
Noname manuscript No.
(will be inserted by the editor)

The Impact of Rapid Release Cycles on the Integration Delay
of Fixed Issues

Daniel Alencar da Costa · Shane McIntosh ·
Christoph Treude · Uirá Kulesza · Ahmed E.
Hassan

Author pre-print copy. The final publication is available at Springer via:
http://dx.doi.org/10.1007/s10664-017-9548-7

Abstract The release frequency of software projects has increased in recent years.
Adopters of so-called rapid releases— short release cycles, often on the order of
weeks, days, or even hours—claim that they can deliver fixed issues (i.e., imple-
mented bug fixes and new features) to users more quickly. However, there is little
empirical evidence to support these claims. In fact, our prior work shows that code
integration phases may introduce delays for rapidly releasing projects—98% of the
fixed issues in the rapidly releasing Firefox project had their integration delayed by
at least one release. To better understand the impact that rapid release cycles have on
the integration delay of fixed issues, we perform a comparative study of traditional
and rapid release cycles. Our comparative study has two parts: (i) a quantitative em-
pirical analysis of 72,114 issue reports from the Firefox project, and a (ii) qualitative

Daniel Alencar da Costa
Department of Electrical and Computer Engineering
Queen’s University, Kingston, Canada
E-mail: daniel.alencar@queensu.ca

Shane McIntosh
Department of Electrical and Computer Engineering
McGill University, Montreal, Canada
E-mail: shane.mcintosh@mcgill.ca

Christoph Treude
School of Computer Science
University of Adelaide, South Australia, Australia
E-mail: christoph.treude@adelaide.edu.au

Uirá Kuleza
Department of Informatics and Applied Mathematics (DIMAp)
Federal University of Rio Grande do Norte, Natal, Brazil
E-mail: uira@dimap.ufrn.br

Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)
Queen’s University, Kingston, Canada
E-mail: ahmed@cs.queensu.ca

http://dx.doi.org/10.1007/s10664-017-9548-7

2 Daniel Alencar da Costa et al.

study involving 37 participants, who are contributors of the Firefox, Eclipse, and
ArgoUML projects. Our study is divided into quantitative and qualitative analyses.
Quantitative analyses reveal that, surprisingly, fixed issues take a median of 54% (57
days) longer to be integrated in rapid Firefox releases than the traditional ones. To
investigate the factors that are related to integration delay in traditional and rapid re-
lease cycles, we train regression models that model whether a fixed issue will have
its integration delayed or not. Our explanatory models achieve good discrimination
(ROC areas of 0.80-0.84) and calibration scores (Brier scores of 0.05-0.16) for rapid
and traditional releases. Our explanatory models indicate that (i) traditional releases
prioritize the integration of backlog issues, while (ii) rapid releases prioritize issues
that were fixed in the current release cycle. Complementary qualitative analyses re-
veal that participants’ perception about integration delay is tightly related to activities
that involve decision making, risk management, and team collaboration. Moreover,
the allure of shipping fixed issues faster is a main motivator for adopting rapid release
cycles among participants (although this motivation is not supported by our quanti-
tative analysis). Furthermore, to explain why traditional releases deliver fixed issues
more quickly, our participants point out the rush for integration in traditional releases
and the increased time that is invested on polishing issues in rapid releases. Our re-
sults suggest that rapid release cycles may not be a silver bullet for the rapid delivery
of new content to users. Instead, our results suggest that the benefits of rapid releases
are increased software stability and user feedback.

1 Introduction

To achieve sustained success, software projects must attract and retain the interest
of users [50]. Since users will quickly lose interest in a stagnant software project,
successful projects need to continuously provide exciting new features and fix bugs
that are frustrating users.

Within the context of constantly evolving requirements (e.g., in agile develop-
ment), approaches like eXtreme Programming (XP) and Scrum1 have arisen to foster
faster software delivery [6]. Those methodologies claim to better embrace a con-
stantly evolving requirements context by shortening release cycles. Indeed, modern
release cycles are on the order of days or weeks rather than months or years [4].
Such rapid releasing enables faster user feedback and a smoother roadmap for user
adoption.

The allure of delivering new features faster has led many large software projects to
shift from a more traditional release cycle (e.g., 12-18 months to ship a major release),
to shorter release cycles (e.g., weeks). For example, Google Chrome, Mozilla Firefox,
and Facebook teams have each adopted shorter release cycles [1]. In this paper, we
use the term rapid releases to refer to releases that are produced in release cycles that
last for weeks or days (such as a sprint in the Scrum agile process [42]). Conversely,
we use the term traditional releases to refer to releases that are produced in cycles
that last for months or years.

1 http://www.scrumguides.org/

http://www.scrumguides.org/

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 3

Prior research has investigated the impact of adopting rapid releases [5, 28, 31,
47, 48]. For example, Khomh et al. [28] found that bugs that are related to crash
reports tend to be fixed more quickly in the rapid Firefox releases than the traditional
ones. Mäntylä et al. [31] found that the Firefox project’s shift from a traditional to a
rapid release cycle has been accompanied by an increase in the testing workload.

To the best of our knowledge, little prior research has empirically studied the
impact that a shift from a traditional to a rapid release cycle has on the speed of
integration of fixed issues. Such an investigation is important to empirically check if
adopting a rapid release cycle really does lead to the quicker delivery of fixed issues.
In our previous work [11], we studied the delay that is introduced by the integration
phase of a software project. We found that 98% of the bug-fixes and new features
in the rapid releases of Firefox were delayed by at least one release. Such delayed
integration hints that even though rapid releases are consistently delivered every 6
weeks, they may not be delivering fixed issues as quickly as its proponents purport.

Hence, in this paper, we perform a two-part empirical study to compare traditional
and rapid release cycles with respect to integration delay. The first part is a quantita-
tive analysis of 72,114 issue reports from the Firefox project (34,673 for traditional
releases and 37,441 for rapid releases). These issue reports refer to bugs, enhance-
ments, and new features [3]. In the second part, we set out to qualitatively analyze
the integration delay of fixed issues by surveying 37 participants from the Firefox,
Eclipse, and ArgoUML projects.

This paper is an extended version of our prior work [12]. We extend our prior
study to add a new qualitative analysis that is comprised of:

– An analysis of survey data that we collect from 37 participants from the Firefox,
Eclipse, and ArgoUML projects (RQ4-RQ6).

– An open-coding analysis of the open-ended questions of our survey (RQ4-RQ6).
– A quantitative analysis using the responses to the Likert-scale questions of our

survey (RQ4).
– An analysis of the extent to which the perceived integration delay of our par-

ticipants are in accordance with the collected quantitative data from our prior
work [11, 12] (RQ5).

– Follow-up interviews with participants who were willing to clarify and provide
deeper explanations about their survey responses (RQ4-RQ6).

1.1 Quantitative Study

Our quantitative analysis focuses on the following research questions.

– RQ1: Are fixed issues integrated more quickly in rapid releases? Interestingly,
we find that although issues are fixed more quickly in rapid releases, they tend to
require a longer time to be integrated and released to users.

– RQ2: Why can traditional releases integrate fixed issues more quickly? We find
that minor-traditional releases (i.e., releases of smaller scope that are shipped af-
ter a major version of the software) are a key reason as to why fixed issues tend

4 Daniel Alencar da Costa et al.

to be integrated more quickly in traditional releases. In addition, we find that the
length of the release cycles are roughly the same between traditional and rapid re-
leases when considering both minor and major releases, with medians of 40 and
42 days, respectively.

– RQ3: Did the change in release strategy have an impact on the characteristics
of delayed issues? Our models suggest that issues are queued up as a project
backlog in traditional releases, while issues in rapid releases are queued up on
a per release basis (i.e., a backlog per release cycle). Issues that are fixed early
either in a project or release cycle backlog are less likely to be delayed.

1.2 Qualitative Study

Next, we survey 37 developers from the Firefox, Eclipse, and ArgoUML projects to
study the perceived impact of integration delay and the shift from a traditional to a
rapid release cycle. More specifically, we address the following research questions:

– RQ4: What are developers’ perceptions as to why integration delays occur? The
perceived reasons for the integration delay of fixed issues are related to decision
making, team collaboration, and risk management activities. Moreover, integra-
tion delay will likely lead to user/developer frustration according to our partici-
pants.

– RQ5: What are developers’ perceptions of shifting to a rapid release cycle? The
allure of delivering fixed issues more quickly to users is the most recurrent moti-
vator of switching to a rapid release cycle. Moreover, the allure of improving the
flexibility and quality of fixed issues is another advantage that are perceived by
our participants.

– RQ6: To what extent do developers agree with our quantitative findings about
integration delay? The dependency of fixed issues on other projects and team
workload are the main perceived explanations of our findings about integration
delay in general. Integration rush and increased time spent on polishing fixed
issues (during rapid releases) emerge as main explanations as to why traditional
releases may achieve shorter integration delays.

Paper organization. The remainder of this paper is organized as follows. In Sec-
tion 2, we present the necessary background and definitions to the reader. In Section 3,
we describe the design of our quantitative and qualitative studies. In Sections 4 and 5,
we present the results of our quantitative and qualitative studies, respectively. In Sec-
tion 6, we analyze potential confounding factors that are related to our quantitative
analysis. In Section 7, we suggest practical guidelines based on the results of our two
studies. Section 8 discloses the threats to the validity of our studies, while we discuss
the related work in Section 9. Finally, we draw conclusions in Section 10.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 5

2 Background & Definitions

2.1 Issue Reports

An issue report describes a new feature, enhancement, or bug. Modern software
projects use Issue Tracking Systems (ITSs, e.g., Bugzilla) to manage issues as they
transition from being reported to being fixed.2

Each issue report has a unique identifier (issue ID), a description of the nature of
the issue, and a variety of other metadata (e.g., the severity and priority of the issue).3

Large software projects receive plenty of issue reports on a daily basis. For example,
our data shows that a median of 124 Firefox issues were opened on a daily basis from
1999 to 2010.

When developers start working on issue reports, they use the issue status to track
progress throughout the lifetime of an issue. An issue is first (1) reported (new status),
(2) triaged to an appropriate developer (assigned status), and (3) finally fixed (fixed
status). A more detailed description of the life cycle of an issue report in the Firefox
project is provided in the Bugzilla documentation.4

In this paper, we study fixed issues, which are issues that are resolved with the
fixed status (i.e., the RESOLVED-FIXED status in the Bugzilla ITS) and integrated
into traditional or rapid releases of the Firefox project.

2.2 Release Cycles

In this paper, we use the term rapid releases to refer to releases that are produced in
rapid release cycles, i.e., cycles that last for weeks, days, or even hours. For example,
the Scrum agile process uses the term sprint to refer to a rapid release cycle [42].
Also, we use the term traditional releases to refer to releases that are produced in
cycles that last for several months or even years. Traditional release cycles resemble
the classic Spiral model [8], in which the scope of a release is firmly fixed at the
beginning of the release cycle the tasks within the scope should be completed by a
fixed date. Conversely, rapid releases have a more flexible scope by shortening the
duration of their release cycles [42]. Since a shorter release cycle exposes the release
more quickly to customers, there are more windows for changing and re-prioritizing
the release scope. In this way, shorter release cycles are claimed to better embrace
changes in scope that occur throughout the development process.

In our quantitative study, we examine the popular Firefox web browser.5 Firefox
has approximately 18% of the worldwide market share of web browsers at the time
that this paper was written.6 Firefox is a fitting subject for our study because it shifted
from a traditional release cycle to a rapid release cycle[28, 31, 47, 48].

2 https://www.bugzilla.org/
3 https://bugzilla.readthedocs.org/en/5.0/using/understanding.html
4 https://bugzilla.readthedocs.org/en/5.0/using/editing.html#

life-cycle-of-a-bug
5 https://www.mozilla.org/en-US/firefox/new/
6 https://clicky.com/marketshare/global/web-browsers/

https://www.bugzilla.org/
https://bugzilla.readthedocs.org/en/5.0/using/understanding.html
https://bugzilla.readthedocs.org/en/5.0/using/editing.html#life-cycle-of-a-bug
https://bugzilla.readthedocs.org/en/5.0/using/editing.html#life-cycle-of-a-bug
https://www.mozilla.org/en-US/firefox/new/
https://clicky.com/marketshare/global/web-browsers/

6 Daniel Alencar da Costa et al.

Firefox traditional releases

The traditional release cycle of Firefox was applied to major releases from 1.0 to
4.0. These traditional major releases took 12-18 months to be shipped.7 In traditional
release cycles, major traditional releases have subsequent minor releases containing
bug fixes. These minor releases can be developed and released in parallel with major
releases. Indeed, the final minor traditional release (3.6.24) was released in tandem
with major rapid release 8.

Firefox rapid releases

Firefox began adopting a rapid release cycle in March 2011. The first official rapid
release was shipped in June 2011. The development process of rapid releases differs
from that of traditional releases. Rapid release cycles last for 6 weeks (42 days) in
Firefox, while traditional release cycles last for 12 to 18 months. Also, the rapid
release process consists of a pipeline process, i.e., a release is developed (or trained)
through four stabilization channels. These channels are the NIGHTLY, AURORA,
BETA, and RELEASE channels, respectively—each channel yielding more stable
releases than its prior counterpart.

In the Firefox rapid release strategy, a release is shipped into the NIGHTLY chan-
nel every night. This NIGHTLY release incorporates the fixed issues that were inte-
grated into the main code repository (mozilla-central).8. Then, a release candi-
date in the NIGHTLY channel migrates to the AURORA and BETA channels to be
stabilized. Once stabilized, an official release is broadcasted on the RELEASE chan-
nel. In the AURORA and BETA channels, the Quality Assurance team (QA) makes
decisions about whether the code that was stabilized in these channels should be
pushed to the next channel.9 Code that was further stabilized in the BETA channel is
pushed to the RELEASE channel. The rapid release strategy is able to produce new
official releases (on the RELEASE channel) every six weeks because it allows for the
development of consecutive releases that are migrated from one channel to another
on a regular basis.

2.3 Major and Minor releases

We also analyze major and minor releases in our study. Major releases are releases
that are produced in official release cycles, which produce the official versions of
a software project. For example, Firefox versions 25, 26, and 27 were produced by
major release cycles. On the other hand, minor releases are off-schedule releases
that are usually produced to fix specific bugs (e.g., security bugs) or provide specific
enhancements (e.g., stability improvements). For example, Firefox 27.0.1 is a minor
release that was shipped after Firefox had adopted rapid release cycles.10

7 https://en.wikipedia.org/wiki/Firefox_release_history
8 https://hg.mozilla.org/mozilla-central/
9 http://mozilla.github.io/process-releases/draft/development_overview/

10 https://en.wikipedia.org/wiki/History_of_Firefox#Version_27

https://en.wikipedia.org/wiki/Firefox_release_history
https://hg.mozilla.org/mozilla-central/
http://mozilla.github.io/process-releases/draft/development_overview/
https://en.wikipedia.org/wiki/History_of_Firefox#Version_27

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 7

Issue

#1

Time

T1

Issue #1 is

reported

T2

A release

is shipped

R1 R2 R3

T4

A release

is shipped

T3

Issue #1

is fixed

T5

A release

is shipped

Issue

#1

Shipped After 1 release

Fig. 1: An illustrative example of how we compute integration delays.

The rapid release cycle of the Firefox project also includes minor releases that
contain bug fixes and Extended Support Releases (ESR). ESRs are shipped to orga-
nizations/customers who cannot update their Firefox installations at the same pace at
which the rapid releases are shipped.11

2.4 Integration Delay

Figure 1 shows how we compute integration delays. Integration delay is the time
between the moment at which an issue is fixed (T 3) and the moment at which this fix
is released to end users (T 5). We consider that an issue is fixed when it reaches the
RESOLVED-FIXED status. We define two kinds of integration delay that we study
in this work below.

Definition 1—Time delay. The time delay is the number of days between T 3
and T 5. For example, if the time in days between each T of Figure 1 is 30 days,
the integration delay in terms of days for issue-#1 is 60 days. We use Definition 1
to perform our analyses in RQ1-RQ2 and to gather developer feedback about these
analyses in RQ6.

Definition 2—Release delay. Instead of counting the number of days between
T 3 and T 5 as we specify in Definition 1, we count the number of releases between
T 3 and T 5. For example, the release delay for issue-#1 is one release. We use this
definition to fit our statistical models in RQ3 and to understand the perceived reasons
of why fixed issues are not integrated in RQ4-RQ6.

11 https://www.mozilla.org/en-US/firefox/organizations/faq/

https://www.mozilla.org/en-US/firefox/organizations/faq/

8 Daniel Alencar da Costa et al.

Analyze
tags

VCS Link
commits
to issues

Commit
logs

Release
data

ITS

Step 1
Collect
release

information

Remove
false

positives

Release
notes

Step 3

Linked
issues
data

Linked
issues
data

Compute
integration

delay factors Final
dataset

Step 2

Fig. 2: Overview of the process to construct the dataset that is used in our Study I.

3 Empirical Study Design

We perform two studies: a quantitative and a qualitative study. In this section, we
provide information about the subject projects, the motivation, and approach of the
research questions for each of our studies.

3.1 Quantitative Study (Study I)

In Study I, we set out to comparatively analyze the integration delay of fixed issues
that were shipped in traditional versus the ones that were shipped in rapid releases.

3.1.1 The Firefox Subject Project

We choose to study the Firefox project because it offers a unique opportunity to in-
vestigate the impact of shifting from a traditional release cycle to a rapid release cycle
using rich, publicly available ITS and Version Control System (VCS) data. Although
other open source projects may have ITS and VCS data available, they do not provide
the opportunity to investigate the transition between traditional releases and rapid re-
leases. In addition, comparing different projects that use traditional and rapid releases
poses a great challenge, since one has to distinguish to what extent the results are due
to the release strategy and not due to intricacies of the projects themselves. There-
fore, we highlight that the choice to investigate Firefox is not accidental, but based
on the specific analysis constraints that such data satisfies, and the very unique nature
of such data.

3.1.2 Data Collection

Figure 2 shows an overview of our data collection approach. Each step of the process
is described below.

Step 1: Collect release information. We collect the date and version number of
each Firefox release (minor and major releases of each release strategy) using the
Firefox release history wiki.12 Table 1 shows: (i) the range of versions of releases

12 https://en.wikipedia.org/wiki/Firefox_release_history

https://en.wikipedia.org/wiki/Firefox_release_history

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 9

Table 1: The studied traditional and rapid Firefox releases.

Strategy Version range Time period # of Majors # of Minors
Trad. 1.0 - 4.0 Sep/2004 - Mar/2012 7 104
Rapid 5 - 27 Jun/2011 - Sep/2014 23 50

that we investigate, (ii) the investigated time period of each release strategy, and (iii)
the number of major and minor studied releases in each release strategy. Release
versions 1.0 to 4.0 are considered as traditional releases (i.e., they have a release cycle
duration of 12 to 18 months), while release versions from 5 to 27 are considered as
rapid releases (i.e., their release cycles are only 6 weeks long). The release version 4.0
was the last release that was produced in the traditional release cycle [28, 31, 47, 48].

Step 2: Link issues to releases. Once we collect the release information, we use
the tags within the VCS to link issue IDs to releases. First, we analyze the tags that
are recorded within the VCS. Since Firefox migrated from CVS to Mercurial during
release 3.5, we collect the tags of releases 1.0 to 3.0 from CVS, while we collect the
tags of releases 3.5 to 27 from Mercurial.13,14 By analyzing the tags, we extract the
commit logs within each tag. The extracted commit logs are linked to their respective
tags. We then parse the commit logs to collect the issue IDs that are being fixed in
these commits. By inspecting the commit logs, we notice that they mention issue IDs
using the following patterns:
1. “Bug <ID>” or “bug <ID>” followed by a description of the fix.
2. “b=<ID>” followed by a description of the fix.

For example, the commits with IDs bd0fdb3585c6 and 2e06eade69ce are in-
stances of the aforementioned patterns.15,16

In order to mitigate false positives, i.e., links between commit logs and issue IDs
that should not exist, we discard the following patterns.
1. Potential IDs that have less than five digits, since the issue IDs of the investigated

releases should have at least five digits (2,559 issues were discarded).
2. Commit logs that follow the pattern: “Bug <ID> reftest”, “Bug <ID> JavaScript

Tests”, or “Bug <ID> crash tests”, which refer to tests and not issue fixes (441
issues were discarded). We also include the “b=<ID>” variations in these cases.

3. Backout commits, i.e., commit logs that follow the pattern: “back out of bug
<ID>” or “back out of b=<ID>” because these are reverting commits that are
related to the specified IDs rather than fixes (168 issues were discarded) [45, 48].

4. Any potential ID that is the name of a file, e.g., “159334.js” (607 issues were
discarded).

In total, we link 77% (168,153
217,245) of the commit logs that are related to the traditional

releases data, while we link 97% (127,254
130,136) of the commit logs for the rapid releases

13 http://cvsbook.red-bean.com/cvsbook.html
14 https://mercurial.selenic.com/
15 https://hg.mozilla.org/mozilla-central/rev/bd0fdb3585c6
16 https://hg.mozilla.org/mozilla-central/rev/2e06eade69ce

http://cvsbook.red-bean.com/cvsbook.html
https://mercurial.selenic.com/
https://hg.mozilla.org/mozilla-central/rev/bd0fdb3585c6
https://hg.mozilla.org/mozilla-central/rev/2e06eade69ce

10 Daniel Alencar da Costa et al.

data. These linkage rates suggest that the practice of providing issue IDs in commit
logs has been more broadly adopted as the Firefox community has matured.

Since the commit logs are linked to VCS tags, we are also able to link the issue
IDs found within these commit logs to the releases that correspond to those tags. For
example, since we find the fix for issue 529404 in the commit log of tag 3.7a1, we link
this issue ID to that release. We also merge together the data of development releases
like 3.7a1 into the nearest minor or major release. For example, release 3.7a1 would
be merged with release 4.0, since it is the next user-intended release after 3.7a1. In
the case that a particular issue is found in the commit logs of multiple releases, we
consider that particular issue to pertain to the earliest release that contains the last
fix attempt (commit log), since that release is the first one to contain the complete
fix for the issue. Finally, we collect the issue report information of each remaining
issue (e.g., opening date, fix date, severity, priority, and description) using the ITS.
Moreover, since the minor-rapid releases are off-cycle releases, in which fixed issues
may skip being integrated into mozilla-central (i.e., NIGHTLY) tags, we manu-
ally collect the fixed issues that were integrated into those releases using the Firefox
release notes (i.e., 247 fixed issues).17 We add the manually collected fixed issues
from ESR releases within the rapid releases data, since they also represent data from
a rapid release strategy.

Step 3: Compute metrics and perform analyses. We use the data from Step 2
to compute the metrics that we use in our analyses. We select these metrics (which
are described in Section 3.1.4) because we suspect that they share a relationship with
integration delay (i.e., time delay and release delay). Finally, we use the collected
dataset to perform the analyses of our study.

3.1.3 Research Questions

In our quantitative study, we address three research questions about the shift from
a traditional to a rapid release cycle. The motivation of each research question is
detailed below.

– RQ1: Are fixed issues integrated more quickly in rapid releases? Since there
is a lack of empirical evidence to indicate that rapid release cycles integrate fixed
issues more quickly than traditional release cycles, we compare the integration
delay of fixed issues in traditional releases against the integration delay in rapid
releases in RQ1.

– RQ2: Why can traditional releases integrate fixed issues more quickly? In
RQ1, we surprisingly find that traditional releases tend to integrate fixed issues
more quickly than rapid releases. This result raises the following question: why
can a traditional release strategy, which has a longer release cycle, integrate fixed
issues more quickly than a rapid release strategy?

– RQ3: Did the change in the release strategy have an impact on the charac-
teristics of delayed issues? In RQ1 and RQ2, we study the differences between

17 https://www.mozilla.org/en-US/firefox/releases/

https://www.mozilla.org/en-US/firefox/releases/

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 11

Time
New Assigned Fixed Released

t1 t2 t3

Issue Solution

Fig. 3: A simplified life cycle of an issue.

rapid and traditional releases with respect to integration delay. We find that al-
though issues tend to be fixed more quickly in rapid releases, they tend to wait
longer to be integrated. We also find that the use of minor releases is the main
reason as to why traditional releases may integrate fixed issues more quickly.
In RQ3, we investigate what are the characteristics of each release strategy that
are associated with integration delays. This important investigation sheds light
on what may generate integration delays in each release strategy, so that projects
are aware of the characteristics of rapid releases versus traditional releases before
choosing to adopt one of these release strategies.

3.1.4 Research Approach

Figure 3 shows a simplified life cycle of an issue, which includes the triaging phase
(t1), the fixing phase (t2), and the integration phase (t3). We compute the time delay
in t3. The lifetime of an issue is composed of all three phases (from new to released).
For RQ1, we first observe the lifetime of the issues of traditional and rapid releases.
Next, we look at the time span of the triaging, fixing, and integration phases within
the lifetime of an issue. In RQ2, we group traditional and rapid releases into major
and minor releases and study their time delay.

We use beanplots [26] to compare the distributions of our data. The vertical curves
of beanplots summarize and compare the distributions of different datasets (see Fig-
ure 10(a)). The higher the frequency of data within a particular value, the thicker the
bean is plotted at that particular value on the y axis. We also use Mann-Whitney-
Wilcoxon (MWW) tests [52] and Cliff’s delta effect-size measures [10]. MWW tests
are non-parametric tests of the null hypothesis that two distributions come from the
same population (α = 0.05). On the other hand, Cliff’s delta is a non-parametric
effect-size measure to verify the difference in magnitude of one distribution com-
pared to another distribution. The higher the value of the Cliff’s delta, the greater
the difference of values between distributions. For instance, if we obtain a significant
p value but a small Cliff’s delta, this means that although two distributions do not
come from the same population their difference is not that large. A positive Cliff’s
delta indicates how much larger the values of the first distribution are, while a nega-
tive Cliff’s delta indicates the inverse. Finally, we use the Median Absolute Deviation
(MAD) [21, 30] as a measure of the variation of our distributions. The MAD is the
median of the absolute deviations from one distribution’s median. The higher the
MAD, the greater is the variation of a distribution with respect to its median.

For RQ3, we build explanatory models (i.e., logistic regression models) for the
traditional and rapid releases data using the metrics that are presented in Tables 2,

12 Daniel Alencar da Costa et al.

Table 2: Metrics that are used in our explanatory models (Reporter and Resolver
dimensions).

Family Metrics Value Definition (d)|Rationale (r)

Reporter Experience Numerical

d: the number of previously integrated issues that were
reported by the reporter of a particular fixed issue.
r: The greater the experience of the reporter the higher
the quality of his/her reports and the solution to his/her
reports might be integrated more quickly [44].

Reporter in-
tegration

Numerical

d: The median in days of the previously integrated fixed
issues that were reported by a particular reporter.
r: If a particular reporter usually reports issues that are
integrated quickly, his/her future reported issues might
be integrated quickly as well.

Resolver Experience Numerical

d: the number of previously integrated fixed issues that
were fixed by the resolver of a particular fixed issue. We
consider the collaborator that changed the status of an is-
sue to RESOLVED-FIXED as the resolver of that issue.
r: The greater the experience of the resolver, the
greater the likelihood that his/her code will be integrated
faster [44].

Resolver in-
tegration

Numerical

d: The median in days of the previously integrated fixed
issues that were fixed by a particular resolver.
r: If a particular resolver usually fixes issues that are in-
tegrated quickly, his/her future fixed issues might be in-
tegrated quickly as well.

3, 4, and 5. Our metrics are computed based on the date at which a given issue was
fixed (i.e., the date of the last RESOLVED-FIXED status). For example, the resolver
experience metric is the number of integrated fixes by that resolver that were made
prior to the analzyed fix date. We model our response variable Y as Y = 1 for fixed
issues that are delayed, i.e., missed at least one release before integration [11] and
Y = 0 otherwise (see release delay). Hence, our models are intended to explain why
a given fixed issue has its integration delayed (i.e., Y = 1).

We follow the guidelines of Harrell Jr. [18] for building explanatory regression
models. Figure 4 provides an overview of the process that we use to build our models.
First, we estimate the budget of degrees of freedom that we can spend on our models
while having a low risk of overfitting (i.e., producing a model that is too specific to
the training data to be useful when applied to other unseen data). Second, we check
for metrics that are highly correlated using Spearman rank correlation tests (ρ) and
we perform a redundancy analysis to remove any redundant metrics before building
our explanatory models.

We then assess the fit of our models using the ROC area and the Brier score.
The ROC area is used to evaluate the degree of discrimination that is achieved by a
model. The ROC values range between 0 (worst) and 1 (best). An area greater than 0.5
indicates that the explanatory model outperforms naı̈ve random guessing models. The
Brier score is used to evaluate the accuracy of probabilistic predictions. This score
measures the mean squared difference between the probability of delay assigned by
our models for a particular issue I and the actual outcome of I (i.e., whether I is

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 13

Table 3: Metrics that are used in our explanatory models (Issue dimension).

Family Metrics Value Definition (d)|Rationale (r)

Issue Stack trace
attached

Dichotomous

d: We verify if the issue report has a stack trace attached
in its description.
r: A stack trace attached may provide useful information
regarding the cause of the issue, which may quicken the
integration of the fixed issue [41].

Severity Nominal

d: The severity level of the issue report. Issues with
higher severity levels (e.g., blocking) might be integrated
faster than other issues.
r: Panjer observed that the severity of an issue has a large
effect on its time to be fixed in the Eclipse project [37].

Priority Nominal

d: The priority level of the issue report. Issues with higher
priority levels (e.g., P1) might be integrated faster than
other issues.
r: Higher priority issues will likely be integrated before
lower priority issues.

Bug type Dichotomous

d: A boolean identifying whether an issue is a secu-
rity issue. Similar to Zaman et al. [53], we consult
the Mozilla Foundation Security Advisory to identify
whether an issue is related to security problems.a

r: Since the release history documentation of Firefox
shows that minor releases are usually related to stability
and security issues We investigate whether short delays
are related to security issues.

Description
size

Numerical
d: The number of words in the description of the issue.
r: Issues that are well described might be more easy to
integrate than issues that are difficult to understand.

a https://www.mozilla.org/en-US/security/advisories/

actually delayed or not). Hence, the lower the Brier score, the more accurate the
probabilities that are produced by a model.

Next, we assess the stability of our models by computing the optimism-reduced
ROC area and Brier score [14]. The optimism of each metric is computed by selecting
a bootstrap sample to fit a model with the same degrees of freedom of the original
model. The model that is trained using the bootstrap sample is applied both on the
bootstrap and original samples (ROC and Brier scores are computed for each sample).
The optimism is the difference in the ROC area and Brier score of the bootstrap
sample and original sample. This process is repeated 1,000 times and the average
optimism is computed. Finally, we obtain the optimism-reduced scores by subtracting
the average optimism from the initial ROC area and Brier score estimates [14].

We evaluate the impact of each metric on the fitted models using Wald χ2 maxi-
mum likelihood tests. The larger the χ2 value, the larger the impact that a particular
metric has on our explanatory models’ performance. We also study the relationship
that our metrics share with the likelihood of integration delay. To do so, we plot the
change in the estimated probability of delay against the change in a given metric
while holding the other metrics constant at their median values using the Predict

function of the rms package [18].

https://www.mozilla.org/en-US/security/advisories/

14 Daniel Alencar da Costa et al.

Table 4: Metrics that are used in our explanatory models (Project dimension).

Family Metrics Value Definition (d)|Rationale (r)

Project Queue rank Numerical

d: A rank number that represents the moment at
which an issue is fixed compared to other fixed
issues in the backlog. For instance, in a backlog
that contains 500 issues, the first fixed issue has a
rank of 1, while the last fixed issue has a rank of
500.
r: An issue with a high queue rank is a recently
fixed issue. A fixed issue might be integrated
faster/slower depending of its rank.

Cycle queue rank Numerical

d: A rank number that represents the moment at
which an issue is fixed compared to other fixed
issues of the same release cycle. For example, in
a release cycle that contains 300 fixed issues, the
first fixed issue has a rank of 1, while the last one
has a rank of 300.
r: An issue with a high cycle queue rank is a re-
cently fixed issue compared to the others of the
same release cycle. An issue fixed close to the up-
coming release might be integrated faster.

Queue position Continuous

d: queue rank
all fixed issues . The queue rank is divided by all

the issues that are fixed by the end of the next re-
lease. A queue position close to 1 indicates that
the issue was fixed recently compared to others in
the backlog.
r: A fixed issue might be integrated faster/slower
depending of its position.

Cycle queue posi-
tion

Continuous

d: cycle queue rank
fixed issues of the current cycle . The cycle queue rank

is divided by all of the fixed issues of the release
cycle. A cycle queue position close to 1 indicates
that the issue was fixed recently in the release cy-
cle.
r: An issue that is fixed close to a upcoming re-
lease might be integrated faster.

Traditional
data

Rapid data
Correlation

check

Redundancy
check

Optmism
check

Model fit
check

Explanatory
Power

Assessment

Relationship
Direction
Analysis

Step 1: Preparing
factors

Step 2: Training
Models

Step 3: Analyzing
models

Step 4: Comparing
models

Computing
D.F budget

Fig. 4: Overview of the process that we use to build our explanatory models.

We also plot nomograms [18, 22] to evaluate the impact of the metrics in our mod-
els. Nomograms are user-friendly charts that visually represent explanatory models.
For instance, Figure 15 shows the nomogram of the model that we fit for the rapid

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 15

Table 5: Metrics that are used in our explanatory models (Process dimension).

Family Metrics Value Definition (d)|Rationale (r)

Process Number of Im-
pacted Files

Numerical

d: The number of files that are linked to an issue
report.
r: An integration delay might be related to a
high number of impacted files because more effort
would be required to properly integrate the modi-
fications [25].

Churn Numerical

d: The sum of added lines plus the sum of deleted
lines to fix the issue.
r: A higher churn suggests that a great amount of
work was required to fix the issue, and hence, ver-
ifying the impact of integrating the modifications
may also be difficult [25, 35].

Fix time Numerical

d: Number of days between the date when the is-
sue was triaged and the date that it was fixed [16].
r: If an issue is fixed quickly, it may have a better
chance to be integrated faster.

Number of activi-
ties

Numerical

d: An activity is an entry in the issue’s history.
r: A high number of activities might indicate that
much work was required to fix the issue, which
may impact the integration of the issue into a re-
lease [25].

Number of com-
ments

Numerical

d: The number of comments of an issue report.
r: A large number of comments might indicate the
importance of an issue or the difficulty to under-
stand it [16], which might impact the integration
delay [25].

Interval of com-
ments

Numerical

d: The sum of the time intervals (hour) between
comments divided by the total number of com-
ments of an issue report.
r: A short interval of comments indicates that an
intense discussion took place, which suggests that
the issue is important. Hence, such an issue may
be integrated faster.

Number of tosses Numerical

d: The number of times that the assignee has
changed.
r: Changes in the issue assignee might indicate
that more than one developer have worked on the
issue. Such issues may be more difficult to inte-
grate, since different expertise from different de-
velopers might be required [23, 25].

release data. The higher the number of points that are assigned to an explanatory
metric on the x axis (e.g., 100 points are assigned to comments in rapid releases), the
larger the effect of that metric in the explanatory model. We compare which metrics
are more important in both traditional and rapid releases in order to better understand
the differences between these release strategies.

16 Daniel Alencar da Costa et al.

3.2 Qualitative Study (Study II)

In Study II, we qualitatively analyze the integration delay phenomena by surveying
and interviewing the team members of our subject projects.

3.2.1 Subject Projects

We analyze the Firefox, ArgoUML, and Eclipse (JDT) projects. We naturally choose
Firefox, since the qualitative part of our study is intended to complement the quan-
titative analyses that we performed in the Firefox project. Furthermore, since data
sources in qualitative studies should be selected with a focus on variation rather than
representativeness [40], we also investigate the Eclipse and ArgoUML projects in this
study. In particular, the Eclipse and ArgoUML projects are chosen based on (and to
complement) our prior work [11], in which we study general reasons for integration
delay in these two projects.

ArgoUML is an open source UML modeling tool. ArgoUML provides support for
all of the UML 1.4 diagrams. At the time that we perform this study, ArgoUML was
downloaded 80,000 times worldwide.18 ArgoUML uses the IssueZilla ITS to record
its issue reports.19

Eclipse is a popular Integrated Development Environment (IDE) that is famous
for its support for the Java programming language.20 We study the Java Development
Tools (JDT) project of the Eclipse Foundation.21 The JDT project provides the Java
perspective for the Eclipse IDE, which includes a number of views, editors, wizards,
and builders.

ArgoUML and Eclipse (JDT) adopt a traditional release cycle when compared to
the Firefox project. For instance, the median duration of release cycles that we study
for the ArgoUML and Eclipse (JDT) projects are 180 and 112 days, respectively [11].
For these projects, we study the impressions of team members regarding the impact
of a shift to a rapid release cycle on integration delays.

3.2.2 Data collection

To perform our study, we searched for developers who contributed in the last four
years of the studied projects.22 Inspecting the code commits of the studied projects,
we estimate that the population size of the Firefox, Eclipse (JDT), and ArgoUML
projects are respectively of 1,011, 194, and 83 contributors in this time period. We
contacted a group of these contributors who actively participated on the developer
mailing lists of their projects in the last four years. To collect the data, we designed
a web-based survey that was sent to 780 developers of the Firefox, Eclipse (JDT),
and ArgoUML projects. We sent our survey to 513 Firefox, 184 Eclipse (JDT), and
62 ArgoUML developers whose e-mails existed on the mailing lists. To encourage

18 argouml.tigris.org
19 http://argouml.tigris.org/project_bugs.html
20 https://eclipse.org/
21 https://projects.eclipse.org/projects/eclipse.jdt
22 From 2013 to 2016 by the time of this study.

argouml.tigris.org
http://argouml.tigris.org/project_bugs.html
https://eclipse.org/
https://projects.eclipse.org/projects/eclipse.jdt

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 17

participation, we provided $100 Amazon.com gift cards to a random subset of the
respondents who answered all of the questions of our surveys.

Our survey has two major themes. The first theme is about integration delay in
general, while the second theme is focused on the impact of switching to a rapid
release cycle on the integration delay. Our complete surveys are available in Appen-
dices A, B, and C. The first three questions (#2-#4) collect demographic information.
Questions #6-14 belong to the general integration delay theme, while questions #5,
#17-18 belong to the impact of switching to a rapid release cycle theme. We placed
one question of the second theme early in the survey to mitigate bias in the responses
about the motivation to switch to a rapid release cycle. Finally, questions #17-19 are
different for the Firefox project, since the other projects did not shift from a tradi-
tional to a rapid release cycle.

In total, we received 37 responses (5% response rate), of which 25 responses came
from Firefox developers, 9 from Eclipse developers, and 3 from ArgoUML develop-
ers. We also conducted follow-up interviews with four of the Firefox participants to
gather deeper insights into their responses. Our interviews were semi-structured and
our goal was to clarify the responses of our survey and collect more details about spe-
cific cases of integration delays for fixed issues. Moreover, we provide our invitation
letter and interview script in Appendices F and G, respectively.

3.2.3 Research Questions

We present the three research questions that are addressed in this qualitative part of
the study below.

– RQ4: What are developers’ perceptions as to why integration delays occur?
To the best of our knowledge, there is no prior work that qualitatively studies
integration delay. Qualitative studies are important to detect phenomena that are
difficult to uncover quantitatively. Our goal in this RQ is to better understand
why integration delays happen. This investigation is a starting point to reveal new
ways of mitigating integration delays.

– RQ5: What are developers’ perceptions of shifting to a rapid release cycle?
In this research question, we intend to complement our quantitative findings about
the comparison between traditional and rapid release cycles regarding integration
delays. This investigation is important to gain deeper explanations as to why fixed
issues may be integrated more quickly in traditional releases. Additionally, we in-
tend to understand what are the reasons for the perceived success of adopting a
rapid release cycle. This is also important to help projects with their decision of
adopting a rapid release cycle rather than a traditional one.

– RQ6: To what extent do developers agree with our quantitative findings
about integration delay? The main motivation for this research question is to
solicit feedback about our quantitative findings. More specifically, we aim to un-
derstand to what extent our quantitative findings agree with the participants’ per-
ception of integration delays.

18 Daniel Alencar da Costa et al.

Table 6: Participant range per subject project.

Project Participant range
Firefox F01–F25
Eclipse E26–E34
ArgoUML A35–A37

3.2.4 Research Approach

Given the exploratory nature of our qualitative analysis, we use methods from Grounded
Theory [9]. The first and third authors independently conducted three sessions of open
coding of the responses to open-ended questions (one session for each RQ). In the
following, the codes that were generated were shared and merged into a new set of
codes. The fourth author reviewed the set of codes and added additional entries to the
final set of codes. At the end of the process, we achieved 175 unique codes. Finally,
we used axial coding to find higher level conceptual themes to answer our RQs.

When reporting the results of RQ4-RQ5, we indicate in superscript the number
of participants that mentioned a particular code that emerged during the qualitative
analysis. These numbers do not necessarily indicate the importance of a given code,
since they were coded based on the received responses rather than scored by partici-
pants. Also, we mention quotes from the interviews when necessary to provide more
detail about the results. Finally, Table 6 shows the IDs of the participants that we use
while reporting results.

Finally, we also performed quantitative analyses of the responses to Likert-scale
questions. First, we checked whether the factors that are listed in question #13 were
significantly different using the ranks (responses) that were assigned to each factor. In
question #13, we present factors that reflect the metrics that we use to build the statis-
tical models of our quantitative study (see Tables 2–5). The goal of this question is to
verify whether our metrics are perceived as useful by the participants of our studied
systems. We used a Kruskal Wallis test [29] to check whether there was a statistically
significant difference between the ranks assigned to the factors. The Kruskal Wallis
test is the non-parametric equivalent of the ANOVA test [15] to check whether there
are statistically significant differences when comparing three or more distributions.
Since Kruskal Wallis does not indicate which factor has statistically different values
with respect to others, we use the Dunn test [13] to perform specific comparisons.
For example, the Dunn test indicates whether the ranks that are assigned to the num-
ber of comments metric are statistically different when compared to the ones that are
assigned to the number of modified files metric. We used the Bonferroni-Holm cor-
rection [20] on the obtained p values to account for the multiple comparisons that we
performed between each of the factors that are listed in question #13.

Additionally, we correlated the ranks that were assigned to the factors in ques-
tion #13 with the experience of the participants (question #1). To do that, we used
Spearman rank ρ correlation [49], which is used to measure the statistical depen-
dence between the ranks of two variables. Finally, we also correlated the experience
of the participants with the perception of the frequency of integration delay (i.e., re-
lease delay) that happens in the studied projects (question #6).

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 19

0

5

10

ArgoUML Eclipse Firefox

of

 p
ar

tic
ip

an
ts

0 years
4 years
5 years
6 years
7 years
8 years
9 years
10 or more years

Fig. 5: Software development experience of the participants.

0

2

4

6

ArgoUML Eclipse Firefox

of

 p
ar

tic
ip

an
ts 0 years

1 year
2 years
3 years
4 years
5 or more years

Fig. 6: Development experience of the participants in the respective project.

3.2.5 Exploratory Analysis

We present an exploratory analysis of the data that we collect from the responses of
the participants. Figure 5 shows the experience of the participants. We collect this
data from question #1. The options range from “0 years” to “10 or more years”. We
observe that 62% (23

37) of the participants have “10 or more years” of software devel-
opment experience. Furthermore, Figure 6 shows the experience of the participants
related to the specific project that they are representing. We collect this data from
question #2 and the options range from “0 years” to “5 or more years”. 51% (19

37) of
the participants have 4 or more years of experience. Moreover, Figure 7 shows how
many participants have experience in working on rapid release cycles (question #14).
We note that 57% (21

37) of the participants have experience with rapid release cycles.
Nevertheless, feedback from participants who do not have experience with rapid re-
leases is also important, since this group may include prospective future adopters of
a rapid release strategy without prior experience in such a strategy.

Figure 8 shows the team roles that the participants classified themselves as (ques-
tion #3). The majority of the participants consider themselves as “developers” and

20 Daniel Alencar da Costa et al.

0

5

10

ArgoUML Eclipse Firefox

of

 p
ar

tic
ip

an
ts

Yes
No

Fig. 7: Experience of the participants with respect to rapid release cycles.

0

5

10

15

ArgoUML Eclipse Firefox

of

 r
ol

es

Developer
Tester
Code Reviewer
Volunteer Contributor
Project Manager
User
Others

Fig. 8: An overview of the roles of the participants. One participant may have more
than one role.

“testers”. Since one participant can occupy several roles, the numbers that are shown
in Figure 8 represent the frequency that a role was cited rather than the number of
participants. Finally, we observe that the majority of the participants perceive inte-
gration delay as an unusual event rather than typical (see Figure 9). For instance,
14 of the Firefox participants think that 90% of the issues are included in the next
possible release.

In our analyses to answer RQ4-RQ6, we attempt to correlate the rating of factors
that are provided in question #13 with the data that is presented in this exploratory
analysis.

4 Quantitative Study Results

In this section, we present the results of our quantitative study (RQ1-RQ3).

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 21

0

5

10

ArgoUML Eclipse Firefox

of

 p
ar

tic
ip

an
ts

perception

100%
> 90%
> 75%
> 50%
~ 50%
< 50%
< 25%
< 10%
0%

Fig. 9: Participants’ perception on how frequent is integration delay. The data is
grouped by proportions of how many fixed issues are included in the next possible
release. This data refers to the responses to question #6.

RQ1: Are fixed issues integrated more quickly in rapid releases?

Observation 1—There is no practical difference between traditional and rapid re-
leases regarding issue lifetimes. Figure 10(a) shows the distributions of the life-
time of the issues in traditional and rapid releases. We observe a p < 1.03e−14 but a
negligible difference between the distributions (delta = 0.03). We also observe that
traditional releases have a greater MAD (154 days) than rapid releases (29 days),
which indicates that rapid releases are more consistent with respect to the lifetime
of the issues. Our results indicate that the difference in the issues’ lifetime between
traditional and rapid releases is not as obvious as one might expect. We then look
at the triaging, fixing, and integration time spans to better understand the differences
between traditional and rapid releases.

Observation 2—Fixed issues are triaged and fixed more quickly in rapid releases,
but tend to wait for a longer time before being released. Figures 11(a) , 11(b), and 10(b)
show the triaging, fixing, and integration time spans, respectively. We observe that
fixed issues take a median time of 54 days to be integrated into traditional releases,
while taking 104 days (median) to be integrated into rapid releases. We observe a
p < 2.2e−16 with a small effect-size (delta =−0.25).

Regarding fixing time span, an issue takes 6 days (median) to be fixed in rapid
releases, and 9 days (median) in traditional releases. These results are statistically sig-
nificant p < 2.2e−16, but not practically significant, i.e., the difference in magnitude
between distributions is negligible (delta = 0.13).

Our results complement previous research. Khomh et al. [28] found that post-
and pre-release bugs that are associated with crash reports are fixed faster in rapid
Firefox releases than in traditional releases. Furthermore, we observe a significant
p< 2.2e−16 but non-practical negligible difference (delta= 0.11) between traditional

22 Daniel Alencar da Costa et al.

1
5

50
50

0
50

00

D
el

ay
 in

 d
ay

s

Traditional

Rapid

(a) Lifetime

1
5

50
50

0

D
el

ay
 in

 d
ay

s

Traditional

Rapid

(b) Integration phase

Fig. 10: Distributions of the lifetime and integration phase (time delay) of an issue.

and rapid releases regarding triaging time. The median triaging time for rapid and
traditional releases are 11 and 18 days, respectively.

When we consider both pre-integration phases together (triaging t1 plus fixing t2
in Figure 3), we observe that an issue takes 11 days (median) to be triaged and fixed
in rapid releases, while it takes 19 days (median) in traditional releases. We observe
a p < 2.2e−16 with a small effect-size (delta = 0.15). Our results suggest that even
though issues have shorter pre-integration phases in rapid releases, they remain “on
the shelf” for a longer time on average.

Finally, we again observe that rapid releases are more consistent than traditional
releases in terms of fixing and integration rate. Rapid releases achieve MADs of 9 and
17 days for fixing and integration, respectively. The values for traditional releases are

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 23

1
5

50
50

0
50

00

D
el

ay

Traditional Rapid

(a) Triaging phase

1
5

50
50

0
50

00

D
el

ay
 in

 d
ay

s

Traditional Rapid

(b) Fixing phase

Fig. 11: Fixing and triaging phases of an issue’s lifetime.

13 and 64 days for fixing and integration, respectively.

Although issues are triaged and fixed faster in rapid releases, they take a longer
time to be integrated. However, the integration rate of fixed issues is more con-
sistent in rapid releases than in traditional releases.

24 Daniel Alencar da Costa et al.

1
5

5
0

5
0

0

D
e

la
y
 i
n

 d
a
y
s

Minor−traditional

Major−traditional Major−traditional
Major−rapid

Rapid

Minor−rapid Minor−rapid

Minor−traditional

Fig. 12: Distributions of the time delay of fixed issues grouped by minor and major
releases.

RQ2: Why can traditional releases integrate fixed issues more quickly?

Observation 3—Minor-traditional releases tend to have less integration delay than
major/minor-rapid releases. Figure 12 shows the distributions of integration delay
(i.e., time delay) grouped by (1) major-traditional vs. minor-traditional, (2) major-
traditional vs. rapid, (3) major-rapid vs. minor-rapid, and (4) minor-traditional vs.
minor-rapid. In the comparison of major-traditional vs. minor-traditional, we ob-
serve that minor-traditional releases are mainly associated with a shorter integra-
tion delay. Furthermore, in the comparison major-traditional vs. rapid, rapid re-
leases integrate fixed issues more quickly than major-traditional releases on average
(p < 2.2e−16 with a medium effect-size, i.e., delta = 0.40).

The Firefox rapid release cycle includes ESR releases (see Section 2) and a few
minor stabilization and security releases. These releases also integrate fixed issues
more quickly than major-rapid releases (major-rapid vs. minor-rapid) with a p <
2.2e−16 and a large effect-size, i.e., delta = 0.92. Furthermore, we do not observe a
statistically significant difference between distributions in the comparison of minor-
traditional vs. minor-rapid (p = 0.68).

Minor-traditional releases have the lowest integration delay (median of 25 days).
This is likely because they are more focused on a particular set of issues that, once
fixed, should be released immediately. For example, the release history documenta-
tion of Firefox shows that minor releases are usually related to stability and security
issues.23

Observation 4—When considering both minor and major releases, the time inter-
val between releases in traditional and rapid strategies are roughly the same. Since
we observe that integration delay is shorter on average in traditional releases, we also
investigate the length of the release cycles to better understand our previous results
(see Observation 2). Figure 13(a) shows that, at first glance, one may speculate that
rapid releases should deliver fixed issues more quickly because releases are produced
more frequently. However, if we consider both major and minor releases—as shown
in Figure 13(b)—we observe that both release strategies deliver releases at roughly

23 https://www.mozilla.org/en-US/firefox/releases/

https://www.mozilla.org/en-US/firefox/releases/

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 25

●

●●●

Traditional Rapid

10
0

30
0

50
0

(a) Only Major

●

●

●

●

●

●

●

Traditional Rapid

1
5

20
10

0
50

0

(b) Major and Minor

Fig. 13: Release frequency (in days). The outliers in figure (b) represent the major-
traditional releases.

the same rate on average (median of 40 and 42 days for traditional and rapid releases,
respectively).

Minor-traditional releases are a key reason as to why traditional releases may
integrate fixed issues more quickly than rapid releases. Furthermore, the time
duration of the release cycles are roughly the same between traditional and rapid
releases when minor and major releases are analyzed.

RQ3: Did the change in the release strategy have an impact on the characteristics
of delayed issues?

Observation 5—Our models achieve a Brier score of 0.05-0.16 and ROC areas
of 0.81-0.83. The models that we fit to traditional releases achieve a Brier score of
0.16 and an ROC area of 0.83, while the models that we fit to the rapid release data
achieve a Brier score of 0.05 and an ROC area of 0.81. Our models outperform naı̈ve
approaches such as random guessing and ZeroR—our ZeroR models achieve ROC
areas of 0.5 and Brier scores of 0.06 and 0.45 for rapid and traditional releases, re-
spectively. Moreover, the bootstrap-calculated optimism is less than 0.01 for both the
ROC areas and Brier scores of our models. This result shows that our regression mod-
els are stable enough to perform the statistical inferences that follow.

Observation 6—Traditional releases prioritize the integration of backlog issues,
while rapid releases prioritize the integration of issues of the current release cycle.
Table 7 shows the explanatory power (χ2) of each metric that we use in our models.
The queue rank metric is the most important metric in the models that we fit to the
traditional release data. Queue rank measures the moment when an issue is fixed
in the backlog of the project (see Table 4). Figure 14(a) shows the relationship that

26 Daniel Alencar da Costa et al.

Table 7: Overview of the regression model fits. The χ2 of each metric is shown as
the proportion in relation to the total χ2 of the model.

Traditional releases Rapid releases
of instances 34,673 37,441

Wald χ2 4,964 2,705
Budgeted Degrees of Freedom 1033 149

Degrees of Freedom Spent 27 26

Reporter experience D.F. 1 1
χ2 2∗∗∗ 2∗∗∗

Reporter integration D.F. 1 1
χ2 5∗∗∗ 4∗∗∗

Resolver Experience D.F. 1 �
χ2 1∗∗∗

Resolver integration D.F. 1 1
χ2 2∗∗∗ 5∗∗∗

Fix time D.F. 1 1
χ2 2∗∗∗ 8∗∗∗

Severity D.F. 6 6
χ2 1∗∗∗ 1∗∗∗

Priority D.F. 5 5
χ2 1∗∗∗ ≈ 0

Bug Type D.F. 1 1
χ2 ≈ 0 ≈ 0

Size of description D.F. 1 1
χ2 ≈ 0 1∗∗∗

Stack trace attached D.F. 1 1
χ2 ≈ 0 ≈ 0

Number of files D.F. 1 1
χ2 1∗∗∗ 1∗∗∗

Number of comments D.F. 1 1
χ2 ≈ 0∗ 31∗∗∗

Number of tossing D.F. 1 1
χ2 ≈ 0∗∗∗ ≈ 0

Number of activities D.F. 1 1
χ2 1∗∗∗ 3∗∗∗

Interval of comments D.F. � �
χ2

Code churn D.F. 1 1
χ2 ≈ 0 ≈ 0

Queue position D.F. 1 1
χ2 17∗∗∗ 2∗∗∗

Queue rank D.F. 1 1
χ2 56∗∗∗ 14∗∗∗

Cycle queue rank D.F. 1 1
χ2 10∗∗∗ 28∗∗∗

Cycle queue position D.F. ⊕ �
χ2

� discarded during correlation analysis
⊕ discarded during redundancy analysis
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 27

queue rank shares with integration delay (i.e., release delay). Our models reveal that
the fixed issues in traditional releases have a higher likelihood of being delayed if
they are fixed later when compared to other issues in the backlog of the project.

On the other hand, cycle queue rank is the second-most important metric in the
models that we fit to the rapid release data. Cycle queue rank is the moment when an
issue is fixed in a given release cycle. Figure 14(b) shows the relationship that cycle
queue rank shares with integration delay. Our models reveal that the fixed issues in
rapid releases have a higher likelihood of being delayed if they were fixed later than
other fixed issues in the current release cycle. Interestingly, we observe that the most
important metric in our rapid release models is the number of comments. Figure 14(c)
shows the relationship that the number of comments shares with integration delay.
We observe that the greater the number of comments of a fixed issue, the greater the
likelihood of integration delay. This result corroborates the intuition that a lengthy
discussion might be indicative of a complex issue, which may be more likely to be
delayed.

Moreover, Figures 15 and 16 show the estimated effect of our metrics using
nomograms [22]. Indeed, our nomograms reiterate the large impact of number of
comments (100 points) and cycle queue rank (84 points) in rapid releases, and the
large impact of queue rank (100 points) in traditional releases. We also observe that
stack trace attached has a large impact on traditional releases (68 points) despite
not being a significant contributor to the fit of our models (cf. Table 7). The large
impact shown in our nomogram for stack trace attached is due to the skewness of
our data—only 5 instances within the traditional release data have the stack trace
attached set to true. Thus, stack trace attached cannot significantly contribute to the
overall fit of our models.

Another key difference between traditional and rapid releases is how fixed issues
are prioritized for integration. Traditional releases are analogous to a queue in which
the earlier an issue is fixed, the lower its likelihood of delay. On the other hand, rapid
releases are analogous to a stack of cycles, in which the earlier an issue is fixed in the
current cycle, the lower its likelihood of delay.

Issues that are fixed earlier in the project backlog are less likely to be delayed in
traditional releases. On the other hand, issues in rapid releases are queued up on
a per release basis. In rapid releases, issues that are fixed earlier in the current
release cycle are less likely to be delayed.

5 Qualitative Study Results

In this section, we present the results of our qualitative study (RQ4-RQ6).

28 Daniel Alencar da Costa et al.

Queue rank (Traditional)

Lo
g

od
ds

 o
f d

el
ay

0.2

0.4

0.6

0.8

0 5000 10000

Cycle queue rank (Rapid)

Lo
g

od
ds

 o
f d

el
ay

0.80

0.85

0.90

0.95

0 500 1000 1500 2000 2500 3000

Number of comments (Rapid)

Lo
g

od
ds

 o
f d

el
ay

0.80

0.85

0.90

0.95

0 200 400 600

Fig. 14: The relationship between metrics and the release delay. The blue line shows
the values of our model fit, whereas the grey area shows the 95% confidence interval
based on models fit to 1,000 bootstrap samples. The parentheses indicate the release
strategy that the metric is related to.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 29

Points
0 10 20 30 40 50 60 70 80 90 100

reporter_experience
1600

resolver_experience
0

reporter_integration
0 200

queue_position
0 0.3 0.7 1

number_of_impacted_files
0 500

churn
0

number_of_activities
1200 0

number_of_comments
900

description_size
5000

number_of_tosses
0

stacktrace_attached
0

1

fix_time
0

severity
blocker

minor

priority
P2

P4

queue_rank
0 1000 3000 5000 7000 9000 11000 13000

bug_type
general

security

cycle_queue_rank
2800 1400 200

Total Points
0 20 40 60 80 100 120 140 160 180 200 220

Likelihood of Integration Delay
−4 −2 0 2 4 6 8 10 12 14 16 18

Fig. 15: Nomogram of our explanatory models for the traditional release cycle.

RQ4: What are developers’ perceptions of why integration delay happens?

Our findings about developers’ perceptions of the causes of integration delay is di-
vided into the following themes: (i) development activities, (ii) decision making, (iii)
risk, (iv) frustration, and (v) team collaboration. After discussing each theme below,
we present a quantitative analysis of the factors that can impact integration delay us-
ing the responses to question #13 (see Section 3.2.2).

Theme 1—Development activities. The number of tests that should be executed was
a recurrent theme among participants. For instance, several participants stated that
additional testing(12) should be executed in order to avoid integration delay. F17
states that the lack of “actual user testing beyond what QA can provide” can lead to
integration delay. Additionally, according to F15, “the most common reason is that
testing was incomplete” and according to F19, integration delay may happen because

30 Daniel Alencar da Costa et al.

Points
0 10 20 30 40 50 60 70 80 90 100

reporter_experience
0 200

reporter_integration
1100 0

resolver_integration
0 50

queue_position
1 0.75 0.4

number_of_impacted_files
0 2000

churn
0

number_of_activities
650 200 50 0

number_of_comments
0 100 200 400 800

description_size
3500 0

number_of_tosses
13 0

stacktrace_attached
0

1

fix_time
5000 0

severity
blocker

major

priority
P4

P1 P5

queue_rank
13000 10000 7000 4000 1000

bug_type
general

security

cycle_queue_rank
0 500 1000 1500 2000 2500 3000 3500

Total Points
0 20 40 60 80 100 140 180 220 260

Likelihood of Integration Delay
−3 −1 1 2 3 4 5 6 7 8 9

Fig. 16: Nomogram of our explanatory models for the rapid release cycle.

“testing has been too narrow”. Finally, E32 voices concerns about integration testing:
“No integration tests has been done.” Such observations bring us back to a core
software engineering problem of when is testing sufficient? [2, 7].

Other recurrent themes that emerged during our qualitative analysis are workload(7)

and code review.(7) For example, E30 states that “As the delayed completed issues
stack up, they are harder to integrate (the codebase is constantly changing, merge
issues might emerge).” Interestingly, our statistical models in our prior work [11] in-
dicate workload(7) as a metric that shares a strong relationship with integration delay.
As for code review,(7) the “Unavailability of the lead/reviewer/[Project Management
Committee] (PMC)” is a reason of integration delay that is pointed out by E26, while
F08 argues that a “prompt code reviews [may] help” to avoid integration delays [32].

Theme 2—Decision making. Decision making refers to the activities that are not di-
rectly related to software construction, but can influence the speed at which software
is shipped. For example, how early a codebase should be “frozen”? Which issues

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 31

should be prioritized? The timing(9) and prioritization(9) are the recurrent themes in
our survey responses. For instance, two of the participants stated that issues can be
delayed because they are fixed “too late in the release cycle” (E28) or because they
were fixed in a “long release cycle.” Also, F12’s opinion about how to avoid inte-
gration delay is to “test [fixed issues] early using real users (e.g., on the pre-release
channels).” Regarding prioritization,(9) E28 argues that team members should “try
to complete most important things early in the release cycle” to avoid integration
delay. Additionally, F07 points out how re-prioritization of issues is important: “[...]
prioritizing and re-prioritizing tasks to be sure you are building things on time [...].”

Theme 3—Risk. The risk that is associated with shipping fixed issues may generate
integration delay according to our participants. Among the risky fixed issues, the ones
that have compatibility(12) concerns are the most recurrent in this theme. For exam-
ple, when asked about reasons that may lead to integration delay, F12 calls attention
to issues that “break third-party websites” and that can generate “incompatibility
with third-party software that users install.” Another risk that is associated with inte-
gration delay is stability.(9) For instance, F03 states that “when there are regressions
noticed during Aurora/Beta cycles,” a fixed issue will likely skip the upcoming offi-
cial release.

Theme 4—Frustration. Integration delay may generate frustration to both users and
developers of the software. The majority of users’ frustration comes from their expectation(20)

about the fixed issues. F07 makes an interesting analogy to explain user frustration:
“as a user, it’s like when you are waiting your suitcase in the airport to come out on
the belt. You know it has to be there, but you keep waiting.” F14 also provides another
analogy: “it’s like a gift for Christmas, but the day of Christmas is postponed.” On the
other hand, developers may get frustrated for different reasons than users’ reasons.
The greatest frustration source for developers is the feeling of useless/unreleased
work.(9) According to F09, when a fixed issue is delayed, a developer “feels like
[their] work is meaningless.” F04 complements F09 by stating that “it is frustrating
to work on something and not see it shipped.”

Theme 5—Collaboration with other teams. Integration delay may also occur due to
the overhead that is introduced when collaboration(10) is needed between teams. For
example, when asked to recall a delayed fixed issue, F23 answers that “sometimes,
issues that require cross-team cooperation may be delayed when the issue is differ-
ently prioritized by each team.” The marketing(5) team is mentioned recurrently when
integration delay occurs due to other teams’ collaboration. For instance, according to
F21, integration delay “generally happens when marketing wants to make a splash.”
F08 also corroborates F21 by stating that “product management [may] change their
mind about the desirability of a feature, or would like to time the release of the feature
with certain external events for marketing reasons.”

Observation 7—The time at which an issue is fixed during a release cycle and
the issue severity are the factors that receive the highest ratings of importance. In
question #13 of our survey, we ask participants to rate the degree to which a factor is

32 Daniel Alencar da Costa et al.

0

10

20

30

R
ep

or
te

r
R

es
ol

ve
r

Pr
io

rit
y

Se
ve

rit
y

of

 C
om

m
en

ts

of
 F

ile
s

of

 L
O

C
Ti

m
in

g

F
re

qu
en

cy
 o

f r
es

po
ns

es
Importance

1
2
3
4
5

Fig. 17: Frequency of ranks per factor.

Table 8: Rating of factors related to integration delay. The highest ratings are in bold.

Factor Average rating (mean)
Time at which an issue is fixed during a release cycle (timing) 4.257
Severity 4.086
Priority 3.629
Number of LOC 3.571
Resolver 3.441
Number of files 3.314
Number of comments 2.657
Reporter 2.629

related to integration delay. The factors that we list are: the reporter, the resolver, the
priority, the severity, the number of comments, the number of modified files, the num-
ber of modified LOC, and the time at which an issue was fixed during a release cycle.
The responses to question #13 are based on a 5-points-Likert scale, i.e., participants
rate factors using ranks from 1 (strongly disagree) to 5 (strongly agree).

In Figure 17, we show the frequency of each rank per factor, while we show the
average rating of each factor in Table 8. We observe that the factors that receive the
highest ranks are severity and timing. This result is in agreement with our regression
models that are presented in RQ3, in which cycle queue rank is one of the most
influential variables (see Observation 6). Indeed, during the interview, F06 further
explains that if an issue that is risky is fixed in the end of a release cycle, such an
issue is likely to be delayed to the next cycle, so that it can receive additional testing.

On the other hand, the factors with the lowest ranks are reporter, and # of com-
ments. We also asked our interviewees about these lower ratings. One of our inter-
viewees explained that the reporter of an issue might influence integration delay only
in cases in which the reporter is also a Firefox employee. In these cases, the reporter

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 33

1
10

10
0

10
00

10
00

0

(#
 o

f c
om

m
en

ts
)/

(#
 o

f r
ep

or
ts

)

Fig. 18: Distribution of number of comments normalized by the number of reported
issues.

will fix the issue her/himself, which can speed up the shipping process.24 As for the
of comments, another interviewee clarified that there are several passionate people
on bugs that can inflate the number of comments even if the issue is easy to ship. For
each reporter, we normalize the number of his/her comments by the number of his/her
reported issues. We plot the distribution of the normalized number of comments in
Figure 18. The median number of comments per reported issue is 98. Indeed, we ob-
serve reporters with a great number of comments (e.g., 500 to 10,000 comments) per
reported issue. This result suggest that the perception of our interviewee is likely to
be true.

A Kruskal Wallis test indicates that the difference in ratings between metrics are
statistically significant (p = 0.01507). Table 9 shows the Bonferroni-Holm corrected
p-values of the Dunn tests. We observe that the timing factor has significant larger
response values than all the other factors except the severity, priority, and LOC factors
(p < 0.05).

We also use Spearman’s ρ to correlate the rating of the factors with (i) general
experience (question #1) and (ii) project experience (question #2). The only statisti-
cally significant correlation that we observe is between the timing factor and general
experience. We achieve a negative correlation of -0.36 (p= 0.03235). This result sug-
gests that less experienced participants tend to report that the time at which an issue
is fixed during a release cycle plays a more important role in integration delay. One
of our interviewees explains this observation by stating that “when an issue is fixed
early in the release cycle, it should have more time to be tested before integration,”
which can be helpful for fixes from less experienced resolvers. Finally, we also cor-

24 We did not observe a statistically significant difference in integration delays between issues that are
fixed by the reporters themselves and issues that are fixed by a different team member.

34 Daniel Alencar da Costa et al.

Table 9: Comparisons between factors. The first row for a factor shows the
Bonferroni-Holm statistic, while the second row shows the p− value. We use the
∗ and ∗∗ symbols to denote p− values that are < 0.05 and < 0.0001, respectively.

Factor x Factor (Holm stat.
p-value) Reporter Resolver Priority Severity

Reporter — -2.453397 -3.260129 -4.881387
— 0.1203 0.0134∗ 0.000014∗∗

Resolver -2.453397 — -0.783021 -2.392487
0.1203 — 1 0.1171

Priority -3.260129 -0.783021 — -1.621257
0.0134∗ 1 — 0.4723

Severity -4.881387 -2.392487 -1.621257 —
0.000014∗∗ 0.1171 0.4723 —

of Comments -0.038291 2.415384 3.221838 4.843095
0.4847 0.1179 0.0140∗ 0.000016∗∗

of Files -2.198691 0.270696 1.061437 2.682695
0.1813 0.7866 1 0.0657

of LOC -2.978304 -0.503246 0.281824 1.903082
0.0304∗ 1 1 0.2851

Timing -5.425890 -2.933031 -2.165761 -0.544503
0.0000008∗∗ 0.0319∗ 0.1820 1

Factor x Factor (Holm stat.
p-value) # of Comments # of Files # of LOC Timing

Reporter -0.038291 -2.198691 -2.978304 -5.425890
0.4847 0.1813 0.0304∗ 0.00000081∗∗

Resolver 2.415384 0.270696 -0.503246 -2.933031
0.1179 0.7866 1 0.0319∗

Priority 3.221838 1.061437 0.281824 -2.165761
0.0140∗ 1 1 0.1820

Severity 4.843095 2.682695 1.903082 -0.544503
0.000016∗∗ 0.0657 0.2851 1

of Comments — -2.160400 -2.940013 -5.387599
— 0.1691 0.0328∗ 0.00000096∗∗

of Files -2.160400 — -0.779612 -3.227198
0.1691 — 1 0.0144∗

of LOC -2.940013 -0.779612 — -2.447586
0.0328∗ 1 — 0.1151

Timing -5.387599 -3.227198 -2.447586 —
0.00000096∗∗ 0.0144∗ 0.1151 —

relate the responses to question #6 with general and project experience. However, no
significant correlations were found.

The integration of fixed issues are delayed due to reasons that are associated
with the development activities, decision making, team collaboration, or risk.
Moreover, integration delay lead to user/developer frustration.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 35

RQ5: What are developers’ perceptions of shifting to a rapid release cycle?

In this RQ, we study the perceptions of developers about the impact of shifting to
a rapid release cycle. Our findings about these perceptions are organized along the
following themes: management, delivery, and development. We describe each theme
below.

Theme 6—Management. The shift to a rapid release cycle has a considerable impact
on release cycle management.

The most recurrent theme in this respect is flexibility(4) to plan the scope of the
releases that should be shipped. F01’s opinion is that rapid releases “provide a bit
more flexibility, since if an important issue pushed back a less important change and
it misses the release cycle, it’s not a huge deal with rapid releases.” F01’s observation
is supported by our observation that rapid Firefox releases tend to deliver fixed issues
more consistently (see Observation 2).

Another perceived advantage of rapid release cycles are the risk mitigation(3)

and better prioritization.(3) With respect to risk mitigation,(3) F07 argues that in
rapid release cycles, the team is “able to identify issues sooner. It is easier to iden-
tify issues when you have only deployed 3 new commits than 100.” As for better
prioritization,(3) F19 explains that rapid release cycles “probably decreases unnec-
essary delays of the releases because deadline is closer and developers have to react
faster for the pressuring issues. Non-critical issues gets also pushed back and don’t
receive useless attention nor create delays.” Still on the better prioritization(3) matter,
F17 adds that rapid releases “provide a time box in which [the team] must forecast
the top priority work to complete within that time frame.”

Theme 7— Delivery. The most recurrent perceived advantage of rapid release cycles
is the “faster delivery”(33) of new functionalities. When asked about the motivation
to use rapid release cycles, F05 mentions “increasing speed of getting new features
to users,” while F06 mentions a similar statement: “getting new features to users
sooner.”. In fact, the “faster delivery”(33) motivation is mentioned by participants
who have experience with both release strategies and participants who do not. 48%
(10

21) of the participants who have experience with both release strategies mentioned
“faster delivery”(33) as a motivation to adopt rapid releases, while 56% (9

16) of partic-
ipants who worked with only one release strategy, mentioned “faster delivery”(33).
Interestingly, not all participants that mentioned the time to deliver new function-
alities report that rapid releases always reduce such time. For F22, rapid releases
“reduce the time to deliver issues to end users in some cases, and lengthen them in
others.” More specifically, F24 says that “Low priority issues (new features) take less
time to be delivered, whereas high priority ones (important bugs) take more time.”

Another recurrent perception about rapid releases is the faster user feedback(17)

due to the constant delivery of new functionalities. For instance, E29 provides an ex-
ample that “you don’t find yourself fixing a bug that you introduced two years ago
which the field only discovered on the release.”

36 Daniel Alencar da Costa et al.

Theme 8—Development activities. We do not observe a specific theme that is re-
current with respect to development activities. Instead, we observe a broad range of
themes that are cited by the participants. Among such themes, we observe quality,(3)

more functionalities,(2) better motivation,(2) and better prototyping.(2) Quality should
be a measure of success of using rapid release cycles. According to E26, “quality
of delivered code should remain the same or improve” after switching to rapid re-
leases. Another way to measure the success of a rapid release cycle is the number of
functionalities(2) that are completed. E34 states the following: “I would see if more
issues were completely fixed” as a measure of success.

Moreover, rapid releases may also impact team members’ motivation. For in-
stance, F06’s opinion about why to switch to rapid release cycles is “the need to mo-
tivate the community via more frequent collaboration.” Finally, rapid release cycles
may also improve prototyping activities. For instance, E27 argues that, by adopting
rapid releases, a development team can “fix bugs quickly [and] prototype features,
having results in few months.”

The allure of delivering fixed issues more quickly is the most recurrent motivator
to switch to a rapid release cycle. In addition, the allure of improving manage-
ment flexibility and the quality of fixed issues are other perceived advantages of
switching to rapid release cycles.

RQ6: To what extent do developers agree with our quantitative findings about
integration delay?

In this research question, we investigate how our participants feel about the data that
we collect during our prior quantitative studies (i.e., the Study I of this paper and our
prior work [11]). This research question is divided into two subsections: (i) integra-
tion delay in general and (ii) the impact of rapid release cycles on integration delay.

Theme 9—Integration delay in general. In this analysis, we present the data that we
collect in our prior work [11] and investigate if this data resonates with participants’
experience. We provide the methodology of our data-related questions to participants
through a web page that is mentioned in our surveys (see Appendix D).

Figure 19 shows the chart that we presented to participants. For example, 89%
of the fixed issues skip two Firefox stable releases before being shipped to users.
The most recurrent themes among the responses of participants to explain this data
are: team workload(5) and dependency.(2) Among the responses that are related to
team workload,(5) E27 explains that “committers are too busy,” while E26 argues that
there might be “delay[s] in review[s] when the issues [are] completed,” which can
generate integration delay. Regarding dependency,(2) E32’s opinion is that integra-
tion delay may happen due to “the strong connection to other Eclipse projects which
makes integration more costly (time consuming).” Furthermore, two of our intervie-
wees (F11 and F23) provide us with examples of why fixed issues may be delayed
due to dependency problems. For example, F23 explains during the interview that in-

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 37

38%

 30%

 23%

 7%
2%

 8%

 89%

 1%

66%

 14%

 6%

 14%

0

25

50

75

Eclipse Firefox ArgoUML

P
ro

po
rt

io
n

of
 is

su
es

Next After−1 After−2 After−3−or−more

Fig. 19: Proportion of fixed issues that have their integration delayed by a given num-
ber of releases. For example, 89% of the fixed issues skip two Firefox stable releases
before being shipped to users. This chart was conceived in our prior work [11].

tegration delay can happen when there are “dependencies between projects and one
of them gets done, but the other implementation takes a longer while.” Another exam-
ple, provided by F23 is when “you release a bug fix but then you realize: Hey! These
users are not able to use these websites anymore because web servers implement the
spec in a wrong way or do some really weird things that are not expected.”

Additionally, we ask participants from the Eclipse and ArgoUML projects about
their opinion of why the data from the Firefox project behaves differently from theirs,
i.e., a larger number of releases being skipped by fixed issues. The most recurrent re-
sponses explain that this difference may be due to the rapid release cycle(4) that is
adopted by the Firefox project. For example, E30’s opinion is that “on a rapid re-
lease cycle (e.g. 6 weeks for firefox), a two-release delay means 12 weeks, less than
3 months, which is still less than no delay for a fix submitted early in a project with a
6-month release cycle.”

Theme 10—Impact of switching to a rapid release cycle. We present the data that
is shown in Figure 10(b) to the participants of the Firefox project. Figure 10(b) com-
pares the integration delay between traditional and rapid release cycles. We then ask
if this result resonates with the participants’ experience. More details about how we
show this data to participants can be found in Appendix E. From the 14 responses
that we received for this question, 5 participants explicitly disagree with our analysis,
while 6 participants explicitly agree with it.

38 Daniel Alencar da Costa et al.

We interviewed two participant that disagree with the results (F06 and F09). After
providing extra explanation about our methodology and asking them to elaborate on
their responses, we could better understand their reasons. F06 clarifies: “I’m not sur-
prised that there are things in that bucket” (the short delays due to minor traditional
releases), instead “I’m surprised that there are many of them.” In addition, F09 de-
clared “I misunderstood [your] question, but now it [(the data)] makes sense.” With
respect to the remaining participants that disagree with our results, they inform us
that the data does not resonate with their experience. For instance, F21 provides the
following opinion “this does not resonate with my experience. I find the traditional
model is much much slower than rapid release to get fixes in users hands.”

From the set of participants that agree with our results, two of them explain that
the behaviour that is presented by the traditional release data is due to the integra-
tion rush(2) that happens prior to shipping. F15’s opinion is that “since missing a
release cycle isn’t a big deal, more features are kept from being released until they’re
properly polished instead of being rushed at the end of a long release cycle.” F22 also
provides us with a reasonable explanation when stating that our result “makes perfect
sense as issues will, unless fast-tracked or held back, be released a set quantum of
time after they are completed. This is dominated by the timing of the release schedule,
not by the timing of the discovery or fix.”

The dependency of fixed issues on other projects and team workload are major
perceived reasons to explain our findings about integration delays. In addition,
because (i) an integration rush is no longer needed in rapid releases and (ii)
additional time can be spent on polishing fixed issues, rapid releases might have
a longer integration time.

6 Analysis of Potential Confounding Factors

In this section, we discuss if the difference of integration delay between release strate-
gies could be due to confounding factors, such as the type and the size of the fixed
issues.

Observation 8—The integration delay of fixed issues is not likely to be associated
with the size of an issue. One may suspect that the difference in integration delay be-
tween release strategies may be due to the size of an issue. We use the number of files,
LOC, and number of packages that were involved in the fix of an issue to measure the
size of an issue. Figure 20 shows the distributions of the metrics that measure the size
of an issue. We observe that the difference between distributions of LOC is statisti-
cally insignificant (p = 0.86). As for the number of files and the number of packages,
although we observe significant differences (p values of 0.014 and < 2.2e−16, respec-
tively), effect-sizes are negligible (delta =−0.05 and delta =−0.07, respectively).

Observation 9—The difference between traditional and rapid releases is unlikely
to be related to the differences between enhancements and bug fixes. We also in-

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 39

1
10

10
00

of

 fi
le

s
(lo

g)

Traditional vs Rapid
(a) Files

1e
+

00
1e

+
04

LO
C

 a
dd

ed
 +

 L
O

C
 r

em
ov

ed

Traditional vs Rapid
(b) LOC

0
2

4
6

of

 p
ac

ka
ge

s

Traditional vs Rapid
(c) Packages

Fig. 20: Size of the fixed issues in the traditional and rapid release data.

40 Daniel Alencar da Costa et al.

1
5

50
50

0

D
el

ay
 in

 d
ay

s Rapid

Traditional

Rapid

Traditional

Bugs Enhancements

Fig. 21: We group the fixed issues into “bugs” and “enhancements” by using the
severity field. However, the difference in the integration delay between release strate-
gies is unlikely to be related with the kind of the issue.

vestigate if the observed difference in the integration delay between traditional and
rapid releases is related to the kind of fixed issues. For example, rapid releases could
be delivering more enhancements, which likely require additional integration time in
order to ensure that the new content is of sufficient quality. Figure 21 shows the dis-
tributions of delays among release strategies grouped by bug fixes and enhancements.
We observe no clear distinction between integration delay and the kind of fixed issues
being integrated.

7 Discussion

In this section, we discuss suggestions for practitioners and researchers as well as
lessons learned that are based on the results of our empirical studies.

7.1 Practical Suggestions

Small transition. The choice of adopting a rapid release cycle is often motivated
by the allure of accelerating the delivery of fixed issues. Such a choice needs to be
carefully rethought. We observe in our empirical study that although issues are fixed
faster, they tend to wait longer to be integrated in the Firefox rapid releases (see Ob-
servation 2). One suggestion for software organizations is to begin the transition of
release cycles in specific teams or specific products if possible. The result of such a
small transition could be compared with the current development process to test the

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 41

impact of a more rapid release cycle on the delivery of fixed issues.

Consistency of delivering fixed issues. Our empirical study suggests that rapid re-
leases can improve the consistency of the time to deliver fixed issues (see Obser-
vation 2). A more consistent delivery of fixed issues can be an advantage for the
software organization, since end users would have a better understanding as to when
issues will be fixed and integrated.

Minor releases. We observe that a large contributor to the faster delivery of fixed
issues in the Firefox traditional releases is due to minor releases (see Observation 3).
One suggestion is that more effort should be invested in accommodating minor re-
leases to issues that are urgent without compromising the quality of the other releases
that are being shipped.

8 Threats to Validity & Limitations

In this section we discuss the threats to the validity of our quantitative study and the
limitations of our qualitative study.

8.1 Threats to Validity

Construct Validity. Construct threats to validity are concerned with the degree to
which our analyses are measuring what we are claiming to analyze. Tools were de-
veloped to extract and analyze the integration data in the studied projects. Defects
in these tools could have an influence on our results. However, we carefully tested
our tools using manually-curated subsamples of the studied projects, which produced
consistent results.

Moreover, the way that we link issue IDs to releases may not represent the total
fixed issues per release. For example, Firefox developers might not record the issue
ID in commit logs when fixing issues. Nevertheless, we achieve good linkage rates
between commit logs and fixed issues in the studied time period. We link 77% of
commit logs for traditional releases, while we link 97% of the commit logs for rapid
releases.

Internal Validity. Internal threats to validity are concerned with the ability to draw
conclusions from the relation between the studied independent and dependent vari-
ables.

In Section 6, we compare the integration delay between rapid and traditional re-
leases by grouping the issues as bug fixes or enhancements. We use the severity field
of the issue reports to perform this grouping. We are aware that the severity field is
noisy [19, 51] (i.e., many values represent the same level of importance). Still, the
enhancement severity is one of the significantly different values of severity according
to previous research [19]. We also use the number of files, packages, and the LOC to
approximate the size of an issue. Although these are widely used metrics to measure

42 Daniel Alencar da Costa et al.

the size of a change, we are aware that this might not represent the true complexity
of the fix of an issue.

External Validity. External threats are concerned with our ability to generalize our re-
sults. In the quantitative part of our work, we study Firefox releases, since the Firefox
project shifted from a traditional release cycle to a rapid release cycle. Although we
control for variations using the same studied project in different time periods, we are
not able to generalize our conclusions to other projects that adopt a traditional/rapid
release cycle. In order to mitigate the external threat, we also perform a qualitative
study of the Firefox, ArgoUML, and Eclipse projects. By adding two other projects
in our qualitative analysis, and analyzing new sources of data (our participants), we
are able to gain insights from other subjects and better understand why integration
delay occurs. Still, we cannot claim that our results are generalizable to other soft-
ware projects that are not studied in this work. Hence, replication of this work using
other projects is required in order to reach more general conclusions.

8.2 Limitations of our Qualitative Study

The main limitation of our qualitative study is its 5% (37 responses
780 e-mails) response rate. We

recognize that the general population of our studied projects might have different
characteristics and opinions than the ones that we present. Nevertheless, the purpose
of our qualitative study is not to achieve generalizability (as in quantitative studies)
nor theoretical saturation, but rather to enrich the explanations of our quantitative
results, which does not necessarily require a large sample size [40]. Future research
is necessary to better understand why some companies decide not to choose rapid
releases. We hope that our study will help decision makers who are considering or
dismissing rapid releasing as an efficient strategy to deliver releases.

In addition, while we aimed to achieve a high response rate by personalizing the
survey, we were not as successful as we hoped. We still believe that personalization
is important. However, it might be worthwhile to present the personalized part of the
survey earlier to the participants (e.g., presenting it as the title of the invitation). For
example, focusing on particular recent issues might produce a higher response rate
instead of asking more general questions.

Moreover, a lengthy survey is not desirable as it is associated with lower response
rates [43]. Although we strived to produce a short survey, our response rate is lower
than usual [46]. We believe that this low response rate might be attributed to the very
targeted nature of survey–our surveys targets a very specific population (i.e., mostly
senior developers who were part of specific issues) in contrast to many prior surveys
who have a wider population of varying experience [46].

Finally, although the coding process is performed by two authors independently
and reviewed by a third author, we cannot claim that we reach all the perspectives
that are possible from our questions.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 43

9 Related Work

In this section, we situate our study with respect to prior work on the impact of adopt-
ing rapid release cycles and the process of integrating and delivering fixed issues.

Traditional vs. Rapid Releases. Shifting from traditional releases to rapid re-
leases has been shown to have an impact on software quality and quality assurance
activities. Mäntylä et al. [31] found that rapid releases have more tests executed per
day but with less coverage. The authors also found that the number of testers de-
creased in rapid releases, which increased the test workload. Souza et al. [47] found
that the number of reopened bugs increased by 7% when Firefox changed to a rapid
release cycle. Souza et al. [48] found that backout of commits increased when rapid
releases were adopted. However, they note that such results may be due to changes
in the development process rather than the rapid release cycle—the backout culture
was not widely adopted during the traditional Firefox releases. We also investigate
the shift from traditional releases to rapid releases in this paper. However, we analyze
integration delay rather than quality and quality assurance activities.

It is not clear yet if rapid releases lead to a faster rate of bugs fixes. Baysal et al. [5]
found that bugs are fixed faster in Firefox traditional releases when compared to fixes
in the Chrome rapid releases. On the other hand, Khomh et al. [28] found that bugs
that are associated with crash reports are fixed faster in rapid Firefox releases when
compared to Firefox traditional releases. However, fewer bugs are fixed in rapid re-
leases, proportionally. Our study corroborates that issues are fixed more quickly in
rapid release cycles, but tend to wait longer to be delivered to the end users.

Rapid releases may cause users to adopt new versions of the software earlier.
Baysal et al. [5] found that users of the Chrome browser are more likely to adopt new
versions of the system when compared to traditional Firefox releases. Khomh et al. [28]
also found that the new versions of Firefox that were developed using rapid releases
were adopted more quickly than the versions under traditional releases. In this pa-
per, we investigate the impact that a shift from traditional to rapid releases has on
delivering fixed issues to users rather than user adoption of new releases.

Delays and Software Issues. Prior research has studied delays that are related to
the integration and delivery of fixed issues to end users. Jiang et al. [25] studied the
integration process of the Linux kernel. They found that 33% of the code patches that
were submitted to resolve issues are accepted into an official Linux release after 3 to
6 months. In our prior work [11], we investigate how many releases a fixed issue may
be delayed before shipment. We found that 98% of fixed issues in the rapid releases
of the Firefox project were delayed by at least one release. Unlike prior work [11],
this paper investigates how the change of release strategy relates to integration delay.

Morakot et al. [33, 34] study the risk of delaying the resolution of issues. The
authors found that metrics such as the percentage of delayed issues that a developer
is involved with, discussion time, and number of issue reopenings are strongly related
to the risk of postponing the resolution of issues. Rahman and Rigby [38] found that
the period to stabilize fixed issues can take from 45 to 93 days in the Linux kernel
and from 56 to 149 days in Chrome. Jiang et al. [24] propose the ISOMO model
to measure the cost of integrating a new patch into a host project. Our work comple-
ments the aforementioned studies by quantitatively and qualitatively investigating the

44 Daniel Alencar da Costa et al.

impact that the adoption of a rapid release cycle may have upon the integration delay
of fixed issues.

Finally, the problem of prioritizing which fixed issues should be integrated in the
next release is well known in the requirements engineering field [17, 27, 36, 39].
Fixed issues should be prioritized based on whether they meet the needs of a specific
customer or of an open market with many customers [39]. To prioritize fixed issues
according to their relative value and cost, Karlsson and Ryan [27] proposed a Cost-
Value approach. The proposed approach is composed of five steps that involve both
customers and software engineers to estimate the importance of issues and the effort
to fix them. Our work sheds more light on the prioritization problem by quantitatively
and qualitatively analyzing the reasons why fixed issues are delayed to future releases.

10 Conclusions

In this paper, we perform two studies of integration delays and the impact that rapid
release cycles have on such delays. In our quantitative study, we analyze a total of
72,114 issue reports of 111 traditional releases and 73 rapid releases of the Fire-
fox project. In our qualitative study, we survey 37 participants from the Firefox, Ar-
goUML, and Eclipse projects. We make the following observations:

– Although issues tend to be fixed more quickly in the rapid release cycle, fixed
issues tend to be integrated into consumer-visible releases more quickly in the
traditional release cycle. However, a rapid release cycle may improve the consis-
tency of the delivery rate of fixed issues (see Observation 2).

– We observe that the faster delivery of fixed issues in the traditional releases is
partly due to minor-traditional releases. One suggestion for practitioners is that
more effort should be invested in accommodating minor releases to issues that
are urgent without compromising the quality of the other releases that are being
shipped (see Observation 3).

– The triaging time of issues is not significantly different among the traditional and
rapid releases (see Observation 2).

– The total time spent from the issue report date to its integration into a release is not
significantly different between traditional and rapid releases (see Observation 1).

– In traditional releases, fixed issues are less likely to be delayed if they are fixed
early in the backlog. On the other hand, in rapid releases, fixed issues are less
likely to be delayed if they are fixed early in the current release cycle (see Obser-
vation 6).

– The perceived reasons for integration delay of fixed issues are primarily related
to activities such as development, decision making, team collaboration, and risk
management (see Themes 1, 2, 3, and 5).

– The dependency of issues on other projects and team workload are the main
perceived reasons to explain our data about integration delay in general (see
Theme 1).

– The allure of delivering fixed issues more quickly to users is the most recurrent
motivator for switching to a rapid release cycle (see Theme 7). In addition, the

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 45

allure of improving management flexibility and quality of fixed issues are other
advantages that are perceived by our participants (see Themes 6 and 8).

– Integration rush and the increased time that is spent on polishing fixed issues (dur-
ing rapid releases) emerge as one of the main explanations as to why traditional
releases may achieve shorter integration delay values (see Theme 10).

Although the bulk of our analyses comes mainly from the Firefox project given
the very unique nature of this project (and the availability of the data), we believe
that the impact of our findings and work goes well beyond the Firefox project. Today
the Firefox project is often used in support of proposals for moving to a rapid release
cycle throughout many development organizations worldwide. Yet few studies ex-
tensively explored the benefits and challenges of rapid release cycles. In this regard,
our quantitative and qualitative observations may serve any organization that is inter-
ested in adopting a rapid release cycle. For instance, even though the allure of deliv-
ering fixed issues more quickly is the most recurrent motivator to adopt rapid releases
(Theme 7), we observe that this often is not achieved (Observation 2). In summary,
our study provides real observations and offers a wider context of the dis/advantages
of adopting a rapid release strategy.

Moreover, our qualitative study opens new directions for future (quantitative)
studies. For example, one could investigate whether a large proportion of the inte-
gration delay is happening due to code review delays (see Theme 9). Other future re-
search can investigate the trade-off between software quality and integration delays,
since one possible reason for the slower integration of fixed issues in rapid releases is
the increased time that is spent on validating and verifying such fixes (see Theme 10).

11 Acknowledgments

This work was partially supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the National Institute of Science and Technology
for Software Engineering (INES), CNPq grant 465614/2014-0. We also thank all the
participants from the Firefox, Eclipse, and ArgoUML projects for giving their time
to respond our surveys and participate in our interviews.

References

1. Adams B, McIntosh S (2016) Modern Release Engineering in a Nutshell: Why
Researchers should Care. In: Proceedings of the 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), pp 78–90

2. AlGhamdi HM, Syer MD, Shang W, Hassan AE (2016) An automated approach
for recommending when to stop performance tests. In: Proceedings of the Inter-
national Conference on Software Maintenance and Evolution, IEEE, pp 279–289

3. Antoniol G, Ayari K, Penta MD, Khomh F, Guéhéneuc Y (2008) Is it a bug or an
enhancement?: a text-based approach to classify change requests. In: Proceed-
ings of the 2008 conference of the Centre for Advanced Studies on Collaborative
Research (CASCON), pp 23–37

46 Daniel Alencar da Costa et al.

4. Baskerville R, Pries-Heje J (2004) Short cycle time systems development. In:
Information Systems Journal, vol 14, pp 237–264

5. Baysal O, Davis I, Godfrey MW (2011) A tale of two browsers. In: Proceedings
of the 8th Working Conference on Mining Software Repositories (MSR), ACM,
pp 238–241

6. Beck K (2000) Extreme programming explained: embrace change. Addison-
Wesley Professional

7. Beller M, Gousios G, Zaidman A (2015) How (much) do developers test? In:
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
IEEE, vol 2, pp 559–562

8. Boehm BW (1988) A spiral model of software development and enhancement.
Computer 21(5):61–72

9. Charmaz K (2014) Constructing grounded theory. SAGE
10. Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal ques-

tions. In: Psychological Bulletin, vol 114, pp 494–509
11. da Costa DA, Abebe SL, McIntosh S, Kulesza U, Hassan AE (2014) An em-

pirical study of delays in the integration of addressed issues. In: Proceedings of
the 30th International Conference on Software Maintenance and Evolution (IC-
SME), pp 281–290

12. da Costa DA, McIntosh S, Kulesza U, Hassan AE (2016) The impact of switching
to a rapid release cycle on the integration delay of addressed issues: an empirical
study of the mozilla firefox project. In: Proceedings of the 13th International
Workshop on Mining Software Repositories, ACM, pp 374–385

13. Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics
6(3):241–252

14. Efron B (1986) How biased is the apparent error rate of a prediction rule? In:
Journal of the American Statistical Association, Taylor & Francis, vol 81, pp
461–470

15. Fisher RA (1925) Statistical methods for research workers. Genesis Publishing
Pvt Ltd

16. Giger E, Pinzger M, Gall H (2010) Predicting the fix time of bugs. In: Proceed-
ings of the 2nd International Workshop on Recommendation Systems for Soft-
ware Engineering (RSSE), ACM, New York, NY, USA, pp 52–56

17. Greer D, Ruhe G (2004) Software release planning: an evolutionary and iterative
approach. Information and software technology pp 243–253

18. Harrell FE (2001) Regression modeling strategies: with applications to linear
models, logistic regression, and survival analysis. Springer

19. Herraiz I, German DM, Gonzalez-Barahona JM, Robles G (2008) Towards a
simplification of the bug report form in eclipse. In: Proceedings of the 2008 In-
ternational Working Conference on Mining Software Repositories (MSR), pp
145–148

20. Holm S (1979) A simple sequentially rejective multiple test procedure. Scandi-
navian journal of statistics pp 65–70

21. Howell DC (2005) Median absolute deviation. In: Encyclopedia of Statistics in
Behavioral Science, Wiley Online Library

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 47

22. Iasonos A, Schrag D, Raj GV, Panageas KS (2008) How to build and interpret
a nomogram for cancer prognosis. In: Journal of Clinical Oncology, American
Society of Clinical Oncology, vol 26, pp 1364–1370

23. Jeong G, Kim S, Zimmermann T (2009) Improving bug triage with bug tossing
graphs. In: Proceedings of the 7th joint meeting of the European software engi-
neering conference and the ACM SIGSOFT symposium on The foundations of
software engineering (ESEC/FSE), ACM, pp 111–120

24. Jiang Y, Adams B (2014) How much does integrating this commit cost? - a posi-
tion paper. 2nd International Workshop on Release Engineering (RELENG)

25. Jiang Y, Adams B, German DM (2013) Will my patch make it? and how fast?:
Case study on the linux kernel. In: Proceedings of the 10th Working Conference
on Mining Software Repositories (MSR), pp 101–110

26. Kampstra P, et al (2008) Beanplot: A boxplot alternative for visual comparison
of distributions. In: Journal of Statistical Software, vol 28, pp 1–9

27. Karlsson J, Ryan K (1997) A cost-value approach for prioritizing requirements.
IEEE Software pp 67–74

28. Khomh F, Dhaliwal T, Zou Y, Adams B (2012) Do faster releases improve soft-
ware quality? an empirical case study of mozilla firefox. In: Proceedings of the
9th IEEE Working Conference on Mining Software Repositories (MSR), IEEE,
pp 179–188

29. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis.
Journal of the American statistical Association 47(260):583–621

30. Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: Do not use
standard deviation around the mean, use absolute deviation around the median.
In: Journal of Experimental Social Psychology, Elsevier, vol 49, pp 764–766

31. Mäntylä MV, Adams B, Khomh F, Engström E, Petersen K (2014) On rapid re-
leases and software testing: a case study and a semi-systematic literature review.
In: Journal of Empirical Software Engineering, Springer, pp 1–42

32. McIntosh S, Kamei Y, Adams B, Hassan AE (2016) An Empirical Study of the
Impact of Modern Code Review Practices on Software Quality. Empirical Soft-
ware Engineering 21(5):2146–2189

33. Morakot C, Hoa Khanh D, Truyen T, Aditya G (2015) Characterization and pre-
diction of issue-related risks in software projects. In: 12th International Confer-
ence on Mining Software Repositories (MSR), pp 280–291

34. Morakot C, Hoa Khanh D, Truyen T, Aditya G (2015) Predicting delays in soft-
ware projects using networked classification. In: 30th International Conference
on Automated Software Engineering (ASE)

35. Nagappan N, Ball T (2005) Use of relative code churn measures to predict system
defect density. In: Proceedings of the 27th International Conference on Software
Engineering (ICSE), IEEE, pp 284–292

36. Paetsch F, Eberlein A, Maurer F (2003) Requirements engineering and agile soft-
ware development. In: Twelfth IEEE International workshops on enabling tech-
nologies: infrastructure for collaborative enterprises, pp 308–313

37. Panjer LD (2007) Predicting eclipse bug lifetimes. In: Proceedings of the 4th
International Workshop on Mining Software Repositories (MSR), pp 29–

48 Daniel Alencar da Costa et al.

38. Rahman MT, Rigby PC (2015) Release stabilization on linux and chrome. In:
IEEE Software Journal, IEEE, 2, pp 81–88

39. Regnell B, Brinkkemper S (2005) Market-driven requirements engineering for
software products. In: Engineering and managing software requirements, pp
287–308

40. Sandelowski M (1995) Sample size in qualitative research. Research in nursing
& health 18(2):179–183

41. Schroter A, Bettenburg N, Premraj R (2010) Do stack traces help developers fix
bugs? In: Mining Software Repositories (MSR), 2010 7th IEEE Working Con-
ference on, IEEE, pp 118–121

42. Schwaber K (1997) Scrum development process. In: Business object design and
implementation, Springer, pp 117–134

43. Sheehan KB (2001) E-mail survey response rates: A review. Journal of
Computer-Mediated Communication pp 0–0

44. Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Hassan AE,
Matsumoto Ki (2010) Predicting re-opened bugs: A case study on the eclipse
project. In: Proceedings of 17th Working Conference on Reverse Engineering
(WCRE), IEEE, pp 249–258

45. Shimagaki J, Kamei Y, McIntosh S, Pursehouse D, Ubayashi N (2016) Why
are commits being reverted?: A comparative study of industrial and open source
projects. In: Software Maintenance and Evolution (ICSME), 2016 IEEE Interna-
tional Conference on, IEEE, pp 301–311

46. Smith E, Loftin R, Murphy-Hill E, Bird C, Zimmermann T (2013) Improving
developer participation rates in surveys. In: 6th International Workshop on Co-
operative and Human Aspects of Software Engineering (CHASE), pp 89–92

47. Souza R, Chavez C, Bittencourt RA (2014) Do rapid releases affect bug reopen-
ing? a case study of firefox. In: Proceedings of the Brazilian Symposium on
Software Engineering (SBES), IEEE, pp 31–40

48. Souza R, Chavez C, Bittencourt R (2015) Rapid releases and patch backouts: A
software analytics approach. In: IEEE Software Journal, IEEE, vol 32, pp 89–96

49. Spearman C (1904) The proof and measurement of association between two
things. The American journal of psychology 15(1):72–101

50. Subramaniam C, Sen R, Nelson ML (2009) Determinants of open source soft-
ware project success: A longitudinal study. In: Journal of Decision Support Sys-
tems, Elsevier, vol 46, pp 576–585

51. Tian Y, Ali N, Lo D, Hassan AE (2015) On the unreliability of bug severity data.
Empirical Software Engineering pp 1–26

52. Wilks DS (2011) Statistical methods in the atmospheric sciences. Academic
press, vol 100

53. Zaman S, Adams B, Hassan AE (2011) Security versus performance bugs: a
case study on firefox. In: Proceedings of the 8th working conference on mining
software repositories, ACM, pp 93–102

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 49

A Appendix—Firefox Survey

Understanding the Delivery Delay of Completed
Issues
This survey is part of a broad research project about the delay to deliver new software issues to
end users. By issues we broadly refer to bugs, new features and enhancements. Our research
team is from Australia, Brazil, and Canada.

Our goal is to study how much time is necessary to deliver issues that are completed (i.e.,
implemented and tested) to the end users. For example, whether a completed issue is delivered
as soon as it is completed or if it is often delayed for several releases.

The survey will ask you a few general and specific questions (i.e., we will show you data that is
derived from Firefox).

By answering this survey, you are eligible
to win a $100 gift card from Amazon. If
you'd like to participate in the draw, please
leave your email address below.

1.

For how long have you been developing software?

Mark only one oval.

0 years

1 year

2 years

3 years

4 years

5 years

6 years

7 years

8 years

9 years

10 or more years

2.

For how long have you worked in the Firefox project?

Mark only one oval.

0 years

1 year

2 years

3 years

4 years

5 or more years

3.

50 Daniel Alencar da Costa et al.

How would you describe your roles in the software development of the Firefox project?
(e.g., developer, tester, release manager etc.)

4.

In your opinion, what motivates a development team to shift from a traditional release
cycle (e.g., a release every 9 to 18 months) to a rapid release cycle (e.g., a release every
6 weeks)?

5.

In this survey, we consider that an issue is completed when it is implemented and
tested, i.e., it is ready to be integrated. Do you remember an issue that the development
team completed work on, but was not delivered to end users through the next possible
release? Can you tell us what caused the delivery delay of this issue in your opinion?

6.

In your experience, how common are the cases in which completed issues (issues that
are implemented and tested) are omitted from the next possible release?

Mark only one oval.

All completed issues are included in the next possible release.

More than 90% of all completed issues are included in the next possible release.

More than three quarters of all completed issues are included in the next possible

release.

More than a half of all completed issues are included in the next possible release.

About a half of all completed issues are included in the next possible release.

Fewer than a half of all completed issues are included in the next possible release.

Fewer than a quarter of all completed issues are included in the next possible release.

Fewer than 10% of all completed issues are included in the next possible release.

No completed issues are included in the next possible release.

7.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 51

Who decides when a completed issue is integrated into an official release in your team?8.

In your opinion, when is the delivery of a completed issue to the end user considered to
be delayed in your project?

9.

Delivery delay in your project
In our research, we consider that a completed issue suffers from a delivery delay if such an issue
is not included in the next release immediately after the issue is completed, i.e., such a completed
issue is postponed to be delivered in future releases. We use the term delivery delay to refer to
completed issues that are not delivered in the next immediate release.

In your opinion, is it frustrating to users when a completed issue skips one or more
releases? Why?

10.

Is it frustrating for the team members when a completed issue skips one or more
releases? Why?

11.

Reasons related to delivery delay
We are developing a tool to detect if a completed issue will suffer from delivery delay. In this part
of the survey, we want to know your opinion about reasons that we are investigating in our
research to identify completed issues that are likely to suffer from delivery delay.

52 Daniel Alencar da Costa et al.

Assuming that an issue is completed today (implementation and testing are completed),
what reasons can you think of for the issue not to be delivered to end users in the next
release?

12.

Reasons related to delivery delay

What can team members do to avoid the delivery delay of completed issues?13.

To what extent do you agree that the characteristics listed in the table below are related
to the delivery delay of a completed issue?

Mark only one oval per row.

Strongly
agree

Agree
Neither agree
nor disagree

Disagree
Strongly
disagree

The reporter of a
completed issue
The resolver of a
completed issue
The priority value of a
completed issue
The severity value of a
completed issue
Number of comments
recorded in a completed
issue
Number of files modified
to complete an issue
Number of lines of code
to complete an issue
The time at which an
issue is completed
during a release cycle

14.

Feedback on the results about delivery delay
In this section, we are interested in your feedback about the results that we found in our research
using the publicly available data of your project.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 53

We found that 89% of the Firefox completed issues are delayed by two releases (see
Figure 1) from releases 10 to 27. In your opinion, why is this the case for the Firefox
project? More details about the methodology of this finding in http://goo.gl/VC3CoK

15.

We find that: (1) the more time spent on issues in the release cycle, the shorter the
delivery delay and (2) the higher the number of completed-but-not-yet-integrated issues
the larger the delivery delay. Do these results resonate with your experience? Why do
you think so?

16.

Shifting to a rapid release cycle

Figure 1. Proportion of completed issues that suffered from
delivery delay.

54 Daniel Alencar da Costa et al.

In this part of the survey, we are interested in getting your feedback about the impact of shifting to
a rapid release cycle on the delivery delay of completed issues. We also present results that are
obtained in our research.

Have you worked in both traditional and rapid release cycles of the Firefox project?

Mark only one oval.

Yes

No

17.

In your opinion, how much impact does a rapid release cycle have on the time to deliver
completed issues for end users?

18.

Did your project evaluate the shift to rapid release cycles? If so, how?19.

In our research, we compared the time in days that traditional and rapid releases (both
minor and majors) take to deliver completed issues to users. We obtained the results
that are provided in Figure 3. The Figure shows a beanplot for each release strategy.
The vertical curves of beanplots compare the distributions in traditional and rapid
releases. The higher the frequency of data within a particular value, the thicker the bean
is plotted at that particular value on the y axis. Finally, the black horizontal line
represents the median value of each distribution. We observe that the median number
of days to deliver is significantly higher with the rapid release cycle, but there is much
less variation. Does this result resonate with your experience? Why do you think so?
More details about the methodology of this finding in http://goo.gl/me9aOw

20.

Figure 3. Number of days (log-scale) to deliver completed
issues in traditional and rapid release cycles.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 55

Ending our questionnaire

If you'd like to participate for the $100
Amazon gift card draw and haven't
provided your e-mail yet, please leave it
below.

21.

Would you like to be informed about our findings?

Mark only one oval.

Yes

No

22.

Would you be willing to be contacted for a quick online follow-up interview (at a time
convenient for you)?

Mark only one oval.

Yes

No

23.

Do you have further comments for us?24.

56 Daniel Alencar da Costa et al.

B Appendix—ArgoUML Survey

Understanding The Delivery Delay of Completed
Issues
This survey is part of a broad research project about the delay to deliver new software issues to
end users. By issues we broadly refer to bugs, new features and enhancements. Our research
team is from Australia, Brazil, and Canada.

Our goal is to study how much time is necessary to deliver issues that are completed (i.e.,
implemented and tested) to the end users. For example, whether a completed issue is delivered
as soon as it is completed or if it is often delayed for several releases.

The survey will ask you a few general and specific questions (i.e., we will show you data that is
derived from ArgoUML).

By answering this survey, you are eligible
to win a $100 gift card from Amazon. If
you'd like to participate in the draw, please
leave your email address below.

1.

For how long have you been developing software?

Mark only one oval.

0 years

1 year

2 years

3 years

4 years

5 years

6 years

7 years

8 years

9 years

10 or more years

2.

For how long have you worked in the ArgoUML project?

Mark only one oval.

0 years

1 year

2 years

3 years

4 years

5 or more years

3.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 57

How would you describe your roles in the software development of the ArgoUML
project? (e.g., developer, tester, release manager etc.)

4.

In your opinion, what motivates a development team to shift from a traditional release
cycle (e.g., a release every 9 to 18 months) to a rapid release cycle (e.g., a release every
6 weeks)?

5.

In this survey, we consider that an issue is completed when it is implemented and
tested, i.e., it is ready to be integrated. Do you remember an issue that the development
team completed work on, but was not delivered to end users through the next possible
release? Can you tell us what caused the delivery delay of this issue in your opinion?

6.

In your experience, how common are the cases in which completed issues (issues that
are implemented and tested) are omitted from the next possible release?

Mark only one oval.

All completed issues are included in the next possible release.

More than 90% of all completed issues are included in the next possible release.

More than three quarters of all completed issues are included in the next possible

release.

More than a half of all completed issues are included in the next possible release.

About a half of all completed issues are included in the next possible release.

Fewer than a half of all completed issues are included in the next possible release.

Fewer than a quarter of all completed issues are included in the next possible release.

Fewer than 10% of all completed issues are included in the next possible release.

No completed issues are included in the next possible release.

7.

58 Daniel Alencar da Costa et al.

Who decides when a completed issue is integrated into an official release in your team?8.

In your opinion, when is the delivery of a completed issue to the end user considered to
be delayed in your project?

9.

Delivery delay in your project
In our research, we consider that a completed issue suffers from a delivery delay if such an issue
is not included in the next release immediately after the issue is completed, i.e., such a completed
issue is postponed to be delivered in future releases. We use the term delivery delay to refer to
completed issues that are not delivered in the next immediate release.

In your opinion, is it frustrating to users when a completed issue skips one or more
releases? Why?

10.

Is it frustrating for the team members when a completed issue skips one or more
releases? Why?

11.

Reasons related to delivery delay
We are developing a tool to detect if a completed issue will suffer from delivery delay. In this part
of the survey, we want to know your opinion about reasons that we are investigating in our
research to identify completed issues that are likely to suffer from delivery delay.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 59

Assuming that an issue is completed today (implementation and testing are completed),
what reasons can you think of for the issue not to be delivered to end users in the next
release?

12.

Reasons related to delivery delay

What can team members do to avoid the delivery delay of completed issues?13.

To what extent do you agree that the characteristics listed in the table below are related
to the delivery delay of a completed issue?

Mark only one oval per row.

Strongly
agree

Agree
Neither agree
nor disagree

Disagree
Strongly
disagree

The reporter of a
completed issue
The resolver of a
completed issue
The priority value of a
completed issue
The severity value of a
completed issue
Number of comments
recorded in a completed
issue
Number of files modified
to complete an issue
Number of lines of code
to complete an issue
The time at which an
issue is completed
during a release cycle

14.

Feedback on the results about delivery delay
In this section, we are interested in your feedback about the results that we found in our research
using the publicly available data of your project.

60 Daniel Alencar da Costa et al.

We found that 34% of the ArgoUML completed issues are delayed by at least one
release (See Figure 1). In your opinion, why is this the case for the ArgoUML project?
More details about the methodology of this finding in http://goo.gl/VC3CoK

15.

We find that: (1) the more time spent on issues in the release cycle, the shorter the
delivery delay and (2) the higher the number of completed-but-not-yet-integrated issues
the larger the delivery delay. Do these results resonate with your experience? Why do
you think so?

16.

Shifting to a rapid release cycle

Figure 1. Proportion of completed issues that suffered from
delivery delay.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 61

In this part of the survey, we are interested in getting your feedback about the impact of shifting to
a rapid release cycle on the delivery delay of completed issues.

Do you have experience working on a rapid release cycle in any other project?

Mark only one oval.

Yes

No

17.

In your opinion, what would be the impact of shifting to a rapid release cycle (e.g., a
release every 6 weeks rather than a release every 9 to 18 months) on the delay to
deliver completed issues, in your project?

18.

Figure 2 shows the Firefox project in which 90% of completed issues are delayed by at
least two releases. Firefox adopts a rapid release cycle. How do you feel about the
difference between your project and the Firefox project?

19.

Figure 2. Proportion of completed issues that suffered
delivery delay in the ArgoUML and Firefox projects.

62 Daniel Alencar da Costa et al.

If your project had shifted from a traditional to a rapid release cycle, how would you
evaluate if this shift benefited your project?

20.

Ending our questionnaire

If you'd like to participate in the $100
Amazon gift card draw and haven't
provided your e-mail yet, please leave it
below.

21.

Would you like to be informed about our findings?

Mark only one oval.

Yes

No

22.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 63

Would you be willing to be contacted for a quick online follow-up interview (at a time
convenient for you)?

Mark only one oval.

Yes

No

23.

Do you have further comments for us?24.

64 Daniel Alencar da Costa et al.

C Appendix—Eclipse Survey

Understanding The Delivery Delay of Completed
Issues
This survey is part of a broad research project about the delay to deliver new software issues to
end users. By issues we broadly refer to bugs, new features and enhancements. Our research
team is from Australia, Brazil, and Canada.

Our goal is to study how much time is necessary to deliver issues that are completed (i.e.,
implemented and tested) to the end users. For example, whether a completed issue is delivered
as soon as it is completed or if it is often delayed for several releases.

The survey will ask you a few general and specific questions (i.e., we will show you data that is
derived from Eclipse JDT).

By answering this survey, you are eligible
to win a $100 gift card from Amazon. If
you'd like to participate in the draw, please
leave your email address below.

1.

For how long have you been developing software?

Mark only one oval.

0 years

1 year

2 years

3 years

4 years

5 years

6 years

7 years

8 years

9 years

10 or more years

2.

For how long have you worked in the Eclipse (JDT) project?

Mark only one oval.

0 years

1 year

2 years

3 years

4 years

5 or more years

3.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 65

How would you describe your roles in the software development of the Eclipse JDT
project? (e.g., developer, tester, release manager etc.)

4.

In your opinion, what motivates a development team to shift from a traditional release
cycle (e.g., a release every 9 to 18 months) to a rapid release cycle (e.g., a release every
6 weeks)?

5.

In this survey, we consider that an issue is completed when it is implemented and
tested, i.e., it is ready to be integrated. Do you remember an issue that the development
team completed work on, but was not delivered to end users through the next possible
release? Can you tell us what caused the delivery delay of this issue in your opinion?

6.

In your experience, how common are the cases in which completed issues (issues that
are implemented and tested) are omitted from the next possible release?

Mark only one oval.

All completed issues are included in the next possible release.

More than 90% of all completed issues are included in the next possible release.

More than three quarters of all completed issues are included in the next possible

release.

More than a half of all completed issues are included in the next possible release.

About a half of all completed issues are included in the next possible release.

Fewer than a half of all completed issues are included in the next possible release.

Fewer than a quarter of all completed issues are included in the next possible release.

Fewer than 10% of all completed issues are included in the next possible release.

No completed issues are included in the next possible release.

7.

66 Daniel Alencar da Costa et al.

Who decides when a completed issue is integrated into an official release in your team?8.

In your opinion, when is the delivery of a completed issue to the end user considered to
be delayed in your project?

9.

Delivery delay in your project
In our research, we consider that a completed issue suffers from a delivery delay if such an issue
is not included in the next release immediately after the issue is completed, i.e., such a completed
issue is postponed to be delivered in future releases. We use the term delivery delay to refer to
completed issues that are not delivered in the next immediate release.

In your opinion, is it frustrating to users when a completed issue skips one or more
releases? Why?

10.

Is it frustrating for the team members when a completed issue skips one or more
releases? Why?

11.

Reasons related to delivery delay
We are developing a tool to detect if a completed issue will suffer from delivery delay. In this part
of the survey, we want to know your opinion about reasons that we are investigating in our
research to identify completed issues that are likely to suffer from delivery delay.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 67

Assuming that an issue is completed today (implementation and testing are completed),
what reasons can you think of for the issue not to be delivered to end users in the next
release?

12.

Reasons related to delivery delay

What can team members do to avoid the delivery delay of completed issues?13.

To what extent do you agree that the characteristics listed in the table below are related
to the delivery delay of a completed issue?

Mark only one oval per row.

Strongly
agree

Agree
Neither agree
nor disagree

Disagree
Strongly
disagree

The reporter of a
completed issue
The resolver of a
completed issue
The priority value of a
completed issue
The severity value of a
completed issue
Number of comments
recorded in a completed
issue
Number of files modified
to complete an issue
Number of lines of code
to complete an issue
The time at which an
issue is completed
during a release cycle

14.

Feedback on the results about delivery delay
In this section, we are interested in your feedback about the results that we found in our research
using the publicly available data of your project.

68 Daniel Alencar da Costa et al.

We found that 60% of the Eclipse JDT completed issues are delayed by at least one
release (See Figure 1). In your opinion, why is this the case for the Eclipse JDT project?
More details about the methodology of this finding in http://goo.gl/VC3CoK

15.

We find that: (1) the more time spent on issues in the release cycle, the shorter the
delivery delay and (2) the higher the number of completed-but-not-yet-integrated issues
the larger the delivery delay. Do these results resonate with your experience? Why do
you think so?

16.

Shifting to a rapid release cycle

Figure 1. Proportion of completed issues that suffered from
delivery delay.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 69

In this part of the survey, we are interested in getting your feedback about the impact of shifting to
a rapid release cycle on the delivery delay of completed issues.

Do you have experience working on a rapid release cycle in any other project?

Mark only one oval.

Yes

No

17.

In your opinion, what would be the impact of shifting to a rapid release cycle (e.g., a
release every 6 weeks rather than a release every 9 to 18 months) on the delay to
deliver completed issues, in your project?

18.

Figure 2 shows the Firefox project in which 90% of completed issues are delayed by at
least two releases. Firefox adopts a rapid release cycle. How do you feel about the
difference between your project and the Firefox project? More details about the
methodology of this finding in http://goo.gl/VC3CoK

19.

Figure 2. Proportion of completed issues that suffered
delivery delay in the Eclipse and Firefox projects.

70 Daniel Alencar da Costa et al.

If your project had shifted from a traditional to a rapid release cycle, how would you
evaluate if this shift benefited your project?

20.

Ending our questionnaire

If you'd like to participate in the $100
Amazon gift card draw and haven't
provided your e-mail yet, please leave it
below.

21.

Would you like to be informed about our findings?

Mark only one oval.

Yes

No

22.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 71

Would you be willing to be contacted for a quick online follow-up interview (at a time
convenient for you)?

Mark only one oval.

Yes

No

23.

Do you have further comments for us?24.

72 Daniel Alencar da Costa et al.

D Appendix—Methodology Web Page I

How do we compute the delivery delay of completed issues?
In this page, we explain how we measure the data that is shown in page 5 of our survey. You can find the concepts that are necessary to understand
the data collection process below.

Delivery delay measures how long it takes for a system functionality (i.e., an issue) to be delivered to the end user from the time at which the issue
was completed (i.e., implemented and tested).

Delivery delay in terms of releases is the number of official releases that are missed before the issue is officially shipped after it is completed. The
figure above illustrates an issue that is completed at time t3. Such an issue misses release number 2 at time t4. Finally, the completed issue is shipped
in release number 3 at time t5. In this example, the delivery delay of the completed issue is 1 official release.

By "official release" we mean a release that is intended to be used by the entire user base of the project. For example, in a pipelining release strategy
(e.g., as in the Firefox project), in which a release is stabilized through several channels, an official release is the final product of the process, i.e., the
release that is to be published to every user from the release channel.

In the figure below, we show the delivery delay in terms of releases for the completed issues in the Firefox project.

The figure shows that 89% of the Firefox completed issues miss 2 official releases before being shipped to end users.

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 73

E Appendix—Methodology Web Page II

How do we compare rapid vs traditional releases?

In this page, we explain how we measure the data that is shown in page 6 of our survey. You can find the concepts that are necessary to understand
the data collection process below.

Delivery delay measures how long it takes for a system functionality (i.e., an issue) to be delivered to the end user from the time at which the issue
was completed (i.e., implemented and tested).

Delivery delay in terms of days is the number of days for an issue to be officially shipped after it is completed. The figure above illustrates an issue
that is completed at time t3.
This issue takes 84 days to be shipped at t5.

By "official release" we mean a release that is intended to be used by the entire user base of the project. For example, in a pipelining release strategy
(e.g., as in the Firefox project), in which a release is stabilized through several channels, an official release is the final product of the process, i.e., the
release that is to be published to every user from the release channel.

In the figure below, we show the delivery delay in terms of days for the completed issues in the Firefox project. We collected data from traditional
releases (major and minor releases from version 1.0 to 4.0) and from rapid releases (releases in the release channel from version 10 to 27). The Figure
shows a beanplot for each release strategy. The vertical curves of beanplots compare the distributions in traditional and rapid releases. The higher the
frequency of data within a particular value, the thicker the bean is plotted at that particular value on the y axis. Finally, the black horizontal line
represents the median value of each distribution. We observe that the median number of days to deliver is significantly higher with the rapid release
cycle, but there is much less variation.

74 Daniel Alencar da Costa et al.

F Appendix—Invitation Letter

Dear <Participant>,

We are a group of researchers based out of universities in Brazil, Australia,
and Canada. We are performing an empirical study to understand why
some software functionalities are unexpectedly delayed before reaching
end users. With this study, we intend to help software development teams
to better deliver software with little delay or schedule slippage.

In our opinion, you are a perfect fit to our research, since we observed that
you have participated in the development of the <X> project. Would you
mind sharing your thoughts with us by filling out this survey about the <X>
project? The survey has 19 questions (all of them are optional) and will
take less than 15 minutes to complete.

<Survey URL>

To compensate you for your time, we will have a draw to give away $100
Amazon gift certificates to 5% of all participants that answer all questions.

Please, do not hesitate to contact me if you have any questions. More
information about this study is available at <Link of the paper>

Thank you,
Daniel Alencar da Costa.
PhD student at the Federal University of Rio Grande do Norte, Brazil.
http://danielcalencar.github.io

The Impact of Rapid Release Cycles on the Integration Delay of Fixed Issues 75

G Appendix—Interview Script

Thank you for participating in our survey about the delay to deliver completed issues!

(Part 1)

Can you tell us about a specific completed issue in one of your projects that was delayed to be
delivered?

Prompts:
Lack of code review?
Workload of integrators?
Changing requirements?
Marketing issues?
Possible side effects?
The need of extra testing? (or any other test strategy)
Integration effort?

Was this a typical situation?

What other reasons can you think of that can lead the delivery of a completed issue to be
delayed?

In our study, the reporter of an issue and the discussion that occurred
to complete an issue received the lowest ranks as possible reasons that lead
to delivery delay. Do you agree? Why?

On the other hand, the time at which an issue is completed in the release
cycle and the severity of an issue received the highest ranks as reasons that
lead to delivery delay. Do you agree? Why?

(Part 2)

Can you tell us about your experience with the shift from a traditional
release cycle to a rapid release cycle?

Prompts:
Regarding with tests
Regarding with feedback
Amount of functionalities that are delivered
Overall quality

Can you tell us your impressions about the time to deliver completed issues
after the shift?

How would you evaluate the success of a shift to a rapid release cycle?

	1 Introduction
	2 Background & Definitions
	3 Empirical Study Design
	4 Quantitative Study Results
	5 Qualitative Study Results
	6 Analysis of Potential Confounding Factors
	7 Discussion
	8 Threats to Validity & Limitations
	9 Related Work
	10 Conclusions
	11 Acknowledgments
	A Appendix—Firefox Survey
	B Appendix—ArgoUML Survey
	C Appendix—Eclipse Survey
	D Appendix—Methodology Web Page I
	E Appendix—Methodology Web Page II
	F Appendix—Invitation Letter
	G Appendix—Interview Script

