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Abstract While code review is a critical component of modern software quality as-
surance, defects can still slip through the review process undetected. Previous re-
search suggests that the main reason for this is a lack of reviewer awareness about the
likelihood of defects in proposed changes; even experienced developers may struggle
to evaluate the potential risks. If a change’s riskiness is underestimated, it may not
receive adequate attention during review, potentially leading to defects being intro-
duced into the codebase. In this paper, we investigate how risk assessment analytics
can influence the level of awareness among developers regarding the potential risks
associated with code changes; we also study how effective and efficient reviewers
are at detecting defects during code review with the use of such analytics. We con-
duct a controlled experiment using Gherald, a risk assessment prototype tool that
analyzes the riskiness of change sets based on historical data. Following a between-
subjects experimental design, we assign participants to the treatment (i.e., with access
to Gherald) or control group. All participants are asked to perform risk assessment
and code review tasks. Through our experiment with 48 participants, we find that the
use of Gherald is associated with statistically significant improvements (one-tailed,
unpaired Mann-Whitney U test, α = 0.05) in developer awareness of riskiness of code
changes and code review effectiveness. Moreover, participants in the treatment group
tend to identify the known defects more quickly than those in the control group; how-
ever, the difference between the two groups is not statistically significant. Our results
lead us to conclude that the adoption of a risk assessment tool has a positive impact on
code review practices, which provides valuable insights for practitioners seeking to
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enhance their code review process and highlights the importance for further research
to explore more effective and practical risk assessment approaches.

Keywords Code Review · Risk Assessment · Controlled Experiment

1 Introduction

Code review has long been a part of quality assurance processes for industrial soft-
ware development. Its practice has been recognized to offer a number of benefits,
including easing onboarding and mentoring of new hires, promoting a shared under-
standing of the system design, and improving overall code quality, including early
detection of defects [1, 2]. There are still a large proportion of changes that, despite
being reviewed, introduce bugs into codebases in practice [3]. Prior work [4, 5, 6]
suggests that this may be mainly due to the lack of reviewer awareness of the riski-
ness of proposed code changes. While code review tools typically provide reviewers
with a fine-grained view of textual differences that highlight the proposed changes, it
can be difficult for even the most seasoned developer to retain the historical context in
which changes are performed. As a result, changes to code areas that have been his-
torically prone to defects are likely to be underestimated and insufficiently reviewed,
which in turn may allow defects to slip into the codebase.

Despite the existence of various approaches to identifying risky code areas, little
research has been conducted to investigate whether and how the code review process
can take advantage of change risk assessment techniques. As a preliminary explo-
ration of potential improvements for code review processes, we attempted to incor-
porate Just-In-Time (JIT) defect prediction [7, 8, 9, 10, 11], which mines historical
records of defect-fixing and fix-inducing commits to train models that assess the risk
of changes based on their characteristics (see Section 3). The motivation to explore
those two techniques, in specific, is that they have been well explored by prior re-
search and are readily available as tools that can be integrated into code review. While
JIT models can identify risky changes effectively [9, 10, 12], they are not helpful in
the code review process due to their inability to provide clear reasoning and action-
able messages [13]. Moreover, prior work argues that, to be integrated smoothly into
code review, bug detection tools should have a false positive rate of no more than
10% [14, 15]. When we applied JITLine [12] — a state-of-the-art JIT defect predic-
tion approach — on our collected data from Qt and Apache, we obtained a precision
of 0.17 and 0.12, respectively, which falls well below acceptable performance levels.
Next, we explored if Automatic Static Analysis Tools (ASATs) [16, 17, 18, 19, 20]
could improve the code review process; ASATs scan codebases for patterns that are
associated with concrete defect cases, such as use-after-free and buffer overflows.
We found that while ASATs provide actionable reports, they do not provide a com-
prehensive assessment of the risk posed by a change. For example, defects that are
not associated with known patterns (e.g., logic errors, incomplete implementations or
requirements) cannot be detected.

Reflecting on the results of our preliminary investigation, we propose Gherald,
a prototype that enhances code review interfaces with risk assessment capabilities.
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Gherald measures popular risk metrics used by defect prediction techniques and en-
ables developers to gain insight into the riskiness associated with the author, file, and
method involved in a code change. We hypothesize that the usage of Gherald during
code review impacts developers’ risk awareness (i.e., the ability to estimate the risk
posed by change sets), effectiveness (i.e., the ability to identify defects when they are
present), and efficiency (i.e., the speed at which review tasks are completed). To eval-
uate our hypothesis, we perform an experimental study to investigate three Research
Questions (RQs):

(RQ1) Is the use of Gherald associated with greater awareness of the riskiness
of changes?

Motivation: Understanding the risk associated with a proposed change is an
important requirement for effective code review [1] and for the optimal allo-
cation of code review effort. Therefore, we conjecture that displaying heuris-
tics during code review can significantly improve reviewers’ ability to esti-
mate the risk of a change.

(RQ2) Is the use of Gherald associated with an improvement in code review ef-
fectiveness?

Motivation: To avoid defects in customer-facing products, reviewers strive to
identify as many as possible after changes are performed in a code base. Iden-
tifying defects is one of the key motivators for performing code review [1],
particularly for defects that are hard to catch through testing such as those in-
volving concurrency [21]. We hypothesize that Gherald can influence code
reviewers’ ability to identify existing defects in the set of changes under
scrutiny.

(RQ3) Is the use of Gherald associated with an improvement in code review ef-
ficiency?

Motivation: A side effect of code review that is often negatively perceived
by developers is the potential increase in the time taken for a change to be
incorporated into a software release [21]. As a result, developers seek to min-
imize the duration of the code review cycle, which includes the identification
of defects by reviewers. Therefore, we want to investigate whether Gherald
can shorten the time taken by code reviewers when identifying defects in a
change set.

To investigate our RQs, we evaluated Gherald using a controlled experiment with
48 participants, employing a between-subjects experimental design [22] by dividing
participants into two groups: one with tool assistance from Gherald (treatment group),
and one without (control group). We compared the performance of the two groups on
pre-assigned risk assessment and code review tasks. More specifically, we measured
how well participants estimate the defect density of a change set (RQ1), how many
defects participants are able to detect in a change set (RQ2), and how quickly partic-
ipants can detect these defects (RQ3).
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We found that Gherald was associated with statistically significant improvements
in developers’ awareness of the riskiness of code changes and their code review ef-
fectiveness. However, the difference between the treatment and control groups was
not statistically significant with respect to code review efficiency. Overall, we found
that the use of a risk assessment tool had a positive effect on code review practices.
With the assistance of Gherald, developers had greater awareness of the riskiness of
code changes and were able to detect defects more effectively.

1.1 Paper Organization

The remainder of the paper is organized as follows. Section 2 situates this work with
respect to the literature and provides a motivating example to illustrate the intended
use case. Section 3 introduces our proposed risk assessment prototype. Section 4 out-
lines the design of our between-subjects experiment, while Section 5 presents the
results. Section 6 discusses the findings and practical implications. Section 7 de-
scribes the threats to the validity of this study, and Section 8 summarizes our work
and presents our conclusions.

2 Related Work and Motivational Example

In this section, we discuss research that relates to code review and risk assessment
approaches, and we provide an example that motivates our study.

2.1 Code review

Peer code review, as a manual code inspection process performed by fellow devel-
opers, has long been applied to ensure the quality of software projects [23, 24]. The
concept of code review dates back to 1976 when Fagan proposed a highly struc-
tured process called code inspection [25], where the authors and reviewers sit to-
gether in an in-person meeting, follow a checklist, and conduct line-by-line group
reviews for the code under examination. This process has been proven beneficial
in defect finding [26]; however, due to its cumbersome, time-consuming, and syn-
chronous nature [27], the traditional code inspections have been gradually replaced
by a more lightweight, tool-based, and asynchronous practice — modern code re-
view [1]. Nowadays, modern code review has been increasingly adopted in both in-
dustrial (e.g., Google [2], Microsoft [1], Facebook [28]) and open-source projects [29,
30] and inspired numerous related studies [3, 31, 32, 33, 34].

Despite its wide adoption, developers still encounter challenges in the code re-
view process, especially in understanding the context and the content of changes [1,
35, 36]. As a result, in recent years, considerable research effort has been invested
in developing techniques to mitigate this challenge and improve code review perfor-
mance, which is typically measured by the number of defects found (effectiveness)
and the time taken to find them (efficiency) [37]. For example, researchers have ex-
plored various visualization techniques to enhance developers’ understanding of the
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code changes [38, 39, 40, 41]. Zhang et al. proposed a tool that summarizes similar
changes and detects potential defects based on the change content and context [42].
Tao et al. found that the code review process can be hindered by the presence of large,
composite code changes that comprise multiple independent issues [36]. To address
this, several approaches were proposed to decompose composite changes into groups
of cohesive and self-contained changes [43, 44, 45].

Additionally, given the cognitively demanding nature of code review [1, 30, 46],
a number of studies have been conducted to improve the performance of code review
by reducing its cognitive load on developers (i.e., the amount of working memory
necessary to perform a task) [47]. For example, Gonçalves et al. [48] studied whether
explicit review strategies — such as using a checklist — can reduce developers’ cog-
nitive load and improve the overall performance of code review. Moreover, there has
been research examining the role of displayed file order in code review and exploring
its potential to improve code review performance. Baum et al. [49] proposed to reduce
the cognitive load of reviewers by presenting the change parts in a more helpful order,
such as by grouping related change parts together. Similarly, Fregnan et al. [50] con-
ducted a user study to evaluate the hypothesis that displayed file order has an impact
on the code review performance in defect detection. Building upon these ideas, we
hypothesize that ranking changes by their associated risk will promote developers’
performance (i.e., effectiveness and efficiency) in code review.

2.2 Risk assessment approaches

In the past decades, a plethora of studies have explored how to identify defect-
prone components so that quality assurance resources can be allocated effectively.
One common approach is to apply defect prediction models, which are trained us-
ing historical release data to identify modules (i.e., files, classes, or packages) with
a higher likelihood of post-release defects [51, 52]. However, traditional defect pre-
diction models tend to provide recommendations at a coarse granularity, which is
impractical for real-world application [7, 53, 54]. For example, such models often
suggest inspection of large files or packages, which can be too complex for devel-
opers to recall and resolve effectively after a release. Moreover, as these files or
packages are often contributed by multiple developers, it is unclear who should be
responsible for the inspection task. Recently, the concept of Just-In-Time (JIT) defect
prediction has emerged [7, 11, 54, 55, 56], which improves the traditional defect pre-
diction methods by making predictions at a finer-grained change-level and assigning
predictions to a specific author of the change. More importantly, JIT defect predic-
tion models can monitor code change in real-time as they are created, which allows
for prompt defect inspection and correction while design decisions are still fresh in
developer’s memory. Nowadays, JIT defect prediction has been adopted by many in-
dustrial software teams, including Avaya [55], Blackberry [54], and Cisco [57]. Also,
an increasing number of recent studies have sought to improve JIT defect prediction
models [8, 9, 10, 11, 12].

Automatic static analysis tools (ASATs) are another popular approach to finding
potential defects in code changes and to help assure software quality [58]. With the
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aid of ASATs, some coding standard violations and common defect patterns can be
automatically detected, which can significantly reduce reviewers’ effort during code
review. In recent years, ASATs have been widely adopted into the software devel-
opment process for defect detection and have supported a variety of programming
languages and defect patterns [16, 17, 18, 19, 20, 59].

Our study aims to explore whether the use of risk assessment can enhance a re-
viewer’s risk awareness and improve their code review performance. We have con-
sidered using an existing risk assessment approach to evaluate its relationship with
code review performance. However, we found that ASATs suffer from a high rate of
false alarms so that developers often ignore most of their warnings [14, 60, 61]. Pre-
vious research has indicated that a significant percentage, ranging from 35% to 91%,
of bug warnings generated by ASATs are routinely disregarded by software develop-
ers [62, 63, 64]. Furthermore, ASATs primarily operate at the line level, where they
identify defects by matching code against predefined defect patterns. This mechanism
limits their ability to offer a comprehensive assessment of the overall risk associated
with a code change. We also found that there are still some challenges in integrat-
ing JIT defect prediction models into code review, such as the inability to explain the
prediction results and provide actionable suggestions [57]. Moreover, existing JIT de-
fect prediction models are unable to achieve the level of performance (i.e., less than
10% false positives) needed for code review integration [14, 15]. Khanan et al. [65]
introduced a JIT defect prediction bot, JITBot, providing explainable and actionable
feedback in code review; however, it does not take into account historical change
characteristics (e.g., prior changes and developer experience), which are essential to
the defect-proneness of a change. Recently, Fregnan [15] compiled a set of require-
ments needed for integrating defect prediction into code review practices. Building
upon their findings, we introduce a risk assessment prototype for this study. Further
details are described in Section 3.

2.3 A Motivational Example

Suppose Alice is a developer who has recently joined a software project. As part
of her duties, she is expected to conduct code reviews for changes submitted by the
other team members. Recently, she has received three pending review requests, one
of which was submitted by a junior developer, Bob, who has made a 10 LOC bug fix
to a major feature of the project.

Of course, Alice is also occupied with her own development tasks. In order to
effectively manage her workload, Alice decides to focus more of her reviewing efforts
on the riskier patches. Based on her intuition and experience, she believes that larger
patches are generally more complex and thus have a higher likelihood of containing
issues that require explicit consideration. Consequently, she prioritizes the largest
patches and takes ample time to review them thoroughly. Bob’s bug fixing change,
on the other hand, contain only minor modifications to the source code, so Alice
quickly reviews and approves it; however, there are underlying risks at play. First,
the file that Bob modified is historically bug-prone, which can be inferred from the
number of bug fixes it has been associated with. Also, Bob, as a junior developer,
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Table 1: The statistics of the studied systems and the performance of JITLine in the
preliminary study.

System Timespan Changes Performance
Start End Total Defective Precision Recall F1 AUC FAR d2h

Qt 08/2009 08/2022 57,784 12,146 0.49 0.17 0.26 0.75 0.03 0.59
Apache 07/2002 07/2022 6,839 590 0.30 0.12 0.17 0.82 0.01 0.62

has little experience with the project and has not modified this particular file before.
Consequently, after her cursory inspection, a bug is inadvertently introduced into the
codebase as Alice approves the change of an inexperienced developer working on a
historically defect-prone file.

Now let us consider the potential benefits of providing Alice with a risk assess-
ment tool that offers contextual information about the changes being made. Such a
tool could inform her about the number of changes the author has contributed to the
project and the modified files. Also, the tool could provide information about the
number of prior changes and prior bugs related to each file and method in the patch.

Such a risk assessment tool would not strive to identify specific coding mistakes
vis-a-vis ASATs. Instead, it would provide contextual information that may be over-
looked by reviewers. We anticipate that this tool would improve the reviewers’ aware-
ness of the risk associated with changes, thereby reducing the likelihood of defective
code being introduced into the codebase.

3 Gherald

We introduce a risk assessment prototype — Gherald— to analyze the riskiness of
code change based on the historical data of its author, files, and methods.

3.1 Preliminary Study on Existing Solutions

Prior works on JIT defect prediction suggested approaches to measure the risk of a
change [7, 8, 9, 10, 11]. We evaluated the potential of incorporating JITLine [12],
which is currently the most accurate, cost-effective, and time-efficient approach for
predicting JIT defect-introducing changes; however, we decided not to adopt it when
we found its performance to be inadequate. As the dataset used for JITLine is out-
dated, we collected the most recent data from Qt Base (Qt) and Apache Commons
Lang (Apache) and replicated the study. Specifically, we started with a dataset of un-
reviewed changes and extracted two groups of features: a) token features i.e., source
code tokens of a change, and b) code features i.e., specific properties of the code
changes, such as the size of the change, the number of modified files, and the number
of prior changes that the author produced. We used these features to build a change-
level JIT defect prediction model. The model estimates the riskiness of each new
change by predicting its defect density. The statistics of the dataset and the results of
the study are shown in Table 1. Prior work demonstrated that to be deemed suitable
for adoption in code review, bug detection tools need to produce false positives at a
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Table 2: The metrics of risk assessment.

Metrics Description

A
ut

ho
r

Project experience The relative value of the author’s prior changes com-
pared to the other authors; prior changes: the number
of prior changes submitted by the author.

Recent activity The relative value of the author’s recent changes
compared to the other authors; recent changes: the
number of prior changes submitted by the author
weighted by the age of the changes.

File expertise The relative value of author’s file awareness com-
pared to the other authors; file awareness: the pro-
portion of the prior changes to the modified files that
the author has participated in.

Fi
le

/M
et

ho
d

Prior changes The number of prior changes to the object1.
Recent changes The number of prior changes to the object1 weighted

by the age of the changes.
Prior bugs The number of prior bugs occurred in the object1.
Recent bugs The number of prior bugs occurred in the object1

weighted by the age of the bugs.
1 Either file or method.

rate of 10% or less [14, 15]. However, in our replicated study, JITLine yields a preci-
sion of 0.49 and 0.3 for Qt and Apache projects, respectively, which is substantially
below the level of performance needed for code review integration.

Additionally, JIT defect prediction models lack the ability to effectively explain
the features that induce the risk of change. As indicated by prior works [66], Size
properties are the primary contributor for predicting the defect-proneness of a change.
Nonetheless, we designed our study so that participants could complete the code
review tasks in a reasonable amount of time by selecting small- to medium-sized
changes. However, this selection criterion substantially reduces the explanatory power
of a defect prediction model. As a result, instead of constructing a defect prediction
model that produces an overall score indicating the defect-proneness of a change, we
compute and present the metrics that are commonly associated with the riskiness of
a change and are widely used in defect prediction techniques.

3.2 Gherald Risk Metrics

We considered the factors that have been shown to be related to the defect-proneness
of a change in past work. Previous research has consistently highlighted the im-
portance of developer-related information in assessing the likelihood of defects in a
change [55, 67]. For example, Mockus and Weiss found that developers with greater
experience have a significantly reduced likelihood of introducing defects [55]. Con-
sequently, features that characterize the experience of the author of a change have
been frequently employed in JIT defect prediction models to predict the potential
defect-proneness of a change [7, 66].



Risk Assessment in Code Review 9

Historical features of a change have also proven valuable in predicting whether
it will induce a defect. Past studies have shown that measures such as the number of
prior changes and defect fixes associated with a file are reliable indicators of that file’s
susceptibility to defects [68]. Moreover, a large proportion of developers opt for the
most recently modified file and the most recent buggy file to identify potential buggy
files during code reviews [69]. Hence, we believe that historical information, both at
the file level and through a more granular method-level analysis, will be beneficial
for risk assessment of a change.

While attributes in Size and Diffusion dimensions have been commonly deemed
important for assessing change risk, this information is typically evident within the
change itself — it is hard for a reviewer to miss an abnormally large change. Fur-
thermore, our experimental design focused mainly on small changes affecting only
a small number of files to ensure participants could grasp the context and complete
the tasks within the allotted time. Consequently, we did not include these particular
features as additional considerations in our study.

Ultimately, we computed a broad range of metrics concerning the three cate-
gories: author, file, and method. Table 2 provides an overview of these metrics.

Author metrics measure the author’s relative project experience (i.e., how many
changes the author has committed), their recent activity (i.e., how many changes the
author has recently committed), and their file expertise (i.e., how many changes the
author has committed to the files in change) compared to the other authors. For each
change, we first measure the author’s (a) prior changes, (b) recent changes, and (c)
file awareness using past changes. We followed the same approach used in prior
studies [55, 66] to assess these attributes. Prior changes refer to the number of past
changes the author has submitted to the codebase. Recent changes is measured by
weighting the prior changes by their age; specifically, we apply a weight of 1

1+age
to each change and sum the weighted values, where age represents the time elapsed
since the date of change measured in years. File awareness is calculated as the pro-
portion of the prior changes to the modified files that the author has participated in.

Given that the absolute metric values lack interpretability — making it challeng-
ing for reviewers to discern whether an author’s prior changes are more or less than
those of other authors — we transformed these metrics into relative values. To facil-
itate meaningful comparisons among different authors, we normalized the values by
dividing them by the maximum value observed within the six-month period preced-
ing the date of the change. This normalization allowed us to establish the author’s
relative project experience, recent activity, and file expertise.

File/Method metrics measure the change history and past defect tendencies of
the modified files and methods. For each change, we computed prior changes and
prior bugs by measuring the number of prior changes and bugs that are associated
with each modified file and method. To account for the recency, we also measured the
file and method’s recent changes and recent bugs. Similar to the procedure applied
for author’s recent changes, we assign a weight to each change or bug, and sum the
weighted values.
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3.3 Change-Level Risk Score

With the risk metrics measured, we assessed the riskiness at the change level. In-
stead of presenting an overall score that summarizes all risk metrics and predicts the
likelihood of a change being defect prone, we introduced individual risk scores for
each category at the change level. This allows reviewers to easily identify the specific
risk factors contributing to defect-proneness. Since we did not find a suitable solution
in existing literature, we developed our own heuristics to quantify the risk for each
category.

Author risk. The author risk score was calculated by taking the complement of
the average score of the author’s a) project experience, b) recent activity, and c) file
expertise using this formula:

CRiska = 1− 1
3
(ProjExp+RecAct+FExp)

File/Method risk. To measure the file and method risk score, we first compute
the risk score at the file/method level, which is calculated by taking the odds ratio of
recent defect-proneness:

FRisk/MRisk = log(RecCng+2)× RecBug+1
RecCng−RecBug+1

,

To mitigate the occurrence of incomputable values when the denominator equals zero,
we increased the denominator by one. We also added one to the numerator to prevent
risk scores from being zero when recent bugs are absent, which is quite common in
the case of new files/methods with limited recent changes. As suggested by prior re-
search [7], we recognized that modules that have undergone more changes are likely
to be more risky, as the reviewers need to recall and track more previous changes.
Consequently, a file/method with a substantial number of recent changes is more sus-
ceptible to risk than one with only few recent changes, even if they possess the same
bug-change odds ratio. To account for such distinction, we incorporated a corrective
factor log(RecCng+2) and multiplied the odds ratio by this factor. We added two to
the file recent change to ensure it would not result in negative or zero values.

The overall risk score at the change-level was computed by taking the mean of
the risk score of each file/method involved in a change:

CRiskf/m =
1
n

n

∑
i=1

(log(RecCng+2)× RecBug+1
RecCng−RecBug+1

)

To improve the explanability and interpretablity of the risk score, we normalized the
score by dividing its value by the maximum value in the recent six month prior to
the author date of the change. This allows the score to be interpreted as the relative
file/method risk compared to the other changes.
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4 Experiment Design

We conducted a controlled experiment1 to examine how the use of Gherald impacts
code review practices. We employed a between-subjects experimental design [22] by
assigning participants into two groups: the control group, who were not given access
to our risk assessment tool Gherald, and the treatment group, who were given access
to Gherald. We then asked the participants to perform a set of risk assessments and
code review tasks. Afterwards, we compared the groups in terms of their risk aware-
ness and code review performance (i.e., code review effectiveness and efficiency).
Figure 1 provides an overview of our study design.

4.1 Pre-Experiment Data Collection

4.1.1 Subject Systems/Communities

We perform our study on Apache Commons Lang,2 which provides helper utility
methods for the manipulation of Java core classes. We chose this system for several
reasons: First, Apache3 is one of the largest open-source organizations, and projects
hosted by the Apache Software Foundation follow a standard issue-reporting process
and adhere to a common set of code review policies. Also, because it is a library of
utility methods, Apache Commons Lang is designed to be easy to use and understand.
The files and methods are decoupled and independent. Moreover, each method is
named in a clear and descriptive manner and contains a well-written description that
not only explains how to use the method, but also provides examples demonstrating
its usage. Since our experiment involves participants conducting code reviews, fa-
miliarity with Java development is sufficient to understand the changes selected from
Apache Commons Lang, without requiring any additional contextual learning.

4.1.2 Data Extraction

We extracted the issue data (e.g., IssueID, CreatedDate, Type) from the Jira issue
tracking system (ITS) used by the Apache Commons Lang development team4 and
selected the issues of the type Bug. Next, we extracted the commit data from the git
version control system5 (VCS) and joined it with the issue data using the unique iden-
tifier for issues (i.e., IssueID). This allowed us to identify the defect-fixing changes.
Then we applied the SZZ algorithm using PyDriller [70] to identify the fix-inducing
changes — the set of changes that last “touched” the lines that were modified by the
defect-fixing changes.

1 This experiment was reviewed by and received ethics clearance from the University of Waterloo Re-
search Ethics Committee (ORE #44022).

2 https://commons.apache.org/proper/commons-lang/
3 https://www.apache.org
4 https://issues.apache.org/jira/projects/LANG/issues/
5 https://github.com/apache/commons-lang/
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Post-experiment Questionnaire

Participants w/o
Gherald

Participants w/ 
Gherald

Change Set 5
FA E

Change Set 4
FA D

Change Set 3
FA C

Change Set 1
FA B

Change Set 2
GA B

A C D E F GB

Issue
Tracking
System

Version
Control
System

Extract
Commit Data

Extract
Issue Data

Merge Data and Apply SZZ

Data Extraction

Data Filtering

Gherald
Risk Assessment

Change Selection

Pre-Experiment Data Collection

Pre-experiment Questionnaire

ZX Y

Experiment

Task A
(RQ1)

Task B
(RQ2, RQ3)

Fig. 1: An overview of our study.

4.1.3 Data Filtering

Since the SZZ algorithm may result in false positives in identifying fix-inducing
changes, we applied a list of filter steps to remove the suspicious data and to mit-
igate noise [66]. We closely followed McIntosh and Kamei’s data filtering approach
that refined and produced a widely-adopted dataset in JIT defect prediction studies.
Table 3 shows the number of fix-inducing changes after applying each filter sequen-
tially. First, we filtered out changes that updated only code comments and whitespace
(F1) [71], as such changes are typically irrelevant to fix-inducing events. Next, we
excluded the fix-inducing changes that were committed after the date that the de-
fect was initially reported (F2) [72]. We also removed the outliers that change more
than 10,000 lines (F3a) or more than 100 files (F3b). Furthermore, due to limita-
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tions of the SZZ algorithm, which identifies only commits that introduce new lines
as possible fix-inducing changes [73], we eliminated changes that did not introduce
new lines (F3c). Then, we stratified the data into time periods and analyzed the rate
of fix-inducing changes. We excluded time periods with unstable fix-inducing rates
(F4), particularly the last year of data collection with a diminishing fix-inducing rate
approaching zero. Finally, we filtered out the suspicious fixes (F5) and suspicious
fix-inducing changes (F6). Specifically, we calculated the upper Median Absolute
Deviation (MAD) of the number of bugs fixed for each change and the number of
fixes induced by each change. Then, we ignored changes that fix or induce more than
the respective MAD value.

Table 3: The number of changes after each filtering step.

# Filter Total # Fix-inducing % Fix-inducing

F0 No filters 6839 590 9%
F1 Code comments and whitespace 6361 590 9%
F2 Issue report date 6250 479 8%
F3a Too much churn 6245 477 8%
F3b Too many files 6231 474 8%
F3c No lines added 5922 474 8%
F4 Period 5468 473 9%
F5 Suspicious fixes 5281 286 5%
F6 Suspicious inducing changes 5256 261 5%

4.1.4 Gherald Risk Assessment

After cleaning the dataset through the filtering phase, we proceeded to compute the
risk metrics and calculate the change-level risk scores for changes in the dataset, as
detailed in Section 3.2 and Section 3.3.

4.1.5 Change Selection

We required a set of code changes to seed the reviewing tasks that participants were
asked to complete. To select the code changes for our experiment, we applied a list
of inclusion/exclusion criteria to the filtered changes in the project. To avoid out-
dated changes that may be refactored or deprecated by recent changes, we excluded
changes submitted ten years prior to our change selection. Due to the limited time
that participants had to perform the experiment, we ignored large changes — those
that modify more than 200 lines or more than ten files — since they require a consid-
erable investment of time to review. Then, we inspected the remaining changes and
selected a sample set that, in our opinion, clearly state a well-scoped problem, are
conceptually self-contained, and are straightforward to understand without requiring
reading other source files or documentation.
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Table 4: Code changes selected for the experiment.

Change Class & Method Detail Defect

A StringUtils: unwraps a
string from a string/char

Add condition checking
for invalid string length

Incomplete condition check-
ing

B StringUtils: checks if any
one of the CharSequences

are not empty/blank

Add new methods Return incorrect boolean for
certain case

C NumberUtils: checks
whether the String is a valid
Java number

Handles octal notations Incorrect conditional branch-
ing for octal numbers without
considering decimal fractions

D NumberUtils: turns
a string value into a
java.lang.Number

Deal with all possible
prefixes for hex num-
bers; handle large hex
numbers

(1) Incorrect conditional
branching for Long and
BigInteger; (2) missing a
hex number prefix type

E NumberUtils: converts a
String into a BigInteger

Handles hex and octal
notations

(1) Hex number prefix typo;
(2) missing a hex number pre-
fix type

F StringUtils: wraps a string
with a string/char

Add new methods N/A (has not been found yet)

G StringUtils: gets the sub-
string before the first occur-
rence of a separator

Add a new method N/A (has not been found yet)

Seven code changes were ultimately selected for the experiment. Of these, five
changes (i.e., change A-E) were labelled as Buggy changes, as they necessitated fur-
ther fixes. Two changes that did not induce any fixes by the date of data collection
were labelled as Neutral changes. The selected changes were diverse in terms of class
types, modified methods, as well as associated defects. For example, changes A, B,
F, and G related to character string handling, while changes C, D, and E pertained to
number conversion and parsing. A more detailed description of each change, along
with its associated defect, is provided in Table 4.

4.2 Experiment Platform

We developed a web application for participants to complete their experimental tasks.
The participants were able to directly access the application by opening the URL
provided in their invitation emails. After obtaining the consent of the participant, the
application automatically logged their answers and timed their tasks.

4.3 Experimental Artifacts

4.3.1 Change Sets

We created five change sets, each consisting of three experiment code changes with
varying Gherald risk scores and defect density. The assignment of code changes to
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Table 5: Five change sets selected for the experiment.

Change set Change Defect Count Defect Density

A 1 0.17
1 B 1 0.05

F 0 0.00

A 1 0.17
2 B 1 0.05

G 0 0.00

A 1 0.17
3 C 1 0.06

F 0 0.00

A 1 0.17
4 D 2 0.13

F 0 0.00

A 1 0.17
5 E 2 0.10

F 0 0.00

their respective change sets is presented in Table 5. Each participant was assigned
one of the five change sets for their experiment. We conjectured that changes C, D,
and E were more challenging as they are related to hex and octal numbers which,
compared to basic character string utilities, required a higher level of Java knowledge
and specialized familiarity with Java number types. This conjecture was validated in
a pilot study involving 20 graduate students in computer science, where none of them
identified the defects in changes C, D, and E. Despite this, to improve the generaliz-
ability of the results, we still included these changes to explore the effect of Gherald
on different types of defects at different levels of difficulty. However, we avoided as-
signing change sets containing these changes to participants with less than one year
of development experience or Java experience.

4.3.2 Gherald

Participants in the treatment group were provided with access to Gherald during the
experiment. Figure 2 shows the experiment platform interface for the treatment group.
For each change, an overall risk assessment is presented (Figure 2 1 ), indicating the
riskiness of the author, files, and methods involved in the change. The risk percent-
ages are relative scores compared to the other changes in the six months prior to the
author date of the examined change. Gherald also offers more fine-grained informa-
tion such as author expertise and activity (Figure 2 2 ), as well as file/method change
history and bug tendency (Figure 2 3 4 ).

4.4 Study Variables

This section discusses the variables that we collected and analyzed.
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Table 6: The variables of the study.

Name Description Scale Operationalization

Independent variable:
Risk assessment
support

Whether the participant is
provided with risk assess-
ment support

Nominal See section 4.4.1.

Dependent variables:
Risk awareness Normalized pairwise

agreement between the
participant’s rankings of
changes based on the
estimated risk level and
the rankings of changes be
their future defect density

Ratio Computed at the end of type A tasks
using the participant’s rankings and
the rankings by defect density. See
section 4.4.2.

Code review
effectiveness

Ratio of the total num-
ber of known defects cor-
rectly identified by the par-
ticipants over the number
of known defects in the
change set

Ratio Computed at the end of type B
tasks using the number of detected
known defects and the total number
of known defects.

Code review
efficiency

Number of known defects
correctly identified per re-
view hour

Ratio Computed at the end of type B
tasks using the number of detected
known defects and the review time.

Confounding variables:
Change set The change set provided to

the participants during the
experiment

Nominal Design: each participant is assigned
to a change set selected from the 5
sample change sets

Review order Order of code changes pre-
sented for review

Nominal Measured: 3 types (”high risk to
low risk”, ”low risk to high risk”,
”does not matter”); pre experiment
questionnaire

Development
experience

Years of participant’s soft-
ware development experi-
ence

Ordinal Measured: 3-point scale (”less than
a year”, ”1 year to 5 years”, ”5 years
or more”); pre experiment question-
naire

Java experience Years of participant’s Java
experience

Ordinal Measured: 3-point scale (”less than
a year”, ”1 year to 5 years”, ”5 years
or more”); pre experiment question-
naire

Code review
experience

Years of participant’s code
review experience

Ordinal Measured: 3-point scale (”less than
a year”, ”1 year to 5 years”, ”5 years
or more”); pre experiment question-
naire

Coding hour
per week

Participant’s average cod-
ing hour per week

Ordinal Measured: 3-point scale (”less than
five hours”, ”five to ten hours”, ”ten
hours or more”); pre experiment
questionnaire

Review hour
per week

Participant’s average re-
view hour per week

Ordinal Measured: 3-point scale (”less than
five hours”, ”five to ten hours”, ”ten
hours or more”); pre experiment
questionnaire

Fitness Perceived energy level of
the participant during the
experiment

Ordinal Measured: 3-point scale (“low”,
”moderate, “high”); post experi-
ment questionnaire

Understandability
of changes

Participant’s overall un-
derstanding of the pro-
vided code changes

Ordinal Measured: 3-point scale (“barely
understand”, ”somewhat under-
stand”, “understand very well”);
post experiment questionnaire

Difficulty of tasks Participant’s perceived dif-
ficulty of the assigned
tasks

Ordinal Measured: 3-point scale (“easy”,
”moderate”, “very hard”); post ex-
periment questionnaire
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Fig. 2: Gherald experiment interface.

4.4.1 Independent Variable

Our overall goal was to investigate the degree to which code review performance can
vary depending on whether risk assessment support is provided. Hence, we set risk
assessment support as the independent variable.

Participants in the treatment group were exposed to risk assessment support from
the experiment user interface. They were able to assess the riskiness of code changes
and to conduct code reviews with the assistance of Gherald during the experiment.
In contrast, participants in the control group were not provided with risk assessment
support from the experiment user interface.
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4.4.2 Dependent Variables

The dependent variables are metrics that we use to measure the participants’ perfor-
mance in the assigned tasks. We measured the dependent variable for RQ1 as the
developer’s risk awareness of code changes. For RQ2 and RQ3, we use code review
effectiveness and code review efficiency as dependent variables, respectively.

Risk awareness is the degree to which reviewers recognize the potential for de-
fects or failures that may be induced by a code change. The participants were asked
to evaluate the perceived level of risk associated with a collection of code changes by
arranging them in order of their perceived risk level. We estimated the risk awareness
of a participant by computing the agreement between the ranking that they provided
and the ranking of code changes by their future defect density. We used the nor-
malized Kendall tau rank distance to measure the agreement of rankings; essentially,
this counts the number of pairwise disagreements between two ranking lists and lies
between 0 and 1 [74]. Before analyzing the measurements, we applied the comple-
ment operation, so that a higher score indicates greater agreement between the two
rankings, i.e., more acute risk awareness.

Code review effectiveness. Finding defects has long been considered a primary
motivation for investment in code review [1] and the number of defects discovered is
a common measurement of the effectiveness of code review performance [37]. Hence,
in our study, we also estimated review effectiveness using the proportion of known
defects that a participant identified in their assigned change set.

Code review efficiency. Code review efficiency has been defined as the number of
defects found per unit of time [37]. In our study, we also estimated review efficiency
using the number of detected known defects per unit of time the participant spent
reviewing the assigned change set.

4.4.3 Confounding Variables

Apart from the supporting tools, the performance of code review could also be im-
pacted by confounding factors related to the sample change sets and the recruited
study participants (see Table 6). To assess their impact, we collected measures that
associate with these confounding factors and we studied their correlation with the
dependent variables. We selected five change sets for inclusion in our experiment to
mitigate bias towards a specific change set. To mitigate the impact of study partici-
pant factors (e.g., development experience, code review experience, Java experience),
we applied a matching strategy when assigning the change sets, so that for each par-
ticipant in the control group, we assigned the same change set to a participant with
similar development and review experience in the treatment group.

4.5 Experiment Tasks

To address our research questions, we asked participants to complete two code review-
related tasks:
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Fig. 3: Example of a code inspection form.

Task A (RQ1) — Participants were asked to rank the three code changes in a
change set based on their estimated riskiness.

Task B (RQ2, RQ3) — Participants were assigned to review code changes one at a
time, with the stated goal of identifying functional defects. Participants recorded
the suspected issues in a code inspection form (Figure 3), which facilitated our
analysis of the results. To avoid bias, participants were not told how many known
defects were present in the assigned code changes; they were told that it was
possible that the code change contained no defects.

4.6 Experiment Flow

This section describes the flow of our experiment as shown in Figure 1.

4.6.1 Pre-experiment questionnaire

We first asked participants to complete a pre-experiment questionnaire. This ques-
tionnaire aimed to collect information about their development background (e.g., de-
velopment experience, Java experience, code review experience) and code review
preferences (i.e., preferred code review order). We use this information to evaluate
the participants’ qualification for the study, to group the participants while balancing
these confounding factors, and to assign change sets to participants in their preferred
order for the experiment.

Before collecting their information, we asked for the informed consent of the
participants to use their data during the experiment.

4.6.2 Experiment

We analyzed the participants’ responses from the pre-experiment questionnaire to
filter out those who did not have prior experience in Java and code review. Next, we
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assigned the remaining participants to different tooling support groups. As described
in Section 4.4.3, we controlled for the participants’ development backgrounds (i.e.,
development experience, Java experience, code review experience, etc.) during the
assignment to maintain a balanced distribution of these factors. The participants were
then provided with a URL and a unique ID to access the web application and initiate
the experiment. The procedure of the experiment in the application is presented as
follows.

Welcome Page. The application starts with a welcome page introducing general
information about the experiment and the estimated duration. The assigned tasks are
explained and for those participants in the treatment group, the Gherald tool is ex-
plained.

Practice Task. To mitigate learning effects and reduce the impact that a lack
of familiarity with the tasks or available tools has on the participants’ performance,
participants were assigned a practice task before their assigned task is shown. Partic-
ipants were informed that this was a practice task to familiarize themselves with the
interface and the type of tasks that they can expect during the live experiment.

Experiment Tasks. Once the participants completed the practice task, the live
experiment began with the assigned tasks (see Section 4.5). A timer started after
the task page had loaded. Participants were permitted to pause the timer at any time
during the task if their work was interrupted.

4.6.3 Post-experiment Questionnaire

After the participants had completed the assigned tasks in the experiment application,
they were prompted to complete a post-experiment questionnaire, which asked them
to share their perceptions about the experiment (e.g., fitness and understandability).

4.7 Pilot Study

Before releasing the experiment to the public, we conducted a pilot study with 20
graduate students in computer science to identify problems with the experiment be-
fore recruiting a larger pool of participants.

We measured the estimated time for task completion to ensure that the experiment
could be completed within a reasonable amount of time (i.e., 30–60 minutes). We also
conducted casual post-experiment conversations with the participants to evaluate the
perceived difficulty of the provided changes and to gather feedback on the experi-
ment. From their feedback, it became apparent that three of the code changes were
more challenging and required a deeper understanding of specific aspects of Java,
particularly relating to hexadecimal and octal numbers. As a result, we decided to
assign these changes only to participants with at least one year of experience in Java
development. Furthermore, some participants found it difficult to grasp the Gherald
risk assessment results. To address this, we improved the presentation of risk scores
and adjusted the text explanations of the risk measures. We also enhanced the overall
design of the experiment and the user interface based on the feedback to improve the
participant experience.
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The data collected from the pilot study were excluded from the results of the
study.

4.8 Participants

We calculated the expected sample size for the study through the statistical power
analysis proposed by Cohen [75], which is commonly used to determine the re-
quired sample size to verify the hypothesis with specified statistical power, signifi-
cance criterion (α), and effect size. Although a smaller effect size indicates a greater
opportunity to find the significant difference between the studied groups, it requires a
larger number of participants, creating practical recruitment challenges for this study.
Hence, we use the standard settings for uncovering a medium effect size in the con-
text of applying a Mann-Whitney U test (unpaired, one-tailed, α = 0.05, power =
0.8, d = 0.5). The estimated sample size is 106 participants, with 53 participants per
group.

We sent out our recruitment invitation to graduate students at the University of
Waterloo and posted the recruitment message on Java developer forums (e.g., Red-
dit) and social media platforms (e.g., Facebook). We targeted individuals who had
experience with both code reviews and Java development. In appreciation of their
time commitment, we provided each participant with $15 CAD as a token of our
appreciation for their time.

In total, 161 participants sign up for the study.

4.9 Data Analysis

We first applied a list of filter steps to clean the data and remove anomalies. To ensure
that the participants perform completed code reviews, we ignored participants who
did not finish the assigned reviews and skipped the tasks. We also analyzed partici-
pants’ activity logs and filtered out those who did not conduct reviews of the assigned
changes (e.g., reported no defect without viewing the code diff). In addition, we fil-
tered out the participants who declared in the post-experiment questionnaire that they
did not fully understand the tasks or code changes and therefore had likely performed
only superficial code reviews. We also filtered out time-based outliers, i.e., those who
took a very long or very short time to perform the code reviews.

Next, we measured the value of dependent variables from the experimental data.
As described in Section 4.4.2, the risk awareness of participants was measured by
computing the agreement between the participant’s ranking in Task A and the ranking
of defect density of the examined code changes.

To measure code review effectiveness, we manually examined the defects re-
ported by the participants and measured the proportion of known defects identified.
It is possible that a participant could report a valid defect that has not been previously
identified by the original developer. However, to prevent potential bias, we consid-
ered only “known” (i.e., previously identified) defects. This decision is justified for
two reasons. First, the participants’ inspection behaviors can vary widely, with some
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individuals reporting only functional defects that they are certain of, while others may
report any types of defects they observe as many as they can. Also, assessing the va-
lidity of the new defects identified by the participants requires a manual interpretation
of the author, which may introduce bias to the result. As such, new defects reported
by the participants were excluded from the analysis and only known defects were
compared with the participants’ responses to measure code review effectiveness.

Similarly, for the measurement of code review efficiency, we considered only
known defects that were identified by the participants. Then, we computed the ratio
of the total number of identified known defects over the total time in hours that the
participant spent on both task A and task B. We used the total time for both tasks
to mitigate potential bias in the results. Due to different understanding of the task
requirements and diverse code review habits, some participants may invest significant
time inspecting the code during task A, which may result in a reduced review time
for task B. Our observation of experimental data further confirms this assumption.

With the values of the dependent variables measured, we applied visualization
techniques (e.g., bean plot) to present the descriptive statistics, and then applied the
Shapiro–Wilk test to statistically examine the normality of the data. Also, we applied
Spearman’s rank correlation test to measure the pairwise correlations between the
examined variables.

To address the research questions, for each dependent variable, we performed a
one-tailed Mann-Whitney U test to identify whether there existed a significant dif-
ference between the results in the treatment group and the control group. We then
applied effect-size measures (i.e., Cliff’s Delta) to estimate the magnitude of differ-
ence between the groups if a significant difference is found.

5 Study Results

In this section, we present the results of our study. Before discussing the analysis for
each research question, we briefly describe the general results regarding the partici-
pants and preliminary analysis.

A total of 161 participants signed up for the study, of which 90 completed the
experiment. Upon conducting a check to filter out invalid participants as described in
Section 4.9, the sample was reduced to 48 participants with valid experiment data.
Table 7 provides an overview of the distribution of participants among change sets
and groups. Overall, there were 26 participants in the treatment group and 22 in the
control group. The participants were as evenly distributed among the two groups as
was possible, and this balance was consistently maintained across each change set.
Moreover, the difference in the participant experience, fitness during the experiment,
and understandability of the code changes between the two groups were not statisti-
cally significant.

Figure 4 presents the Spearman pairwise correlations among the dependent and
control variables introduced in Table 6. A significant strong correlation existed be-
tween only code review effectiveness and efficiency (r = 0.94), which is reasonable
due to the computation of code review efficiency (i.e., number of known defects iden-
tified per unit of time). Moreover, we observed a positive relationship between devel-
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Table 7: Distribution of participants among change sets and groups.

Change set Total1 2 3 4 5

Gherald 8 9 4 3 2 26
No tool 8 7 2 4 1 22

Total 16 16 6 7 3 48
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Fig. 4: Correlations among examined variables. Statistical significance: ∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001.

opers’ understandability of changes and their code review efficiency (r = 0.33), which
indicates, as expected, developers with a better understanding of changes spent less
time identifying the known defects. No statistically significant strong correlation was
found between the dependent variables and the remaining control variables.

Below, we present the results with respect to each research question.

(RQ1) Is the use of Gherald associated with greater awareness of the riskiness
of changes?

The participants in the treatment group exhibited a greater awareness of the riskiness
of code changes compared to participants in the control group. As shown in Table 8a,
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Table 8: Descriptives of risk awareness, code review effectiveness, and code review
efficiency in different groups and change sets.

Change set Gherald No tool
Median Mean Median Mean

1 0.67 0.67 0.33 0.38
2 1.0 0.89 0.67 0.71
3 1.0 0.75 0.83 0.83
4 0.67 0.78 0.5 0.5
5 0.67 0.67 0.0 0.0

Total 1.0 0.77 0.67 0.53

(a) Risk awareness (RQ1)

Change set Gherald No tool
Median Mean Median Mean

1 0.5 0.38 0.0 0.13
2 0.5 0.33 0.0 0.14
3 0.25 0.38 0.0 0.0
4 0.0 0.11 0.0 0.17
5 0.0 0.0 0.0 0.0

Total 0.17 0.30 0.0 0.12

(b) Code review effectiveness (RQ2)

Change set Gherald No tool
Median Mean Median Mean

1 2.10 1.99 0.0 0.79
2 1.37 1.27 0.0 1.00
3 1.18 1.36 0.0 0.0
4 0.0 1.02 0.0 0.59
5 0.0 0.0 0.0 0.0

Total 0.69 1.38 0.0 0.71

(c) Code review efficiency (RQ3)

the median and mean risk awareness of participants in the treatment group were 1.0
and 0.77, respectively, which were higher than those in the control group (0.67 and
0.53, respectively). This observation applies to each change set except for change set
3. Although the median risk awareness in the treatment group was higher, participants
with no tool support have a higher mean risk awareness than those with the assistance
of Gherald.

This fact is also evident in Figure 5. For change set 3, the distribution of risk
awareness for the control group showed a denser concentration of values around 0.83.
On the other hand, for the treatment group, there was more density of values around 1.
However, the distribution of data was more dispersed and less dense, which suggests
that a low outlier may be overly influential in computing the average risk awareness
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Fig. 5: Comparison of risk awareness between the treatment and control group across
five change sets. The long (short) dash line represents the median (Q1/Q3) values.

score of the group. Upon closer inspection, we found that there was a participant in
the treatment group with a risk awareness score of 0, indicating that the rankings
provided by this individual are the exact inversion of the rankings based on defect
density. A follow-up discussion with this participant revealed that they conducted the
risk evaluation without accessing the Gherald results. Figure 5 shows that there is
clearly a greater risk awareness for participants in the treatment group for all other
change sets, suggesting that this outlier was a singular case.

We performed a one-tailed Mann-Whitney U test to determine whether the risk
awareness of those in the treatment group was larger than those in the control group
to a statistically significant degree The result was a p-value of 0.012, which indicates
that the null hypothesis — that the risk awareness of both groups is sampled from the
same distribution — can be rejected. We then used Cliff’s delta to measure the effect
size of the difference. The delta was 0.36, indicating a “medium” difference in risk
awareness between the groups [76].

The use of Gherald was associated with improvements in developer awareness
of the riskiness of code changes. In our experiment, the risk ranking provided
by participants with the assistance of Gherald was more closely aligned with
the actual defect density of the code changes.
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Fig. 6: Comparison of code review effectiveness between the treatment and con-
trol group across five change sets. The long (short) dash line represents the median
(Q1/Q3) values.

Table 9: Number of participants identified the known defects in different groups and
change sets.

Change set Total1 2 3 4 5

Gherald 5 5 2 1 0 13
No tool 2 2 0 1 0 5

Total 7 7 2 2 0 18

(RQ2) Is the use of Gherald associated with an improvement in code review
effectiveness?

The participants provided with Gherald had higher code review effectiveness com-
pared to participants without tooling support. As shown in Table 8b, participants in
the treatment group exhibited a median and mean code review effectiveness of 0.17
and 0.3, respectively, which exceeds the values from the control group, i.e., 0 and
0.12, respectively. For change sets 1, 2, and 3, participants with the assistance of
Gherald achieved higher median and mean code review effectiveness. This pattern
is also evident from the data and quartile distribution depicted in Figure 6, where a
noticeable difference could be observed for change sets 1, 2, and 3.

Table 9 displays the number of participants from different groups that correctly
identified the known defects for each change set. Out of the 48 valid participants, 18
were able to identify at least one known defect, and three were able to identify all
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Fig. 7: Comparison of code review efficiency between the treatment and control group
across five change sets. The long (short) dash line represents the median (Q1/Q3)
values.

known defects. For each of the change sets 1 and 2, seven out of sixteen participants
were able to identify at least one known defect, respectively. However, for change
sets 3, 4, and 5, only two, two, and zero participants, respectively, were able to cor-
rectly identify the known defects. We believe that these results occurred because the
defects in change sets 3, 4, 5 were more complex and required recognizing an edge
case with respect to hexadecimal and octal numbers. Additionally, the sample size
for these changes was small. Nevertheless, although only a small proportion of par-
ticipants identified the known defects, from Table 9, we can still observe that Gherald
participants outperformed the control group in terms of defect detection.

The Mann-Whitney U test results indicate that the null hypothesis can be rejected,
i.e., there is a statistically significant improvement of code review effectiveness as-
sociated with Gherald (p = 0.03). The Cliff’s delta effect size is 0.27, indicating a
“small” difference in participants’ code review effectiveness between the groups [76].

The use of Gherald was associated with an improvement in code review effec-
tiveness. In our experiment, a larger proportion of known defects were identi-
fied by participants with the assistance of Gherald.
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Fig. 8: The completion time for experiment tasks.

(RQ3) Is the use of Gherald associated with an improvement in code review
efficiency?

The participants provided with Gherald had higher code review efficiency compared
to participants without tooling support. As shown in Table 8c and Figure 7, the treat-
ment group displayed a higher median and mean code review efficiency, with 0.69
and 1.38 known defects identified per hour, respectively. Notably, we observed a sig-
nificant increase in code review efficiency associated with Gherald in most change
sets, except for change set 5 with a code review efficiency of zero as none of the
participants identified the known defects.

Figure 8 depicts the task completion time of participants for each task. On av-
erage, participants spent 4.2 minutes on task A and 18 minutes on task B, which is
consistent with our anticipated experiment duration of 30 minutes. The time taken
to complete task A ranges from 36 seconds to 14.4 minutes, while the completion
time for task B ranges from 4.2 minutes to 52.8 minutes. Interestingly, we observed
that some participants invested a long time on task A, while allocating a comparable
amount of time to task B. This pattern of behavior indicates that they may have de-
voted some review effort to conducting code inspection during task A. This finding
supports our decision to calculate the code review time by summing the time spent
on both tasks.

The Mann-Whitney U test yields a p-value of 0.0503, which is not less than our
pre-established confidence level (0.05). Therefore, we are unable to reject the null
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hypothesis, which indicates that there is insufficient evidence to suggest the use of
Gherald is associated with an improvement in code review efficiency.

In our experiment, participants in the treatment group had higher code re-
view efficiency compared to those in the control group. However, the differ-
ence between the two groups is not statistically significant, so we cannot draw
a conclusion that the use of Gherald is associated with an improvement in code
review efficiency.

6 Discussion & Practical Implications

In this study, we found that the use of Gherald had a strong impact on the developer
awareness, effectiveness, and efficiency during code review processes. The study
demonstrated that the introduction of risk assessment tools significantly enhanced
developers’ awareness of code change riskiness and improved code review effective-
ness. It implies that developers, especially those with limited project-specific experi-
ence, might not always have the necessary information to evaluate the potential risks
associated with a code change. The risk assessment tool fills this gap effectively by
providing them information about author experience, change history, and past de-
fects, leading to better risk assessment, more thorough evaluations to the risky areas,
and more effective issue identification. Although the study did not establish statistical
significance in code review efficiency, it observed higher mean and median efficiency
for participants using Gherald. This further suggests there is potential for efficiency
gains, which can be particularly valuable in fast-paced development environments.

These findings also have practical implications for software development teams.
Integrating a risk assessment tool like Gherald into the development workflow can
greatly enhance the quality and security of the codebase. Organizations can consider
the integration of risk assessment tools like Gherald into their existing development
workflows, making them easily accessible to developers. For instance, this tool can be
linked to the version control system to automatically analyze incoming code changes
and inform developers of the defect-prone areas in the history. It can also be integrated
with continuous integration tools to provide instant feedback on the risk level of new
code changes. Additionally, connecting this tool to code review systems can help
reviewers to prioritize high-risk changes and identify potential defects more effec-
tively. By combining risk assessment tools like Gherald with these existing practices,
developers can experience a more streamlined and efficient workflow that naturally
incorporates risk assessment as a crucial part of the development process.

Consider a real-world scenario where a risk assessment tool like Gherald is in-
tegrated into an open-source GitHub repository. Due to the nature of open-source
repositories, there is frequent developer turnover and many contributors are unfamil-
iar with each other. When a new developer submits their code for review, the tool
analyzes the historical data and informs the developer of the files and methods that
have historically been prone to defects. This information empowers the developer to
proactively make necessary adjustments during the development phase, improving
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the quality of the code before it is sent to the reviewers. As the code change moves
through the review process, the tool continues to play a role and provides the review-
ers with valuable context. Armed with the knowledge of a code change’s historical
context and the author’s risk assessment information, reviewers are better equipped
to conduct a thorough evaluation of the code changes that pose a greater risk, iden-
tify potential defects, and make more informed decisions about where to invest their
effort. This will, in turn, reduce the chances of introducing defects into the codebase.
By employing a risk assessment tool like Gherald in such a scenario, software devel-
opment teams can maintain the security and stability of their codebase, even during
rapid development cycles or when collaborating on open-source repositories.

7 Threats To Validity

7.1 Construct Validity

The results of our study may be impacted by the accuracy of risk assessment tools.
We choose to focus on whether an accurate risk signal would help developers, and
leave the analysis of noise in the risk assessment signal to future work. To control for
that noise in our study, for each change set, we selected changes with defect density
values that are aligned with Gherald assessment.

Limitation of the SZZ algorithm accuracy in locating fix-inducing changes may
result in false positives and false negatives, which may lead to incorrect historical
records about defects. To mitigate noise in our labels of fix-inducing changes, we
followed McIntosh and Kamei’s approach [66] to apply a series of filtering steps and
manual verification to the initially produced label set.

7.2 Internal Validity

The participants recruited for the experiment were outsiders — not developers or
reviewers of the projects under study. Thus, their behavior might differ from that of
the actual code reviewers. To mitigate this threat, we selected code changes that do
not necessitate additional contextual learning, which allows us to approximate the
actual code review conditions as closely as possible. Nonetheless, it may be safest to
interpret our findings as reflecting the newcomer experience.

Some participants encountered technical issues during the experiment, such as
unresponsive buttons, application crashes, and a laggy user interface. These technical
problems could potentially impact the participants’ concentration, mood, and overall
sense of disorientation when engaging in the experiment tasks. Furthermore, they
may have led to inaccuracies in tracking and logging task times and responses. Upon
a closer examination of these participants’ activities and feedback, it was observed
that these technical difficulties were not exclusive to a particular experimental group;
rather, they were experienced by participants from both groups. More importantly,
before analyzing the experiment data, we have filtered out the anomalous data as
outlined in Section 4.9. Participants who were considerably affected by technical
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problems had already been excluded due to the likelihood that such issues would
result in incomplete tasks or exceptionally abnormal task completion times. Of the 48
valid participants after this exclusion process, five reported relevant technical issues.
Up to this point, we have not been able to pinpoint the exact cause of the problems as
we were not able to reproduce them on our end. Our initial assessment suggests that it
might be related to the participants’ devices and software configuration. Nonetheless,
further investigation is necessary to ensure the experiment platform’s stability for
future studies.

The remuneration that we provided also presents a potential threat to the validity
of our study. It is possible that participants in the treatment group might be influ-
enced to perceive Gherald as a useful tool and trust the risk assessment result due
to this compensation. To address this potential bias, we deliberately did not inform
participants that we were evaluating the tool’s effectiveness and assigning them into
distinct tooling support groups.

7.3 External Validity

The sample of the code changes that we included in our study is small when com-
pared to the history of the studied project. In our study, each participant was shown
three code changes. However, due to a limited number of participants, only a small
proportion of changes were included in the experiment. To mitigate this threat, we
selected code changes for inclusion that impacted different types of functionality and
present different types of defects as our sample for experiment.

Although we selected different types of defects, it is still logistically impractical
to include all types of defects that may occur in real-world scenarios. To general-
ize the results, future studies that include other kinds of defects are necessary. We
recruited participants from our local student population and from broadcasts on our
social networks. As such, our sample of participants may not be entirely representa-
tive of the broader software development community.

In addition, to achieve a statistical significant result (α = 0.05, power = 0.8, d =
0.5), we aimed to recruit at least 106 participants for our study. However, due to the
challenges associated with conducting a human-intensive study, we obtained only 48
valid responses after filtering. Further studies with a larger, more diverse population
of developers are needed to confirm our findings and to increase the generalizability
of the results.

Generalizability concerns also apply to the selection of projects and programming
languages, as we experimented only with code changes from Apache Commons Lang
written in Java. To address these limitations, further studies are necessary to verify
whether our findings are still valid for more projects with different programming
languages.
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8 Conclusions

Modern code review is an essential procedure in software development. However, in
practice, there are still a large proportion of reviewed changes that introduce bugs into
the codebase [3]. This can occur due to a lack of historical context and awareness of
the riskiness of the proposed code changes.

In this study, we aimed to investigate whether providing developers with histor-
ical context and risk assessment information regarding code changes can enhance
their awareness of the riskiness of such changes and result in an improvement in
code review effectiveness and efficiency. To accomplish this, we introduced a risk
assessment prototype called Gherald, which analyzes the riskiness of code changes
based on historical data. We conducted a controlled experiment with 48 participants
assigned to two groups, with or without Gherald. We investigated whether the use of
Gherald is associated with greater risk awareness and an improvement of code review
performance of the participants.

Through the experiment with 48 participants, we found that Gherald has a positive
impact on the code review practice:

– The use of Gherald was associated with a statistically significant improvement in
developer awareness of the riskiness of code changes.

– The use of Gherald was associated with a statistically significant improvement in
code review effectiveness.

– Although the difference in code review efficiency between the treatment and con-
trol groups was not statistically significant, in our experiment, we observed a
higher mean and median code review efficiency for participants with the assis-
tance of Gherald.

Future Work. As existing risk assessment approaches do not provide sufficient con-
textual information regarding the riskiness of the code changes, our study introduced
a risk assessment prototype and found that its use had a positive impact on code re-
view practices. Future work may propose risk assessment approaches that provide
more precise defect proneness prediction with explainable risk indicators for code
changes.

Furthermore, while we sampled Java code changes from Apache Commons Lang
and conduct one-time code review tasks with participants recruited from various
sources, future studies could benefit from a more project-specific approach involv-
ing the actual developers and reviewers of the repository. With the risk assessment
tool embedded into the code review system, the risk awareness and code review per-
formance of the reviewers can be evaluated over a long-term to explore whether risk
assessment has a positive and sustainable effect on code review practices.
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