
Noname manuscript No.
(will be inserted by the editor)

Assessing the Exposure of Software Changes

The DiPiDi Approach

Mehran Meidani · Maxime Lamothe ·
Shane McIntosh

Author pre-print copy. The final publication is available at Springer via:
https://doi.org/10.1007/s10664-022-10270-y

Abstract Changing a software application with many build-time configura-
tion settings may introduce unexpected side effects. For example, a change
intended to be specific to a platform (e.g., Windows) or product configuration
(e.g., community editions) might impact other platforms or configurations.
Moreover, a change intended to apply to a set of platforms or configurations
may be unintentionally limited to a subset. Indeed, understanding the exposure
of source code changes is an important risk mitigation step in change-based
development approaches. In this paper, we present DiPiDi, a new approach to
assess the exposure of source code changes under different build-time config-
uration settings by statically analyzing build specifications. To evaluate our
approach, we produce a prototype implementation of DiPiDi for the CMake
build system. We measure the effectiveness and efficiency of developers when
performing five tasks in which they must identify the deliverable(s) and condi-
tions under which a source code change will propagate. We assign participants
into three groups: without explicit tool support, supported by existing im-
pact analysis tools, and supported by DiPiDi. While our study does not have
the statistical power to make generalized quantitative claims, we manually
analyze the full distribution of our study’s results and show that DiPiDi re-
sults in a net benefit for its users. Through our experimental evaluation, we
show that DiPiDi results in a 36 average percentage points improvement in

M. Meidani
University of Waterloo
E-mail: mehran.meidani@uwaterloo.ca

M. Lamothe
Polytechnique Montreal
E-mail: maxime.lamothe@polymtl.ca

S. McIntosh
University of Waterloo
E-mail: shane.mcintosh@uwaterloo.ca

2 Mehran Meidani et al.

F1-score when identifying impacted deliverables and a reduction of 0.62 units
of distance when ranking impacted patches. Furthermore, DiPiDi results in
a 42% average task time reduction for our participants when compared to a
competing impact analysis approach. DiPiDi’s improvements to both effective-
ness and efficiency are especially prevalent in complex programs with many
compile-time configurations.

Keywords build systems � exposure of a change � build dependency graph

1 Introduction

Complex software programs employ many compile-time configuration settings
to build different software products (a.k.a., variants) from the same artifacts
(i.e., source files) (Tu and Godfrey, 2001). For example, the Linux kernel has
more than 10,000 compile-time configuration settings (Sincero et al, 2007).
These software programs have multiple dependency paths to their source files
from their deliverables, i.e., software artifacts that users can interact with,
such as executable files or libraries. Build systems derive default configuration
settings by analyzing the execution environment or reading user override set-
tings. Build systems use these settings to reason about whether source files (or
conditionally compiled code snippets) should be included or excluded from the
produced deliverables. Under some conditions, a source file may play a role in
one compiled deliverable without affecting others. For example, in the Linux
kernel, the source files written specifically for the ARM architecture will be
excluded from the x86 version of the kernel (Nadi and Holt, 2014). In these
complex systems, a change in a source file may have unexpected side effects
on deliverables outside of the current compilation path. Software systems that
support multiple variants can therefore create complex arrangements of ef-
fects and side effects, where the deliverables exposed to a code-change can be
unclear (Bezemer et al, 2017).

Software engineering practices that assess source code changes, like code
review, are expensive and time-consuming (Cohen, 2010; Bosu et al, 2015).
Extra time and effort must be spent by developers on activities like finding
which deliverables are exposed to a change. In this paper, we define the ex-
posure of a change as the set of deliverables affected by a change, including
executables and libraries, as well as the different build-time configuration and
environment settings under which the changes propagate. Changes that im-
pact critical deliverables or configurations may require more quality assurance
effort than others to mitigate their exposure risk (Wen et al, 2018).

When modifying complex software programs, source code changes may be
localized or broad. Figure 1 shows an example of a dependency graph for
the ET: Legacy project.1 A change to the dl main curl.c file impacts the
deliverable etl only if the FEATURE CURL option is ON. On the other hand,
changes to files represented by $CLIENT SRC will always impact the deliverable.

1 https://github.com/etlegacy/etlegacy

Assessing the Exposure of Software Changes 3
0.8
(a)

if(FEATURE_CURL)

add_executable(etl ${CLIENT_SRC} dl_main_curl.c)

else()

add_executable(etl ${CLIENT_SRC} dl_main_stubs.c)

endif()

Figure 1: A sample snippet of CMake build script from the ET: Legacy project.
In this sample, etl is the deliverable, FEATURE CURL is a build configuration,
and CLIENT SRC is a variable pointing to the source files.

0.8
(a)

[width=1]Example.pdf

Figure 2: A build dependency graph generated by . Arrows show dependency
relation between a source node to the destination.

Figure 3: A real-world example of a small section of a CMake build script and
its corresponding Build Dependency Graph

1

(a) A sample snippet of CMake build script from the ET: Legacy project.
In this sample, etl is the deliverable, FEATURE CURL is a build configura-
tion, and CLIENT SRC is a variable pointing to the source files.

etl

Files

SELECT
FEATURE_CURL

dl_main_curl.c

CONCAT

True

 ${CLIENT_SRC}

CONCAT

False

dl_main_stubs.c

(b) A build dependency graph generated by DiPiDi. Arrows show depen-
dency relation between a source node to the destination.

Fig. 1: A real-world example of a small section of a CMake build script and
its corresponding Build Dependency Graph

A change that only impacts one variant of a system may not be as important
as a change that affects all variants. Exposing the effect of a change under
different configuration settings can help developers assess the impact of that
change.

Despite its importance, assessing which deliverables are impacted by a
change, and the conditions under which they are impacted, is not well sup-
ported by current software tools (Hassan and Wang, 2018). Change Impact
Analysis (CIA) is one way to determine the consequences of a change on a soft-
ware application (Arnold and Bohner, 1993). Many CIA techniques have been
proposed (Li et al, 2013; Ahsan and Wotawa, 2010; Gethers and Poshyvanyk,
2010; Tamrawi et al, 2012; Adams et al, 2007; Gyori et al, 2017). However,
to the best of our knowledge, none of them consider environment or build-
time configuration settings. While build impact analysis has been shown to
be effective (Wen et al, 2018; Adams et al, 2007), current techniques rely on
a dynamic analysis of build execution, which cannot expose the impact of a
change on different environmental and configuration settings.

4 Mehran Meidani et al.

Therefore, we propose DiPiDi, an approach to assess the exposure of changes
to the source code of systems using the build system specification files. One of
the key roles of the build system is finding and selecting files based on build
scripts, build-time configurations, and environmental variables (Zhou et al,
2014; Seo et al, 2014; Al-Kofahi et al, 2012). By statically analyzing the build
scripts and constructing the Build Dependency Graph (BDG), we can assess
the exposure of a change on all software variants.

To evaluate the proposed approach, we conduct an experiment to assess the
effect of DiPiDi on the effectiveness and efficiency of determining the exposure
of source code changes on projects that are using CMake build system.2 To
that end, we form three participant groups – those with no tool assistance,
those with the assistance of a CIA tool, and those with the assistance of Di-
PiDi – and compare their efficiency and effectiveness on prescribed tasks. The
participants are asked to identify the impacted deliverables and variants for
given source code changes while we monitor their performance. A tool that
could significantly improve effectiveness and efficiency for these tasks could
be useful in many applications both for researchers who design experiments
based on source code change (e.g., mutation testing) (Roveg̊ard et al, 2008)
and practitioners in the allocation of quality assurance resources.

Result: Our results indicate that without tool support, identifying impacted
deliverables is a difficult task, even for experienced developers. Members of the
No Tool group obtained the lowest F1-score in Task Type A and the highest
rank distance in Task Type B despite having more experienced developers and
professional CMake users than other groups. Moreover, our results suggest that
DiPiDi helps developers to identify impacted deliverables more effectively than
current solutions. Indeed, the identified impacted deliverables by the members
of the DiPiDi group are 32, 40, 36 average percentage points better in terms
of precision, recall, and F1-score over the members of the Existing Tool group.
Moreover, we find that developers using our approach identify impacted targets
more efficiently than others. DiPiDi results in 42% average task time reduction
when compared to the approach used in the positive control group.

The remainder of this paper is organized as follows. We first describe our
research questions in Section 2. In Section 3, we present and describe our
approach called DiPiDi and its prototype implementation. In Section 4, we
describe the design of the experiment that we use to evaluate DiPiDi. In Sec-
tion 5, we present the results of our experiments. We situate our work with
respect to the literature in Section 6 and then Section 7 discloses the threats
to the validity of our approach and experiments. Finally, Section 8 concludes
the paper.

The data that support the findings of this study are available on request
from the corresponding author Meidani, M. The data are not publicly avail-
able due to them containing information that could compromise research par-

2 This study has been reviewed and received ethics clearance through the University of
Waterloo Research Ethics Committee (ORE# 43727)

Assessing the Exposure of Software Changes 5

ticipant privacy and ethical constraints. Nonetheless, we share the technical
artifacts and questions in our repository.

2 Research Questions

In this study, we aim to determine whether a static analysis of build systems
can improve the effectiveness and efficiency of software developers striving to
assess the exposure of a source code change.

Despite the importance of understanding exposure, we conjecture that it
is difficult to assess without tool support. To this end, we propose DiPiDi
to improve awareness of the exposure of changes. We hypothesize that DiPiDi
will allow developers to more efficiently and effectively determine the exposure
of source code changes.

A source code change, or patch, that impacts an application under a spe-
cific and rare configuration would likely not merit as much developer attention
as a source code change that always impacts the application. A change that
impacts more deliverables and/or configurations (high-exposure) has a broader
“surface area” and a greater potential to impact users, should a defect be intro-
duced, than a change with low-exposure. Therefore, we believe that knowing
which deliverables are affected by a source code change or a patch can al-
low developers to make more informed decisions when making source code
changes. To investigate whether DiPiDi approach help developers to identify
the impacted deliverables, we formulate the following research question:

RQ1: Does DiPiDi help developers assess the exposure of source code
changes more effectively?

While finding all of the deliverables impacted by a change is important,
it also is time-consuming because it requires project-wide knowledge, an un-
derstanding of the relations between the files and the build system. Develop-
ers attempting this task must identify the modified source code throughout
the project and trace them through the build dependency graph, while taking
care to consider build-time configuration settings. Some of these configurations
may be related to the environment of the user, like the operating system. So,
a change may have a side-effect on one machine without appearing on others.
On the other hand, build-scripts may use wildcard addressing, like *.cpp, for
the source files, making it challenging to follow a complete compilation path
from a deliverable to the changed source file. Therefore, developers may rely
on heuristics (e.g., directory structure), or worse, ignore this important step
in assessing the risk of a change. We pose the following research question to
explore the efficiency of developers while using DiPiDi:

RQ2: Does DiPiDi help developers assess the exposure of source code
changes more efficiently?

6 Mehran Meidani et al.

Build System
Files

Version
Control
System

I1) Extract Abstract
Syntax Tree

Include other build files

I2) Construct Dependency Graph

I3) Dereference Variables

Indexing Phase

Q1) Extract
Change Set

Query Phase

Q2) Traverse
Compilation Paths

Q3) Simplify
Conditions

Indexed Data

AST

Build Dependency Graph

Commit

File Names

Impacted Targets
Under Different

Configuration Settings

Fig. 2: An overview of the DiPiDi approach

3 DiPiDi

An overview of the DiPiDi approach can be found in Figure 2. The approach
has two main phases, the Indexing Phase and the Query Phase. The purpose
of the Indexing Phase is to construct an internal representation of the build
system. This internal representation includes all the possible compilation paths
from each deliverable to the source files. This data can be stored and used later
in the Query Phase. The purpose of the Query Phase is to allow DiPiDi to
leverage the data constructed by the Index Phase and to output the impacted
deliverables under different configuration settings given a set of changed file.

Implementation: In order to conduct our study, we produce a prototype
implementation of DiPiDi for the CMake build system. CMake is a cross-
platform build system that builds deliverables from artifacts, like source files
(Kitware, 2020). CMake has two distinct phases. First, it generates platform-
based low-level build specifications (e.g., Makefiles, Visual Studio #.sln files,
or Ninja files) (Martin and Hoffman, 2010). Then, CMake invokes the low-

Assessing the Exposure of Software Changes 7

level build tool like make to build the project. Our implementation is available
online on our public GitHub repository.3

We explain each step of the approach presented in Figure 2 in more detail
below.

3.1 Indexing Phase

We explain our approach for each step in the Indexing Phase in more detail
below. Some steps may require an implementation tailored to the build sys-
tem being used. In those cases, we also explain our implementation for the
prototype of DiPiDi.

I1) Extract Abstract Syntax Tree

Every build system has its own entry file to start building the project. For ex-
ample, GNU Make looks for a file named Makefile in the root of the project.
The entry file describes how to build the project using the build system specific
language. The project can contain helper build files in other folders or split
the entry file and relocate it into multiple folders. All of those files should be
addressed and included in the entry point file. To capture the content of the
build files, we parse the entry file and build an Abstract Syntax Tree (AST)
using a parser that understands the build system grammar. The output of this
stage is an AST for one build system related file.

Implementation: Projects using CMake should contain CMakeLists.txt in
their root directory as the entry file for CMake. Other helper files which have
.cmake extensions can be in other folders. The tool first parses the CMake
specifications starting with the CMakeLists.txt file in the project root di-
rectory. We use ANTLR (Parr and Quong, 1995) to parse and build the Ab-
stract Syntax Tree (AST) from the CMake file. The grammar for CMake is
straightforward since CMake commands follow the same structure which can
be captured by the following parser rule:

command_invocation

: Identifier ‘(’ (single_argument|compound_argument)* ‘)’

;

I2) Construct Dependency Graph

Next, we traverse the AST to construct the Build Dependency Graph, which
represents the relationship between the deliverables, source files, and the con-
ditions in each compilation path from deliverables to source files. Table 1 shows
the different node types used in DiPiDi to construct the Build Dependency
Graph from the AST. In this step, DiPiDi also creates a lookup table for

3 https://github.com/software-rebels/cmake-inspector

8 Mehran Meidani et al.

Table 1: Type of nodes in Build Dependency Graph generated by DiPiDi after
traversing the AST

Type Description Example Command

TargetNode Represents a target or deliverables
in the project. This node may de-
pend on other nodes to show depen-
dency between a deliverable on li-
braries, variables, or a list of source
files.

add executable

RefNode Shows explicitly defined or environ-
mental variables. This node often de-
pends on another node such as a
ConcatNode to represent a list or a
LiteralNode to show the value of the
variable

set

OptionNode Shows the user-defined build-time
configurations in the project.

option

LiteralNode Represents literal strings or num-
bers. RefNodes or TargetNodes may
point to these nodes to show the
value of a variable or source files for
a target.

“foo.cc”

SelectNode Shows conditional paths which have
three properties: a condition, a True

path, and a False path.

if

ConcatNode Represents multiple possible values
for a node which should be concate-
nated together and it points to two
or more other nodes

list

CustomCommandNode All other commands in CMake are
represented by this node which can
point to an arbitrary number of
nodes showing different arguments
for a command

find

each of the variables and targets found while traversing the AST. Some build
systems like CMake support scoping for the variables, while others like GNU
Make do not. To enable scoping, the lookup table dynamically changes as we
parse other files or functions.

As we reach each AST node, based on the name of the command, we select a
corresponding node from Table 1 and use the lookup table to find the variables
and other nodes that this node may depend on. In this step, we cannot assign
values to the variables since they might have different values based on the
paths we took to reach to them. As an example, consider a variable called srcs

holding a list of source files. Based on the operating system, the build system
may append some additional files, like foo arm.cc, to that variable. Thus, we
only keep the nodes and their dependencies. At this level, we may need to
include and parse other build-related files found while traversing the AST by
repeating the previous step.

Assessing the Exposure of Software Changes 9

...
False

SELECT
{UNIX}

False True

SELECT
{GRPC_CONNECTOR

AND UNIX}

librest libgrpc

rest_client.c grpc_client.c

(a) Part of a dependency
graph from the iSulad
project.4

def flatten(node , cond):

if instance(node , SelectNode):

if satisfiable(cond + node.cond):

result += flatten(node.trueNode , cond +

node.cond)

if satisfiable(cond + Not(node.cond)):

result += flatten(node.falseNode , cond +

Not(node.cond))

elif instance(node , ConcatNode):

result += flatten(child) for child in node

.getChildren ()

elif instance(node , LiterlNode):

result += node.getValue (), cond

elif ...

pass

return result

(b) Flattening algorithm for the SelectNode

Fig. 3: When flattening the second SelectNode in (a), the approach should
remember the UNIX=False assumption from the first SelectNode, prune the
True path and only consider the False path.

At the end of this step, DiPiDi has a graph and a lookup table represent-
ing the whole project under analysis, variables, source files, conditions, and
targets.

I3) Dereference Variables

Often in large software applications, there are build-time configuration
and environmental settings that help the build system to reason about dif-
ferent variants of the system (Liebig et al, 2010; Hochstein and Jiao, 2011).
These settings create different dependency paths from the deliverable to the
source files. In the generated Build Dependency Graph, the target nodes which
represent the deliverables reside at the top and the leaves are source files rep-
resented by LiteralNodes. Using this graph and starting from a target node,
we traverse the graph down to the leaves and resolve variables to their values
under different build-time configuration settings (i.e., flatten the variables).

By flattening the variables, we obtain all of the possible values for each
variable for all configuration settings. This information is then saved and can
be accessed through an API when attempting to determine the exposure of a
source code change.

To evaluate the expressions and conditions while flattening the variables,
we used Z3 (Moura and Bjørner, 2008), a library that determines whether a
formula is satisfiable, developed by Microsoft Research. Z3 supports formu-

4 https://gitee.com/openeuler/iSulad

10 Mehran Meidani et al.

1 {
2 "dl_main_curl.c": {
3 "FEATURE_CURL": ["etl"]
4 },
5 "dl_main_stubs.c":{
6 "NOT FEATURE_CURL": ["etl"]
7 },
8 "common.c": {
9 "": ["etl"]

10 }
11 }

1

Fig. 4: An example of the output of the tool based on the given graph in
Figure 1. Each key in the root dictionary is a source file in the project. For each
source file, another dictionary with conditions as keys and targets as values
represents the impacted target given a change which includes the source file.

las involving Boolean, numbers, and strings. We keep track of the evaluation
of each condition along the path to prune the build dependency graph while
reaching each SelectNode. Figure 3(a) shows two SelectNodes in one compila-
tion path. The algorithm does not have any assumption about the variables
when it reaches the first SelectNode, which has a condition on the UNIX vari-
able. Thus, it expands both paths and calls the algorithm to flatten each path
with different assumptions, UNIX=True for the True path and UNIX=False

for the False path. Given the assumption for the False path, when the al-
gorithm reaches the second SelectNode, which has a condition on UNIX And

GRPC CONNECTOR, it does not expand the True path because it is not satisfiable,
as UNIX is False. The output of this phase is all the compilation paths from
each target down to the source files with the conditions that are being held as
True during the path. An example of the output is shown in Figure 4.

3.2 Query Phase

This phase uses the index data generated from the previous phase to find the
impacted deliverables. The steps of this phase are described below:

Q1) Extract Change Set

A commit in the version control systems contains a list of changed files. Since
DiPiDi operates at the file level, which is the same granularity as the build
system, we need the changed file names to start the impact analysis. The
output of this step is a list of changed source files in a commit.

Assessing the Exposure of Software Changes 11

Q2) Traverse Compilation Paths

Given a list of file names and the output of the Index Phase, we can search
all of the compilation paths that include the changed file and create a list of
exposed targets. In this step, the user can optionally add some assumptions
on the configuration settings. Since we store the required conditions for each
path, we can use the Z3 library to filter out the paths which are not reachable
given the conditions set by the user. The output of this step is a list of exposed
targets and the conditions under which each target will be impacted by the
change.

Q3) Simplify Conditions

Since we add each condition to our assumptions while traversing a compila-
tion path, the list of conditions generated by the previous step may contain
duplicates and can be simplified. In Z3, we can pass functions to the reasoning
engine for custom processing steps. These functions are also known as tactics.4

We use the following tactics to simplify the assumptions:

– propagate-values: This tactic propagates the value of each variable be-
tween assumptions. For example, if we have an assumption that a = 0 and
b > a, we can simplify the second assumption to b > 0.

– propagate-ineqs: We then propagate the inequalities and remove the sub-
sumed ones. For example, if we have a > 10 and a > 2 in our assumptions,
we can remove the second one since it is always True if a is greater than
10.

– ctx-solver-simplify: Finally, we remove the assumptions that are always
True. As an example, if we have a, b, a AND b in our assumptions, we
can remove the third one as it is True.

The output of this step is the same as the previous one with some simpli-
fication on the condition list.

4 Research Protocol

To test our hypotheses, we conduct randomized controlled experiments with
the three groups defined. Study participants are asked to perform a set of
prescribed tasks with their usual development setup without additional help
(control group), with a baseline change impact analysis tool (positive control
group), and with DiPiDi (treatment group). We measure the effectiveness of
our tool by comparing the responses of the participants with an established
ground truth. We measure the efficiency of our participants by comparing the
duration of each task across the groups.

4 https://www.philipzucker.com/z3-rise4fun/strategies.html

12 Mehran Meidani et al.

4.1 Variables

This section presents an overview of the study variables, which are further
described below.

4.1.1 Independent Variable

In our study design, the tool support provided to the participants varies (No
Tool, With Existing Tool, and With DiPiDi) which is represented by the Tool-
ing Level independent variable. All tooling levels have access to the same in-
formation and interface. The only difference in access is the additional output
of the Existing Tool/DiPiDi for the relevant groups. More specifically, each
group is defined as follows:

1. No Tool. This group has access to the code change and other files in the
project, including the build specifications. They can use their preferred
development environment to perform the tasks. This group is a control
group and represents the current practices used by software developers
attempting to determine which deliverables are affected by a source code
change.

2. Existing Tool. This group has access to the same environment as the
No Tool group, as well as the output of the change impact analysis gener-
ated using the Understand Tool (SciTools, 2022). This group is a positive
control group and represents the current approaches used by software engi-
neering research to aid software developers attempting to determine which
deliverables are affected by a source code change.

3. DiPiDi: This group – the treatment group – has access to the same en-
vironment as the No Tool group, as well as DiPiDi. The participant can
interact with the tool using the Query Interface as described in Section 3.
Our tool can print the impacted deliverables at the file level. Although
the file granularity may overestimate the true impact of a change, it is the
granularity at which the build system operates.

Participants in all groups may use any external tool that they feel may
be helpful. Thus, even the results from the No Tool group can be viewed as
a baseline set of current approaches used by the developers. We collect the
names of the tools that our participants used and report them in Section 5.

4.1.2 Dependent Variables

Our dependent variables are outlined in Table 2. We discuss our reasoning for
these variables below.

1. Exposure analysis effectiveness: The score from each task indicates
how close the answers of the participants are to the ground truth. We could
alternatively determine if a participant provides fully correct answers for
each task and consider the ratio of correct answers to total tasks. However,

Assessing the Exposure of Software Changes 13

Table 2: The dependent variables of the study

Name Description Scale Operationalization
Number of cor-
rectly identified
deliverables

Ratio of the impacted deliverables
correctly identified by the partic-
ipants under a specific build-time
configuration over the known im-
pacted deliverables (RQ1)

ratio Computed at the
end using the
harmonic mean (F-
measure) for task
types A & C. See
Sections 4.3 & 4.6.2

Relative rate of
correctly identi-
fied deliverables

Normalized pairwise disagreements
between participant rankings of
patches in terms of the number of im-
pacted deliverables, and known cor-
rect rankings (RQ1)

ratio Calculated at the
end for tasks of type
B. See Section 4.6.2

Exposure analysis
effectiveness

The sum of the number of correctly
identified deliverables and relative
rate of correctly identified deliver-
ables (RQ1)

ratio Computed at the
end using the num-
ber of correctly
identified deliv-
erables and the
relative rate of
correctly identified
deliverables.

Task time The time needed for each partici-
pant to complete a task subtracting
pauses (RQ2)

ratio Measured by our
web application.
The participant can
pause a task and
resume manually.
See Section 4.2.4

Exposure analysis
efficiency

Ratio of the total score of the partic-
ipant over the sum of all Task times
(RQ2)

ratio Total score is the
sum of the scores of
all of the individ-
ual tasks. See Sec-
tion 4.6.2

we believe that our approach, which indicates how close participants are to
fully correct answers, allows us to obtain a finer-grained insight into how
participants complete their tasks. Thus, we consider our task scores (i.e.,
Number of correctly identi�ed deliverables & Relative rate of correctly iden-
ti�ed deliverables) to be good proxies for exposure analysis effectiveness.

2. Exposure analysis efficiency: We define exposure analysis efficiency as
the duration from the initiation to completion of each task in seconds.
As a result, completing tasks more rapidly will result in higher efficiency.
This way, we consider both the fully correct answers and the partial ones,
especially in the rank-based tasks (see Section 4.3).

4.1.3 Confounding Variables

Because different code changes might affect the results of our participants,
we control the code changes made available to them. The confounding vari-
ables that we consider for our study are presented in Table 3. We present
patches from three different projects to ensure our results are not biased to-
wards any single project. We also control build-time configuration settings to

14 Mehran Meidani et al.

Table 3: The confounding variables of the study

Name Description Scale Operationalization
CMake experience Participant’s experience in working

with CMake build system
ordinal Measured: 3-point

scale (“none”,
“tried”, “used
in professional
development”);
questionnaire

Code changes Changed code in diff format along
with the other source files of the
project

nominal Design: each partic-
ipant gets patches
from three real-
world projects

Configuration set-
tings

Environmental and build configu-
ration settings of the build system:
default configuration, custom

nominal Design: for appli-
cable tasks, each
participant gets two
configurations for
build settings.

Current program-
ming practice

How often the participant cur-
rently programs

ordinal Measured: 3-point
scale (“not”, “some-
times”, “often”);
questionnaire

Development ex-
perience

Participant’s software development
experience in years

ordinal Measured: 5-point
scale (“less than
a year” ... “10
years or more”);
questionnaire

Fitness Physical fitness of the participant,
like tiredness, during the experi-
ment

ordinal Measured: 5-point
scale (“very tired”
... “very fit”);
questionnaire

Perceived task dif-
ficulty

Participant’s overall perception of
the task provided during the exper-
iment

ordinal Measured: 3-point
scale (“easy”, “av-
erage”, “hard”);
questionnaire at the
end

Project-specific
experience

Participant’s past experience with
the provided project and patch

ordinal Measured: 3-point
scale (“none”,
“user”, “contribu-
tor”); questionnaire
at the end

evaluate tooling levels with multiple build configurations without introducing
confounding factors. We gather demographic information like the Development
experience in order to control their correlation with the dependent variables.
We also use these variables to inform our data preprocessing (e.g., provide
context to determine why a participant might not have finished a task) and
for further analysis. We use this data to augment the statistical analysis and
make decisions about whether a participant is suitable for a task.

Assessing the Exposure of Software Changes 15

4.2 Materials

In this section, we describe the materials that we use in this study.

4.2.1 DiPiDi

We developed a prototype implementation of DiPiDi to reveal the exposure
of a change in a structured manner. In a nutshell, our tool processes build
specifications statically to produce a Build Dependency Graph (BDG), which
we traverse to assess exposure. Before conducting the experiments, we perform
the Indexing Phase on the projects that are being presented to our participants
and save the output. Participants in the DiPiDi tooling level of the experiment
use tool’s querying features to perform the assigned tasks.

4.2.2 Existing tool

To assess whether the improvements in the DiPiDi tooling level (treatment)
group are related to the approach implemented by our tool, we select a recent
and available impact analysis tool to employ in the Existing tool (positive
control) group.

Unfortunately, most of the proposed impact analysis tools are prototypes (Li
et al, 2013). Additionally, due to our project selection and since our implemen-
tation of the DiPiDi approach supports CMake build specifications, the impact
analysis tool must support the C++ programming language. For example, we
had originally selected Frama-C; a tool proposed by Kirchner et al (2015).
Frama-C is an industrial-grade static analysis tool, which can perform im-
pact analysis on C and C++ projects. However, Frama-C only works on C++
projects with the help of an early access plugin, which has limited support
called Frama-Clang, which converts C++ code to plain C code before running
other analysis in Frama-C. This plugin is in its early stage of development
and has known issues, as mentioned on the official Frama-C website.5 While
we originally believed that this plugin would allow us to complete compar-
isons with DiPiDi, in our case, Frama-C could not parse or convert any of the
projects that we analyzed in the study. This appears to be due to new syntax
introduced in C++17 which is currently not supported by the Frama-Clang
plugin.

Therefore, as a replacement, we decided to use Understand, a commercial
tool developed by SciTools (2022) and used in previous studies (Orrú et al,
2015; Fontana et al, 2011). Understand is a comprehensive static analysis
tool with more than 100 features. However, acquiring a license, installing, and
applying the Understand to each of the studied projects would be unwieldy for
our participants; thus, it is not applicable to use in our study as is. Fortunately,
Understand’s features are also available through a Python API. Therefore,
we develop a presentation layer for Understand’s impact analysis API and

5 https://frama-c.com/fc-plugins/frama-clang.html

16 Mehran Meidani et al.

represent the result in a web application for the participants. This allows our
participants to access useful Understand functionality without the burden of
installing and applying it. More specifically, for each project:

1. We extract the list of function-level dependencies from Understand.
2. We keep track of where functions are defined in each file as reported by

the Understand tool.
3. We persist the result in a structured format (i.e., JSON) that can be con-

sumed by our web application.

Later during the study, the participants can paste a commit ID into the
web application to produce Understand-based impact result for the changed
program elements. The web application extracts a list of changed functions
from the commit and identifies impacted files by traversing the dependencies
that Understand computes. Note that the existing tool provided to the partic-
ipants is simply a presentation layer for the Understand tool—all of the results
presented to the participants are therefore calculated by Understand.

The difference between Understand and Frama-C is that Understand oper-
ates at the function level, while Frama-C can analyze impacts at the statement
level. However, when using Frama-C, the user should install the tool, import
the project, and manually select the statements that changed in the commit.
By leveraging the API of Understand, however, we make the results of the
existing tool accessible through a web interface. The script we use to persist
the structured function-level data is available in our repository.6

While DiPiDi identifies the impacted deliverables by statically analyzing
the build code and considering all build-time configurations, Understand (and
other impact analysis tools available today) identify the impacted files by ana-
lyzing the source code of the project, without considering build configurations.
Then, it is the responsibility of the developer to find the impacted deliverable
by matching the file names with the build code.

4.2.3 Studied Projects

Table 4: Summary of the selected projects

Name Line of Codes Commits

ET: Legacy 3,706,703 11,047
libuv 113,414 4,928
Box2D 128,474 1,282

We select three projects using GitHub search. We first select projects that
mentioned CMake in their README file, and then sort by the number of stars
for each project. A summary of the selected projects is presented in Table 4.

6 https://github.com/software-rebels/cmake-inspector/blob/master/UNDGraph.py

Assessing the Exposure of Software Changes 17

As explained in Section 4.3, participants are asked to rank three patches
based on their impact on the project, e.g., a patch that impacts three platform-
specific versions of the project has higher rank than a patch that impacts one
platform-specific version. Participants are also asked to identify the configu-
ration settings in which the changes in the patch propagate to the project
deliverables. Thus, for each studied project, we iterate over patches in reverse
chronological order, selecting patches that impact a different number of de-
liverables under different configuration settings until three patches have been
selected (nine patches in total). To identify the impacted deliverables, we man-
ually inspect the source files and find the deliverables that are impacted by
the changed code. We use this as our ground truth. While DiPiDi reports
changes at the file-level, in this study, participants are asked to report im-
pacted deliverables at the code level, a subset of reported deliverables by the
tool.

4.2.4 Experiment UI

Figure 5 shows the web interface for our prototype. As soon as DiPiDi com-
pletes the indexing phase, the web interface connects to the tool using a Re-
mote Procedure Call. In the first section, the user can either choose a changed
file or select a commit. In the second section, the user can add the build con-
figuration settings, which can be Boolean, string, or arithmetic conditions.
Although more complex types of expressions are possible, we leave their eval-
uation for future work, since simple expressions are already pushing the limits
of what our control group can handle. Additionally, we only support the equal

operator in the web interface; however, DiPiDi supports other operators (e.g.,
>, <, etc.). The web application issues the request to a backend service,
which processes the DiPiDi query. The results are then communicated to the
frontend, and the impacted deliverables are presented in the third section.
On the backend side, DiPiDi first iterates over the indexed data to identify
the targets that are impacted by the changed files. Then, DiPiDi applies the
specified conditions (if any were provided) using the Z3 library. If the con-
ditions are still specifiable, DiPiDi adds the target to the impacted list and
returns the final list to the web application. This application is available in
our repository.7

We additionally developed an interactive Web based application to allow
us to conduct our experiment with a diverse range of participants and allow
our participants to rely on their own development environments. The applica-
tion retains a log of answers and the duration of each task. The experiment
UI randomly assigns each participant to a tooling level group and randomly
assigns tasks to the participants, all the while logging which project and tasks
are assigned to whom. Participant information was only made available to
the researchers after all the results had been scored to reduce experimenter
bias (Rosenthal, 1976). The interactive UI is also available in our repository.8

7 https://github.com/software-rebels/dipidi-experiment-ui
8 https://github.com/software-rebels/dipidi-participants-ui

