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ABSTRACT

Background: Substantial research in the software evolu-
tion field aims to recover knowledge about development from
the project history that is archived in repositories, such as
a Version Control System (VCS). However, the data that is
archived in these repositories can be analyzed at different
levels of granularity. Although software evolution is a well-
studied phenomenon at the revision-level, revisions may be
too fine-grained to accurately represent development tasks.
Aim: In this paper, we set out to understand the impact
that the revision granularity has on co-change analyses.
Method: We conduct an empirical study of 14 open source
systems that are developed by the Apache Software Founda-
tion. To understand the impact that the revision granularity
may have on co-change activity, we study work items, i.e.,
logical groups of revisions that address a single issue.
Results: We find that work item grouping has the poten-
tial to impact co-change activity, since 29% of work items
consist of 2 or more revisions in 7 of the 14 studied systems.
Deeper quantitative analysis shows that, in 7 of the 14 stud-
ied systems: (1) 11% of largest work items are entirely com-
posed of small revisions, and would be missed by traditional
approaches to filter or analyze large changes, (2) 83% of re-
visions that co-change under a single work item cannot be
grouped using the typical configuration of the sliding time
window technique and (3) 48% of work items that involve
multiple developers cannot be grouped at the revision-level.
Conclusions: Since the work item granularity is the nat-
ural means that practitioners use to separate development
tasks, future software evolution studies, especially co-change
analyses, should be conducted at the work item level.
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1. INTRODUCTION

Substantial research in the software evolution field aims to
recover knowledge about development from the project his-
tory that is archived in repositories, such as Version Control
Systems (VCSs) and Issue Tracking Systems (ITSs). For
example, Neamtiu et al. [29] evaluate Lehman’s laws of soft-
ware evolution [5, 10, 24] in 705 official releases of nine open
source projects. Di Penta et al. [8] analyze source code that
is stored in VCSs to investigate the evolution of software
license changes in open source projects.

There are several levels of granularity that are used in
software evolution research, such as revisions (i.e., collec-
tions of changes to files that authors commit to VCSs to-
gether) [17, 19, 33|, pull requests (i.e., requests to integrate
collections of revisions into an upstream repository) [12, 13]
and releases (i.e., milestones for delivering software to stake-
holders) [6, 11, 25]. The revision-level is a popular granu-
larity that many researchers target [18, 34, 35] because re-
visions can be easily extracted from a VCS [15].

However, as pointed out by our prior work [27], the revision-
level is too fine of a granularity for some contexts of software
evolution analysis. For example, while some issues might be
addressed using a single code revision, others may require
several revisions by several developers (see Section 2.1). Such
a fine granularity may impact the findings that are derived
from co-change analyses, which study evolutionary depen-
dencies between entities (e.g., files) [33, 35].

Alternatively, work items, which embody development tasks
like fixing a bug or adding a new feature, can be used to
study software evolution. Work items may consist of mul-
tiple revisions that relate to a single development task [27].
While a few recent studies are performed at the work item
level [26, 27], the impact of co-change granularity remains
largely unexplored. Therefore, we set out to empirically
study the characteristics of work items to understand the
impact that work items can have on co-change analyses.

Through a case study of 14 systems that are maintained
by the Apache Software Foundation, we find that over 29%
of work items consist of 2 or more revisions in 7 of the 14
studied systems. This initial finding shows that work items
hold the potential to impact to the findings of co-change
analysis. Hence, we structure the remainder of our study
along the following three research questions:



RQ1: How many different files are changed across
the revisions of work items?
Motivation: If different files are modified across the
revisions of work items, revision-level analysis may
miss co-changing files by ignoring related revisions.
Exploratory analysis: Analysis of only the first revi-
sion of work items would miss 2%-43% of the co-
changed files in the studied systems.
Impact analysis: We find that 11% of the largest work
items are entirely composed of small revisions (i.e.,

the revisions that contain a small number of co-changed

files) in 7 of the 14 studied systems. These collections
of small revisions would not be detected by filtering
or analysis techniques that focus on the revision-level.

RQ2: How much time elapses between the revisions
of work items?
Motivation: If the time between revisions of a work
item is too long, traditional revision-grouping tech-
niques may not be able to discover their relationship.
Exploratory analysis: At least 1 hour elapses between
the revisions of 64% of the studied work items.
Impact analysis: In 7 of the 14 studied systems, 83%
of related revisions cannot be grouped using the com-
mon sliding time window of 300 seconds.

RQ3: How many developers are involved across re-
visions of work item?
Motivation: Developers across different teams may
need to collaborate in order to address a work item.
Since revision grouping techniques will miss related
revisions if they are submitted by different develop-
ers [22, 36], we set out to study how often developers
collaborate in order to address work items.
Exploratory analysis: 8%-41% of work items are mod-
ified by multiple developers in the studied systems.
Impact analysis: In 7 of the 14 studied systems, tradi-
tional revision-grouping would miss revisions of 48%
of work items that involve multiple developers.

Implications. Our results indicate that traditional tech-
niques for grouping revisions (i.e., co-change analyses) may
miss a variety of types of co-change that are visible at the
work item level. Since work items are the natural means
of separating development tasks, we recommend that fu-
ture software evolution studies, especially co-change analy-
ses, should be performed at the work item level.

Paper organization. The rest of the paper is organized
as follows. Section 2 provides background details about the
different evolution granularities and situates this paper with
respect to the related work. Section 3 describes the design
of our empirical study, while Sections 4 and 5 present the
results. Section 6 discloses the threats to the validity of our
work. Finally, Sections 7 draws conclusions.

2. BACKGROUND & RELATED WORK
2.1 Background

Software developers modify source code files to add new
functionality and fix bugs. The modified files are recorded
in a VCS. A popular unit of change is the revision, i.e., a
change made to a file or collection of files that were submit-
ted to a VCS together. However, as pointed out by our prior
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Figure 1: An example of the relation between revi-
sions and work items.

work [27], the revision-level is often too fine-grained to ac-
curately depict a work item, which embodies a development
task, such as fixing a bug or adding a new feature [26]. Sev-
eral revisions may be required to address a single work item.
For example, as shown in Figure 1, a developer ‘X’ changes
files A and testA using one revision. On the other hand, a
developer ‘Y’ changes file testB under revision R2 and file
B under revision R3 even though the changes are related to
the same work item.

Many software evolution studies are conducted at the revision-

level. While these studies make important observations,
revision-level analysis is not without limitations (e.g., gran-
ularity mismatch with development tasks). Figure 1 shows
that co-change analysis at the revision-level studies would
detect that file A and testA have co-changed together. How-
ever, revision-level analysis would miss the co-change rela-
tionship between file B and testB because they are changed
within different revisions. In the next section, we introduce
related work and explain how revision-level analysis may
impact the findings of the related work.

2.2 Related Work

Co-change coupling studies [1, 9, 14] discover the groups
of entities (e.g., files) that tend to change together. For ex-
ample, Hassan and Holt [14] apply association rule mining to
version histories in order to predict how changes propagate
among software modules. Alali et al. [1] study the distance
among co-changing entities and the age of co-change pat-
terns in order to mitigate false positives in co-change activ-
ity. Girba et al. [9] detect groups of entities that change at
the same time using concept analysis. These studies mine
VCS data at the revision-level, and hence, may miss co-
change relationships that are visible at the work item level.

Recently, researchers have also applied co-change analy-
ses to study the use of software design patterns and anti-
patterns. For example, Mondal et al. [28] apply co-change
analyses to code clones (i.e., syntactic or semantic dupli-
cation of program logic)—a common anti-pattern in large
software systems. Aversano et al. [4] perform an empirical
study on how design patterns are changed from release to re-
lease. Kim et al. [21] study the role of API-level refactoring
during software evolution. Similar to other co-change anal-
yses, a work item level analysis for co-change studies that
apply to software design would yield more complete results.

There are some studies on understanding the character-
istics of source code changes. Hindle et al. [17] study the



rationale behind large commits (i.e., revisions that change a
large number of files) by manually classifying large revisions
in order to reveal whether or not large revisions are noise
for software evolution analyses. Through analysis of 9 open
source projects, they show that many large revisions per-
form fundamental development activities, such as merging
branches, adding new features, and updating documenta-
tion. However, since this classification was performed on
large revisions, it may miss large work items, which could
appear as a collection of small revisions in the VCS history.

Recent work suggests that supplementary fixes, i.e., re-
visions that address an issue that was previously fixed, can
impact software analyses. Through analysis of 3 open source
projects, Park et al. [30] show that supplementary fixes im-
pact change recommendation systems based on code clone
detection analysis. An et al. [2] build accurate models to
predict whether or not supplementary fixes will need to be
re-opened. These findings further motivate our quantita-
tive exploration of the impact that work items can have on
co-change analyses.

In short, revision-level analysis may miss co-changing en-
tities, since revisions do not depict complete development
tasks. In this paper, we quantitatively explore the impact
that work item grouping can have on co-change analyses.

3. CASE STUDY DESIGN

In this section, we provide our rationale for selecting our
studied systems and describe how we group the revision data
from VCSs into work items.

3.1 Studied Systems

We began our study with all of the systems that are main-
tained by the Apache Software Foundation (ASF)—a large
and successful open source software community. We then
identified the systems that use ITS by checking the list of
systems in the ASF ITS.! In total, we collected data from
119 systems that we found were using the ASF ITS. How-
ever, we identified two important criteria that needed to be
satisfied in order for a system to qualify for our analysis:

1. System size. We want to perform a case study on
large open source systems (i.e., systems that contain
a large number of revisions) because we need plenty
of change activity to avoid unstable results. In order
to select an appropriate threshold for system size, Fig-
ure 2 plots hypothetical threshold values of the number
of revisions in a system against the number of surviv-
ing systems. In this study, we choose systems that
have more than 4,000 revisions because we retain 42%
of all systems, while removing plenty of small systems.

2. ITS usage. We want to study systems that have a
large number of revisions that include work item IDs
and frequently use an ITS in their day-to-day develop-
ment. Figure 3 plots hypothetical threshold values of
the percentage of revisions that include a work item ID.
Since there does not appear to be a knee in the thresh-
old plot, we choose the systems that include work item
IDs in 50% of all of their revisions.

"https:/ /issues.apache.org/jira/secure/BrowseProjects.
jspa#tall
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Figure 2: Threshold plot using system size.
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Figure 3: Threshold plot using the amount of use of
an ITS.

Surviving systems. Table 1 provides an overview of the
14 Apache systems that satisfy our criteria for analysis. All
14 systems use the Git VCS. Accumulo is a high perfor-
mance data storage and retrieval system. Ambari is a sys-
tem for managing and monitoring Hadoop clusters. Camel
is a rule-based routing and mediation engine in a variety
of domain-specific languages. Hbase is a distributed and
scalable Hadoop database. Hive provides a mechanism for
interactive SQL queries over big data in Hadoop. Jackrabbit
is a content repository, which stores, manages and serves the
digital content. OpenJPA is a Java persistence tool that is
used in lightweight frameworks, such as Tomcat and Spring.
Qpid develops the messaging systems for AMOP, which is an
open Internet protocol for sending and receiving messages.
Sling is a framework for developing REST-based web appli-
cations. Stanbol provides a set of components for semantic
content management (e.g., knowledge models).

3.2 Work Item Aggregation

‘We group revisions into work items using the commit mes-
sages of each revision. When developers modify files to ad-
dress an issue and submit the changes to a VCS, they record
the addressed work item ID in the message of the revision.

Similar to a previous study [19], we identify work item IDs
using the /PROJECT_NAME. ? (\d+) /i regular expression (e.g.,
Accumulo-1000, Accumulo:1000). We use /PROJECT_NAME. ?
(\d+) [\.\-1\d/1i to exclude the patterns that are likely to
be a version number (e.g., AMBARI1.3.1). We group revi-
sions that reference the same ID under one work item [31].

4. PRELIMINARY STUDY OF WORKITEM
DISTRIBUTION

Motivation. To understand the potential impact that
work item grouping may have on co-change activity, we first
investigate how often work items are composed of several re-
visions. To do so, we examine the distribution of the number



Table 1: An overview of the studied systems.

System Period # of revisions # of revisions that % of revisions that | # of work items
include work item ID | include work item ID
Accumulo || 2011/10/04 - 2015/03/13 1,860 1,750 97.7 2,140
Ambari 2011/08/30 - 2015/03/15 9,936 9,756 98.2 8,529
Camel 2007/03/19 - 2015/03/16 19,157 11,209 58.5 6,287
Cassandra || 2009/03/02 - 2015/03/16 10,925 6,243 57.1 4,751
Cayenne 2007/01/21 - 2015/03/12 4,297 2,561 59.6 855
Derby 2004/08/11 - 2015/03/12 8,018 6,519 81.3 3,509
Hbase 2007/04/03 - 2015/03/16 10,115 8,957 88.6 7,289
Hive 2008/09/02 - 2015/03/14 5,775 5,622 97.4 5315
Jackrabbit || 2004/09/13 - 2015/03/13 8,027 5,038 62.8 2,610
Karaf 2007/11/26 - 2015/03/10 4,588 2,913 63.5 1,809
OpenJPA 2006/03/02 - 2015/03/12 4,696 3,143 66.9 1,503
Qpid 2006,/09/14 - 2015/03/16 13,904 7,623 54.8 4,253
Sling 2007/09/09 - 2015/03/16 12,228 6,997 57.2 3,411
Thrift 2008/03/16 - 2015/03/15 4,003 2,338 58.4 1,871

Table 2: The percentage of work items that are com-
posed of 2 or more revisions.

System % of work items || System % of work items
Accumulo 44 || Hive 5
Ambari 9 Jackrabbit 27
Camel 33 || Karaf 23
Cassandra 19 || OpenJPA 41
Cayenne 62 Qpid 33
Derby 32 Sling 34
Hbase 15 || Thrift 14

Median 29

of revisions per work item in each of the studied systems.
The work items that have 2 or more revisions have the po-
tential to impact revision-level analysis, since the co-change
activity that is spread across the revisions of these work
items will not be detected.

Approach. For each of the 14 studied systems, we group
revisions into work items (see Section 3.2). Then, we count
the number of revisions in each work item and study its
distribution for each studied system.

Results. Table 2 shows the percentage of work items
that consist of 2 or more revisions. The table indicates that
the median value is 29%, the minimum value is 5% (Hive)
and the maximum value is 62% (Cayenne). Indeed, over
29% of work items consist of 2 or more revisions in 7 of
the 14 studied systems. Therefore, we suspect that we may
obtain different results by conducting co-change analyses at
the work item level instead of the revision-level.

A revision-level analysis would miss co-change activity in
5%-62% of work items in the studied systems. At least
29% of work items consist of 2 or more revisions in 7 of
the 14 studied systems.

5. CASE STUDY RESULTS

In this section, we describe the results of our case study,
which aims to better understand the impact that revision-
level analysis can have on software evolution studies with
respect to our research questions on file spread (RQL, i.e.,

DataCacheManagerimpl.java

TestDataCacheBehavesldentical.java

ref_guide_conf.xml

ref_guide_caching.xml .

PersistenceProductDerivation.java . .

R1 R2 R3 R4
Time

Figure 4: OpenJPA #1763 - an example of file
spread.

the files that are changed across the revisions of work items),
time spread (RQ2, i.e., the time that elapses between the
revisions of work items) and developer spread (RQ3, i.e.,
the number of developers who submitted revisions to address
each work item).

For each research question, we describe the motivation,
our approach to addressing the question, empirical observa-
tions about the distributions of work items and the impact
that that type of spread can have on co-change analyses. We
focus our study on the work items that consist of 2 or more
revisions because they may be impacted by analysis at the
work item level.

(RQ1) File spread: How many different files
are changed across the revisions of work items?

Motivation. If developers modify different files after the
first revision of a work item, co-change analysis at revision-
level will miss these related files.

Approach. We use the number of changed files within a
work item as the file spread. To understand if the same files
are changed, we split the modified files into those that are
changed in the first revision of the work item and those that
are changed after the first revision of the work item.

To understand file spread across the revisions of work
items, we compute the percentage of files that are changed
after the first revision of a work item. Specifically, we divide
the number of the unique files that are changed after the first
revision by the total number of unique files of the work item.
For example, Figure 4 illustrates the work item OPENJPA-
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Figure 5: The percentage of the files that are
changed after the first revision in a work item.

1763, which is composed of four revisions.> As shown in
Figure 4, while file DataCacheManagerImpl. java and Test-
DataCacheBehavesIdentical. java are modified by the first
revision, ref_guide_conf.xml and ref_guide_caching.xml
are modified by the second revision, DataCacheManager-
Impl.java and PersistenceProductDerivation.java are
modified by the third revision and PersistenceProduct-
Derivation. java is modified by the fourth revision. In this
case, 60% (2) of the files are changed after the first revision.
Observations. Figure 5 shows the percentage of files
that are changed after the first revision of the work items
of the studied systems using beanplots. Beanplots are box-
plots in which the vertical curves summarize the distribution
of the dataset [20]. The solid horizontal lines indicate the
median values of each system. The blue dashed line shows
the median value across the 14 studied systems. The figure
indicates that the smallest system-specific median value is
2% (Hive) and the largest system-specific median value is
43% (Jackrabbit). We find that the median value across the
14 studied systems is 24%. This file spread can impact the
findings of co-change activities. In short, revision-level anal-
yses will miss detecting co-change activities in the files that
are changed after the first revision.

To gain a richer perspective about file spread, we manually
inspect the work items that satisfy the following condition:
the number of revisions is at least 5 and the percentage of
files that are changed after the first revision is over 24% (i.e.,
larger than the overall median value).

For example, work item QPID-4575% adds support for Vi-
sual Studio 2012. A developer changes cpp and h files in the
first revision,* then changes csproj files (XML-based build
configuration files) in the fifth revision.> Revision-level co-
change analysis of production code and the build system
would miss this co-change activity.

Furthermore, in the work item HIVE-1081,° developers
use 7 revisions to correct formatting and style issues in Java
files. The number of changed files ranges between 21 and
480 in each revision and the total number of changed files

2https://issues.apache.org/j ira/browse/ OPENJPA-1763
3https:/ /issues.apache.org/jira/browse/QPID-4575

4 https://github.com/apache/qpid/commit/
b111ea9e3690b34b47289a8f{78cbaa0428f45442
®https://github.com/apache/qpid/commit/
157eef15badce70c506ed9e7d50e1fd1364d384
6https://issues.apache.01rg/j ira/browse/HIVE-1081

Table 3: The percentage of work items that are en-
tirely composed of small revisions.

System % of work items || System % of work items
Accumulo 9 || Hive 13
Ambari 1 Jackrabbit 22
Camel 42 || Karaf 26
Cassandra 6 || OpenJPA 6
Cayenne 20 || Qpid 5
Derby 33 || Sling 14
Hbase 5 || Thrift 5

| [| Median | 11

is 757. Some revisions are not large, but are involved in
the larger work item. These types of work items introduce
noise in studies of large revisions (e.g., Hindle et al. [17])—
focusing on the revision-level may miss large work items,
which appear as a collection of small revisions.

Impact. To quantitatively investigate the impact that
work items can have on large change detection and analyses,
we show how many work items that have a large number of
changed files are entirely composed of small revisions. Hin-
dle et al. [17] define that a large revision as the top 1% of
revisions that contain the largest number of files in a sys-
tem. Through analysis of 9 open source systems, Hindle et
al. [17] show that many large revisions perform fundamen-
tal development activities, such as merging branches, adding
new features, and updating documentation. However, since
this classification was performed on large revisions, it may
miss large work items, which could appear as a collection of
small revisions in the VCS history.

We count the number of changed files within each work
item, and then sort work items by the number of changed
files. Similar to Hindle et al. [17], we select the top 1% of
work items that modify the largest number of files in each
studied system (i.e., large work items). Then, we compute
the percentage of these large work items that are entirely
composed of small revisions (i.e. revisions that do not ap-
pear in the top 1% of the largest revisions).

Table 3 shows that 1%-42% of work items are entirely
composed of small revisions (11% median). This indicate
that an analysis of large changes that focuses on the revision-
level will miss 11% of the largest changes in 7 of the 14
studied systems.

Analysis of only the first revision of work items (i.e.,
revision-level analysis) would miss 2%-43% of the co-
changed files. Furthermore, at least 11% of large work
items are entirely consist of small revisions in 7 of the
1/ studied systems.

(RQ2) Time spread: How much time elapses
between the revisions of work items?

Motivation. If the time between a revision and the next
revision is too long, we may not be able to detect that these
revisions correspond to a single task when using revision-
centric techniques like the sliding time window.
Approach. We compute the time spread T, of each pair
of subsequent revisions r;—1 and r, in a work item w by
computing the elapsed time (in seconds) between r,_1 and
Te.
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Figure 6: The time spread among related revisions (i.e., revisions that

Observations.  Figure 6 shows the distribution of time
spread values on a logarithmic scale (base 10). We find that
64% of time spread values are over 4 in log scale (i.e., about
one hour). Furthermore, 14% of time spread values are over
6 in log scale (i.e., about one week).
Impact. To study the impact that time spread has on
co-change analyses, we show how well the sliding time win-
dow technique approximates the revision grouping of work
items. Some studies [22, 36] and VCS migration tools (e.g.,
cvs2svn”) use the sliding time window technique that groups
related revisions into work items. If this popular technique
cannot detect the majority of the revisions that belong to
larger work items, it may impact co-change analyses, as well
as the results that are produced by VCS migration tools.
We compute the time spread T, of each revision r in a
work item w using the number of seconds between r and the

"evs2svn is a tool for migrating a CVS repository to Subver-
sion and Git. It sets 5 minutes as a time window to group
revisions in the time window as a work item.

4

Log(seconds)
(m) Sling

6 4 6

Log(seconds)
(n) Thrifth

appear in the same work item).

previous revision r — 1. We set the sliding time window to
300 seconds to match the prior studies (200 seconds used
by Zimmermann et al. [36] + 100 seconds of buffer time).
Sliding time windows are frequently used to mitigate noise
in software repositories [3]. If the time spread Ty, < 300
seconds, we can detect that revision r is part of the work
item w using the sliding time window.

Figure 7, which depicts the three revisions of CAMEL-
7525,% provides an illustrative example of the time spread
computation. Since the second revision is committed 258
seconds after the first revision, it can be grouped because
the time spread is less than 300 seconds. Since the third
revision is committed 232 seconds after the second revision,
it can also be grouped. Note that the time spread is 232
seconds, and not 258 + 232 = 490 seconds.

Table 4 shows the percentage of related revisions that can-
not be grouped using the 300-second sliding time window.
We exclude the first revisions in work items to calculate

8https://issues.apache.org/jira/browse/CAMEL- 7525



258 sec 232 sec

R1 R2 R3 Time

Figure 7: An illustration of the time spread compu-
tation for the three revisions of CAMEL-7525.

Table 4: The percentage of revisions that cannot be
detected using a 300-second sliding time window.

System % of revisions || System % of revisions
Accumulo 82 || Hive 79
Ambari 90 || Jackrabbit 86
Camel 91 || Karaf 84
Cassandra 48 || OpenJPA 93
Cayenne 59 || Qpid 79
Derby 97 || Sling 76
Hbase 84 || Thrift 76

| || Median | ]3

the percentage, since there is no prior change from which
we can compute the elapsed time. Surprisingly, the results
show that 48%-97% of related revisions cannot be grouped
using the sliding time window (median 83%).

We manually inspect the messages of the work items that
cannot be grouped using the 300-second sliding time win-
dow. For example, developers may forget to add some re-
lated files in the first revision. We observe that there are
cases where the sliding time window cannot detect related
revisions that add files that were missing in the first revi-
sion. One example is ACCUMULO-1890, which describes
how Accumulo recovers from a failure due to limited re-
sources.” In this work item, a developer modifies a test file
across two revisions. 11 minutes elapse between the first and
second revisions. The commit message of the second revi-
sion'® states that the developer: “Forgot to re-add changes
before commat.”

AMBARI-5504"" is another example of an unintentionally
omitted change. In this work item, developers update the
layout of a web application using three revisions. The first
revision updates 13 source code files, while the second revi-
sion, which appears 7 minutes of the first revision, adds 707
new lines of code in three new source code files. Although
the commit message of the second revision does not explic-
itly mention that the revision is fixing a mistake in the prior
revision, we believe that the files are missed in the first revi-
sion because it is unrealistic to implement 707 lines of code
in 7 minutes.

The elapsed time between revisions of a work item is over
an hour in 64% of cases. Furthermore, in 7 of the 14
studied systems, 83% of related revisions that belong can-
not be grouped using a 300-second sliding time window.

9https://issues.apache.org/j ira/browse/ ACCUMULO-1890
10ht‘cps://git- wip-us.apache.org/repos/asf?p=accumulo.git;h=
ad0a6d4
1 https://issues.apache.org/jira/browse/ AMBARI-5504
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Figure 8: The number of developers per work item.

Table 5: The percentage (and count, shown in brack-
ets) of work items modified by multiple developers.

System % of work items

modified by multiple devs
Accumulo 33 (309)
Ambari 25 (200)
Camel 24 (503)
Cassandra 19 (172)
Cayenne 8  (42)
Derby 27 (297)
Hbase 21 (230)
Hive 22 (54)
Jackrabbit 23 (167)
Karaf 25 (104)
OpenJPA 41 (250)
Qpid 25 (344)
Sling 19 (232)
Thrift 32 (81)
median 2% (215)

(RQ3) Developer spread: How many develop-
ers are involved across revisions of a work item?

Motivation. The sliding time window technique assumes
that all revisions not only appear in the same time window,
but also that the same developer commits all revisions [22,
36]. However, Xuan and Filkov [32] find that synchronous
development (i.e., different developers modifying the same
files during a certain period) plays an important role in the
development of open source systems. If several developers
collaborate on a work item across revisions, the conventional
techniques like sliding time window will not detect that these
revisions correspond to a single task. In this question, we
investigate how often the commits that address a work item
are distributed among multiple developers.

Approach.  We call the number of developers that are
involved in a work item its developer spread. We compute the
developer spread for each work item of the studied systems,
and then investigate the distribution of developer spread. If
the developer spread of a work item is more than one, we
flag the work item as collaborative.

Observations. Figure 8 shows a beanplot of the number
of developers that are involved in the work items of each
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Figure 9: An illustration of the detection of syn-
chronous development at the revision level using
DERBY-2999.

Table 6: The percentage of work items that have
synchronous development that cannot be detected
using revision-level analysis with a variety of time
window configurations.

System % of work items

1 day | 5 days | 10 days
Accumulo 67 42 32
Ambari 33 15 14
Camel 53 28 20
Cassandra 77 63 49
Cayenne 75 68 57
Derby 7 55 44
Hbase 62 41 32
Hive 66 32 30
Jackrabbit 72 55 48
Karaf 71 57 48
OpenJPA 78 61 55
Qpid 76 57 48
Sling 76 62 55
Thrift 88 67 56
median 74 56 48

studied system. Although the majority of work items involve
one developer, there are still many collaborative work items.
Interestingly, there are work items that involve 5 or more
developers in Accumulo, Derby and Jackrabbit.

Table 5 shows the percentage and number of work items
that are modified by multiple developers. We find that 8%-
41% of work items involve multiple developers. The median
across the 14 studied systems is 25%.

Impact. To study the impact that developer spread has
on co-change analyses, we study how often work items have
collaborative development that cannot be detected by the
method proposed by Xuan and Filkov [32], which is depicted
in Figure 9. Xuan and Filkov [32] define synchronous de-
velopment as a set of revisions where one file is modified
by multiple developer within a time window. In DERBY-
2999,'% developers use two revisions to convert an sql file
to a java test file. In Figure 9, the developer ‘A’ changes
LockTableTest. java and other 6 files, then the developer
‘B’ changes LockTableTest. java within 1 day of developer
‘B’s commit. In this example, we can flag the collaborative

12https://issues.apache.org/j ira/browse/ DERBY-2999

Time

2 o

Developer 'C’ CASSANDRA Time
185 CASSANDRA
HintedHandO -5185
ffManager.java Directories
MigrationMan Jjava
x ager.java
Developer ‘D’ Rz Time

Figure 10: The example of CASSANDRA-5185—
collaborative activity that can only be detected at
the work item level.

work item as having synchronous development using Xuan
and Filkov’s method. However, synchronous development
will miss collaborative work items that stretch beyond the
sliding time window.

Table 6 shows the percentage of work items having syn-
chronous development that cannot be detected using Xuan
and Filkov’s method. Indeed, we find that 33%-88% of col-
laborative work items have synchronous development that
cannot be detected with a 1-day time window (74% median).
Even with a 10-day time window, 14%-57% of collaborative
work items have synchronous development that cannot be
detected (48% median).

We also investigate collaborative work items that cannot
be detected at the revision-level, i.e., revisions that are sub-
mitted by different developers that modify different files, but
appear under the same work item. Figure 10 shows how we
detect this work item level collaboration. In CASSANDRA-
5185,'% developers use two revisions to fix links to data direc-
tories in Cassandra 1.2.0. In Figure 10 developer ‘C’ changes
HintedHandOffManager . java and MigrationManager. java,
and developer ‘D’ changes Directories. java. We find that
this type of collaboration is not rare—27%-83% of collabora-
tive work items involve developers modifying different files,
and hence, cannot be detected at the revision-level.

Multiple developers collaborate by submitting different re-
visions of 8%-41% of work items. Moreover, in 7 of the
14 studied systems, 48% of work items that involve multi-
ple developers cannot be grouped using conventional tech-
niques at the revision-level.

6. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of
our study and its conclusions.

6.1 Construct Validity

We assume that developers generally record the work item
ID in the commit message of related revisions. However,
in reality, developers may omit the work item ID [7]. To
combat this bias, we focus our study on systems that we can
link at least 50% of the revisions to work items. Nonetheless,
better linkage between work items and revisions may yield
more accurate results.

13https://issues.apache.org/jira/browse/CASSANDRA-5185




6.2 Internal Validity

We group revisions that have the same work item ID as a
work item using regular expressions. These regular expres-
sions may miss some patterns that detect work item IDs.
However, we manually inspected several commit messages
to check whether or not there are false positives (i.e., the
number is identified as a work item ID when in fact it is ac-
tually not). Again, better linkage between work items and
revisions may yield more accurate results.

Some studies report that there are tangled changes, which
are unrelated or loosely related code changes in a single re-
vision [16, 23]. Tangled changes may introduce noise into
our datasets. For example, if a developer changes file A
to fix a bug and file B to add a new feature, but commits
the changes using one revision or work item, our analysis
will still group the two changes together. In future work,
we plan to study tradeoffs between work item grouping and
tangled change splitting.

6.3 External Validity

We use datasets that we collected from the Apache Soft-
ware Foundation. Our findings may not generalize to all
software systems. However, we set two important criteria
that are need to be satisfied and study 14 systems of differ-
ent sizes and domains.

We set two thresholds to select appropriate systems for our
case study. Although we chose the threshold values based
on the distribution of the surviving systems using thresh-
old plots, selecting different threshold values may provide
different results.

7. CONCLUSIONS

Substantial research in the software evolution field aims
to recover knowledge about development from system his-
tory that is archived in repositories. Although the data that
is archived in these repositories can be analyzed at several
different granularities, there are many studies on software
evolution at the revision-level. However, the revision-level
is often too fine-grained to accurately depict development
tasks. For example, while some developers may use one re-
vision per task, others may use several revisions. Such a fine
granularity may impact the findings of co-change analyses.

In this paper, we set out to better understand the im-
pact that task granularity can have on co-change analyses.
Through a case study of 14 systems that are maintained by
the Apache Software Foundation, we observe that:

e Analysis of only the first revision of work items would
miss 2%-43% of the co-changed files.

e At least an hour elapses between the related revisions
of 64% of the studied work items. A 300-second sliding
time window (a common setting in software evolution
studies) will miss this co-change activity.

e Multiple developers are involved with the revisions of
8%-41% of the studied work items. Since the slid-
ing time window technique assumes that revisions are
committed by the same author, it may miss this col-
laborative co-change activity.

Through additional impact analyses, we observe that in 7
of the 14 studied systems:

e 11% of large work items entirely consist of small revi-
sions, which will cause large revision filters and analy-
ses to miss important changes.

e 83% of co-change revisions cannot be detected using a
300-second sliding time window.

e 48% of work items that involve multiple developers
have synchronous development that cannot be detected
by revision-level analysis.

Given the impact that work item grouping, we recommend
that future software evolution studies (especially co-change
analyses) be performed at the work item level.
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