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Abstract Changing a software application with many build-time configura-
tion settings may introduce unexpected side effects. For example, a change
intended to be specific to a platform (e.g., Windows) or product configuration
(e.g., community editions) might impact other platforms or configurations.
Moreover, a change intended to apply to a set of platforms or configurations
may be unintentionally limited to a subset. Indeed, understanding the exposure
of source code changes is an important risk mitigation step in change-based
development approaches. In this paper, we present DiPiDi, a new approach to
assess the exposure of source code changes under different build-time config-
uration settings by statically analyzing build specifications. To evaluate our
approach, we produce a prototype implementation of DiPiDi for the CMake
build system. We measure the effectiveness and efficiency of developers when
performing five tasks in which they must identify the deliverable(s) and condi-
tions under which a source code change will propagate. We assign participants
into three groups: without explicit tool support, supported by existing im-
pact analysis tools, and supported by DiPiDi. While our study does not have
the statistical power to make generalized quantitative claims, we manually
analyze the full distribution of our study’s results and show that DiPiDi re-
sults in a net benefit for its users. Through our experimental evaluation, we
show that DiPiDi results in a 36 average percentage points improvement in
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F1-score when identifying impacted deliverables and a reduction of 0.62 units
of distance when ranking impacted patches. Furthermore, DiPiDi results in
a 42% average task time reduction for our participants when compared to a
competing impact analysis approach. DiPiDi’s improvements to both effective-
ness and efficiency are especially prevalent in complex programs with many
compile-time configurations.

Keywords build systems · exposure of a change · build dependency graph

1 Introduction

Complex software programs employ many compile-time configuration settings
to build different software products (a.k.a., variants) from the same artifacts
(i.e., source files) (Tu and Godfrey, 2001). For example, the Linux kernel has
more than 10,000 compile-time configuration settings (Sincero et al, 2007).
These software programs have multiple dependency paths to their source files
from their deliverables, i.e., software artifacts that users can interact with,
such as executable files or libraries. Build systems derive default configuration
settings by analyzing the execution environment or reading user override set-
tings. Build systems use these settings to reason about whether source files (or
conditionally compiled code snippets) should be included or excluded from the
produced deliverables. Under some conditions, a source file may play a role in
one compiled deliverable without affecting others. For example, in the Linux
kernel, the source files written specifically for the ARM architecture will be
excluded from the x86 version of the kernel (Nadi and Holt, 2014). In these
complex systems, a change in a source file may have unexpected side effects
on deliverables outside of the current compilation path. Software systems that
support multiple variants can therefore create complex arrangements of ef-
fects and side effects, where the deliverables exposed to a code-change can be
unclear (Bezemer et al, 2017).

Software engineering practices that assess source code changes, like code
review, are expensive and time-consuming (Cohen, 2010; Bosu et al, 2015).
Extra time and effort must be spent by developers on activities like finding
which deliverables are exposed to a change. In this paper, we define the ex-
posure of a change as the set of deliverables affected by a change, including
executables and libraries, as well as the different build-time configuration and
environment settings under which the changes propagate. Changes that im-
pact critical deliverables or configurations may require more quality assurance
effort than others to mitigate their exposure risk (Wen et al, 2018).

When modifying complex software programs, source code changes may be
localized or broad. Figure 1 shows an example of a dependency graph for
the ET: Legacy project.1 A change to the dl main curl.c file impacts the
deliverable etl only if the FEATURE CURL option is ON. On the other hand,
changes to files represented by $CLIENT SRC will always impact the deliverable.

1 https://github.com/etlegacy/etlegacy
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if(FEATURE_CURL)

add_executable(etl ${CLIENT_SRC} dl_main_curl.c)

else()

add_executable(etl ${CLIENT_SRC} dl_main_stubs.c)

endif()

Figure 1: A sample snippet of CMake build script from the ET: Legacy project.
In this sample, etl is the deliverable, FEATURE CURL is a build configuration,
and CLIENT SRC is a variable pointing to the source files.
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Figure 2: A build dependency graph generated by . Arrows show dependency
relation between a source node to the destination.

Figure 3: A real-world example of a small section of a CMake build script and
its corresponding Build Dependency Graph
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(a) A sample snippet of CMake build script from the ET: Legacy project.
In this sample, etl is the deliverable, FEATURE CURL is a build configura-
tion, and CLIENT SRC is a variable pointing to the source files.

etl

Files

SELECT
FEATURE_CURL

dl_main_curl.c

CONCAT

True

    ${CLIENT_SRC}

CONCAT

False

dl_main_stubs.c

(b) A build dependency graph generated by DiPiDi. Arrows show depen-
dency relation between a source node to the destination.

Fig. 1: A real-world example of a small section of a CMake build script and
its corresponding Build Dependency Graph

A change that only impacts one variant of a system may not be as important
as a change that affects all variants. Exposing the effect of a change under
different configuration settings can help developers assess the impact of that
change.

Despite its importance, assessing which deliverables are impacted by a
change, and the conditions under which they are impacted, is not well sup-
ported by current software tools (Hassan and Wang, 2018). Change Impact
Analysis (CIA) is one way to determine the consequences of a change on a soft-
ware application (Arnold and Bohner, 1993). Many CIA techniques have been
proposed (Li et al, 2013; Ahsan and Wotawa, 2010; Gethers and Poshyvanyk,
2010; Tamrawi et al, 2012; Adams et al, 2007; Gyori et al, 2017). However,
to the best of our knowledge, none of them consider environment or build-
time configuration settings. While build impact analysis has been shown to
be effective (Wen et al, 2018; Adams et al, 2007), current techniques rely on
a dynamic analysis of build execution, which cannot expose the impact of a
change on different environmental and configuration settings.
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Therefore, we propose DiPiDi, an approach to assess the exposure of changes
to the source code of systems using the build system specification files. One of
the key roles of the build system is finding and selecting files based on build
scripts, build-time configurations, and environmental variables (Zhou et al,
2014; Seo et al, 2014; Al-Kofahi et al, 2012). By statically analyzing the build
scripts and constructing the Build Dependency Graph (BDG), we can assess
the exposure of a change on all software variants.

To evaluate the proposed approach, we conduct an experiment to assess the
effect of DiPiDi on the effectiveness and efficiency of determining the exposure
of source code changes on projects that are using CMake build system.2 To
that end, we form three participant groups – those with no tool assistance,
those with the assistance of a CIA tool, and those with the assistance of Di-
PiDi – and compare their efficiency and effectiveness on prescribed tasks. The
participants are asked to identify the impacted deliverables and variants for
given source code changes while we monitor their performance. A tool that
could significantly improve effectiveness and efficiency for these tasks could
be useful in many applications both for researchers who design experiments
based on source code change (e.g., mutation testing) (Roveg̊ard et al, 2008)
and practitioners in the allocation of quality assurance resources.

Result: Our results indicate that without tool support, identifying impacted
deliverables is a difficult task, even for experienced developers. Members of the
No Tool group obtained the lowest F1-score in Task Type A and the highest
rank distance in Task Type B despite having more experienced developers and
professional CMake users than other groups. Moreover, our results suggest that
DiPiDi helps developers to identify impacted deliverables more effectively than
current solutions. Indeed, the identified impacted deliverables by the members
of the DiPiDi group are 32, 40, 36 average percentage points better in terms
of precision, recall, and F1-score over the members of the Existing Tool group.
Moreover, we find that developers using our approach identify impacted targets
more efficiently than others. DiPiDi results in 42% average task time reduction
when compared to the approach used in the positive control group.

The remainder of this paper is organized as follows. We first describe our
research questions in Section 2. In Section 3, we present and describe our
approach called DiPiDi and its prototype implementation. In Section 4, we
describe the design of the experiment that we use to evaluate DiPiDi. In Sec-
tion 5, we present the results of our experiments. We situate our work with
respect to the literature in Section 6 and then Section 7 discloses the threats
to the validity of our approach and experiments. Finally, Section 8 concludes
the paper.

The data that support the findings of this study are available on request
from the corresponding author Meidani, M. The data are not publicly avail-
able due to them containing information that could compromise research par-

2 This study has been reviewed and received ethics clearance through the University of
Waterloo Research Ethics Committee (ORE# 43727)
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ticipant privacy and ethical constraints. Nonetheless, we share the technical
artifacts and questions in our repository.

2 Research Questions

In this study, we aim to determine whether a static analysis of build systems
can improve the effectiveness and efficiency of software developers striving to
assess the exposure of a source code change.

Despite the importance of understanding exposure, we conjecture that it
is difficult to assess without tool support. To this end, we propose DiPiDi
to improve awareness of the exposure of changes. We hypothesize that DiPiDi
will allow developers to more efficiently and effectively determine the exposure
of source code changes.

A source code change, or patch, that impacts an application under a spe-
cific and rare configuration would likely not merit as much developer attention
as a source code change that always impacts the application. A change that
impacts more deliverables and/or configurations (high-exposure) has a broader
“surface area” and a greater potential to impact users, should a defect be intro-
duced, than a change with low-exposure. Therefore, we believe that knowing
which deliverables are affected by a source code change or a patch can al-
low developers to make more informed decisions when making source code
changes. To investigate whether DiPiDi approach help developers to identify
the impacted deliverables, we formulate the following research question:

RQ1: Does DiPiDi help developers assess the exposure of source code
changes more effectively?

While finding all of the deliverables impacted by a change is important,
it also is time-consuming because it requires project-wide knowledge, an un-
derstanding of the relations between the files and the build system. Develop-
ers attempting this task must identify the modified source code throughout
the project and trace them through the build dependency graph, while taking
care to consider build-time configuration settings. Some of these configurations
may be related to the environment of the user, like the operating system. So,
a change may have a side-effect on one machine without appearing on others.
On the other hand, build-scripts may use wildcard addressing, like *.cpp, for
the source files, making it challenging to follow a complete compilation path
from a deliverable to the changed source file. Therefore, developers may rely
on heuristics (e.g., directory structure), or worse, ignore this important step
in assessing the risk of a change. We pose the following research question to
explore the efficiency of developers while using DiPiDi:

RQ2: Does DiPiDi help developers assess the exposure of source code
changes more efficiently?
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Fig. 2: An overview of the DiPiDi approach

3 DiPiDi

An overview of the DiPiDi approach can be found in Figure 2. The approach
has two main phases, the Indexing Phase and the Query Phase. The purpose
of the Indexing Phase is to construct an internal representation of the build
system. This internal representation includes all the possible compilation paths
from each deliverable to the source files. This data can be stored and used later
in the Query Phase. The purpose of the Query Phase is to allow DiPiDi to
leverage the data constructed by the Index Phase and to output the impacted
deliverables under different configuration settings given a set of changed file.

Implementation: In order to conduct our study, we produce a prototype
implementation of DiPiDi for the CMake build system. CMake is a cross-
platform build system that builds deliverables from artifacts, like source files
(Kitware, 2020). CMake has two distinct phases. First, it generates platform-
based low-level build specifications (e.g., Makefiles, Visual Studio #.sln files,
or Ninja files) (Martin and Hoffman, 2010). Then, CMake invokes the low-
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level build tool like make to build the project. Our implementation is available
online on our public GitHub repository.3

We explain each step of the approach presented in Figure 2 in more detail
below.

3.1 Indexing Phase

We explain our approach for each step in the Indexing Phase in more detail
below. Some steps may require an implementation tailored to the build sys-
tem being used. In those cases, we also explain our implementation for the
prototype of DiPiDi.

I1) Extract Abstract Syntax Tree

Every build system has its own entry file to start building the project. For ex-
ample, GNU Make looks for a file named Makefile in the root of the project.
The entry file describes how to build the project using the build system specific
language. The project can contain helper build files in other folders or split
the entry file and relocate it into multiple folders. All of those files should be
addressed and included in the entry point file. To capture the content of the
build files, we parse the entry file and build an Abstract Syntax Tree (AST)
using a parser that understands the build system grammar. The output of this
stage is an AST for one build system related file.

Implementation: Projects using CMake should contain CMakeLists.txt in
their root directory as the entry file for CMake. Other helper files which have
.cmake extensions can be in other folders. The tool first parses the CMake
specifications starting with the CMakeLists.txt file in the project root di-
rectory. We use ANTLR (Parr and Quong, 1995) to parse and build the Ab-
stract Syntax Tree (AST) from the CMake file. The grammar for CMake is
straightforward since CMake commands follow the same structure which can
be captured by the following parser rule:

command_invocation

: Identifier ‘(’ (single_argument|compound_argument)* ‘)’

;

I2) Construct Dependency Graph

Next, we traverse the AST to construct the Build Dependency Graph, which
represents the relationship between the deliverables, source files, and the con-
ditions in each compilation path from deliverables to source files. Table 1 shows
the different node types used in DiPiDi to construct the Build Dependency
Graph from the AST. In this step, DiPiDi also creates a lookup table for

3 https://github.com/software-rebels/cmake-inspector
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Table 1: Type of nodes in Build Dependency Graph generated by DiPiDi after
traversing the AST

Type Description Example Command

TargetNode Represents a target or deliverables
in the project. This node may de-
pend on other nodes to show depen-
dency between a deliverable on li-
braries, variables, or a list of source
files.

add executable

RefNode Shows explicitly defined or environ-
mental variables. This node often de-
pends on another node such as a
ConcatNode to represent a list or a
LiteralNode to show the value of the
variable

set

OptionNode Shows the user-defined build-time
configurations in the project.

option

LiteralNode Represents literal strings or num-
bers. RefNodes or TargetNodes may
point to these nodes to show the
value of a variable or source files for
a target.

“foo.cc”

SelectNode Shows conditional paths which have
three properties: a condition, a True

path, and a False path.

if

ConcatNode Represents multiple possible values
for a node which should be concate-
nated together and it points to two
or more other nodes

list

CustomCommandNode All other commands in CMake are
represented by this node which can
point to an arbitrary number of
nodes showing different arguments
for a command

find

each of the variables and targets found while traversing the AST. Some build
systems like CMake support scoping for the variables, while others like GNU
Make do not. To enable scoping, the lookup table dynamically changes as we
parse other files or functions.

As we reach each AST node, based on the name of the command, we select a
corresponding node from Table 1 and use the lookup table to find the variables
and other nodes that this node may depend on. In this step, we cannot assign
values to the variables since they might have different values based on the
paths we took to reach to them. As an example, consider a variable called srcs

holding a list of source files. Based on the operating system, the build system
may append some additional files, like foo arm.cc, to that variable. Thus, we
only keep the nodes and their dependencies. At this level, we may need to
include and parse other build-related files found while traversing the AST by
repeating the previous step.
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...
False

SELECT 
{UNIX}

False True

SELECT 
{GRPC_CONNECTOR  

AND UNIX}

librest libgrpc

rest_client.c grpc_client.c

(a) Part of a dependency
graph from the iSulad
project.4

def flatten(node , cond):

if instance(node , SelectNode):

if satisfiable(cond + node.cond):

result += flatten(node.trueNode , cond +

node.cond)

if satisfiable(cond + Not(node.cond)):

result += flatten(node.falseNode , cond +

Not(node.cond))

elif instance(node , ConcatNode):

result += flatten(child) for child in node

.getChildren ()

elif instance(node , LiterlNode):

result += node.getValue (), cond

elif ...

pass

return result

(b) Flattening algorithm for the SelectNode

Fig. 3: When flattening the second SelectNode in (a), the approach should
remember the UNIX=False assumption from the first SelectNode, prune the
True path and only consider the False path.

At the end of this step, DiPiDi has a graph and a lookup table represent-
ing the whole project under analysis, variables, source files, conditions, and
targets.

I3) Dereference Variables

Often in large software applications, there are build-time configuration
and environmental settings that help the build system to reason about dif-
ferent variants of the system (Liebig et al, 2010; Hochstein and Jiao, 2011).
These settings create different dependency paths from the deliverable to the
source files. In the generated Build Dependency Graph, the target nodes which
represent the deliverables reside at the top and the leaves are source files rep-
resented by LiteralNodes. Using this graph and starting from a target node,
we traverse the graph down to the leaves and resolve variables to their values
under different build-time configuration settings (i.e., flatten the variables).

By flattening the variables, we obtain all of the possible values for each
variable for all configuration settings. This information is then saved and can
be accessed through an API when attempting to determine the exposure of a
source code change.

To evaluate the expressions and conditions while flattening the variables,
we used Z3 (Moura and Bjørner, 2008), a library that determines whether a
formula is satisfiable, developed by Microsoft Research. Z3 supports formu-

4 https://gitee.com/openeuler/iSulad
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1 {
2 "dl_main_curl.c": {
3 "FEATURE_CURL": ["etl"]
4 },
5 "dl_main_stubs.c":{
6 "NOT FEATURE_CURL": ["etl"]
7 },
8 "common.c": {
9 "": ["etl"]

10 }
11 }

1

Fig. 4: An example of the output of the tool based on the given graph in
Figure 1. Each key in the root dictionary is a source file in the project. For each
source file, another dictionary with conditions as keys and targets as values
represents the impacted target given a change which includes the source file.

las involving Boolean, numbers, and strings. We keep track of the evaluation
of each condition along the path to prune the build dependency graph while
reaching each SelectNode. Figure 3(a) shows two SelectNodes in one compila-
tion path. The algorithm does not have any assumption about the variables
when it reaches the first SelectNode, which has a condition on the UNIX vari-
able. Thus, it expands both paths and calls the algorithm to flatten each path
with different assumptions, UNIX=True for the True path and UNIX=False

for the False path. Given the assumption for the False path, when the al-
gorithm reaches the second SelectNode, which has a condition on UNIX And

GRPC CONNECTOR, it does not expand the True path because it is not satisfiable,
as UNIX is False. The output of this phase is all the compilation paths from
each target down to the source files with the conditions that are being held as
True during the path. An example of the output is shown in Figure 4.

3.2 Query Phase

This phase uses the index data generated from the previous phase to find the
impacted deliverables. The steps of this phase are described below:

Q1) Extract Change Set

A commit in the version control systems contains a list of changed files. Since
DiPiDi operates at the file level, which is the same granularity as the build
system, we need the changed file names to start the impact analysis. The
output of this step is a list of changed source files in a commit.
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Q2) Traverse Compilation Paths

Given a list of file names and the output of the Index Phase, we can search
all of the compilation paths that include the changed file and create a list of
exposed targets. In this step, the user can optionally add some assumptions
on the configuration settings. Since we store the required conditions for each
path, we can use the Z3 library to filter out the paths which are not reachable
given the conditions set by the user. The output of this step is a list of exposed
targets and the conditions under which each target will be impacted by the
change.

Q3) Simplify Conditions

Since we add each condition to our assumptions while traversing a compila-
tion path, the list of conditions generated by the previous step may contain
duplicates and can be simplified. In Z3, we can pass functions to the reasoning
engine for custom processing steps. These functions are also known as tactics.4

We use the following tactics to simplify the assumptions:

– propagate-values: This tactic propagates the value of each variable be-
tween assumptions. For example, if we have an assumption that a = 0 and
b > a, we can simplify the second assumption to b > 0.

– propagate-ineqs: We then propagate the inequalities and remove the sub-
sumed ones. For example, if we have a > 10 and a > 2 in our assumptions,
we can remove the second one since it is always True if a is greater than
10.

– ctx-solver-simplify: Finally, we remove the assumptions that are always
True. As an example, if we have a, b, a AND b in our assumptions, we
can remove the third one as it is True.

The output of this step is the same as the previous one with some simpli-
fication on the condition list.

4 Research Protocol

To test our hypotheses, we conduct randomized controlled experiments with
the three groups defined. Study participants are asked to perform a set of
prescribed tasks with their usual development setup without additional help
(control group), with a baseline change impact analysis tool (positive control
group), and with DiPiDi (treatment group). We measure the effectiveness of
our tool by comparing the responses of the participants with an established
ground truth. We measure the efficiency of our participants by comparing the
duration of each task across the groups.

4 https://www.philipzucker.com/z3-rise4fun/strategies.html
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4.1 Variables

This section presents an overview of the study variables, which are further
described below.

4.1.1 Independent Variable

In our study design, the tool support provided to the participants varies (No
Tool, With Existing Tool, and With DiPiDi) which is represented by the Tool-
ing Level independent variable. All tooling levels have access to the same in-
formation and interface. The only difference in access is the additional output
of the Existing Tool/DiPiDi for the relevant groups. More specifically, each
group is defined as follows:

1. No Tool. This group has access to the code change and other files in the
project, including the build specifications. They can use their preferred
development environment to perform the tasks. This group is a control
group and represents the current practices used by software developers
attempting to determine which deliverables are affected by a source code
change.

2. Existing Tool. This group has access to the same environment as the
No Tool group, as well as the output of the change impact analysis gener-
ated using the Understand Tool (SciTools, 2022). This group is a positive
control group and represents the current approaches used by software engi-
neering research to aid software developers attempting to determine which
deliverables are affected by a source code change.

3. DiPiDi: This group – the treatment group – has access to the same en-
vironment as the No Tool group, as well as DiPiDi. The participant can
interact with the tool using the Query Interface as described in Section 3.
Our tool can print the impacted deliverables at the file level. Although
the file granularity may overestimate the true impact of a change, it is the
granularity at which the build system operates.

Participants in all groups may use any external tool that they feel may
be helpful. Thus, even the results from the No Tool group can be viewed as
a baseline set of current approaches used by the developers. We collect the
names of the tools that our participants used and report them in Section 5.

4.1.2 Dependent Variables

Our dependent variables are outlined in Table 2. We discuss our reasoning for
these variables below.

1. Exposure analysis effectiveness: The score from each task indicates
how close the answers of the participants are to the ground truth. We could
alternatively determine if a participant provides fully correct answers for
each task and consider the ratio of correct answers to total tasks. However,
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Table 2: The dependent variables of the study

Name Description Scale Operationalization
Number of cor-
rectly identified
deliverables

Ratio of the impacted deliverables
correctly identified by the partic-
ipants under a specific build-time
configuration over the known im-
pacted deliverables (RQ1)

ratio Computed at the
end using the
harmonic mean (F-
measure) for task
types A & C. See
Sections 4.3 & 4.6.2

Relative rate of
correctly identi-
fied deliverables

Normalized pairwise disagreements
between participant rankings of
patches in terms of the number of im-
pacted deliverables, and known cor-
rect rankings (RQ1)

ratio Calculated at the
end for tasks of type
B. See Section 4.6.2

Exposure analysis
effectiveness

The sum of the number of correctly
identified deliverables and relative
rate of correctly identified deliver-
ables (RQ1)

ratio Computed at the
end using the num-
ber of correctly
identified deliv-
erables and the
relative rate of
correctly identified
deliverables.

Task time The time needed for each partici-
pant to complete a task subtracting
pauses (RQ2)

ratio Measured by our
web application.
The participant can
pause a task and
resume manually.
See Section 4.2.4

Exposure analysis
efficiency

Ratio of the total score of the partic-
ipant over the sum of all Task times
(RQ2)

ratio Total score is the
sum of the scores of
all of the individ-
ual tasks. See Sec-
tion 4.6.2

we believe that our approach, which indicates how close participants are to
fully correct answers, allows us to obtain a finer-grained insight into how
participants complete their tasks. Thus, we consider our task scores (i.e.,
Number of correctly identified deliverables & Relative rate of correctly iden-
tified deliverables) to be good proxies for exposure analysis effectiveness.

2. Exposure analysis efficiency: We define exposure analysis efficiency as
the duration from the initiation to completion of each task in seconds.
As a result, completing tasks more rapidly will result in higher efficiency.
This way, we consider both the fully correct answers and the partial ones,
especially in the rank-based tasks (see Section 4.3).

4.1.3 Confounding Variables

Because different code changes might affect the results of our participants,
we control the code changes made available to them. The confounding vari-
ables that we consider for our study are presented in Table 3. We present
patches from three different projects to ensure our results are not biased to-
wards any single project. We also control build-time configuration settings to
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Table 3: The confounding variables of the study

Name Description Scale Operationalization
CMake experience Participant’s experience in working

with CMake build system
ordinal Measured: 3-point

scale (“none”,
“tried”, “used
in professional
development”);
questionnaire

Code changes Changed code in diff format along
with the other source files of the
project

nominal Design: each partic-
ipant gets patches
from three real-
world projects

Configuration set-
tings

Environmental and build configu-
ration settings of the build system:
default configuration, custom

nominal Design: for appli-
cable tasks, each
participant gets two
configurations for
build settings.

Current program-
ming practice

How often the participant cur-
rently programs

ordinal Measured: 3-point
scale (“not”, “some-
times”, “often”);
questionnaire

Development ex-
perience

Participant’s software development
experience in years

ordinal Measured: 5-point
scale (“less than
a year” ... “10
years or more”);
questionnaire

Fitness Physical fitness of the participant,
like tiredness, during the experi-
ment

ordinal Measured: 5-point
scale (“very tired”
... “very fit”);
questionnaire

Perceived task dif-
ficulty

Participant’s overall perception of
the task provided during the exper-
iment

ordinal Measured: 3-point
scale (“easy”, “av-
erage”, “hard”);
questionnaire at the
end

Project-specific
experience

Participant’s past experience with
the provided project and patch

ordinal Measured: 3-point
scale (“none”,
“user”, “contribu-
tor”); questionnaire
at the end

evaluate tooling levels with multiple build configurations without introducing
confounding factors. We gather demographic information like the Development
experience in order to control their correlation with the dependent variables.
We also use these variables to inform our data preprocessing (e.g., provide
context to determine why a participant might not have finished a task) and
for further analysis. We use this data to augment the statistical analysis and
make decisions about whether a participant is suitable for a task.
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4.2 Materials

In this section, we describe the materials that we use in this study.

4.2.1 DiPiDi

We developed a prototype implementation of DiPiDi to reveal the exposure
of a change in a structured manner. In a nutshell, our tool processes build
specifications statically to produce a Build Dependency Graph (BDG), which
we traverse to assess exposure. Before conducting the experiments, we perform
the Indexing Phase on the projects that are being presented to our participants
and save the output. Participants in the DiPiDi tooling level of the experiment
use tool’s querying features to perform the assigned tasks.

4.2.2 Existing tool

To assess whether the improvements in the DiPiDi tooling level (treatment)
group are related to the approach implemented by our tool, we select a recent
and available impact analysis tool to employ in the Existing tool (positive
control) group.

Unfortunately, most of the proposed impact analysis tools are prototypes (Li
et al, 2013). Additionally, due to our project selection and since our implemen-
tation of the DiPiDi approach supports CMake build specifications, the impact
analysis tool must support the C++ programming language. For example, we
had originally selected Frama-C; a tool proposed by Kirchner et al (2015).
Frama-C is an industrial-grade static analysis tool, which can perform im-
pact analysis on C and C++ projects. However, Frama-C only works on C++
projects with the help of an early access plugin, which has limited support
called Frama-Clang, which converts C++ code to plain C code before running
other analysis in Frama-C. This plugin is in its early stage of development
and has known issues, as mentioned on the official Frama-C website.5 While
we originally believed that this plugin would allow us to complete compar-
isons with DiPiDi, in our case, Frama-C could not parse or convert any of the
projects that we analyzed in the study. This appears to be due to new syntax
introduced in C++17 which is currently not supported by the Frama-Clang
plugin.

Therefore, as a replacement, we decided to use Understand, a commercial
tool developed by SciTools (2022) and used in previous studies (Orrú et al,
2015; Fontana et al, 2011). Understand is a comprehensive static analysis
tool with more than 100 features. However, acquiring a license, installing, and
applying the Understand to each of the studied projects would be unwieldy for
our participants; thus, it is not applicable to use in our study as is. Fortunately,
Understand’s features are also available through a Python API. Therefore,
we develop a presentation layer for Understand’s impact analysis API and

5 https://frama-c.com/fc-plugins/frama-clang.html
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represent the result in a web application for the participants. This allows our
participants to access useful Understand functionality without the burden of
installing and applying it. More specifically, for each project:

1. We extract the list of function-level dependencies from Understand.
2. We keep track of where functions are defined in each file as reported by

the Understand tool.
3. We persist the result in a structured format (i.e., JSON) that can be con-

sumed by our web application.

Later during the study, the participants can paste a commit ID into the
web application to produce Understand-based impact result for the changed
program elements. The web application extracts a list of changed functions
from the commit and identifies impacted files by traversing the dependencies
that Understand computes. Note that the existing tool provided to the partic-
ipants is simply a presentation layer for the Understand tool—all of the results
presented to the participants are therefore calculated by Understand.

The difference between Understand and Frama-C is that Understand oper-
ates at the function level, while Frama-C can analyze impacts at the statement
level. However, when using Frama-C, the user should install the tool, import
the project, and manually select the statements that changed in the commit.
By leveraging the API of Understand, however, we make the results of the
existing tool accessible through a web interface. The script we use to persist
the structured function-level data is available in our repository.6

While DiPiDi identifies the impacted deliverables by statically analyzing
the build code and considering all build-time configurations, Understand (and
other impact analysis tools available today) identify the impacted files by ana-
lyzing the source code of the project, without considering build configurations.
Then, it is the responsibility of the developer to find the impacted deliverable
by matching the file names with the build code.

4.2.3 Studied Projects

Table 4: Summary of the selected projects

Name Line of Codes Commits

ET: Legacy 3,706,703 11,047
libuv 113,414 4,928
Box2D 128,474 1,282

We select three projects using GitHub search. We first select projects that
mentioned CMake in their README file, and then sort by the number of stars
for each project. A summary of the selected projects is presented in Table 4.

6 https://github.com/software-rebels/cmake-inspector/blob/master/UNDGraph.py
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As explained in Section 4.3, participants are asked to rank three patches
based on their impact on the project, e.g., a patch that impacts three platform-
specific versions of the project has higher rank than a patch that impacts one
platform-specific version. Participants are also asked to identify the configu-
ration settings in which the changes in the patch propagate to the project
deliverables. Thus, for each studied project, we iterate over patches in reverse
chronological order, selecting patches that impact a different number of de-
liverables under different configuration settings until three patches have been
selected (nine patches in total). To identify the impacted deliverables, we man-
ually inspect the source files and find the deliverables that are impacted by
the changed code. We use this as our ground truth. While DiPiDi reports
changes at the file-level, in this study, participants are asked to report im-
pacted deliverables at the code level, a subset of reported deliverables by the
tool.

4.2.4 Experiment UI

Figure 5 shows the web interface for our prototype. As soon as DiPiDi com-
pletes the indexing phase, the web interface connects to the tool using a Re-
mote Procedure Call. In the first section, the user can either choose a changed
file or select a commit. In the second section, the user can add the build con-
figuration settings, which can be Boolean, string, or arithmetic conditions.
Although more complex types of expressions are possible, we leave their eval-
uation for future work, since simple expressions are already pushing the limits
of what our control group can handle. Additionally, we only support the equal
operator in the web interface; however, DiPiDi supports other operators (e.g.,
>, <, etc.). The web application issues the request to a backend service,
which processes the DiPiDi query. The results are then communicated to the
frontend, and the impacted deliverables are presented in the third section.
On the backend side, DiPiDi first iterates over the indexed data to identify
the targets that are impacted by the changed files. Then, DiPiDi applies the
specified conditions (if any were provided) using the Z3 library. If the con-
ditions are still specifiable, DiPiDi adds the target to the impacted list and
returns the final list to the web application. This application is available in
our repository.7

We additionally developed an interactive Web based application to allow
us to conduct our experiment with a diverse range of participants and allow
our participants to rely on their own development environments. The applica-
tion retains a log of answers and the duration of each task. The experiment
UI randomly assigns each participant to a tooling level group and randomly
assigns tasks to the participants, all the while logging which project and tasks
are assigned to whom. Participant information was only made available to
the researchers after all the results had been scored to reduce experimenter
bias (Rosenthal, 1976). The interactive UI is also available in our repository.8

7 https://github.com/software-rebels/dipidi-experiment-ui
8 https://github.com/software-rebels/dipidi-participants-ui
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Fig. 5: DiPiDi Web Query Interface

4.3 Tasks

We ask our participants to complete five tasks, one Type A task, two Type
B tasks, and two Type C tasks. After a participant initiates our experiment
through our experiment UI, they are randomly assigned to a tooling level and
the tasks are randomly ordered and logged. The order of the tasks is random-
ized to account for learning effects that could occur if developers improve by
learning from previous tasks. Furthermore, we construct each task using three
different open-source projects, and randomly assign each task to each partici-
pant. Therefore, participants cannot share answers with each other, and tasks
are less biased towards a specific project or task. Participants must obtain the
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data and files required to complete each task through our experiment UI and
must also provide their answers through it.

Our tasks are constructed to answer both RQ1 and RQ2. The results ob-
tained for each task can be used to answer our first research question (i.e.,
RQ1), while the duration of the tasks can be compared for each group to
answer RQ2. The three task types are as follows.

Task Type A: The purpose of this task is to compare the exposure as-
sessment effectiveness and efficiency of the participants in different tooling
levels. The participant is provided with the names of changed files and a set of
build specifications. The participant is then asked to list impacted deliverables
(without having the source code). The experiment UI provides a text input
field for the participant to identify those deliverables.

Task Type B: The purpose of these tasks is to determine the effect of
presenting exposure reports on the effectiveness and efficiency of developers
assessing the relative exposure of patches. The participant is assigned three
patches and a set of build specifications. We ask the participant to rank the
patches listed in the experiment UI based on (a) the number of impacted
deliverables; and (b) the number of impacted application variants (e.g., number
of affected OS). We ensure that the patches do not affect the same number of
deliverables and application variants. Furthermore, the patches are sampled
from a different project than the ones studied for other tasks.

Task Type C: The purpose of these tasks is to determine the impact of
DiPiDi when participants are particularly interested in the exposure in a given
setting. Participants are presented with three patches and asked to identify
those that (a) affect a specified set of deliverables; (b) affect a specific variant
of the software; and (c) identify the configuration settings under which the
changes will propagate. For this task type, we use a different project than for
tasks of types A and B to make sure that all of the participants see examples
from each of the three projects that we selected for this study.

4.4 Participants

Since our tasks are centred around specific software engineering practices,
our participants should have the programming experience necessary to allow
them to find the deliverables impacted by a source code change. We therefore
populate our pool of participants with software developers, or individuals with
programming experience.

We solicited participation from CMake user web forums, the developer
mailing lists of large projects that are implemented in CMake (e.g., KDE,
Qt), at a user summit of a code reviewing platform, via our personal contacts
on social media, and a local group of graduate students, all of whom have
developed software in a practical setting. A total of 72 participants enrolled in
the study. We piloted the experiment UI and tasks with two participants. The
pilot results are not included in our reported findings below. The remaining
70 participants were invited to participate in the study. Out of those, 34 par-
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Table 5: Demographic information about the participants

Tooling
Level

ID Programming
Experience

CMake Familiarity Current Program-
ming Practice

D
iP

iD
i

P1 five years or more Tried it at least once More than once per week
P2 five years or more Used in professional

development
More than once per week

P3 five years or more Tried it at least once More than once per week
P4 two to five years Tried it at least once More than once per week
P5 five years or more None More than once per week
P6 five years or more None More than once per week
P7 two to five years Tried it at least once Sometimes
P8 two to five years Tried it at least once More than once per week
P9 five years or more Tried it at least once More than once per week
P10 a year to two years None Sometimes
P11 two to five years Tried it at least once Sometimes

E
x
is
ti
n
g
T
o
o
l P12 two to five years Tried it at least once More than once per week

P13 five years or more Tried it at least once More than once per week
P14 two to five years Tried it at least once Sometimes
P15 five years or more Tried it at least once More than once per week
P16 two to five years Tried it at least once More than once per week
P17 a year to two years Tried it at least once More than once per week
P18 two to five years None More than once per week

N
o
T
o
o
l

P19 five years or more Used in professional
development

More than once per week

P20 two to five years Used in professional
development

More than once per week

P21 five years or more Used in professional
development

More than once per week

P22 five years or more Used in professional
development

More than once per week

P23 five years or more Tried it at least once More than once per week
P24 two to five years None More than once per week
P25 five years or more Tried it at least once More than once per week
P26 two to five years Tried it at least once More than once per week
P27 two to five years Tried it at least once More than once per week
P28 two to five years None More than once per week
P29 five years or more Tried it at least once More than once per week
P30 five years or more Tried it at least once More than once per week
P31 two to five years Tried it at least once More than once per week
P32 five years or more Used in professional

development
More than once per week

ticipants completed the set of tasks. Of those who finished, two participants
skipped at least 3 tasks, so we exclude them from further analysis. In the end,
32 participants remain – eleven in the DiPiDi group, seven in the Existing
Tool group, and fourteen in the No Tool group. Table 5 shows an overview of
the profiles of the participants in this study.

4.5 Execution Plan

We provided our participants with access to our web application in batches of
three. This staged approach allowed us to fix any potential problems without
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invalidating too large of a subset of our participant data. Based on the feedback
that we received, we clarified the task descriptions with additional detail, but
the tasks themselves remained the same. We enhanced the experiment UI
to indicate when the backend is processing the issued query, as processing
queries took on the order of five to ten seconds, and users would mistakenly
submit multiple requests. The application has the following procedure for each
participant:

4.5.1 Welcome Page

Participants are first presented with an outline of the tasks and an estimate of
the time required to complete the tasks. In addition, we request the consent
of participants to participate in the experiment. The participants are asked
to refrain from sharing task information with other participants. For ethical
compliance reasons, participants are also informed that they may stop the
experiment at any time for any reason.

4.5.2 Onboarding

After obtaining consent from the participants, we provide a more detailed
explanation of the specific set of tasks to be completed during the experiment.
Based on the tooling level assigned to the participant, we explain the steps
required to prepare the environment and the tool (if applicable). We inform
participants that they may use their preferred development tools (e.g., CLI
tools, IDE). Participants are also informed that each task is timed, that their
responses will remain anonymous unless they explicitly request otherwise, and
that they may skip individual tasks.

4.5.3 Tasks

We present our participants with the tasks outlined in Section 4.3 in a ran-
dom order. For each task, our application provides a hyperlink to download
the source code. A timer begins as soon as the task page is loaded. We also
record when checkpoints are reached during the experiment. Before showing
the description of the task, we provide the download link and the necessary
steps to prepare the environment. The participants must click on the “ready”
button to initiate the experiment. We also log the moments that the partici-
pants begin to enter their responses. The page describes the task and shows
the configuration settings that the participant should consider. We present the
results of the tools in the experiment UI for participants in the ‘Existing Tool’
and ‘DiPiDi’ tooling levels in an interactive way through a Web interface. The
application provides input spaces for the participant to enter their responses.
The application logs the time that the participant spent on each task. The
participant may click a pause button to pause the timer if a distraction of any
kind interrupts their focus. A skip button allows the participant to move on if
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they feel that they cannot complete a task. A sample of each task is provided
in appendices C to H.

4.5.4 Questionnaire

Prior to the start of the experiment, the participants are asked demographic
questions about their background and programming experience. The ques-
tionnaire is included in Appendix A. After a participant completes their five
tasks, we follow up with a questionnaire which is included in Appendix B.
The purpose of the post-study questionnaire is to collect tool usage questions
about the CLI tools, IDEs, and/or other tools that were used to complete the
tasks. Additionally, we ask whether the participants found the provided tool
useful. We also ask participants to comment on any problems that they may
have encountered during the experiment. Finally, we thank the participants
and invite them to provide other feedback if they desire. The results of the
post-questionnaire are presented in Table 9.

4.6 Analysis Plan

In this section, we describe the analysis plan we use in this study.

4.6.1 Data Cleaning

We assign each participant five tasks to complete. However, it is possible for a
participant to exit the application before completing all of their assigned tasks.
Since the experiment UI accepts input from participants in any text format,
we manually check that answers are acceptable before analyzing them. Next,
we review the participant’s questionnaire submission and feedback for men-
tions of problems that may (partially) invalidate their submission, removing
their invalid answers when appropriate. Additionally, we use outlier detection
approaches, i.e., Tukey’s fences (Tukey et al, 1977) and box plots, which do
not require regression models. If there are outliers, we analyze them by hand
to gain insight into them. Finally, we remove those data if we find enough
evidence to do so after both outlier detection and manual evaluation.

4.6.2 Measuring Effectiveness

For rank-based tasks, i.e., task type B, we use Kendall’s tau ranking distance
formula (Kendall, 1938) to compute the distance between participant answers
and the ground truth. Kendall’s tau ranking is defined as:

Kd(τ1, τ2) =
∑

{i,j}∈P,i<j

K̄i,j(τ1, τ2)

where P is the pairwise set of elements in τ1 and τ2, K̄i,j(τ1, τ2) is 0 if i
and j are in the same order in τ1 and τ2 otherwise it is 1. For example, the
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Kendall’s tau distance between 2,1,3 and 1,2,3 is one because pair {2, 1} are
in different order. We report the distance as a number between zero and three
for those tasks.

For list-based tasks, i.e., task types A and C, like previous studies, we com-
pute precision and recall. As discussed, the goal of this study is to expose
the change under different configuration settings and help developers to iden-
tify impacted deliverables for a specific configuration setting. To compute the
correctness and completeness of the participant’s Estimated Impacted Deliv-
erables (EID), we compare them to Actual Impacted Deliverables (AID) using
the following precision (correctness) and recall (completeness) formulas:

Precision =
EID ∩AID

EID
;Recall =

EID ∩AID

AID

Due to the natural trade-off between precision and recall, we calculate the
F1-score (i.e., the harmonic mean of the precision and recall) to get an overall
impression of task effectiveness.

4.7 Deviations From the Registered Report

This paper is the stage two submission of a registered report accepted at MSR
2021 registered report track (Meidani et al, 2021). To complete the study, we
had to deviate from our original registered report protocol during the course of
this submission. In this section, we summarise the deviations from the original
protocol.

4.7.1 Replacing the Frama-C Tool

While the Frama-C tool was our original choice to compare DiPiDi to an exist-
ing tool, we could not make use of it as discussed in Section 4.2.2. We decided
to make use of another existing tool capable of analysing code impacted by
a code change. The Understand tool has features that allow developers to
trace a change and find the parts of a program that it impacts. However, in-
stalling the tool, and learning to use it, was not feasible for the participants
given the constraints of the study (time and computing environment). Thus,
we developed a UI tool that consumes the output of the Understand API,
and represents the result in a web application for the participants. Thus, the
tool that we develop is a presentation layer for the Understand results. We
therefore switched Frama-C for Understand.

Unfortunately, our initial tool selection could not analyze the studied projects;
however, we believe that switching from Frama-C to Understand will not sub-
stantially impact the performance of the positive control group because (1)
both tools are commercial grade and (2) both tools can perform similar styles
of change impact analysis via source code analysis. While our original choice
may have been easier to use for our participants, we believe that our presen-
tation layer wrapper bridges that gap.
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4.7.2 Change of Studied Projects

Originally, we wanted to conduct the study on projects from the KDE and
QT communities. However, we found that projects in those communities use
customized CMake commands to maximize reuse and productivity among the
projects.9

Developing support for this set of commands required additional engineer-
ing effort for DiPiDi. Unfortunately, we did not have sufficient time to invest
the engineering time to implement these supports for custom commands within
the Stage 2 registered report submission time frame. Therefore, we systemat-
ically selected alternative projects that use the ‘vanilla’ version of CMake
specifications. To identify candidate projects, we sorted repositories that are
hosted on GitHub and use CMake, by the number of stars, which we believe
is a good proxy of the popularity of a project. We believe that improvements
that can work on popular projects are more likely to benefit a larger number of
developers. From that list of projects, we selected three projects of varying size
and domain for our experiment. Table 4 provides an overview of the studied
projects.

4.7.3 Number of Participants

In our registered report, we set out to conduct our study with 66 participants
to be able to compare the groups with large effect sizes using one-way ANOVA.
Since participants are required to be developers who are familiar with build
systems, we faced difficulties recruiting such a large number of developers for
this study. We recruited participants using a variety of communication chan-
nels, such as social media (Twitter, LinkedIn, Reddit), mailing lists of open-
source projects, developer forums, and developer conferences. After leveraging
those channels, we ended up with 72 candidates who signed up to participate
in the study. Of those, 32 completed at least 4 of the 5 tasks, 11 in the DiPiDi
group, 7 in the Existing Tool group, and 14 in the No Tool group.

Due to the limited number of participants, we could not conduct our
planned ANOVA analysis. Therefore, we follow our contingency plan and con-
duct a preliminary analysis of our results instead. The details of our analysis
can be found in Section 5.

5 Results

In this section, we present the results of our experiment with respect to our
two research questions.

9 https://linux.die.net/man/1/kdecmake
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5.1 RQ1: Does DiPiDi help developers assess the exposure of source code
changes more effectively?

The participants in the DiPiDi tooling level outperformed the other
two groups in terms of their accuracy in identifying the impacted
deliverables and assessing the magnitude of the impact. As shown in
Table 7, the DiPiDi group outperforms the Existing Tool group by 42 and
31 percentage points in terms of F1-score for Task Type A and Task Type C,
respectively. Moreover, the DiPiDi group outperforms the Existing Tool group
by 0.62 units of distance in the impact ranking task (Task Type B).

As described in Section 4.3, we assign one Task Type A out of three, two
Task Type B out of six and two Task Type C out of nine to each participant.
To calculate the metrics shown in Table 7, we compute the average (mean)
performance measure across participants in each group to aggregate the mea-
sures to the granularity of group comparison. For Task Type B, the distance
represents the number of pairwise ranking swaps required to change the order
of the participant’s answer to match the ground truth. Since we asked the
participants to order exactly three commits in Task Type B, the upper bound
for this number is three, meaning the order is reversed.

The effectiveness of DiPiDi in Task Type A is also illustrated in Figure 6,
which shows the distribution of the Precision, Recall, and F1-score for Task
Type A and each tooling level. In the DiPiDi group, 10 out of 11 participants
perform better than the Existing Tool and No Tool groups, achieving an F1-
score of 1 as shown in Figure 6c. However, it also shows a tail extending to 0.33
(P1) in the DiPiDi group. We reached out to P1 to understand if there was
any problem with the tasks. P1’s experience and familiarity with CMake were
limited to a classroom setting. P1 reported that it was difficult to understand
the tasks, but despite P1’s lack of experience, DiPiDi did help P1 to complete
the tasks to a certain degree.

For Task Type B, Figure 7 shows that DiPiDi is effective in identifying the
most impactful commits. We believe that accuracy in assessing the riskiness of
changes relative to each other can help reviewers and quality assurance teams
to manage their resources. Current impact analysis approaches, including the
one used for the Existing Tool tooling level, do not consider the build-time
configuration settings and, therefore, report the impacted file or statements
for a single set of configuration settings (often, the default settings).

Finally, in Task Type C, Figure 8 shows that participants in the DiPiDi
tooling level outperform others. The F1-score for 10 out of 11 participants is
greater than 0.9 in the DiPiDi group. Surprisingly, the No Tool group outper-
forms the Existing Tool group. Since in Task Type C, participants are asked to
identify the patches that impact the deliverables under a specific set of config-
uration settings, a tool that does not consider all the build-time configurations,
like the existing tool, may have misled the participants.

Table 6 shows the participants’ expertise in each group. We consider par-
ticipants to be experienced developers if they have more than five years of
programming experience. Additionally, we identify the participants who use
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0.0 0.2 0.4 0.6 0.8 1.0
Recall

No Tool

Existing Tool

DiPiDi

(b) Participant recall for Task A

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
F1

No Tool

Existing Tool

DiPiDi

(c) Participant F1 Score for Task A

Fig. 6: Participants in the DiPiDi group outperform two other groups in all
the three metrics. While the Existing Tool group performs better than the No
Tool group, the difference is not negligible.
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Fig. 7: Distance between the participant’s responses to the ground truth cal-
culated using Kendall tau rank distance formula. The larger the distance, the
more dissimilar the responses and the ground truth.

CMake in a professional setting. Participants can be neither experienced de-
velopers nor professional CMake users if they have two to five years of pro-
gramming experience and tried CMake at least once. As shown in Tables 6
and 7, assessing the exposure without any tooling support is difficult, even for
those participants with extensive professional experience and those who use
CMake in a professional setting. Table 9 shows an overview of the post-study
questionnaire results. In general, participants in the DiPiDi group find the tool
useful and find the tasks less difficult in comparison to other groups. Although
we do not draw any firm conclusions about this, the fact that fewer partici-
pants find the study difficult suggests that performing with build-related tasks
without tool support is daunting.

The DiPiDi approach helps practitioners and researchers to identify the
impacted deliverables given a change under different build-time configura-
tion settings. In an experimental evaluation, our prototype implementation
of DiPiDi outperforms a current impact analysis tool by 36 average per-
centage points in F1-score when identifying impacted deliverables. More
importantly, participants in the DiPiDi group could assess the riskiness of
changes relative to each other with less error.
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(a) Participant precision for Task C
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Fig. 8: Participants in the DiPiDi group outperform two other groups in all
the three metrics in Task C. Interestingly, the No Tool group outperforms the
Existing Tool.
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Fig. 9: Participants in the DiPiDi group finish the tasks faster compared to
other groups. While the No Tool group performs more efficiently than the
Existing Tool, they are not necessarily more effective.
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Table 6: Participants’ expertise based on the demographic questions. Partici-
pants can be in more than one experience category.

Tooling Level Total Experienced Developers Professional CMake Users

No Tool 14 8 5
Existing Tool 7 2 0
DiPiDi 11 6 1

Table 7: Summary of the result for each task per tooling level

A B C
Tooling Level Precision Recall F1 Distance Precision Recall F1

No Tool 0.52 0.33 0.40 1.5 0.77 0.58 0.66
Existing Tool 0.60 0.47 0.52 0.67 0.61 0.52 0.57
DiPiDi 0.94 0.94 0.94 0.05 0.92 0.85 0.88

5.2 RQ2: Does DiPiDi help developers to assess the exposure of source code
changes more efficiently?

The DiPiDi approach helps developers to assess the exposure of
changes more efficiently than baseline approaches. Table 8 shows that
the DiPiDi group spent on average 137, 219, 151 fewer seconds on tasks A,
B, C, respectively. Figure 9 shows the distribution of duration for each task
type in each tooling group. As shown, the majority of the participants in the
DiPiDi group complete the tasks more quickly than the participants in the
other groups. More specifically, 70%, 81%, and 80% of the participants in
other groups performs slower than DiPiDi group in Task Type A, B, and C
respectively.

However, P6 took 20 times longer to complete the Task A than other par-
ticipants in the DiPiDi group. Indeed, P6 completed Task A in 2625 seconds,
while the average of the other participants in this group is 127.5 seconds. P6
reported in the feedback form that ‘It was hard to understand what to look
at in the beginning. My first task is probably affected by that’. P6 performs
very well in other tasks and, based on their feedback, believes the tool is very
useful. Similarly, P25 in the No Tool group took 3371 seconds to complete
Task Type B, which like the above case, was their first task. The average for
the No Tool group in Task Type B without P25 is 469 seconds. P25 reported
that the experiment was ‘Time-consuming and difficult’. Removing those two
cases reduce the standard deviation for Task Type A and Task Type B to 67 in
DiPiDi group and 256 in No Tool group, respectively and makes all standard
deviations less than equal to the average.

Interestingly, except for Task Type B, the No Tool group performs more ef-
ficiently than the Existing Tool group. While the Existing Tool group achieves
slightly better correctness scores than the No Tool group as shown in Figures 6
and 7, we suspect that the additional information provided to the participants
by the existing tool reduced their efficiency.
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Table 8: Time it takes for each group of participants to do the tasks

A B C
Tooling Level Skips Time S.D Skips Time S.D Skips Time S.D

No Tool 3 383 248 2 364 787 3 269 261
Existing Tool 2 570 510 2 401 299 1 552 486
DiPiDi 0 354 720 1 163 133 2 229 236

Still, even for the tasks that require more creative ways of interacting with
the tool (e.g., Task Type C), considerable efficiency improvements are de-
tected. For Task Type B, the average time taken for the No Tool and Existing
Tool groups is 1.5 standard deviations larger than that of the DiPiDi group.
However, for Task Type A and C the difference between the means is less than
one standard deviation. We suspect that the differences are not as pronounced
because DiPiDi reports many possible compilation paths and participants con-
firm their answer with the code and the build script in addition to the output
of the tool, a time consuming affair.

The DiPiDi approach increases the efficiency of identifying impacted deliv-
erables under different build-time configuration settings. We show that our
prototype implementation reduces the time required to assess the exposure
of changes by 42% on average. More notably, participants in the DiPiDi
group assess the riskiness of changes relative to each other with 92% less
error in 59% of the time with 1.7 standard deviations difference over the
existing approaches.

5.3 Discussion

In this section, we discuss the results of the study, including the pre- and post-
questionnaire data.

Three of the 32 reported that they had difficulty understanding what to do
in their first task. However, since we shuffle the order of tasks before assigning
them to the participants, the effect of this difficulty is distributed throughout
the tasks. For example, Figures 9a and 9b show two tails in the DiPiDi and
No Tool groups. In both cases, the participant’s first task takes longer than
the average because they are struggling to understand the tasks.

Some participants with strong programming experience familiar with build
systems performed well even without tool support. For example, P32, who
worked with C and build systems during their time researching operating
systems in grad school, achieved Precision of 1 and Recall of 0.83 in Task
Type A without tool support.

Table 9 shows the results of our post-experiment questionnaire for each
participant. We assign numbers to the fitness level, i.e., 1 = very tired, and 5
= very energetic. The average fitness level for DiPiDi, Existing Tool, and No
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Table 9: Post Questionnaire Result

Tooling
Level

ID Another
Tool

Tool Use-
fulness

Fitness Difficulty Experience

D
iP

iD
i

P1 Somehow Tired Hard None
P2 Energetic Easy None
P3 Very Useful Neutral Average None
P4 Intellij IDE Somehow Neutral Average None
P5 VSCode Very Useful Very Ener-

getic
Average None

P6 VSCode Very Useful Very Tired Hard None
P7 Very Useful Energetic Average User
P8 Very Useful Neutral Average User
P9 Neutral Easy None
P10 Very Useful Neutral Easy None
P11 VS Code Very Useful Tired Average None

E
x
is
ti
n
g
T
o
o
l P12 VSCode Somehow Neutral Average None

P13 VSCode Very Useful Neutral Hard None
P14 VSCode Somehow Very Tired Hard None
P15 Github On-

line
Very Useful Energetic Average User

P16 Very Tired Average None
P17 Clion Not Useful Very Tired Hard None
P18 Somehow Tired Hard None

N
o
T
o
o
l

P19 Sublime Tired Average User
P20 Bash Tired Average User
P21 Neutral Easy User
P22 Nvim, rip-

grep, fzf
Neutral Average User

P23 Git Tired Hard None
P24 Tired Hard None
P25 Very Tired Hard
P26 Very Tired Average None
P27 Neutral Hard None
P28 Neutral Hard None
P29 Neutral Hard None
P30 Very Tired Hard None
P31 Very Tired Hard None
P32 Very Tired Hard None

Tool tooling groups are 3, 2.14, and 2 respectively. This shows that participants
assigned to the DiPiDi group felt slightly less fatigued after the study.

Interestingly, some participants who were in the No Tool group and found
the experiment difficult, suggested that having a tool that can track the depen-
dencies would be very useful. For example, P30, said ‘The tracking of configu-
rations and conditions was almost infeasible. Maybe a visualization tool where
user can navigate dependencies and targets can help’. P14 also reported that
‘Looking for variables, targets, and file names at the same time was exhaust-
ing’. Feedback like this provides more motivation for the need for build-aware
tools, such as DiPiDi.
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6 Related Work

In this section, we situate our study and its results with respect to the literature
on the (6.1) Co-evolution of Source and Build Code, (6.2) Static Analysis of
Build Code, and (6.3) Build Dependency Graph Applications.

6.1 Co-evolution of Source and Build Code

There are plenty of empirical studies on the relationship between source code
and its corresponding build code. These studies have shown that changes to
source code files may lead to changes in the build files that are required to build
software programs successfully. McIntosh et al (2011) showed this relationship
and concluded that, like source files, build code evolves and may have defects.
Hochstein and Jiao (2011) found that 19%–58% of commits change build files
only, and 37%–65% of them touch at least one build file. Robles et al (2006)
found that many commits mainly involve a build file, showing frequent changes
to the build procedure. Also, studies have shown the relationship between
the complexity of source and build code (Adams et al, 2008; McIntosh et al,
2010). However, to the best of our knowledge, no prior work has studied the
relationship between source code changes and their exposure under different
configuration settings.

6.2 Static Analysis of Build Code

Build description files are often quite complex, making it difficult for any devel-
oper to fully grasp all of their intricacies. Thus, it is often challenging to both
identify bad design practices within build files, and to improve them through
refactoring efforts. To remedy this situation, tools like SYMake Tamrawi et al
(2012), MAKAO Adams et al (2007) and HireBuild Hassan and Wang (2018)
have been proposed in prior works. SYMake is a tool that can discover smells
within build-system files and help developers to refactor these files by building
a symbolic dependency graph from a GNU makefile. MAKAO is a tool devel-
oped by Adams et al (2007) which focuses on visualizing makefiles to aid in
refactoring them using an aspect-oriented approach. Hassan and Wang (2018)
developed a tool called HireBuild, which automatically fixes buggy build files
using a history-driven approach. These studies used properties of build de-
scription files to analyze the build files themselves. In this study, we use build
dependency graphs to analyze the impact of the changes on the software pro-
grams and source files.

6.3 Build Dependency Graph Applications

Impact analysis of changes has applications both for researchers and practi-
tioners. Wen et al (2018) introduced an approach to integrate impact analysis
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with code review. They showed that changes that impact critical deliverables
may require more reviewing efforts than others. In another study, Cao et al
(2017) proposed a tool that can estimate the duration of an incremental build
using the build dependency graph, history of the builds, and changed files.
They created the graph using the output messages generated by GNU make.
However, this method constructs the graph based on the environment the build
is currently running on and the build-time configurations passed to the build
system for that specific run. Thus, the generated graph does not include the
files and the dependencies for other configurations. The graph generated using
DiPiDi approach considers all the possible outcomes of the build system, and
produce a more global analysis result.

7 Threats to Validity

In this section, we discuss the threats to the validity of our study.

7.1 Threats to internal validity

Participants may vary in their capacity to estimate exposure. Due to the chal-
lenges associated with recruiting a large sample of software developers, par-
ticipant characteristics that may interact with or confound our dependant
variables, (e.g., experience), could not be controlled to a statically significant
degree. Nevertheless, we strove to mitigate this threat by randomly assigning
tasks to participants and by recruiting participants with varying levels of expe-
rience. Additionally, due to the Hawthorne effect, our participants were likely
to behave differently in our experimental setting because they were aware that
they were being monitored. We attempted to mitigate this threat by giving
developers realistic tasks, letting them work on their own computers at a time
and place of their choosing. Furthermore, we did not discuss the hypotheses
of the study with the participants until after they completed their tasks.

We observed differences in the self reported fitness levels in each tooling
groups. There are two potential reasons for these differences. First, the tooling
provided by DiPiDi may reduce the cognitive load on the participants in that
group. Or second, it is possible that this is simply a random occurrence due
to the participants being randomly assigned to a group. We suspect this is the
former because we observed a trend in the fitness level based on the tooling
group with No Tool presenting the least fit participants.

7.2 Threats to external validity

Although we believe that the DiPiDi approach is general enough to apply
to most build systems, our prototype implementation only supports CMake.
Therefore, our findings might be limited in scope to the CMake context. On the
other hand, CMake shares several concepts with other build systems, especially
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those based on a platform abstraction layer. For example, GNU Autotools
also uses a target-based representation and generates low-level build code (i.e.,
Makefiles) from higher abstractions and contextual information from the build
execution environment. While we believe the results are likely to generalize,
replication of the study in the context of other build systems may be fruitful.

7.3 Threats to construct validity

Our selected measurements may not fully capture the phenomena that we
set out to measure (i.e., effectiveness and efficiency of assessing patch expo-
sure). Nonetheless, we selected a broad range of measurements and tasks that
we believe to be meaningfully representative of the underlying phenomena of
interest.

8 Conclusion

Large-scale software systems often produce different variants that execute
on different hardware and software platforms, or that restrict access to fea-
tures. The build system, which is responsible for orchestrating the preprocess-
ing, compilation, testing, and assembly of applications, manages this complex
set of variants within its specifications. In these highly-configurable software
projects, a change in the source code may impact a subset of the variants of
the system, while others remain unchanged. To assess the risk of a change,
it is important to identify the set of deliverables and configurations that are
impacted.

In this paper, we introduced DiPiDi, an approach that we developed to
assess the impact of changes by statically analyzing the build system speci-
fication files. To evaluate our approach, we implemented a prototype of our
approach and designed an experiment to evaluate whether DiPiDi is associated
with improvements to the effectiveness and efficiency of developers perform-
ing impact assessment tasks. The result of that experiment suggests that (1)
DiPiDi approach helps practitioners and researchers to identify the impacted
deliverables given a change under different build-time configuration settings.
Our prototype implementation of DiPiDi outperforms current impact analysis
tool by 36 average percentage points in F1-score when identifying impacted
deliverables. More importantly, participants in the DiPiDi group could assess
the riskiness of changes relative to each other with fewer errors; and (2) the
DiPiDi approach increases the efficiency of identifying impacted deliverables
under different build-time configuration settings. We show that our prototype
implementation reduces the time required to assess the exposure of changes
by 42% on average. More notably, participants in the DiPiDi group assess the
riskiness of changes relative to each other with 0.05 units of distance in 53% of
the time with 1.5 standard deviations difference over the existing approaches.
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Appendix A Demographic Questions

1. How much experience do you have in programming?

– None
– Less than a year
– a year to two years
– two to five years
– five years or more

2. How much are you familiar with CMake?

– None
– Tried it at least once
– Used in professional development

3. How often do you currently program?

– Never
– Sometimes
– More than once per week
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Appendix B Post Study Questionnaire

1. If you used any other tool(s) (CLI/IDE) please name it here:
2. If we provided a tool for you to use, how useful it was?
3. How do you feel? (1=Very Tired, 2=Tired, 3=Neutral, 4=Energetic, 5=Very

Energetic)
4. How difficult were the tasks? (1=easy, 2=average, 3=hard)
5. How much experience did you have with the projects provided to you?
6. Did you encounter any problem during the experiment?
7. Any feedback about the experiment?
8. Can we contact you for a follow up interview?
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Appendix C Task A

You will be provided with the names of changed files and a set of build speci-
fications. Your task is to list impacted deliverables (targets). Deliverables are
defined in CMake files (CMakeLists.txt or .cmake files) using add library

or add executable commands. You can find these files in the project repos-
itory. These commands take a target name and a list of files which impact
the target. Some files may be excluded under different configuration. As an
example, a code file related to ARM processor may not be included in the
deliverable for Intel CPUs. Read more at https://cmake.org/cmake/help/
latest/manual/cmake-buildsystem.7.html#binary-targets. The experi-
ment UI provides text inputs for you to list those deliverables.

Follow the steps below to prepare for the task. Once you completed the
steps, click on ready and the task will begin.

1. Access DiPiDi tool at ...
2. Clone the repository from https://github.com/libuv/libuv

Given the following commit id and the build time configuration, please
find the impacted targets (deliverables). There maybe more input fields than
necessary to complete the task.

1. Change Commit ID: cdced3a3ad1b3e4287f92c9d434b543a9e509938
2. Build Configuration: APPLE==False

Input1: ...
Input2: ...
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Appendix D Task B - (Impacted Deliverables)

You will be shown three commits and a set of build specifications which are
the conditions passed to the build system and may change the build pro-
cess. These conditions are defined using option or if commands. Read more
at https://cmake.org/cmake/help/latest/command/if.html. We ask you
to rank the commits listed in the experiment UI based on the number of im-
pacted deliverables. Rank the commits in an ascending order (1=Most Impact,
3=Less Impact)

Follow the steps below to prepare for the task. Once you completed the
steps, click on ready and the task will begin.

1. Access DiPiDi tool at ...
2. Clone the repository from https://github.com/libuv/libuv

Given the following build time configurations, please rank the commits
based on the given criteria.

1. Build Configurations: MAKE SYSTEM NAME==APPLE
2. Criteria: Impacted Deliverables

1. e89abc80ea43065a726ade191b810af53ec6158a: ...
2. 953f901dd2330a9979838cd43ff04eacde71b25a: ...
3. e43eb667b5e0cace1eef4b6f5898de83cde262c6: ...
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Appendix E Task B - (Impacted Variants)

You will be shown three commits and a set of build specifications which are
the conditions passed to the build system and may change the build pro-
cess. These conditions are defined using option or if commands. Read more
at https://cmake.org/cmake/help/latest/command/if.html. We ask you
to rank the commits listed in the experiment UI based on the number of im-
pacted application variants (e.g., number of affected OS). Rank the commits
in an ascending order (1=Most Impact, 3=Less Impact)

Follow the steps below to prepare for the task. Once you completed the
steps, click on ready and the task will begin.

1. Access DiPiDi tool at ...
2. Clone the repository from https://github.com/libuv/libuv

Given the following build time configurations, please rank the commits
based on the given criteria.

1. Build Configurations: LIBUV BUILD TESTS==False
2. Impacted Application Variants (Operating systems)

1. e89abc80ea43065a726ade191b810af53ec6158a: ...
2. 953f901dd2330a9979838cd43ff04eacde71b25a: ...
3. e43eb667b5e0cace1eef4b6f5898de83cde262c6: ...
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Appendix F Task C - (Identify Commits Affect Deliverables)

You will be shown three commits and asked to identify the commits that affect
a specified set of deliverables.

Follow the steps below to prepare for the task. Once you completed the
steps, click on ready and the task will begin.

1. Access DiPiDi tool at ...
2. Clone the repository from https://github.com/libuv/libuv

Identify the commits which affect these deliverables: [‘uv’]

1. e89abc80ea43065a726ade191b810af53ec6158a: ?
2. 953f901dd2330a9979838cd43ff04eacde71b25a: ?
3. e43eb667b5e0cace1eef4b6f5898de83cde262c6: ?
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Appendix G Task C - (Identify Commits Affect Variant)

You will be shown three commits and asked to identify the commits that affect
a specific variant of the software.

Follow the steps below to prepare for the task. Once you completed the
steps, click on ready and the task will begin.

1. Access DiPiDi tool at ...
2. Clone the repository from https://github.com/libuv/libuv

Identify the commits which affect this variant: BSD Operating System

1. e89abc80ea43065a726ade191b810af53ec6158a: ?
2. 953f901dd2330a9979838cd43ff04eacde71b25a: ?
3. e43eb667b5e0cace1eef4b6f5898de83cde262c6: ?
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Appendix H Task C - (Configuration Setting)

You will be shown three commits and asked to identify the configuration
settings under which the changes will affect at least one target. The build
configurations may exclude or include a file in the build process for an spe-
cific target using conditional commands in the CMake files. Read more at
https://cmake.org/cmake/help/latest/command/if.html CMake website.

Follow the steps below to prepare for the task. Once you completed the
steps, click on ready and the task will begin.

1. Access DiPiDi tool at ...
2. Clone the repository from https://github.com/libuv/libuv

For each of the given commits, identify at least one configuration setting
under which the change will propagate to at least one deliverable(target). If
the change will propagate irrespective of the conditional settings, enter the
term ”ALL”.

1. e89abc80ea43065a726ade191b810af53ec6158a: ...
2. 953f901dd2330a9979838cd43ff04eacde71b25a: ...
3. e43eb667b5e0cace1eef4b6f5898de83cde262c6: ...


