
method for simulating a model of a makefile using a petri-net. The petri-net model is used to
check the correctness of and detect possible optimizations in a makefile. Gunter’s model of
a makefile is static, as it uses makefile-level information only. Therefore, it is not possible
to detect all unspecified dependencies using Gunter’s model (or any other static models), as
detecting unspecified dependencies requires both makefile-level information (i.e., to create
the conceptual graph) and execution-level information (i.e., to create the concrete graph),
which our Tarski model captures. A clear example of data that is not captured by Gunter’s
model are temporary files that are generated by commands (as there are no explicit targets
defined for such files).

Jørgensen (2002) extracts a semantic model of a makefile using formal methods. The for-
mal model is used to check the safeness of a make build system. In Jørgensen’s model, the
makefile is checked for rule completeness, fairness and soundness. Tamrawi et al. (2012)
present SYMake, a tool that creates a symbolic dependency graph from a make build sys-
tem. SYMake can be used to detect build code smells such as cyclic dependencies and
duplicate prerequisites.

Zhou et al. (2014) and Xia et al. (2014) statically create a dependency graph of the
makefile and the source code and compare these to find unspecified dependencies. A disad-
vantage of their approach is that static analysis on source code may miss dependencies that
are dynamically loaded. The approach used in this paper is capable of finding unspecified
dependencies that are dynamically loaded.
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Nadi and Holt (2011, 2012) present an approach for detecting anomalies in the variabil-
ity configuration in the LINUX kernel. Nadi and Holt check for cross and self-consistency
between the compilation, configuration and implementation spaces.

These approaches all focus on finding, among other types of issues, unspecified
dependencies in build systems. However, these approaches focus solely on the concep-
tual dependency model to search for unspecified dependencies. As a result, these static
approaches do not uncover all unspecified dependencies in the build system that do not
exist in this conceptual dependency model. One advantage that the static approaches have
compared with the approach used in this paper, is that the static approaches are capable of
analyzing all configurations of the build system in one run, while our approach requires a
dynamic execution of every configuration.

apmake (Coetzee et al. 2011) is a tool that manages the order of executions in a build
to make it parallelizable. Using timestamps and transaction-like behaviour, apmake pro-
vides concurrency control for make-based build systems to make sure that targets do not
read from outdated targets as they are building. While apmake focuses on execution order
to address the problem of unspecified dependencies, we focus on finding the actual unspec-
ified dependencies. However, the approach used by apmake to decide upon the safest
execution order is similar (i.e., it uses ptrace) to our approach for extracting the concrete
dependency model.

Several modern build technologies, such as fabricate (Hoyt 2009) and memoize (Leslie
2008) avoid the issue of unspecified dependencies altogether. Build systems that use fabri-
cate or memoize do not specify dependencies. Instead, the dependency graph of the build
system is extracted automatically at build time using the concrete dependency model.

Google’s Bazel build system (Google 2015a) detects unspecified dependencies as well.
However, Bazel’s documentation states that: “The build tool attempts aggressively to check
for missing dependencies and report errors, but it is not possible for this checking to be
complete in all cases” (Google 2015b). The Bazel documentation does not state how Bazel
checks for missing dependencies or why this check may be incomplete.

The fabricate, memoize and Bazel build technologies require the build system to be
developed in that technology. The approach that we use during our empirical analysis is
similar to the techniques of fabricate and memoize (i.e., using strace), but our approach
works for existing make-based build systems. Hence, our approach is capable of finding
unspecified dependencies in make-based build systems, which are widespread and the most
mature and popular type of build system (McIntosh et al. 2014b).

We are the first, to the best of our knowledge, to conduct an empirical analysis of
unspecified dependencies in make-based build systems of large open source projects. In
the next section, we first present our approach for automatically uncovering unspecified
dependencies in make-based build systems.

3 Discovering Unspecified Dependencies

Our approach for detecting unspecified dependencies is based on identifying the differ-
ences between two graphs: 1) the conceptual dependency graph with the targets, files and
dependencies that are explicitly mentioned in the build files and 2) the concrete dependency
graph with all processes and files that are being executed during the build. However, since
both graphs have a different schema, we first need to transform their schema into a com-
mon schema that we call the “consolidated” dependency schema. Without transforming the
schema of the graphs into the consolidated dependency schema, we cannot compare what
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is supposed to happen (i.e., the conceptual graph) with what actually happened (i.e., the
concrete graph) and hence, we cannot detect unspecified dependencies.

3.1 Schemas

Figure 4a and b show the possible schemas of the conceptual and concrete dependency
graphs. Conceptual graphs contain the dependency information that is specified in a make-
file, i.e., dependencies between build targets. Since a target either corresponds to a file
like app.o or a phony target, representing a virtual build activity such as compile
or package, the schema of a conceptual dependency graph only allows tuples of the
depends ⊆ target × target relation, with target = phony ∪ file. We define the conceptual
graph Gconceptual as follows:

Gconceptual = (Vconceptual, Econceptual)

Vconceptual = Fs ∪ Ff ∪ T

Econceptual = depends

with Fs , Ff and T as defined in Section 2.4.
On the other hand, the concrete dependency graphs model what actually happens during

the execution of a build, i.e., the sequence of nested processes (tool invocations) and their
file reading and writing behaviour. Nodes can only be of types file (e.g., app.o) or process
(e.g., gcc), since the concept of phony targets does not exist at run-time (only in the make-
files). The graph’s schema permits the relations reads ⊆ process × file, corresponding to
files that are read during the build, writtenBy ⊆ file × process, corresponding to files that

Fig. 4 Schemas for dependency
graphs

Conceptual schema

Concrete schema

Consolidated schema

a

b

c
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are written and executes ⊆ process×process, corresponding to processes that are executed.
The concrete graph Gconcrete can be defined as follows:

Gconcrete = (Vconcrete, Econcrete)

Vconcrete = Fs ∪ Ft ∪ Ff ∪ Fh ∪ P

Econcrete = reads ∪ writtenBy ∪ executes

with Fs , Ft , Ff , Fh and P as defined in Section 2.4.
The resulting conceptual and concrete dependency graphs for the example of Listing 1

are shown in Fig. 6. As we can see, the conceptual graphs and the concrete graphs con-
tain different entities and relations. In the remainder of this section, we will explain how
we can abstract both graphs to a consolidated schema, which we use to detect unspecified
dependencies.

3.2 Abstracting Dependency Graphs Based on the Consolidated Schema

The conceptual and concrete dependency graphs in Fig. 6 cannot be compared to each other,
because they have different schemas, and hence, contain different types of relations and
entities. In order to make them comparable, we define the consolidated schema as shown in
Fig. 4c. All entities are of type file, and the only allowed relation is depends ⊆ file × file,
which captures all required dependencies between any file that is used and/or generated by
the build process of a project. After transforming the conceptual and concrete dependency
graphs to this consolidated schema, resulting in the conceptualA and concreteA graphs, we
can then compare concreteA to conceptualA to identify those nodes and edges that are used
during build execution, but were not specified in the makefiles.

Obtaining conceptualA requires removing phony targets and any dependencies on and of
those targets. We remove phony targets using the following iterative algorithm:

1. For a file f , a phony target t , and a file or phony target c, if (f, t) ∈ depends and
(t, c) ∈ depends then replace them with a new relation (f, c) such that (f, c) ∈ depends

2. Repeat step 1 until there are no more changes

The resulting graph only has file nodes.
In order to obtain concreteA, we need to derive the depends relation from the reads and

writtenBy relations. Indeed, each rule in a build file corresponds to the rule’s target (file) that
is generated by (writtenBy) a process. Hence, whenever we have a process node that writes

Fig. 5 Abstracting a reads and writtenBy relation
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a particular file, we know that there should be a depends relation between that file and all of
the file nodes the process or its nested processes reads. We can find this depends relation as
the pairs of all files that are being read and written by the same process as follows:

dependsA � writtenBy ◦ reads

Figure 5 demonstrates how the reads and writtenBy relations for app.c and
generator are abstracted into the depends relation. The resulting conceptualA and
concreteA graphs of the example of Section 2.2 are depicted by Fig. 6.

Dependency graphs

Abstracted dependency graphs

Unspecified dependency graph

a

b

c

Fig. 6 Dependency graphs that correspond to the example in Section 2.2
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Given that conceptualA and concreteA have the same types of entities and relations, we
can easily identify the unspecified dependencies graph Gunspecified via the relation:

dependsGunspecified
� depends+

concreteA
− depends+

conceptualA

In this example, Gunspecified contains the dependencies (app.o, header.h) and
(app.c, generator), which correspond to the unspecified dependencies that we identi-
fied in Section 2.2.

3.3 Implementation

Our approach is implemented in three phases: data extraction, graph abstraction and graph
analysis. We have implemented our approach for make-based build systems, building on
our prior research (Adams et al. 2007, 2008) and the resulting toolset. Figure 7 depicts the
steps taken.

1. Data Extraction Our approach relies on the combination of two dependency graphs: 1)
the conceptual dependency graph, which contains the targets and files that are explicitly
defined in the build system and 2) the concrete dependency graph, which contains the set
of processes and files that are exercised by the build process. As Fig. 7 shows, we use
MAKAO (Adams et al. 2007) to compute the conceptual dependency graph and we use
BEE to compute the concrete dependency graph.

To obtain the explicitly defined targets and files, we first configure our build for a par-
ticular set of configurable features. If the build system uses a higher-level build technology,
such as Autotools or kbuild, we make sure that the makefile is generated from the
configuration file before performing the build. We then perform a full build of the default
target in the build system and record the verbose output of make into a log file.

We use MAKAO1 to parse the output of the log file into a graph representation. This
results in a graph database containing the explicitly defined target and file nodes and their
dependencies. We use Neo4j2 as our graph database. To facilitate a fast import of a large
number of nodes and edges, we use the Neo4j Batch Importer.3

To obtain the concrete graph, we need to identify the set of processes and files that are
used during the build. We run STRACE4 during a full execution of the build to identify these
processes and files. STRACE captures all system calls and events during the execution of
a program into a log file. We parse the STRACE log using our Build Execution Explorer
tool (BEE5). BEE parses the creation of new processes and maintains a list of currently
executing processes. For every new process, a process node is appended to the graph. Then,
for every read or write event, the graph is searched for the file being read or written. If a
file node exists for the file, a read or write edge is created from the process node to that file.
Otherwise, the file node is created together with the edge.

The parse time of our implementation is dominated by the parse time for the STRACE

log, which is linear with the size of that log. As a result, the total parse time is linear with
the execution time of the build. For projects that have a large parse time (e.g. several hours),

1http://mcis.polymtl.ca/makao.html
2http://neo4j.com/
3https://github.com/jexp/batch-import
4http://linux.die.net/man/1/strace
5https://github.com/smcintosh/bee

http://mcis.polymtl.ca/makao.html
http://neo4j.com/
https://github.com/jexp/batch-import
http://linux.die.net/man/1/strace
https://github.com/smcintosh/bee
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Fig. 7 Overview of our approach



Empir Software Eng (2017) 22:3117–3148 3131

our approach could run overnight to verify the nightly build without negatively affecting the
development process.

2. Graph Abstraction To compare the conceptual and concrete graphs we must abstract
them into conceptualA and concreteA. We perform the abstraction using queries on the
Neo4j database.

3. Graph Analysis When detecting unspecified dependencies, we are mainly interested
in their root cause, so that we can fix the root cause if necessary or recognize other
unspecified dependencies of the same kind. By root cause we refer to the main reason
for the unspecified dependency, which can be either unintentional (i.e., a bug in the build
system) or intentional (e.g., a project policy). During the graph analysis phase of our
methodology, we manually investigate root causes of unspecified dependencies. In many
modern systems, at least part of the build system code is generated based on a template.
As a result, if this template causes an unspecified dependency, many similar unspecified
dependencies will occur throughout the build process.

In order to avoid having to manually analyze all these similar unspecified dependencies,
we semi-automatically define grouping operations that cluster such dependencies in the
unspecified dependency graph, allowing us to focus our analysis on unspecified dependen-
cies for which a root cause has not yet been found. These grouping operations are defined
during the analysis; when we encounter several similar unspecified dependencies, we define
a grouping operation based on the commonalities in the filename of the dependencies or the
process that loads the dependencies. We can then automatically query for all unspecified
dependencies of a group.

Figure 8 shows a partial unspecified dependency graph. The commonality in the dis-
played unspecified dependencies is the extension of the unspecified dependencies (*.so).
After identifying the root cause for one of these unspecified dependencies (see Section 5.3.2),

Fig. 8 Example of unspecified dependencies that can be grouped
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there is no need to analyze other unspecified dependencies that clearly share the same root
cause. Therefore, we define a grouping operation that groups all *.so dependencies from
Gunspecified. Hence, while the grouping operations are not direct representations of the root
cause, they are an invaluable tool to narrow down the number of unspecified dependencies
that need to be analyzed manually during our study.

In the next section, we discuss the setup of an empirical case study of unspecified
dependencies in the build systems of four open source projects.

4 Case Study Setup

We use our approach to conduct a case study on four open source projects. In this section,
we describe the goal of our case study, our subject systems and our case study setup.

Case study goal In our case study, we focus on uncovering the following:

1. The unspecified dependencies in the studied open source projects
2. The root causes of the detected unspecified dependencies
3. The ways that developers deal with unspecified dependencies

In the remainder of this section, we discuss our subject systems and our case study setup.

Subject systems To conduct our empirical analysis of unspecified dependencies, we per-
formed a case study on large and popular open source projects with a make-based build
system. In selecting the subject systems, we identified two important criteria that needed to
be satisfied:

– Criterion 1 - Build technology: The unspecified dependencies that we aim to detect
are exclusive to build systems that are based on the make technology (note that
this includes build systems that use make as backend, such as the Autotools and
kbuild technologies that are mentioned in Section 2.1). Hence, we analyze projects
that use the make technology only.

– Criterion 2 - Impact: We want to show that our approach can find unspecified depen-
dencies in real applications that are widely used, as the impact of such findings can be
the largest. In addition, the build system of these applications has been executed many
times before, making it more likely that obvious issues with unspecified dependencies
are fixed. Hence, we analyze projects with a large user-base only.

We analyze the subject systems that are described in Table 1. GLIB6 is a bundle of
low-level libraries, that provide advanced data structures. OPENLDAP7 is an open source
implementation of the Lightweight Directory Access Protocol. The LINUX kernel8 forms
the foundation of the operating system used by millions of users. QT9 is a set of libraries
and tools for building cross-platform applications.

The build time in Table 1 is the approximate time it takes to perform a complete build of
the project. We include this measure to describe the size and complexity of the build system.

6https://git.gnome.org/browse/glib
7http://www.openldap.org
8https://www.kernel.org/
9http://www.qt.io

https://git.gnome.org/browse/glib
http://www.openldap.org
https://www.kernel.org/
http://www.qt.io
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Table 1 Subject systems
GLIB OPENLDAP LINUX QT

Version 2.36.0 2.4.42 3.2 5.3.0

Build LOC 4,000 2,000 37,000 57,000

Build time <10 mins. <10 mins. <20 mins. ∼4 hours

# Nodes 33,269 39,705 29,995 81,864

# Edges 270,236 164,484 2,167,450 8,440,928

strace 307 MB 218 MB 594 MB 17.5 GB

Parse time <5 mins. <5 mins. <30 mins. ∼4 hours

Analysis time <5 mins. <5 mins. <30 mins. <5 mins.

We did not include the lines of code in the build system itself as a measure for complexity
because a large part of the build system in modern projects is generated, rendering this
metric useless for our purpose. Instead, we give the LOC of the build templates (if any) for
each project.

Case study process We conduct our case study following the process in Fig. 7 for each
project. For every unspecified dependency that we find, we apply the following steps:

1. Manually analyze the next unspecified dependency on the list
2. Classify the dependency into an existing root cause, or add a new root cause
3. Write a grouping operation to group dependencies with the same root cause within the

list (if possible)
4. Go back to step 1, until there are no more unspecified dependencies on the list

All MAKAO and STRACE logs were collected on a dual Intel Xeon quad-core (2.53GHz)
computer with 12 GB of RAM. The logs were imported and analyzed on an Intel i5 quad-
core (1.70GHz) computer with 8GB of RAM. We have added the number of nodes and
number of edges of the combined conceptual and concrete graph (see Section 3.3), the size
of the STRACE log and the total time spent parsing and analyzing the logs with BEE for each
project to the bottom half of Table 1.

In Table 2, we present the total number of unspecified dependencies that we detect in
our case study. We provided the detected unspecified dependencies as part of a replication
package10. Table 3 shows the total number of unspecified dependencies that we classify
into a root cause for further analysis. We elaborate on our findings in the remainder of this
section.

Manual analysis During the manual analysis phase of our case study, we semi-
automatically group the unspecified dependencies into root causes. If an unspecified
dependency fits into a root cause that we have already defined, we categorize it as such.
If not, we added a new root cause. It is important to note that the categorization into root
causes was not a subjective process. In all cases, the root cause was identified without doubt,
e.g., because the root cause was explicitly specified in the source code documentation. To
identify the root cause of an unspecified dependency, we followed a process that is similar

10http://sailhome.cs.queensu.ca/replication/unspecified dependencies/

http://sailhome.cs.queensu.ca/replication/unspecified_dependencies/
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Table 2 Dependencies detected in the case study

Dependencies GLIB OPENLDAP LINUX QT

# of explicitly specified dependencies 121,709 48,334 906,348 3,114,242

# of unspecified dependencies 1,657 290 944,126 284,191

% of unspecified dependencies (out of total) 1.3 0.6 51.0 8.4

to debugging, i.e., we traced each unspecified dependency in the code until the root cause
was identified. This is the process we followed for every unspecified dependency:

1. Find the rule for the generated target in the source code using grep. If there is no target
with that name, and the file does not exist after the build, classify the root cause of the
unspecified dependency as ‘temporary file’. If there is no target with that name, and the
file does exist after the build, classify the root cause of the unspecified dependency as
‘project helper file’.

2. Search code comments, documentation or consult developers for reasons for the
unspecified dependency. If an explanation is found for the unspecified dependency,
classify its root cause as one of the ‘project policy’ root causes.

3. Otherwise, analyze the make code where the unspecified dependency should have been
and classify the unspecified dependency into one of the other categories based on the
root cause.

The first and second author independently conducted the manual classification for all
four studied projects. Both manual classifications of the unspecified dependencies in the
OPENLDAP, GLIB and LINUX project were identical. In the QT project, there were two small
disagreements between the classifications of the unspecified dependencies. To resolve these
disagreements, we contacted the QT mailing list, where one of the QT maintainers resolved
the disagreements for us.

The first disagreement was about an unspecified dependency on a file that was generated
during the build. The authors were unable to identify where the file was generated. The
QT maintainer explained the case, after which the disagreement was easy to resolve. The
second disagreement was about an unspecified dependency on a preprocessed C++ header
file while building a target that was written in C. The QT maintainer investigated the case and
found that the file was accessed during the build by gcc, which read all files in a directory
of preprocessed header files to identify the correct file for the language used. Because the
C++ file occurs before the C file in that directory, the C++ file is accessed during the build.
With the explanation of the QT maintainer, the disagreement was easy to resolve.

Table 3 Unspecified
dependencies per root cause
uncovered in the case study

Root causes GLIB OPENLDAP LINUX QT

Generator 21 − − −
Meta-file 15 − − −
God-file − − 394,552 −
Guarantee − − − 5,511

Helper − − 547,239 47,064

Temporary file 1,621 290 2,335 231,616
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For every unspecified dependency that we analyzed, we also searched the list of remain-
ing unspecified dependencies for similar unspecified dependencies and created a grouping
operation for them by using commonalities in the file names of the files read or written,
such as the file extension. This helped us lower the number of serious unspecified depen-
dencies to analyze. In the next section, we will discuss our results and formalize some of
these grouping operations.

5 Root Cause Analysis

During our case study, we manually classified the detected unspecified dependencies into
their root causes. Below, we discuss these root causes in more detail.

5.1 Missing Generator Dependency

Description A generator (e.g., a code robot (Tu and Godfrey 2001)) generates code, for
example, a configuration class. We classify unspecified dependencies as a missing generator
dependency if a target explicitly depends on the generated code, but not on the generator
itself.

Symptoms A process p1 that writes a target t1 calls another process p2 that generates
code. The generated code is read by p1 but there is no dependency from t1 on p2. Hence, if
p2 changes, t1 is not rebuilt. The generator relation can be defined formally as:

generator � (reads ◦ writtenBy) ∩ executes

Example Listing 3 shows an example of a missing generator dependency that we encoun-
tered in GLIB. In this example, $(glib genmarshal) reads marshalers.list
and uses it to generate code into the marshalers.h target. Figure 9 shows the
dependency graphs. Note that there exists a generator relation between the bash and
glib-genmarshal processes, because the bash process reads output that is generated
by the glib-genmarshal process.

We want to include the files read by the generator in the set of dependencies in concreteA.
We can do this as follows:

dependsA � (writtenBy ◦ reads) ∪
(writtenBy ◦ generator ◦ reads)

Gunspecified confirms that a dependency between marshalers.h and
glib-genmarshal is missing.

Impact Since marshalers.h is missing the dependency to glib genmarshal,
it will not automatically be rebuilt when glib genmarshal changes. Hence,

Listing 3 Rule that illustrates the Missing Generator Dependency bug in GLIB. Specifically, the right-hand
side of line 2 is missing $(glib genmarshal)
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marshalers.h may be built and shipped using outdated contents. We found 21 miss-
ing generator dependencies in GLIB. We have submitted patches for the missing generator
dependencies to the GLIB project (see Section 5.6).

5.2 Missing Meta-File Dependency

Description Ameta-file contains meta-data about a project or library, such as the data that
is necessary to use a library on different platforms.Without a correctly specified dependency
on a meta-file, a project may use an outdated version of a library.

Dependency graphs

Abstracted dependency graphs

Unspecified dependency graph

a

b

Fig. 9 Dependency graphs for an occurrence of a Missing Generator Dependency in GLIB
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Symptoms A dependency on a meta-file, e.g., a .la file, is missing.

Example GLIB uses LIBTOOL11 for library management. LIBTOOL simplifies usage of
libraries in portable projects by generating a .la file for a library, which contains textual
meta-info. This allows projects to include the portable .la file instead of the platform-
specific .dll (Windows) or .so/.lo (Linux) library. We found that while building several
GLIB targets, a dependency on libgmodule-2.0.la is missing. Figure 10 shows the
dependency graphs for gresource and libgio-2.0.la.

Impact This type of missing dependency is a bug. We found 15 missing meta-file depen-
dencies in GLIB. We validated that the meta-file dependencies that we found for GLIB were
still missing in the latest HEAD of the source repository and we have created and submitted
patches to the GLIB project (see Section 5.6).

5.3 Project Policy

Build file incompleteness is in some projects considered to be a project policy. Reasons to
keep build files incomplete can be 1) to obtain a short incremental build time, since less
deliverables are being rebuilt or 2) that the expected gain of a parallelized build does not
outweigh the increased number of targets being rebuilt. For example, in cases where com-
plete build files lead to a large number of files that are unnecessarily rebuilt, parallelization
may not result in shorter build times.

In some cases, project policies are controversial and subject of long discussions (OCaml
Community 2013; Chastain 1999). In this section, we will discuss two of such project
policies that we encountered during our case study.

5.3.1 God-File Filtering

Description Developers may explicitly remove certain files from the dependencies list of
targets. An example of such a file is a God-file, which contains code of which the function-
ality is not clearly separated. As a result, many files in the system depend on only a small
fraction of the code in the God-file, causing a small change to that file to trigger the rebuild
of many targets. It is possible to automatically split the code in the God-file in separate
files and create dependencies on those files instead. The source code documentation of the
LINUX project describes God-file filtering in the LINUX kernel (Germaschewski 2002).

Symptoms A dependency on a given file is unspecified in many instances.

Example In the unspecified dependencies list for LINUX, we encounter many unspecified
dependencies on autoconf.h. After inspection of the source code and documentation,
we found that this was an optimization in the kernel build system (Germaschewski 2002).
LINUX uses gcc to generate a list of all the dependencies that a file has. However,
autoconf.h is #included by almost every source code file. As a result, a change to
autoconf.h triggers almost the complete system to be rebuilt. Because this file deals
with the overall configuration of the kernel, most builds only use a small fraction of
autoconf.h.

11http://www.gnu.org/software/libtool/

http://www.gnu.org/software/libtool/
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Dependency graphs

Abstracted dependency graphs

Unspecified dependency graph

a

b

c

Fig. 10 Dependency graphs for an occurrence of a Missing Meta-File Dependency in GLIB

As an optimization to avoid unnecessary builds, this dependency is explicitly filtered out
in the LINUX build system. Instead, the build system creates an empty file for every config-
uration option and adds this file as a dependency for every target that uses that configuration



Empir Software Eng (2017) 22:3117–3148 3139

option in its source code. If a configuration option changes in autoconf.h, the build sys-
tem will ‘touch’ that file, causing only the targets using that option to be rebuilt, rather than
the whole system.

Impact During our case study on LINUX, we found two additional cases similar to
autoconf.h that were explicitly filtered from the dependencies, resulting in unspecified
dependencies. These two cases caused 394,552 unspecified dependencies in total.

5.3.2 Binary Compatibility Guarantee

Description A project may define a policy that forces developers to exclude some
dependencies.

Symptoms A dependency on the same file or type of file is missing in many instances.

Example In the QT project, our approach detected a number of unspecified dependencies
on .so (shared library) files. Those targets were depending on the header file accompany-
ing the library. This header file serves as an interface to the library. After discussion with a
QT developer, we found that QT has a binary compatibility guarantee policy (Qt Wiki 2015)
for patches and minor releases. A library is said to be binary compatible if a program linked
dynamically to a former version of the library continues running with newer versions of the
library without the need to recompile. Hence, the policy in QT states that the .so library
may change as long as the interface to it does not change. Because the .so library will be
dynamically linked into the target, no problem will arise. As a result, QT developers do not
define the dependency on the .so file and only define the dependency on the corresponding
header file.

Impact We found 5,511 unspecified dependencies with the binary compatibility guarantee
root cause in QT.

5.4 Project Helper Files

Description Build systems may generate files during the full build process that are not
explicitly defined in the build file, but are used during an incremental build.

Symptoms These files are not specified as a target, but exist after the full build finishes.
Removing them will result in a longer incremental build, as the build system will have to
regenerate them.

Example LINUX uses gcc to extract dependencies from the source code and store them
in a *.d file during the full build, so that the *.d file can be used during subsequent
incremental builds. Figure 11 demonstrates this. The project helper files are described by
the set of files Fh:

helperfiles = Fh

We say that (a, b) ∈ depends if a is a helper file for building b.
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Impact We found 594,303 unspecified dependencies involving project helper files. While
not directly important for build file completeness, knowing how and where such files are
generated and used can be beneficial while debugging the build system. For example, if a
makefile template is transformed into a makefile in several steps by a template system, it
can be difficult to find out which files were used during the process.

LINUX has a high number of unspecified dependencies for project helper files because
for every generated dependency file, the source code is analyzed to extract its dependencies.
This causes a read operation for every (included) source file, resulting in the high number
of unspecified dependencies.

5.5 Temporary Files

Description Build systems may generate temporary files during the full build process that
are not explicitly defined in the build file and are removed before the build finishes.

Symptoms Files that are being read by processes that write temporary files have unspec-
ified dependencies on those temporary files. We define a file to be temporary in the same
way that we define project helper files (Section 5.4), with the extra condition that the file
no longer exists after the build is finished.

Example QT generates targets in a temporary place, tests them and then moves them to
their final location. As a result, there are unspecified dependencies on the temporary file
because the dependencies in the build system are specified for the target in the definitive
location.

Impact We found 235,862 unspecified dependencies involving temporary files. QT has a
high temporary file usage compared to the other projects because of the use of the tem-
plate system, QMAKE12 which is bundled with QT. QMAKE allows the developer to create a
simple, high-level configuration file for the project instead of a complex makefile. QMAKE

automatically extracts data from the project based on that project file and generates the
complex build system. In this way, the developer does not have to worry about challeng-
ing tasks, such as build system completeness and correctness. During the transformation of
the configuration file into the generated build system, many temporary files are generated.
Debugging QMAKE is difficult without knowing how and where these temporary files are
used and generated. Hence, while dependencies on temporary files are not important for
build file completeness, knowing when and where temporary files are generated can be ben-
eficial when debugging the underlying build technology. Our approach detects such hidden
information by showing the unspecified dependencies between targets and temporary files.

5.6 Feedback of Developers on the Unspecified Dependencies

We contacted a GLIB developer to validate the patches that we submitted. Although he
agreed on the correctness of the patches, in this case the patches turned out not to be interest-
ing for the project, as the situations in which the patched unspecified dependencies actually
cause a bug do not occur in practice. For example, the patches that we submitted for the

12http://doc.qt.io/qt-5/qmake-manual.html

http://doc.qt.io/qt-5/qmake-manual.html
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Conceptual dependency graph

Concrete dependency graph

Abstracted concrete dependency graph and the unspecified dependency graph

a

b

c

Fig. 11 Dependency graphs for an occurrence of a Project Helper File in LINUX

missing generator dependency (Section 5.1) were deemed unnecessary because the gen-
erator code was part of a compressed archive that was extracted during the build. Hence,
the GLIB developer said: “it is very unlikely that the generator code is ever modified and
executed without recompilation.”
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In addition, we spoke with a QT developer about the binary compatibility guarantee,
as discussed in Section 5.3.2. The QT developer confirmed that the type of unspecified
dependencies that we detected are caused by the binary compatibility guarantee.

We did not contact LINUX developers about the God-file filtering, as the LINUX kernel
uses conventions (as specified in the source code documentation) to automatically optimize
the build system. In addition, we did not contact OPENLDAP developers, as we only detected
temporary file unspecified dependencies.

6 Limitations and Threats to Validity

In this section, we discuss the limitations and threats to validity of our case study of
unspecified dependencies in make-based build systems.

Limitations The first limitation of our study is that we studied only the default build con-
figuration. As our approach dynamically analyzes only one build configuration at a time,
we conducted our empirical analysis only on the default build configuration for the stud-
ied projects. The limitation of being able to analyze only one build configuration at a
time is inherently tied to approaches that dynamically analyze build configurations, as such
approaches require to actually execute the configuration. However, as we demonstrated,
static analysis is not sufficient to detect unspecified dependencies, making dynamic analysis
the only option.

The second limitation of our study is that we did not calculate recall for all possible
build configurations. Because our approach uses the output log as generated by make and
the STRACE output log of the build, it can uncover all dependencies that were not specified
in the makefile for a configuration. Hence, our approach has 100% recall for the analyzed
configuration. Because of the large number of possible configurations for projects such as
LINUX, it is not computationally feasible to calculate the recall of our approach for all con-
figurations in the build system. However, many of the possible configurations may rarely
be used in practice. Therefore, we recommend that (1) a developer should verify the spe-
cific configuration he or she works on and (2) automatic testing should verify the most
commonly-used configurations. By following these recommendations, the most important
configurations are tested.

The third limitation of our study is that we studied only make-based build systems.
In earlier work (McIntosh et al. 2014b), GNU make was found to be still used by 40%
of the studied repositories in 2012. Our approach is independent of the build technology
as long as it is possible to (a) create a conceptual dependency graph from build file-level
information and (b) create a concrete dependency graph from execution-level informa-
tion. For our implementation, we concentrated on makefiles for two reasons: (1) they are
widely used (as described in Section 2.1, many higher-level build technologies such as
CMake, and Autotools generate makefiles), and (2) we were able to reuse tools (e.g.,
MAKAO) that were already implemented to deal with makefiles and their execution trac-
ing. Because our implementation works with make-based technology, it does not work with
build technologies that are not make-based, such as Google Bazel.

External Validity We have conducted our case study on the build systems of four open
source projects. These projects are widely used and maintained by a mature community,
making it more likely that ‘low-hanging fruit’ of the problematic unspecified dependen-
cies in the build system have been identified already. Even so, our approach is still able
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to uncover a large number of unspecified dependencies with several different root causes,
including root causes that can be classified as bugs. Our approach is semi-automated,
making it easy to repeat our case study on other systems.

We acknowledge that we did not study unspecified dependencies in the build systems of
industrial systems. In future work, we will perform a large study in which more open source
and industrial projects are analyzed.

Construct Validity Build systems contain build information for many targets. In our eval-
uation, we used the default build target of the build systems. This target builds the most
commonly used targets in the build system, i.e., the targets that produce the executable used
by most people. In addition, these targets are less likely to contain unspecified dependencies
because they have been executed and analyzed many times before. While we acknowledge
that building the default target does not necessarily build all targets in the system, we opted
to analyze only the most commonly used.

Note that we did not calculate the interrater agreement score for our manual analysis.
In our study, we followed a consensus-driven approach to explain unspecified dependen-
cies, i.e., we discussed disagreements and arrived at an agreement for every unspecified
dependency. Therefore, as we do not classify the unspecified dependencies into predefined
classes, interrater agreement scores such as Cohen’s kappa (Banerjee et al. 1999) are not
applicable to our study.

Internal Validity A possible threat to the internal validity of our empirical analysis is that
we only investigated projects that use a build system based on make during our case study.
The reason for this is that our available tool set was designed for make build systems. As
make is a mature and widely used build system technology, we do not see this as a threat
to the validity of our case study results.

7 Discussion

Our method was very successful at finding unspecified dependencies (we found over 1.2
million unspecified dependencies). However, we were surprised that most of these missing
dependencies were condoned by the development teams, i.e., they knew about the existence
of the unspecified dependencies, but chose not to fix them. The major reason for not fixing
those unspecified dependencies is to avoid large incremental builds; hence, the developers
consider (rightly or not) that touching these dependencies should not trigger rebuilds.

While investigating these unspecified dependencies, we discovered that they are man-
aged in an ad-hoc manner, meaning there was no standard approach for omitting dependen-
cies, but instead, developers implement custom methods for this. These custom methods
are probably necessary because build tools do not consider this use-case; however, as
demonstrated in the empirical study, there is a need to support this feature.

The systems that we analyzed are old and mature. Their makefiles, and the dependency
specifications they contain, have been tested during a long period. It is not surprising that
the developers of the studied projects are mostly aware of the unspecified dependencies that
we uncovered and that we found only 36 actual missing dependencies (in GLIB). Because
the build systems of the studied projects have been thoroughly tested over the years, it is
unlikely that we would uncover bugs which are easily detected manually. However, even
for an old project such as GLIB, we were able to uncover unspecified dependencies that
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could potentially lead to bugs in the future. The fact that we were able to uncover unspec-
ified dependencies that are potentially dangerous in such an old project, indicates that our
approach is useful for improving a build system when it becomes difficult to improve
manually.

We believe that dependency analysis can be especially beneficial when files (especially
source code files) are added to a project. One can verify, as part of continuous integration,
that if the new file is present in the concrete dependency graph, then it should also be present
in the conceptual dependency graph.

It is also important to recognize that there are many different potential concrete depen-
dency graphs when building a software system. For example, LINUX has hundreds of
configuration switches that include/exclude features from a build. The number of potential
concrete dependency graphs for LINUX is huge. Any developer who works in a given config-
uration should, before making changes, verify that the build specification has no unspecified
dependencies, especially of the files she is expecting to modify. The method that we propose
herein can be useful in such situations.

The Tarski formulas create the theoretical foundation for the implementation of our
prototype. Hence, we consider each (the model described using Tarski formulas and our
prototype) as one of the two important contributions of our paper. The Tarski formulas
formalize how the conceptual graph (resulting from analysis of makefile-related data by
MAKAO) and the concrete graph (resulting from analysis of the actual build by Bee) are
combined into a single graph and how this graph should be queried to identify unspeci-
fied dependencies. We make an empirical contribution by implementing a prototype that is
built upon this model. Both Bee and MAKAO model the build process as a graph, and we
combine these graphs and query them using the model that is built upon the Tarski formulas.

8 Conclusion

Unspecified dependencies are dependencies that are used during the build process while
they are not explicitly specified in a build file. Such unspecified dependencies can cause
inconsistencies or bugs in targets, which are generated by make-based build systems that
are executed recursively or in parallel.

In this paper, we presented the results of our empirical study on unspecified dependencies
in the make-based build systems of four open source projects (GLIB, OPENLDAP, LINUX

and QT). Our analysis revealed over 1.2 million unspecified dependencies caused by 6 root
causes. While some of these root causes are actual bugs, most are known by the developers
of the studied projects. In this paper, we have made the following contributions:

– A case study on the build systems of four open source projects in which we manually
validate the results of our approach

– A discussion of the 6 root causes of 1.2 million detected unspecified dependencies
– The detection of 36 instances of bugs with 2 root causes in the mature build system of

GLIB

Our paper shows that, even though there exist tools to avoid unspecified dependencies
(e.g. memoize), unspecified dependencies are real and exist in popular open source projects.
In fact, even in a mature project such as GLIB, we could detect unspecified dependencies
(even though the situations in which these dependencies could lead to bugs are rare). Our
findings show that it is important to search for unspecified dependencies in all projects –
even older ones.
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