Interrogative Comments Posed by Review Comment
Generators: An Empirical Study of Gerrit

Farshad Kazemi*, Maxime Lamothe’, Shane McIntosh*
* University of Waterloo, Canada, t Polytechnique Montréal, Canada
E-mail: {given_name}.{family_name}e{*uwaterloo,polymtl}.ca

Abstract—Background: Review Comment Generators (RCGs)
are models trained to automate code review tasks. Prior work
shows that RCGs can generate review comments to initiate
discussion threads; however, their ability to interact with author
responses is unclear. This can be especially problematic if RCGs
pose interrogative comments, i.e., comments that ask questions
of other review participants.

Aims: We set out to study the prevalence of RCG-generated
interrogative code review comments, their similarity with the
interrogative comments of humans, and the predictability of the
generation of interrogative comments.

Method: We study three task-specific RCGs and three RCGs
based on Large Language Models (LLMs) on data from the
Gerrit project using quantitative and qualitative methods.

Results: We find that RCGs: (1) generate interrogative com-
ments at a rate of 15.6%-65.26%; (2) differ from humans in
generating such comments, which can stifle conversations if RCGs
dissuade human reviewers from commenting deeply; and (3)
produce interrogative comments with low predictability. Finally,
we find that (4) the interrogative comments posed by LLM-
based RCGs can differ even more substantially from human
behaviour than those of task-specific RCGs. For example, the
studied LLM-based RCGs pose rhetorical questions 3.16% of
the time, whereas human-submitted interrogative comments pose
rhetorical questions 8.74% of the time.

Conclusions: Our results suggest that neither task-specific nor
LLM-based RCGs can replace human reviewers yet; however,
we note opportunities for synergies. For example, RCGs tend to
raise pertinent questions about exception handling of common
APIs more frequently than human reviewers. Putting greater
emphasis on technical comments generated by RCGs (rather
than conversational ones, such as interrogative ones) will likely
improve their perceived usefulness.

I. INTRODUCTION

Code review is a key quality assurance step in software
development [[L]. By focusing on the systematic inspection
of source code [2f, it plays a vital role in enhancing code
quality [1]], mitigating defects [3]], ensuring maintainability [4],
and facilitating knowledge sharing among developers [3].

Despite its benefits, code review is time consuming [6], [7]
and error prone [§8]. These limitations inspired the creation
of Review Comment Generators (RCGs), which can automat-
ically generate code review comments [9], [[10]. The goal of
RCGs is to provide feedback that is more timely, consistent,
and objective than what human reviewers can provide [11]].

Although RCGs aim to emulate human reviewers in com-
ment generation, they are not without limitations. For example,
task-specific RCGs [[12]], [13]], [14] may pose questions, but do
not comprehend author responses, and hence, cannot follow up

like human reviewers. While Large Language Models (LLMs)
can follow up on such author responses, their correctness is
unclear. Incorrect responses can hinder useful discussions [15],
leading to less productive code reviews. Indeed, we are not the
first to question how RCGs respond in the wild [16], [17].
Prior work has shown that interrogative comments, i.e.,
comments that ask questions of other review participants
(e.g., “why the regex?’ are common outputs generated by
RCGs [18]; however, a systematic study of these comments
has not yet been conducted [[19]. Our study aims to fill this gap
by conducting quantitative and qualitative analyses of task-
specific and LLM-based RCG-generated interrogative com-
ments. We aim to quantify the prevalence and predictability
of RCG-generated interrogative comments, and characterize
them with respect to interrogative comments posed by humans.
We conduct our study using 172,919 code review comments
from the Gerrit project that were posted from 2018 to 2023

Quantitative Analyses (Section [V). We find that a me-
dian of 15.61% of comments generated by task-specific
RCGs are interrogative, whereas 65.26% and 47.67% of
DBRX and LLaMA2 comments (i.e., LLM-based RCGs)
are interrogative, respectively. Comparatively, 39.91% of
human-submitted comments in our corpus are interrogative,
suggesting that task-specific RCGs do not pose questions
frequently enough, and that LLM-based RCGs may be
overcorrecting. We also study whether RCGs and humans
ask questions about the same code changes. Fisher’s exact
test suggests that, indeed, there is a statistically significant
association among RCG-generated and human-submitted
comments in their mood, i.e., whether the comment is
declarative or interrogative. Finally, we find that RCG
behaviour in code changes with discussion threads that start
with interrogative comments is unpredictable and erratic,
i.e., the rate of RCG-generated interrogative comments
varies more across the studied Merge Requests (MRs).

Qualitative Analysis (Section [VI). Through a manual
inspection of samples of RCG-generated and human-
submitted interogative comments, we observe that a con-
siderably larger share of questions focus on the rationale
for code changes when RCGs generate questions rather
than humans (13.86%-22.11% vs. 1.94%). Humans dis-
cuss logical code flow more often (54.37% vs. RCGs

Uhttps://gerrit-review.googlesource.com/c/gerrit/+/40230?tab=comments
Zhttps://gerrit-review.googlesource.com/

https://gerrit-review.googlesource.com/c/gerrit/+/40230?tab=comments
https://gerrit-review.googlesource.com/

38.64% to 42.17%) and predominantly use questions for
suggestions (63.11%), whereas RCGs tend to request ad-
ditional context (56.84%-84.09%). Furthermore, humans
often employ rhetorical questions (8.74%) and hypotheticals
(4.85%), whereas task-specific RCGs do not. Our LLM-
based RCG experiments show that LLMs outperform task-
specific RCGs in hypothetical inquiries (12.65% for GPT-4),
but lag in rhetorical questioning (2.27% for LLaMA?2).

We conclude that RCGs could aid the review process by
focusing on technical comments, like those related to excep-
tion handling. Meanwhile, their interrogative review comments
should be deprioritized because they exhibit a disparity with
respect to human behaviour (shown by differences in entropy
and density) and their limited linguistic ability impacts com-
ment quality. Although LLM-based RCGs show promise in
addressing the linguistic limitations of task-specific RCGs,
they do not consistently improve performance across different
types of interrogative comments. We thus recommend using
RCGs for complementary technical comments where their
benefits can be harnessed while mitigating their shortcomings.

II. BACKGROUND AND RELATED WORK

Below, we present related research on automatic code
review and code review comment generation to position our
study and reason about our experimental design choices.
Automatic Code Review. Previous studies [[L1]], [[13]] defined
three primary tasks for code review automation: (1) code
quality estimation [20], [21l], [22]; (2) revising code after
[23], [24] or before [11]], [12], [25], [26], [27] the review;
and (3) code review comment generation. Machine learning
approaches have been tailored to each of these, including code
review comment generation. Indeed, Zhou et al. [18] found
that the CodeT5 [28] general model surpassed the best RCG
in code revision by 13.4%-38.9% and the T5-review [12]] RCG
model was the best for code review comment generation.

Although task-specific RCGs can emulate human behaviour
to some extent [29], it remains unclear whether their interrog-
ative comments promote discussion or inadvertently hinder it.
Zhou et al. [18] noted that interrogative comments are com-
mon in human code review (over 33.8% of comments) [18]],
and advocated for having models that emulate this behaviour;
however, the ability of RCGs to generate such comments and
their synergies with human comments has yet to be studied.
We therefore aim to study the generation of interrogative code
review comments for task-specific and LLM-based RCGs to
better understand their roles in the code review process.

LLMs have become a resource for code review [30], [31].
Indeed, ChatGPT has been used for various software engi-
neering tasks, including code review, finding that ChatGPT’s
responses aligned with human reviewers in only 4 out of 10
tested instances [32]. Further, Guo et al. [33] examined Chat-
GPT’s revision effectiveness and its strengths and weaknesses
in post-review code refinement. Their findings indicate that de-
spite higher operational costs, ChatGPT underperformed with
respect to CodeReviewer [[13] in one of two studied datasets.

Sun et al. [34] introduced a feedback loop to enhance LLM-
based code reviews; however, users complained about slow
response times. Rasheed et al. [35] studied the automation
of code review using multi-agent LLM-based RCGs. These
findings suggest a complex tradeoff between task-specific
and LLM-based RCGs. Since neither type of RCG always
outperforms the other, we compare both types in our study.

We investigate how RCGs generate interrogative comments,

focusing on three state-of-the-art RCGs (AUGER [14], Code-
Bert [36], and CodeReviewer [13]]), and three LLM-based
RCGs (DBRX[| GPT-4[and LLaMA2 [37]).
Code Review Comment Generation aims to emulate human
reviewers and automatically generate review comments for a
given code change. The goal is to minimize the workload for
reviewers and the delay for authors to receive feedback. Many
such approaches exist. For example, Review Bot [38]], which
produces code review comments derived from the outputs
of various static analyzers, received approval on 93% of its
generated comments. DeepCodeReviewer [39] and CORE [40]]
leverage deep learning to recommend and automate reviews.
CommentFinder [9] addresses the latency in deep learning
methods using an information retrieval approach.

Recent advances shifted focus to task-specific RCG mod-
els [27]. This trend typically involves pre-trained models [12],
(131, [14], [41], [42] that combine natural and programming
language processes to enhance the code review process. With
the emergence of LLMs, studies have also examined their
utility in automating code review tasks. They were found
to have a variety of limitations [17], e.g., a significant gap
between perceived and actual effectiveness [16]], issues in
performing like humans [29], and drawing out code reviews
without providing a commensurate increase in code qual-
ity [43]. Moreover, despite LLaMA-Reviewer’s [44] higher re-
source demand for inference, it did not consistently outperform
state-of-the-art task-specific RCGs like CodeReviewer [13l.
Similarly, Pornprasit and Tantithamthavorn [45] assessed GPT-
3.5’s capabilities for code review, observing that state-of-the-
art task-specific models still tended to outperform GPT-3.5.
Given these findings and the high operational costs of LLMs,
we choose to consider three high-performing [[18]] task-specific
RCG and two types of LLMs for each of our studies.

III. MODEL SELECTION

We select six models of varying types for our study.
AUGER, CodeBert, and CodeReviewer are task-specific
RCGs, selected because of their strong performance in prior
work [18]. GPT-4 Turbﬂ is an exemplar of enterprise models,
known for their performance across various tasks, albeit at
higher costs. Due to this cost, we select DBRX-instruclE and
LLaMAZ2-7B [37] as freely available alternative LLMs for our
quantitative analysis. We describe each model below.

AUGER [14] is an RCG that uses the pre-trained CodeTrans
T5 model [28]], [46]], which was further fine-tuned on ~10K

3 https://github.com/databricks/dbrx
4https://bit.ly/open-ai- gpt-4

https://github.com/databricks/dbrx
https://bit.ly/open-ai-gpt-4

code review instances from 11 Java projects. AUGER thus
can leverage its training data to provide review context.
AUGER was assessed with a survey that revealed that 29%
of developers found its generated comments useful [14].

CodeBert [36] has a transformer-based architecture [27]]
and is trained with Masked Language Modelling (MLM) and
replaced token detection using NL-PL pairs and unimodal code
data. This approach allows CodeBert to excel in tasks like code
search and documentation generation. Like Zhou et al. [18]],
we use the pre-trained CodeBert model, fine-tuning it with
~50K review records. Fine-tuning this model helps with the
generation of the comments instead of code, leading to more
understandable generated comments.

CodeReviewer [13] employs CodeT5 [47] and further fine-
tunes it on data in the form of <comment, code hunk>
to process code diffs as input. Compared to AUGER, CodeRe-
viewer focuses on understanding code changes and their
relationship to review comments because its output explicitly
highlights line additions and deletions. Indeed, CodeReviewer
has been shown to perform comparatively well in terms of
comment generation among RCGs [44].

When it was introduced in March 2024, DBRXE tended to
outperform competing open models and established models
like GPT-3.5, particularly in code-related tasks. The instruct
version is optimized for scenarios like programming and cod-
ing assistance. Models like GPT-4 Turbo outperform DBRX,
but they are more expensive to run. We use the instruct version
of the model to achieve the best possible performance at a
manageable price when GPT-4 Turbo would be prohibitive.

GPT-4 Turbﬂ upgraded GPT-4 capabilities, including sup-
port for more diverse inputs. As a proprietary model, its
architecture details are not publicly disclosed, and to interact
with the model, developers should use OpenAl’s API.

LLaMA?2 [37] offers 7, 13, and 70 billion parameter con-
figurations. These models, trained on a dataset spanning 2
trillion tokens from January to July 2023, follow the standard
transformer architecture with an auto-regressive model design.

IV. DATASET PREPARATION

In this section, we describe how we create the dataset for
our analysis. Figure [T] shows the steps which consists of: (1)
Data Collection, (2) Data Cleaning, and (3) Review Generation
components. Below, we describe each component.

1. Data Collection. Our study aims to use RCGs trained
on human code reviews to generate code review comments,
allowing us to analyze the prevalence and patterns of questions
that are generated. To that end, we must first select a develop-
ment community that produces a large number of high-quality
human-submitted code reviews. Human-submitted code re-
views are necessary both to fine-tune RCGs and to compare
their results against a baseline. We choose the Gerrit commu-
nity for our study because it provides us with the opportunity
to analyze how RCGs perform in a high-quality case. The
Gerrit community uses Git, contains a large amount of review
data (1,852 code reviews and 15,000 code review comments in
2022), has contributors representing organizations of influence

Review Generation

Data Collectio Data Cleaning

DF1: Keep Java Reviews

DF2: Discard Comment
Responses

Gerrit '\,
Fetch Pull Requests
(MR-Loader)
18,720 records

lerge Requests

Fetch Code| [Fetch Code
Reviews Changes

172,919 records

Code Reviews

Review Code Changes with
Automatic Code Reviewer Models

DF3: Discard Reviews
Without File Content

DF4: Discard File Level
Reviews

Identify questions in Real and
Generated Reviews

DF5: Apply Tufano et.al.
Filters

9,446 records

Review Dataset

i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
v

1
[
[
[
[
[
[
[
[
[
[
[
[
[
1
[
1
[
1
[
1
[
1
[
v

Fig. 1. The overview of the data preparation procedure.

(e.g., Google, Cisco, and Spotify), and tends to provide review
records that are well linked to the commits on which they
were performed. Focusing on the Gerrit community does
pose clear risks to external validity but allows control over
internal validity threats, such as understanding of data linkage
properties, highlighting a subjective trade-off between these
validity types among researchers as studied previously [48].
Furthermore, the Gerrit community has been the subject of
previous studies [49] as the its maintainers are committed
to best practices for code review, and as such, its review
comments are of high quality and quantity [49], [50].

To start our data collection, we use MR-LoadeIE] to obtain
the raw MR data from the Gerrit community. As the primary
quality gate through which all code changes of the community
flow, MRs are a prime source of data for our study. Indeed,
all the details related to a change, including the code review
comments, can be accessed through MRs. We also collect
metadata, such as the author and committer of each code
change, to use in our data analysis.

We collect this data from the Gerrit community from the
first available MR (2018-10-21) for a span of five years
(until 2023-08-22). While this filters more recent data from
our dataset, it improves the odds that all collected MRs are
finalized. For this work, we focus on the core community
project—the Gerrit code collaboration tool. We filter out MRs
that are not related to that core project. This produces a dataset
of 172,919 code review comments, which we complemenlﬂ
with the content of the files under discussion before a change
and the code diff on which the reviewers commented.

2. Data Cleaning. After data collection, we apply five Data
Filters (DFs) to mitigate noise (e.g., comments like “Igtm”).
We describe each DF below.

DF1: We filter out comments on files other than Java files
by identifying files with the . java extension. We concentrate
on Java files because two of the three studied Review Comment
Generators (RCGs) are trained on Java code review data and
provide feedback only on Java code changes. 77,529 code
review comments survive this filter.

Shttps://github.com/JetBrains- Research/MR-loader
6Using its API: |https:/gerrit-review.googlesource.com/Documentation/,

https://github.com/JetBrains-Research/MR-loader
https://gerrit-review.googlesource.com/Documentation/

DF2: We filter out response comments, i.e., comments
posted in reply to another comment, using a Gerrit API
flag that indicates whether a comment is in reply to another
comment. We remove response comments because non-LLM-
based RCGs only review code changes and do not engage in
follow-up discussions. Similar filters are common in previous
studies [[12]], [[14] to prepare the data for training and inference.
After DF2, our dataset contains 37,656 code review comments.

DF3: We filter out records that have irretrievable file content
before the code change. For each code review comment, we
use a Gerrit API request to retrieve related file content. We
remove the few cases where the API request is unsuccessful
because the data cannot be processed by the studied RCGs.
After DF3, our dataset contains 37,625 code review comments.

DF4: We filter out file-level comments, i.e. those that are
not connected to any line of code, but are instead about a
higher-level concept in that ﬁle[] We do this by identifying
comments that mention a file name, but no comment lines.
We remove these records because task-specific RCGs review
functions, sub-function blocks, or lines of code. Therefore,
these file-level comments cannot be produced by the studied
RCGs. 37,133 code review comments survive this filter.

DFS: Our final filter removes empty comments after pre-
processing. We preprocess comments using the replication
packages from Tufano et al. [12]]. Specifically, we use their
code/Analyzer.py and code/Cleaner.py files. This
filters out non-English comments and comments on code
portions that are not part of a function, such as comments on
imports. This filter also removes empty comments after the
removal of emojis and links. In the end, 19,446 code review
comment records survive this filter.

Our dataset, scripts, and the resulting 19,446 code review
records are available in our replication package
3. Review Generation. We use our collected dataset and our
selected RCGs to generate code review comments based on the
given code changes. Task-specific RCGs are trained to excel
in comment generation with a specific input format, but have
not undergone Reinforcement Learning from Human Feedback
(RLHF), a technique used to align intelligent agents with
human preferences. Conversely, LLMs are more generalized
models that interact through natural language interfaces, but
typically require more resources. Below, we elaborate on each
type of RCG in more detail.

Task-specific RCGs. The selected task-specific RCGs
differ in their input format. Both AUGER and CodeRe-
viewer adopted the Text-To-Text-Transfer Transformer (T5)
model [28], but each chooses one of its many existing vari-
ations [51]], which require different inputs. AUGER’s input
requires a function that contains commented code, allowing
it to use this context to comment on issues at the function
level [14]. Conversely, CodeReviewer uses inputs in the form
of code diffs. Thus, while we follow prior work [44] and use
off-the-shelf versions of AUGER [14]] and CodeReviewer [13]],

7Sample comment: https:/gerrit-review.googlesource.com/c/gerrit/+/
351075/comment/2408abef_e5ea576¢/
Shttps://doi.org/10.528 1/zenodo.13301078

we tailor the inputs to each model. Unlike CodeReviewer
and AUGER, CodeBert, as a general-purpose model, can
ingest a code change as-is; however, it must be further fine-
tuned [12]. Thus, we use the pre-trained CodeBert model
and train it for another 50,000 epochs on the Tufano et al.
dataset [[12] to perform code reviews. To prevent data leakage
from fine-tuning to testing phase, we remove the duplicate
entries when evaluating this model. Furthermore, to minimize
implementation errors, we use the code provided by Zhou et
al. [18] and only modify it to add top-k sampling [S52].

Our diverse selection of RCGs allows us to generate a
wide range of code review comments. Because our chosen
models are non-deterministic, we allow each model to provide
multiple outputs (denoted by k) for a given input. Similar to
prior work [[13], [[14], we run experiments for all of our studied
RCGs for the top-k results, where k = {1, 3,6, 10}.

We apply a rule-based heuristic to detect interrogative
moods in comments, building on Zhou et al. [18]]. To improve
accuracy, we first use NLTKE] to split review comments into
sentences, then identify interrogative ones by checking for
question-indicative keywords (e.g., what) and verifying their
role as interrogative adverbs. To verify the performance of
this heuristic, we draw a random sample of 377 comments
and inspect the output of the heuristic for each one manually.
The heuristic yields an AUC of 0.96 for human review com-
ments (95% confidence level, 5% margin of error). Using this
heuristic, we individually classify both the actual comments
and each of the top-k generated code review comments of
each of the studied RCGs. After collecting and classifying the
model outputs as interrogative or declarative, we analyze them
to address our RQs.

Large Language Models. For code review comment, each
LLM is run with the ¥ = 1 setting, is prompted to adopt
the persona of a code reviewer [S3]], and leverages two-shot
prompting [45], [54] to enhance model efficacy. We provide
two examples—one interrogative comment and one declarative
comment—to prevent model bias and pose questions only
when necessary. These examples are selected from a randomly
chosen set of code reviews and inspected to ensure that the
issues raised in the comments are confined to the code change
and do not reference materials outside the scope of the change.
We choose not to fine-tune the studied LLMs because they
have already been trained on extensive code review data. The
input comprises a code hunk, similar to CodeReviewer [13],
which is known for its superior performance in comment
generation among RCGs [44]. After prompting the LLM, we
record its response for further analysis.

V. QUANTITATIVE ANALYSES

In this section, we quantitatively study interrogative com-
ments generated by RCGs during code reviews. Below, we
describe our approach to data analysis and then present the
results with respect to a set of observations.

9https://www.nltk.org/

https://gerrit-review.googlesource.com/c/gerrit/+/351075/comment/2408abef_e5ea576c/
https://gerrit-review.googlesource.com/c/gerrit/+/351075/comment/2408abef_e5ea576c/
https://doi.org/10.5281/zenodo.13301078
https://www.nltk.org/

Approach. We first evaluate the prevalence of RCG-generated
interrogative comments by measuring their frequency in our
studied dataset. To measure the similarity of interrogative
comments generated by RCGs and humans, we calculate the
density of interrogative comments per MR for RCGs and
human reviewers, i.e., the rate at which interrogative comments
are posed in each MR. We report the results of our analysis
using top-k values (k € 1, 3,6, 10 for task-specific and k = 1
for LLM-based models) for each of our studied task-specific
RCGs to explore the impact of k£ on their behaviour. We
test various k settings because higher k settings improve the
quality of comments by providing a more lax guess budget
and increase the diversity of suggestions [52]. Experimenting
with k settings is also common in prior work [12], [14].

We also explore whether RCGs imitate human behaviour
when posing interrogative comments. To evaluate the associ-
ation between comments generated by RCGs and those posed
by humans, we apply Fisher’s exact test [S5]. Additionally, to
compare the density of interrogative comments generated by
RCGs and humans across MRs, we apply Mann-Whitney U
test [S6]. We also apply Shannon’s entropy [S7] to measure
the predictability of RCG behaviour.

To evaluate the prevalence of LLM-generated interrogative
comments, we focus on the £ = 1 setting because larger k
settings generate larger computational costs. Similar to the
evaluation of task-specific RCGs, we study the association
between the interrogative mood of comments produced by hu-
mans and LLMs. We use Fisher’s exact test with a« = 0.0036—
a setting of a = 0.05 that has been corrected for multiple
comparisons using the Bonferroni method [58].
Discussion-Inducing Changes: Discussion-inducing code
changes in the context of RCG-generated interrogative com-
ments are of interest because RCGs have the potential to
disrupt valuable code review discussions We analyze code
review comments with discussion threads that have at least one
response because these discussions are (1) closely linked to
questions during the code review process [19], and (2) play an
essential role in knowledge sharing and design conversations
within the code review process [2], [15]], [59].

Two scenarios may arise in discussion threads. First, RCGs
may ask questions in a similar fashion to humans, sparking
productive discussions that require active RCG engagement.
This scenario would require RCGs with a deep understanding
of the code and strong reasoning capabilities, which are
currently lacking. Second, RCGs may ask different (perhaps
even incorrect) questions, potentially stifling informative dis-
cussions. This scenario is more daunting, as it would hinder
valuable project documentation [2]. We therefore study how
task-specific RCGs compare to humans in such cases and
whether LLMs can be applied to address their shortcomings.
Identifying Discussion-Inducing Changes: To identify these
code changes, we first extract comment threads, specifically
those with more than one reply from the code review records.

10An example of a discussion-inducing comment: https:/gerrit-review.
googlesource.com/c/gerrit/+/13126/1/gerrit- sshd/src/main/java/com/google/
gerrit/sshd/commands/Receive.java#192

During this process, we filter out single-word responses to
focus on informative discussions related to code changes,
excluding minimal responses like “Acknowledged.’E] We then
flag the corresponding code and the initial comment that
initiated the changes as discussion-inducing.

Results. Tables |I| and |lI| show the prevalence of interrogative
comments and the predictability of our studied RCG behaviour
in generating them. Below, we present our observations. In this
section, we use DBRX instead of GPT-4 to reduce costs.
How Often Do Review Comment Generators Generate
Interrogative Comments? 15.61% of comments generated by
the task-specific RCGs are interrogative. Interrogative review
comments account for 0.91% to 27.54% of all generated
comments, with medians of 15.78%, 19.50%, and 10.15%
for AUGER, CodeReviewer, and CodeBert, respectively. The
overall median across all values of k is 15.61%. Regarding
the LLM-based RCGs, 65.26% and 47.67% of the DBRX
and LLaMA2-generated review comments are interrogative,
respectively. To provide a benchmark, our dataset of human
review comments from the Gerrit project contains interrogative
comments at a median rate of 39.91%.

Among the studied task-specific RCGs, AUGER has the
highest interrogative comment frequency at 15.30% for k =
1, with CodeReviewer and CodeBert at 4.11% and 0.91%.
These rates tend to increase as k increases, indicating that
these models put more weight on non-interrogative comments.

CodeBert’s relatively low rate of interrogative comments,
especially for k£ = 1, can be attributed to its base model,
which is primarily trained for generating code rather than
natural language. Although pre-training CodeBert for 50K
epochs enhances comment quality for larger & settings, when
focusing only on the most likely solution (k = 1), the
generated comments mainly consist of code fragments with
limited natural language text. Consequently, only a few would
have questions within the CodeBert-generated comments.

LLM-based RCGs pose questions more frequently than task-
specific models, especially in the case of DBRX. We suspect
that this is due to their limited contextual knowledge about
the given change hunks, which lead to confusion. We explore
the questions that LLMs pose in more detail in Section

When we repeat the previous analysis focusing exclusively
on discussion-inducing code changes, we find that the rate of
interrogative comments ranges from 0.91% to 28.02%, with a
median of 15.60% for all comments generated by task-specific
RCGs. This indicates a slight increase in rates compared to
our assessment of all comments. As for LLM-based RCGs,
DBRX and LLaMA?2 generate interrogative comments 67.62%
and 46.64% of the time, indicating a +2.36 and -1.03 per-
centage point difference. As a benchmark, human-submitted
comments in discussion-inducing code changes increased by
18.25 percentage points to reach 58.16% when all comments
are considered. This result indicates that RCGs do not treat
discussion-inducing changes like humans.

https://gerrit-review.googlesource.com/c/gerrit/+/430619/comments/
c74c5adb_ebc49a32

https://gerrit-review.googlesource.com/c/gerrit/+/13126/1/gerrit-sshd/src/main/java/com/google/gerrit/sshd/commands/Receive.java#192
https://gerrit-review.googlesource.com/c/gerrit/+/13126/1/gerrit-sshd/src/main/java/com/google/gerrit/sshd/commands/Receive.java#192
https://gerrit-review.googlesource.com/c/gerrit/+/13126/1/gerrit-sshd/src/main/java/com/google/gerrit/sshd/commands/Receive.java#192
https://gerrit-review.googlesource.com/c/gerrit/+/430619/comments/c74c5adb_ebc49a32
https://gerrit-review.googlesource.com/c/gerrit/+/430619/comments/c74c5adb_ebc49a32

TABLE I
RATE OF GENERATED INTERROGATIVE COMMENTS FOR STUDIED REVIEW
COMMENT GENERATORS (RCGS).

TABLE II
ENTROPY OF THE DENSITY OF INTERROGATIVE COMMENTS FOR ALL AND
DISCUSSION-INDUCING CODE CHANGES.

Type All) .) . k Type All Discussion-inducing i
RCG Discussion-inducing RCG entropy p-value entropy p-value
15.30% 15.52% 1 0.297 0.00 0.337 <.001 1.0
16.14% 16.31% 3 0.431 <0.001 0.456 <0.001 3.0
AUGER . ; AUGER 0.520 <0.001 0546 <0.001 6.0
15.96% 15.89% 6 0.578 <0.001 0.593 <0.001 10.0
15.60% 15.64% 10 ’ ’ ’ ’ ’
0.068 0.00 0.073 0.00 1.0
0.91% 0.91% 1 CodeBert 0353 000 0.389 0.00 3.0
CodeBert 6.08% 6.22% 3 odebe 0.553 <0.001 0576 <0.001 6.0
14.21% 14.85% 6 0.641 <0.001 0.671 <0.001 10.0
19.61% 20.57% 10 0.160 000 0.154 000 1.0
112% 418% : CodeReviewer 0470 <0001 0497 <0001 3.0
15.62% 15.57% 3 0.613 <0.001 0.641 <0.001 6.0
1 ’ ’ 0.673 <0.001 0.707 <0.001 10.0
CodeReviewer 3 354, 24.00% 6
27.54% 28.02% 10 DBRX 0.555 <0.001 0.567 <0.001 1.0
DBRX 65.26% 67.62%) LLaMA2 0.402 <0.001 0.399 <0.001 1.0
LLaMA2 47.67% 46.64% 1
Baseline/Human 39.91% 58.16% N/A The association of comment mood between human-

Task-specific RCGs generate interrogative comments a me-
dian of 15.61% of the time and 65.26% and 47.67% for
DBRX and LLaMA2-based RCGs. Since task-specific RCGs
rarely ask questions and do not follow up, this limits discus-
sion and reduces the effectiveness of code reviews.

Do Review Comment Generators and Human Reviewers
Raise Interrogative Comments for Similar Code Changes?
To shed light on RCG behaviour, we study the interrogative
comments of RCGs and humans. Fisher’s exact test [55]]
is used to check for nonrandom associations between the
interrogative mood of RCG-generated and human comments.
We repeat this for each k setting and apply the Bonferroni
method [S8] to correct for multiple comparisons.

CodeReviewer, for k settings of 3, 6, and 10, and CodeBert
for k settings 6 and 10, show significant associations with
human rates of interrogative comments, whereas AUGER
shows no association. Table presents p-values and odds
ratios from this test, revealing that for two of the three studied
task-specific RCGs, there is an association between generated
and human comments in terms of sentence mood for different
k settings. In all but one case, the significant associations have
small odds ratios that are greater than one. This indicates that
even when RCG-generated and human-submitted comment
moods are correlated, the relationship is weak.

Unlike LLaMA2, the mood of DBRX-generated comments
tends to correlate with that of human comments. Although
enterprise LLM-based RCGs may pose questions in similar
locations as humans, the similarity between those questions
may determine whether these models should complement or
replace human reviewers. We explore this in Section

submitted and RCG-generated comments diminishes when only
considering discussion-inducing changes. Table[[Il| shows that,
compared to the same setting for all comments, either the
significant association is lost or the odds ratio decreases.
Therefore, comment moods differ more among discussion-
inducing comments than among other review comments.

A Mann-Whitney U test shows significant differences in
distributions between RCG and human interrogative comments
in all our experiments. Contrasting this observation with the
comment moods, it appears that RCGs do behave differently
than humans when generating interrogative comments.

When we repeat this test for discussion-inducing code
changes specifically, we find that p = 0.8852, indicating that
the null hypothesis (i.e., both samples are drawn from the same
distribution) cannot be rejected. Based on this observation,
RCGs appear to treat discussion-inducing code changes no
differently than other changes, leading users to potentially miss
out on useful discussion in code review.

None of our studied RCGs generate interrogative comments
like humans. RCG-generated and human-submitted interrog-
ative comments differ in terms of frequency of interrogative
comment and their density per MR. Moreover, RCGs treat
discussion-inducing changes similar to other changes, po-
tentially diminishing the depth of review discussions.

When Do Review Comment Generators Generate Inter-
rogative Comments? Given that RCG-generated interrogative
comments differ from humans ones, we compute the entropy
of normalized interrogative comments per MR, i.e., count of
interrogative comments over the top-k, as a measure of pre-
dictability for task-specific RCGs. A higher entropy indicates
that the number of RCG-generated interrogative comments

TABLE III
ODDS RATIOS AND FISHER’S EXACT TEST P-VALUES FOR REVIEW COMMENT GENERATORS (RCGS). A CORRECTED P-VALUE BELOW 0.0018 (*)
INDICATES SIGNIFICANCE. RATIOS > 1 OR < 1 IMPLY POSITIVE OR NEGATIVE ASSOCIATIONS, RESPECTIVELY, WITH SIGNIFICANT ONES IN BOLD.

odds ratios p-values
All comments Discussion-Inducing comments All comments Discussion-Inducing comments
top-1 top-3 top-6 top-10 top-1 top-3 top-6 top-10 top-1 top-3 top-6 top-10 top-1 top-3 top-6 top-10

AUGER 1.0178 1.0001 1.0020 1.0038 1.0762 1.0153 1.0367 1.0378 6.6931e-01 1.0000e+00 9.0257e-01 7.6428e-01 2.7679%-01 6.9533e-01 1.7836e-01 7.5635¢-02
CodeBert 1.1597 1.0564 1.1150 1.0716 1.1979 1.1031 1.0973 1.0550 5.4031e-02 1.9305e-03 3.5884e-37* 1.9010e-32* 1.8091e-01 7.7971-04* 3.2262e-11* 1.7494e-08*
CodeReviewer 1.0061 0.9613 1.0546 1.0270 1.0122 0.9296 1.0165 1.0187 8.6718e-01 8.5961e-04* 1.1110e-13* 3.9885e-07* 8.5674e-01 1.5052e-04* 1.5752e-01 3.0259e-02
DBRX-Based 1.1366 - - - 1.1249 - 2.26e-08* - - 0.0024 - - -
LLaMA2-Based 0.9653 - 0.9873 - 0.1074 0.7305

varies more from one MR to another, making their overall
behaviour less predictable. Table [II] presents the normalized
entropy of interrogative comment density using Equation [T}

— > rate; x log, rate;
log, (number of MRs)

Table [I| presents the p-values obtained from the Mann-
Whitney U test to explore whether the distribution of generated
interrogative comments is different for RCGs and humans.

In Table [II, we observe that the p-value is always less than
the corrected v = 0.0018, indicating that human-submitted
and RCG-generated interrogative comments have different
predictability. Moreover, we notice that an increase in k results
in higher entropy for RCG-generated interrogative comments.
Prior studies suggest that larger k settings yield better perfor-
mance [12], [[14]; however, in our case, it appears that it also
makes generating interrogative comments less predictable.

We investigate the predictability of RCGs for discussion-
inducing changes. Higher entropy in interrogative comments
(shown in Table [[) suggests less predictability in generating
them, making it challenging to predict RCG behaviour. Plots
that support these observations are available in our appendix

Normalized Entropy = ()

Considering larger top-k suggestions increases the entropy
of interrogative comments in task-specific RCGs, making it
increasingly harder to speculate about the RCG behaviour.
Thus, RCGs not only pose questions with which authors
might not be able to interact, but they also pose them
with patterns that differ from humans. Additionally, while
predicting the behaviour of task-specific Review Comment
Generators (RCGs) in generating interrogative comments for
discussion-inducing code changes is more important than
normal code changes, a higher entropy shows that it is, in
fact, more challenging.

VI. QUALITATIVE ANALYSES

In this section, we analyze the content of interrogative
comments and categorize them to shed light on the question-
posing behaviour of RCGs with respect to human behaviour.

Approach. We adopt a catalogue of comment categories from
prior work [19], [60] to compare the types and intentions
of interrogative code review comments generated by RCGs
with those of human reviewers. The catalogue is derived
from two sources—one for comment types [60] and one for

interrogative comment intentions [19]. The white rows of
Table present the twelve comment categories proposed
by Ochodek et al. [60] to describe different types of code
review comments, whereas the grey rows show the three new
comment categories that emerged from our dataset, but did
not exist in the categories proposed by Ochodek et al. [60].
Similarly, Table [V] presents the five primary intents behind
review queries that were identified by Ebert et al. [19]. We
leverage the types of questions posed by RCGs to further
uncover how RCGs can aid in code review.

Since inspecting all available interrogative comments is

impractical, we draw a random sample containing both groups
of task-specific RCG- and human-submitted code review com-
ments. We then apply blended coding [61] to the sample,
initially using established categories for comment types [60]]
and intentions [19], while also integrating new categories to
capture emergent trends. The following sections detail our
sampling method and the blended coding approach.
Sampling: Similar to prior studies [12]], [14]], our analyses
focus on initial review comments and exclude subsequent re-
sponses in the review threads. Given our goal of identifying the
types and intentions of interrogative comments, our attention
is narrowed to questions posed by either human reviewers or
RCGs. In our dataset, we categorize reviews with interrogative
comments into three groups based on the questioners: (1) only
human reviewers, (2) only task-specific RCGs, or (3) both
human reviewers and task-specific RCGs. We randomly select
samples from each category and merge these into a composite
sample set to ensure representation from all types of review
comments. We then use GPT-4- and LLaMA?2-based RCGs
to generate LLM responses for the sampled set. Moreover,
to ensure that LLMs have not been exposed to these code
changes during their training, we augment this set with 30
additional changes that were introduced after the cutoff date
for the training period of the studied LLMs.
Blended Coding: We use a blended coding approach [61] to
label the sampled set of interrogative comments. This strategy
allows us to leverage categories from prior studies while
retaining the flexibility to create new categories.

Two authors (i.e., coders) inspect each entry in the sample,
focusing on interrogative review comments by both review-
ers and RCGs. The coders label false positives (i.e., non-
interrogative comments) as a separate class. For consistency,
in multi-question comments, the coders only label the first
question. As a first step, in a preliminary session, for the task-

TABLE IV

CODE REVIEW COMMENT TYPES (OCHODEK ef al. [[60]), WITH THE INCLUSION OF NEW TYPES IDENTIFIED IN OUR ANALYSIS (IN GRAY).

Comment Type

Description

code design
code style
code naming
code logic
code data

code api

code doc
compatibility
config/.../review
code purpose
code exception
code testing

Comments related to the structural organization of the code (e.g., class design).

Comments pertaining to the code’s layout and readability.

Comments focusing on the conventions used for naming variables, functions, classes, etc.
Comments that discuss the logic and operations within the code, such as algorithms.

Comments that address the handling and usage of data (e.g., variables) within the code.

Comments on the use and evolution of Application Programming Interfaces (APIs) within the codebase.
Comments that concern documentation and commentary in the source code.

Comments related to compatibility with operating systems, tools, and various versions.

Comments about the process of submitting and reviewing patches and commits.

Comments about the necessity for changes, typically to clarify the intention behind code segments.
Comments related to exception handling within the code.

Comments related to existing tests or the need for new tests.

TABLE V
CODE REVIEW COMMENT INTENTIONS (EBERT et al. [[19]).

TABLE VI
GENERATED COMMENT TYPES FOR INTERROGATIVE COMMENTS.

Intention Description Comment Type Human RCGs GPT-4 LLaMA2
Suggestions Inquiries that subtly propose a course of action. code logic 54.37% 40.00% 42.17% 38.64%
Requests Questions seeking details such as explanation code deSIgn 14.56% 7.37% 7.23% 6.82%
related to the code under review. code naming 971% 842% 3.01% 2.27%

))) o code data 388% 526% 4.82% 6.82%
Hypothetlcal Quf:stlons that construct a potentlal 81Fuat10n code testing 3.88% 1.05% 3.61% 0.00%
Scenarios which may not have been previously considered. code api 291% 211% 3.61% 0.00%
Rhetorical Questions paired immediately with their answers, code exceptions 2.91% 737% 14.46% 20.45%
Questions serving to emphasize a point. config/../review 1.94% 3.16% 0.60% 0.00%
code purpose 1.94% 22.11% 13.86% 1591%

code style 1.94% 3.16% 3.61% 4.55%

specific RCGs, the coders label 100 interrogative comments, code doc 0.97% 0.00% 2.41% 4.55%
compatibility 097% 0.00% 0.60% 0.00%

separate from the sampled set, for the initial categories. For
LLM-based RCGs, coders label only 50 samples to refine
guidelines, as these comments are more structured due to LLM
outputs. Then, each coder independently labels the remaining
comments in batches of 50, alternating between human and
RCG comments. In addition to the comment content, coders
use context, such as the referenced code changes, the type
of RCG, and the responses to human comments. After each
batch, the coders met to resolve discrepancies and refine
the emerging categories. For disagreements, coders explain
their rationale and reach a consensus, with the last author
as arbitrator. While a fixed number of examples may yield
reliable confidence intervals for binary tasks, saturation is
more appropriate for multi-label problems [62]]. Thus, coding
continues until reaching our saturation [63]], [64] criterion, i.e.,
no new codes identified across two consecutive batches. This
criterion is met after labeling 150 samples.

To assess the reliability of the coding task, we measure
inter-rater reliability using Cohen’s Kappa for both distinct
coding tasks for the four sources of comment generation, i.e.,
categorizing the type and intention of generated comments
by task-specific RCGs, the GPT-based RCG, the LLaMA?2-
based RCG, as well as the human reviewers. For task pairs

of comment type and interrogative intention, we obtain Kappa
score pairs of (0.49, 0.45), (0.67, 0.66), (0.60, 0.50), and (0.61,
0.43) for task-specific, GPT-4, LLaMA?2, and human review-
ers, respectively. These scores reflect substantial agreement on
comment type and thread response decisions for both LLMs.
The scores for comment type tasks show moderate agreement
for task-specific RCGs and substantial agreement for the other
two RCGs [63]]. For interrogative comments, the scores for
human-submitted comments indicates substantial agreement,
whereas the other RCGs have moderate agreement. Lower
Kappa scores are likely due to the breadth of labels and noise
from hard-to-parse generated comments.

Results. Tables VI and [VII| summarize the results of the coding
task. We discuss these observations below.

What Types of Comments Can Be Observed Within the
Scope of Generated Interrogative Comments? Table
highlights three new emergent categories of comment types
(cells with a gray background). Conversely, our analysis does
not reveal any examples of types code io, code doc, compati-
bility, rule def, and config building/installing.

TABLE VII
DISTRIBUTION OF QUESTION INTENTIONS FOR GENERATED
INTERROGATIVE COMMENTS.

Comment Intention Human RCGs GPT-4 LLaMA2
Suggestions 63.11% 40.00% 14.46% 13.64%
Requests 2330% 56.84% 72.89% 84.09%
Rhetorical questions 874% 3.16% 0.00% 2.27%
Hypothetical scenario 4.85% 0.00% 12.65% 0.00%

LLM-based RCGs pose more documentation-related ques-
tions (2.41% and 4.55% of all generated interrogative com-
ments for GPT-4 and LLaMA?2, respectively) than both human
reviewers (0.97% of all human-submitted interrogative com-
ments) and task-specific RCGs, which do not ask this type of
question. This suggests that LLM-based RCGs could serve as
vigilant overseers for code documentation quality.

RCGs pose more questions about exceptions than human
reviewers. While task-specific RCGs are adept at generat-
ing such interrogative comments (7.37% of their generated
interrogative comments), LLMs ask about exceptions more
frequently (14.46% and 20.45% for GPT-4 and LLaMA?2).
These RCGs appear especially adept at raising exception-
handling concerns for common APIs, such as file I/O opera-
tions, whereas human reviewers excel at pinpointing complex
issues, such as neglected edge cases. This findings aligns with
recent studies on LLM-based code review performance [34].

Human reviewers more frequently question the logic behind
code changes (54.37%), such as conditional placement or
potential oversights in handling edge cases, compared to
RCGs (38.64%—42.17%). In contrast, RCG- (22.11%) and
LLM-posed (13.86% and 15.91% for GPT-4 and LLaMA2,
respectively) questions often concentrate on the purpose of
the changes, possibly reflecting their more limited grasp of
the broader context of the code. Human reviewers are often
among the core developers of the projects [5] or have past
involvement with the modified files and subsystem in the code
change [66]. By using this prior context, they can provide
more in-depth interrogative comments on improving the code
logic. RCGs lack this context. As a result, they often question
the rationale behind a code change rather than the logic of
the code being changed. Providing all of the available code
and documentation may not resolve this problem, since the
additional context may be misleading, yielding poorer results,
while imposing higher computation costs [67]. Based on this
observed behaviour, our findings suggest that humans are
better suited to review code changes involving complex logic.
They often question the logic of the changes, leading to
potentially useful discussions. On the other hand, RCGs, probe
the logic underlying a change considerably less frequently and
ask more frequently about the purpose.

RCGs excel at identifying unhandled exceptions; however,
they fall short in contextual understanding, frequently using
interrogative comments to get code change context (54.37%).

What Are the Perceived Intentions Behind Generated
Interrogative Comments? During labeling, we encounter all
intent categories [19] except Attitudes and emotions.

Human reviewers primarily (63.11% of sampled comments)
use interrogative comments to provide suggestions, whereas
task-specific (56.84%) and LLM-based (72.89% for GPT-4 and
84.09% for LLaMA2) RCGs primarily ask questions to gain
more information or justifications for code changes. For ex-
ample, in a specific code change a reviewer suggests, “Can-
not be list.sort(comparing(GpgKeylnfo::id))?”, while Code-
Bert comments, “This is a bit confusing. Does this work
for a single GpgKeyInfo?[...]”, reflecting confusion possibly
due to limited context. This outcome supports our previous
observation concerning the comment types. Because current
RCGs do not engage in discussions and do not use the
information provided by the author, these comments hinder
productive use of RCGs. LLMs do not face this limitation,
but this may still hinder their usefulness since, if they do not
provide a suggestion, humans must still do so.

Indeed, a considerable portion of LLM-based RCGs in-
quiries request more information about the code change
(72.89% for GPT-4 and 84.09% for LLaMA?2), prompting
authors to propose solutions rather than offering them like
human reviewers. This trend may be partially attributed to
a relative lack of context compared to human reviewers,
who request additional information in 23.30% of interrogative
comments. It also exceeds the rate at which task-specific RCGs
seek information (56.84% of times). Although this trait is ben-
eficial, authors may have to respond to many questions when
addressing reviews, potentially prolonging the code review
process. Even when authors provide the requested information
in their responses, LLMs do not always engage with discussion
threads, resulting in wasted time and unresolved comments.

Human reviewers occasionally (4.85%) propose hypotheti-
cal scenarios to probe potential issues—a practice that task-
specific RCGs do not replicate, with the exception of GPT-4
as an LLM-based RCG (12.65%). For example, in a specific
code change, a reviewer inquires, “Should we reload plugins in
dependency order if the caller gave us more than one and one
depends on the other? ?’E] This question highlights a scenario
potentially missed by the code author. This illustrates the lim-
ited capacity of RCGs to consider the relevant project context
to draw attention to defects that authors may have overlooked.
Task-specific RCGs lack the relevant project context and the
capacity to assess the code for potential hypothetical scenarios,
thus they cannot ask hypothetical questions that can help draw
attention to potential bugs or future issues. Our qualitative
analysis reveals that the LLaMA2-based RCG similarly lacks
the capability for this task. Meanwhile, GPT-4-based RCG is
capable of asking such types of questions, asking them more
often than humans. This showcases the need to carefully select
the type of RCGs based on the desired outcomes.

1Zhttps://gerrit-review.googlesource.com/c/gerrit/+/194420
Bhttps://gerrit-review.googlesource.com/c/gerrit/+/54428

https://gerrit-review.googlesource.com/c/gerrit/+/194420
https://gerrit-review.googlesource.com/c/gerrit/+/54428

Our intention-based analysis highlights that most of the
studied RCGs have a limited understanding of the code’s con-
text. LLM-based RCGs could mitigate this issue using transfer
learning techniques [68]], but still require advancements in
reasoning [69] to simulate the nuanced thought processes
of human reviewers [70], [[71]], [[72]]. Thus, human reviewers
provide unique benefits for code changes that rely on historical
context or external information, such as bug fixes or integration
with private APIs. Using RCGs for such reviews may lead to
an ineffective cycle of rationale-seeking review comments.

Rhetorical questions are used by humans (8.74%) to draw
author attention [73], strengthen arguments, and compel ac-
tion [74]; however, task-specific (3.16%) and LLM-based (0%
for GPT-4 and 2.27% in LLaMA2) RCGs seldom employ this
technique. Even if RCGs could express the same concepts in
a declarative fashion, this could hamper the communication
of ideas and increase author resistance to perceiving mistakes.
This finding, though subtle, suggests that task-specific RCGs
do not fully leverage the expressive capacity of language. This
could diminish RCG effectiveness in highlighting the signif-
icance of some comments over others through careful word
choice. LLM-based RCGs may perform better in this regard
at the cost of increased latency and resource consumption [[75]].

Human reviewers predominantly use interrogative comments
(63.11%) to offer suggestions, highlighting the subtle differ-
ences in review strategies. Their second most common inten-
tion is to request information about the change (23.30%).
Conversely, task-specific RCGs comments mainly request
more information (56.84%), with recommendations being the
next most common purpose (40%). LLM-based RCGs follows
the same pattern with GPT-4 and LLaMA requesting more
information 72.89% and 84.09% of the time and making
suggestions 14.46% and 13.64% of the time, respectively.

VII. THREATS TO VALIDITY

Construct Validity threats undermine measurement effective-
ness [76]. One construct threat is imposed by the heuristic that
we use to identify interrogative comments. To assess its accu-
racy, we manually label 377 review comments and observe a
0.894 kappa score, indicating almost perfect agreement.
Internal Validity threats relate to uncontrolled confounding
factors [[76]. Of concern is the subjective judgment of coders
in qualitative tasks. To mitigate this, we adhered to best prac-
tices [77], [Z8l, [[79] for qualitative analysis. Disagreements
between coders were resolved through collaborative discussion
until a consensus was reached. Cohen’s Kappa inter-rater re-
liability scores indicate moderate to perfect agreement. Given
the complexity of selecting labels from lists of 15 and 5 cate-
gories for the type and intent of comments, respectively, such
agreement levels are often deemed acceptable [80]], [81], [82].
Also, to balance coder subjectivity and allow new categories
to emerge, we employed a blended coding approach [61].
External Validity threats impact the generalizability of the
findings. One such threat is our focus on a single community.
Although this limits generalizability, we chose the Gerrit

community for its well-established review practices and prior
use in related studies [S0]. Its consistency makes it a strong
representative of communities with sustained code review
culture. Also, our study relies on simulated data rather than
developer interactions with RCG. Thus, the findings may not
fully generalize to settings where human developers respond
to RCG-generated interrogative comments. Future work should
validate these effects using actual developer discussions.

VIII. CONCLUSIONS AND LESSONS LEARNED

In this paper, we study interrogative comments generated by
RCGs. We use three task-specific RCGs [[13]], [14], [36] and
three LLMs to generate code review comments and quantita-
tively and qualitatively analyze the interrogative ones. Below,
we distill lessons for development and research communities.

On Development. RCGs should be used to focus on spe-
cific, technical, interrogative comments during code review.
When RCGs pose questions, they primarily inquire about the
rationale behind changes (56.84%, 72.89%, 84.09% for task-
specific, GPT-4-, and LLaMA2-based RCGs, respectively),
unlike human reviewers who more often propose solutions
(63.11%). We conjecture that projects can benefit from pre-
senting RCG-generated comments to human reviewers during
the review process. This integration could include a pre-
review stage where RCGs generate comments to guide human
reviewers’ attention. RCG-generated comments can also help
with weak spots missed by humans, such as exception handling
or missing documentation. Finally, reviewers can use RCGs to
articulate concerns when an issue is hard to pinpoint, poten-
tially unblocking their reasoning process. This is supported by
our results where RCGs more frequently ask questions related
to code exceptions (7.37%, 14.46%, and 20.45% for task-
specific, GPT-4-, and LLaMA2-based RCGs, respectively) and
documentation (2.41% for GPT-4 and 4.55% for LLaMA?2)
than humans (0.97% and 2.91% for documentation and ex-
ceptions). This approach can complement human reviewers,
leading to a broader review process. Similar approaches have
been effective in enhancing code reviews [3]], [42].

On Research. Exploring ways to control the generation of
interrogative comments and proposing methods to improve
discussion thread responses are promising directions. The
share of interrogative comments for task-specific RCGs (me-
dian 15.61%) highlights their importance. Since task-specific
RCGs do not currently participate in follow-up discussions, the
usefulness of this portion of generated comments, especially
for discussion-inducing changes, is hindered. Prior work has
shown promise in cleaning datasets to improve LLM-based
performance at specific code review tasks [29]. Thus, we
recommend that research further focus on either reducing the
current conversation-impeding interrogative comments from
these models or integrating additional context into the model
inputs. This enhancement could enable RCGs to respond to
the various facets of a change more effectively. Future research
should also determine how to efficiently choose (and further
improve) RCGs to respond to code review discussions and
interrogative comments, a previously infeasible task.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

S. MclIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software
quality,” Empirical Software Engineering, vol. 21, pp. 2146-2189, 2016.
A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in 2013 35th International Conference on Software
Engineering (ICSE). 1EEE, 2013, pp. 712-721.

F. Kazemi, M. Lamothe, and S. McIntosh, “Exploring the notion of
risk in code reviewer recommendation,” in 2022 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 1EEE,
2022, pp. 139-150.

E. Tempero and Y.-C. Tu, “Assessing understanding of maintainability
using code review,” in Proceedings of the 23rd Australasian Computing
Education Conference, 2021, pp. 40—47.

E. Mirsaeedi and P. C. Rigby, “Mitigating turnover with code review
recommendation: Balancing expertise, workload, and knowledge distri-
bution,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering, 2020, pp. 1183-1195.

O. Kononenko, O. Baysal, and M. W. Godfrey, “Code review quality:
How developers see it,” in Proceedings of the 38th international con-
ference on software engineering, 2016, pp. 1028-1038.

A. Bosu and J. C. Carver, “Impact of peer code review on peer impres-
sion formation: A survey,” in 2013 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. 1EEE, 2013, pp.
133-142.

Y. Murakami, M. Tsunoda, and H. Uwano, “Wap: Does reviewer age
affect code review performance?” in 2017 IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE). 1EEE, 2017,
pp. 164-169.

Y. Hong, C. Tantithamthavorn, P. Thongtanunam, and A. Aleti, “Com-
mentfinder: a simpler, faster, more accurate code review comments
recommendation,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2022, pp. 507-519.

M. Staron, M. Ochodek, W. Meding, and O. Soder, “Using machine
learning to identify code fragments for manual review,” in 2020 46th
Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA). IEEE, 2020, pp. 513-516.

R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella, D. Poshyvanyk,
and G. Bavota, “Using pre-trained models to boost code review automa-
tion,” in Proceedings of the 44th International Conference on Software
Engineering, 2022, pp. 2291-2302.

R. Tufano, L. Pascarella, M. Tufano, D. Poshyvanyk, and G. Bavota,
“Towards automating code review activities,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). 1EEE, 2021,
pp. 163-174.

Z. Li, S. Lu, D. Guo, N. Duan, S. Jannu, G. Jenks, D. Majumder,
J. Green, A. Svyatkovskiy, S. Fu er al., “Automating code review
activities by large-scale pre-training,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2022, pp. 1035-1047.

L. Li, L. Yang, H. Jiang, J. Yan, T. Luo, Z. Hua, G. Liang, and C. Zuo,
“Auger: automatically generating review comments with pre-training
models,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2022, pp. 1009-1021.

G. Viviani, C. Janik-Jones, M. Famelis, X. Xia, and G. C. Murphy,
“What design topics do developers discuss?” in Proceedings of the 26th
Conference on Program Comprehension, 2018, pp. 328-331.

Y. Liu, C. Tantithamthavorn, Y. Liu, P. Thongtanunam, and L. Li,
“Automatically recommend code updates: Are we there yet?” ACM
Trans. Softw. Eng. Methodol., vol. 33, no. 8, Dec. 2024.

H. Y. Lin, C. Liu, H. Gao, P. Thongtanunam, and C. Treude,
“Codereviewqa: The code review comprehension assessment for large
language models,” 2025. [Online]. Available: https://arxiv.org/abs/2503.
16167

X. Zhou, K. Kim, B. Xu, D. Han, J. He, and D. Lo, “Generation-based
code review automation: How far are we,” in 2023 IEEE/ACM 31st
International Conference on Program Comprehension (ICPC). 1EEE,
May 2023. [Online]. Available: https://doi.org/10.1109/icpc58990.2023.
00036

F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Communicative
intention in code review questions,” in 2018 IEEE International Con-

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

ference on Software Maintenance and Evolution (ICSME). 1EEE, 2018,

pp- 519-523.

H.-Y. Li, S.-T. Shi, F. Thung, X. Huo, B. Xu, M. Li, and D. Lo,
“Deepreview: automatic code review using deep multi-instance learn-
ing,” in Advances in Knowledge Discovery and Data Mining: 23rd
Pacific-Asia Conference, PAKDD 2019, Macau, China, April 14-17,
2019, Proceedings, Part I 23. Springer, 2019, pp. 318-330.

V. J. Hellendoorn, J. Tsay, M. Mukherjee, and M. Hirzel, “Towards
automating code review at scale,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021, pp. 1479-1482.

S. Mahbub, M. E. Arafat, C. R. Rahman, Z. Ferdows, and M. Hasan,
“Reviewranker: A semi-supervised learning based approach for code
review quality estimation,” arXiv preprint arXiv:2307.03996, 2023.

P. Thongtanunam, C. Pornprasit, and C. Tantithamthavorn, “Autotrans-
form: Automated code transformation to support modern code review
process,” in Proceedings of the 44th International Conference on Soft-
ware Engineering, 2022, pp. 237-248.

H. Y. Lin and P. Thongtanunam, “Towards automated code reviews:
Does learning code structure help?” in 2023 IEEE International Con-

ference on Software Analysis, Evolution and Reengineering (SANER).

IEEE, 2023, pp. 703-707.

Y. Yin, Y. Zhao, Y. Sun, and C. Chen, “Automatic code review by
learning the structure information of code graph,” Sensors, vol. 23, no. 5,
p. 2551, 2023.

Z. Cao, S. Lv, X. Zhang, H. Li, Q. Ma, T. Li, C. Guo, and S. Guo,
“Structuring meaningful code review automation in developer commu-
nity,” Engineering Applications of Artificial Intelligence, vol. 127, p.
106970, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485-5551, 2020.

C. Liu, H. Y. Lin, and P. Thongtanunam, “Too noisy to learn: Enhancing
data quality for code review comment generation,” 2025.

N. Wadhwa, J. Pradhan, A. Sonwane, S. P. Sahu, N. Natarajan,
A. Kanade, S. Parthasarathy, and S. Rajamani, “Core: Resolving code
quality issues using 1lms,” Proceedings of the ACM on Software Engi-
neering, vol. 1, no. FSE, pp. 789-811, 2024.

Y. Yu, G. Rong, H. Shen, H. Zhang, D. Shao, M. Wang, Z. Wei, Y. Xu,
and J. Wang, “Fine-tuning large language models to improve accuracy
and comprehensibility of automated code review,” ACM transactions on
software engineering and methodology, vol. 34, no. 1, pp. 1-26, 2024.
G. Sridhara, S. Mazumdar ez al., “Chatgpt: A study on its utility for ubig-
uitous software engineering tasks,” arXiv preprint arXiv:2305.16837,
2023.

Q. Guo, J. Cao, X. Xie, S. Liu, X. Li, B. Chen, and X. Peng, “Exploring
the potential of chatgpt in automated code refinement: An empirical
study,” in Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering, 2024, pp. 1-13.

T. Sun, J. Xu, Y. Li, Z. Yan, G. Zhang, L. Xie, L. Geng, Z. Wang,
Y. Chen, Q. Lin et al., “Bitsai-cr: Automated code review via llm in
practice,” 2025. [Online]. Available: https://arxiv.org/abs/2501.15134
Z. Rasheed, M. A. Sami, M. Waseem, K.-K. Kemell, X. Wang,
A. Nguyen, K. Systd, and P. Abrahamsson, “Ai-powered code review
with 1lms: Early results,” arXiv preprint arXiv:2404.18496, 2024.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale er al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in 2013 35th International Conference on Software Engineering
(ICSE). 1EEE, 2013, pp. 931-940.

A. Gupta and N. Sundaresan, “Intelligent code reviews using deep
learning,” in Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD’18) Deep
Learning Day, 2018.

https://arxiv.org/abs/2503.16167
https://arxiv.org/abs/2503.16167
https://doi.org/10.1109/icpc58990.2023.00036
https://doi.org/10.1109/icpc58990.2023.00036
https://arxiv.org/abs/2501.15134

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

J. K. Siow, C. Gao, L. Fan, S. Chen, and Y. Liu, “Core: Automating
review recommendation for code changes,” in 2020 IEEE 27th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). 1EEE, 2020, pp. 284-295.

B. Lin, S. Wang, Z. Liu, Y. Liu, X. Xia, and X. Mao, “Cct5: A code-
change-oriented pre-trained model,” arXiv preprint arXiv:2305.10785,
2023.

M. Vijayvergiya, M. Salawa, I. Budiseli¢, D. Zheng, P. Lamblin,
M. Ivankovié, J. Carin, M. Lewko, J. Andonov, G. Petrovié et al., “Ai-
assisted assessment of coding practices in modern code review,” arXiv
preprint arXiv:2405.13565, 2024.

U. Cihan, V. Haratian, A. icéz, M. K. Giil, O. Devran, E. F. Bayendur,
B. M. Ugar, and E. Tiiziin, “Automated code review in practice,” 2024.
[Online]. Available: https://arxiv.org/abs/2412.18531

J. Lu, L. Yu, X. Li, L. Yang, and C. Zuo, “Llama-reviewer: Advancing
code review automation with large language models through parameter-
efficient fine-tuning,” in 2023 IEEE 34th International Symposium on
Software Reliability Engineering (ISSRE). 1EEE, 2023, pp. 647-658.
C. Pornprasit and C. Tantithamthavorn, “Gpt-3.5 for code review au-
tomation: How do few-shot learning, prompt design, and model fine-
tuning impact their performance?” arXiv preprint arXiv:2402.00905,
2024.

A. Elnaggar, W. Ding, L. Jones, T. Gibbs, T. Feher, C. Angerer,
S. Severini, F. Matthes, and B. Rost, “Codetrans: Towards cracking the
language of silicon’s code through self-supervised deep learning and
high performance computing,” arXiv preprint arXiv:2104.02443, 2021.
Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” in EMNLP, 2021.

J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and external
validity in empirical software engineering,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1. 1EEE,
2015, pp. 9-19.

M. Chouchen, A. Ouni, J. Olongo, and M. W. Mkaouer, “Learning to
predict code review completion time in modern code review,” Empirical
Software Engineering, vol. 28, no. 4, p. 82, 2023.

I. X. Gauthier, M. Lamothe, G. Mussbacher, and S. MclIntosh, “Is
historical data an appropriate benchmark for reviewer recommendation
systems? : A case study of the gerrit community,” in 2021 36th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), 2021, pp. 30-41.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, prompt, and predict: A systematic survey of prompting methods
in natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1-35, 2023.

A. Fan, M. Lewis, and Y. Dauphin, “Hierarchical neural story genera-
tion,” in Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2018, pp. 889-898.
J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. El-
nashar, J. Spencer-Smith, and D. C. Schmidt, “A prompt pattern
catalog to enhance prompt engineering with chatgpt,” arXiv preprint
arXiv:2302.11382, 2023.

H. Dang, L. Mecke, F. Lehmann, S. Goller, and D. Buschek, “How
to prompt? opportunities and challenges of zero-and few-shot learning
for human-ai interaction in creative applications of generative models,”
arXiv preprint arXiv:2209.01390, 2022.

G. J. Upton, “Fisher’s exact test,” Journal of the Royal Statistical
Society: Series A (Statistics in Society), vol. 155, no. 3, pp. 395402,
1992.

T. W. MacFarland, J. M. Yates, T. W. MacFarland, and J. M. Yates,
“Mann—whitney u test,” Introduction to nonparametric statistics for the
biological sciences using R, pp. 103-132, 2016.

C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE mobile computing and communications review, vol. 5,
no. 1, pp. 3-55, 2001.

O. J. Dunn, “Multiple comparisons among means,” Journal of the
American statistical association, vol. 56, no. 293, pp. 52-64, 1961.

F. E. Zanaty, T. Hirao, S. McIntosh, A. Thara, and K. Matsumoto, “An
empirical study of design discussions in code review,” in Proceedings
of the 12th ACM/IEEE international symposium on empirical software
engineering and measurement, 2018, pp. 1-10.

M. Ochodek, M. Staron, W. Meding, and O. Soder, “Automated code
review comment classification to improve modern code reviews,” in

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

International Conference on Software Quality.
23-40.

M. E. Graebner, J. A. Martin, and P. T. Roundy, “Qualitative data:
Cooking without a recipe,” Strategic Organization, vol. 10, no. 3, pp.
276-284, 2012.

A.J. Fugard and H. W. Potts, “Supporting thinking on sample sizes for
thematic analyses: a quantitative tool,” International journal of social
research methodology, vol. 18, no. 6, pp. 669-684, 2015.

H. R. Bernard, A. Wutich, and G. W. Ryan, Analyzing qualitative data:
Systematic approaches. SAGE publications, 2016.

G. Guest, E. Namey, and M. Chen, “A simple method to assess and
report thematic saturation in qualitative research,” PloS one, vol. 15,
no. 5, p. €0232076, 2020.

J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159-174, 1977.

P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. lida,
and K.-i. Matsumoto, “Who should review my code? a file location-
based code-reviewer recommendation approach for modern code re-
view,” in 2015 IEEE 22nd International Conference on Software Analy-
sis, Evolution, and Reengineering (SANER). 1EEE, 2015, pp. 141-150.
N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and
P. Liang, “Lost in the middle: How language models use long contexts,”
Transactions of the Association for Computational Linguistics, vol. 12,
pp. 157-173, 2024.

W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar et al., “Inner monologue: Embod-
ied reasoning through planning with language models,” in Conference
on Robot Learning. PMLR, 2023, pp. 1769-1782.

M. Zecevi¢, M. Willig, D. S. Dhami, and K. Kersting, “Causal
parrots: Large language models may talk causality but are not causal,”
Transactions on Machine Learning Research, 2023. [Online]. Available:
https://openreview.net/forum?1d=tv46tCzs83

Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,
Z. Ji, T. Yu, W. Chung et al., “A multitask, multilingual, multimodal
evaluation of chatgpt on reasoning, hallucination, and interactivity,”
arXiv preprint arXiv:2302.04023, 2023.

L. Berglund, M. Tong, M. Kaufmann, M. Balesni, A. C. Stickland,
T. Korbak, and O. Evans, “The reversal curse: LLMs trained on
“a is b” fail to learn “b is a”,)” in The Twelfth International
Conference on Learning Representations, 2024. [Online]. Available:
https://openreview.net/forum?1d=GPKTIktAOk

H. Liu, R. Ning, Z. Teng, J. Liu, Q. Zhou, and Y. Zhang, “Evaluating
the logical reasoning ability of chatgpt and gpt-4,” arXiv preprint
arXiv:2304.03439, 2023.

L. Varpio, “Using rhetorical appeals to credibility, logic, and emotions to
increase your persuasiveness,” Perspectives on medical education, vol. 7,
pp. 207-210, 2018.

R. E. Petty, J. T. Cacioppo, and M. Heesacker, “Effects of rhetorical
questions on persuasion: A cognitive response analysis.” Journal of
personality and social psychology, vol. 40, no. 3, p. 432, 1981.

J. Kaddour, J. Harris, M. Mozes, H. Bradley, R. Raileanu, and
R. McHardy, “Challenges and applications of large language models,”
arXiv preprint arXiv:2307.10169, 2023.

H. K. Wright, M. Kim, and D. E. Perry, “Validity concerns in software
engineering research,” in Proceedings of the FSE/SDP workshop on
Future of software engineering research, 2010, pp. 411-414.

K. Charmaz, “Constructing grounded theory,” 2014.

K. Krippendorft, Content analysis: An introduction to its methodology.
Sage publications, 2018.

A. Scheopner Torres, J. Brett, J. Cox, and S. Greller, “Competency
education implementation: Examining the influence of contextual forces
in three new hampshire secondary schools,” AERA Open, vol. 4, no. 2,
p. 2332858418782883, 2018.

A. K. Turzo and A. Bosu, “What makes a code review useful to
opendev developers? an empirical investigation,” Empirical Software
Engineering, vol. 29, no. 1, p. 6, 2024.

F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion detection
in code reviews,” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 1EEE, 2017, pp. 549-553.

A. Krutauz, T. Dey, P. C. Rigby, and A. Mockus, “Do code review
measures explain the incidence of post-release defects? case study
replications and bayesian networks,” Empirical Software Engineering,
vol. 25, pp. 3323-3356, 2020.

Springer, 2022, pp.

https://arxiv.org/abs/2412.18531
https://openreview.net/forum?id=tv46tCzs83
https://openreview.net/forum?id=GPKTIktA0k

	Introduction
	Background and Related Work
	Model Selection
	Dataset Preparation
	Quantitative Analyses
	Qualitative Analyses
	Threats to Validity
	Conclusions and Lessons Learned
	References

