
The Review Linkage Graph for Code Review Analytics
A Recovery Approach and Empirical Study

Toshiki Hirao
Nara Institute of Science and Technology

Nara, Japan
hirao.toshiki.ho7@ais.naist.jp

Shane McIntosh
McGill University
Montréal, Canada

shane.mcintosh@mcgill.ca

Akinori Ihara
Wakayama University
Wakayama, Japan

ihara@sys.wakayama-u.ac.jp

Kenichi Matsumoto
Nara Institute of Science and Technology

Nara, Japan
matumoto@is.naist.jp

ABSTRACT

Modern Code Review (MCR) is a pillar of contemporary quality

assurance approaches, where developers discuss and improve code

changes prior to integration. Since review interactions (e.g., com-

ments, revisions) are archived, analytics approaches like reviewer

recommendation and review outcome prediction have been pro-

posed to support the MCR process. These approaches assume that

reviews evolve and are adjudicated independently; yet in practice,

reviews can be interdependent.

In this paper, we set out to better understand the impact of re-

view linkage on code review analytics. To do so, we extract review

linkage graphs where nodes represent reviews, while edges rep-

resent recovered links between reviews. Through a quantitative

analysis of six software communities, we observe that (a) linked

reviews occur regularly, with linked review rates of 25% in Open-

Stack, 17% in Chromium, and 3%ś8% inAndroid,Qt, Eclipse, and

Libreoffice; and (b) linkage has become more prevalent over time.

Through qualitative analysis, we discover that links span 16 types

that belong to five categories. To automate link category recovery,

we train classifiers to label links according to the surrounding doc-

ument content. Those classifiers achieve F1-scores of 0.71ś0.79, at

least doubling the F1-scores of a ZeroR baseline. Finally, we show

that the F1-scores of reviewer recommenders can be improved by

37%ś88% (5ś14 percentage points) by incorporating information

from linked reviews that is available at prediction time. Indeed,

review linkage should be exploited by future code review analytics.

CCS CONCEPTS

· Software and its engineering→ Software evolution.

KEYWORDS

Code review, software analytics, mining software repositories

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338949

ACM Reference Format:

Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto. 2019.

The Review Linkage Graph for Code Review Analytics: A Recovery Ap-

proach and Empirical Study. In Proceedings of the 27th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering (ESEC/FSE ’19), August 26ś30, 2019, Tallinn, Estonia. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3338906.3338949

1 INTRODUCTION

Modern Code Review (MCR)Ða lightweight variant of traditional

code inspections [14]Ðallows developers to discuss the premise,

content, and structure of code changes. Many communities adopt a

Review-Then-Commit (RTC) philosophy, where each code change

must satisfy review-based criteria before integration into official

repositories is permitted. Since MCR tools archive reviewing activi-

ties (e.g., patch revisions, review participants, discussion threads),

active development communities generate plenty of MCR data.

Researchers have proposed analytics approaches that leverage

MCR data to support practitioners. For example, reviewer recom-

menders [4, 31, 42, 44, 48] help developers to select appropriate

reviewers and review outcome predictors [16, 22, 23] estimate the

likelihood of a code change eventually being integrated.

When performing code review analytics, each review has tradi-

tionally been treated as an independent observation; yet in prac-

tice, reviews may be interdependent. By ignoring connections be-

tween reviews, review analytics approaches may underperform.

For example, the discussion for Review #314319 (https://review.

openstack.org/#/c/314319/) of the OpenStack Neutron project

occurred on its linked Review #225995. Without considering the

comments on the linked review, a review outcome predictor would

mistakenly presume that Review #314319 had no discussion, and

would thus be unlikely to be integrated. Moreover, Review #134811

(https://review.openstack.org/#/c/134811/) of the OpenStack Nova

project is abandoned because a competing solution in the linked

Review #134853 was integrated. To ensure a fair review process [15],

reviewer lists of competing solutions may need to be synchronized;

yet links are not analyzed by today’s reviewer recommenders.

In this paper, we set out to better understand the impact of

review linkage on code review analytics. To do so, we extract the

review linkage graph from six active MCR communitiesÐa directed

graph where nodes represent reviews and edges represent links

between reviews. We analyze and leverage those graphs to address

the following four research questions:

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto

(RQ1) To what degree are reviews linked?

Motivation: To gain an initial intuition about the connected-

ness of reviews, we first set out to quantitatively analyze the

extracted review linkage graphs.

Results: Linkage rates range from 3% to 25%. Linkage tends to

be more common in the two largest communities (25% in Open-

Stack and 17% in Chromium), likely because they have invested

more heavily in code reviewing. Indeed, these communities have

significantly more comments and reviewers per review (pairwise

Mann-Whitney U tests with Bonferroni correction, α = 0.01;

and non-negligible Cliff’s delta effect sizes).

(RQ2) Why are reviews being linked?

Motivation: The potential reasons for review linkage are mani-

fold. To explore these reasons, we set out to qualitatively analyze

recovered links between reviews.

Results: Using open coding [12] and card sorting [30], we dis-

cover 16 types of review links that belong to five categories,

i.e., Patch Dependency, Broader Context, Alternative Solution,

Version Control Issues, and Feedback Related. These different

link types have different implications for review analytics tech-

niques. For example, while Broader Context links indicate that a

discussion may span across linked reviews, Alternative Solution

links point out competing solutions.

(RQ3) To what degree can link categories be automatically

recovered?

Motivation: The qualitative approach that we used to address

RQ2 is not scalable enough for large-scale analyses of link cat-

egories. Hence, we want to explore the feasibility of training

automatic classifiers to identify link categories.

Results: We train link category classifiers using five classifica-

tion techniques. These classifiers at least double the performance

of a ZeroR baseline, achieving a precision of 0.71ś0.77, a recall

of 0.72ś0.92, and an F1-score of 0.71ś0.79.

(RQ4) To what degree do linked reviews impact code review

analytics?

Motivation: While RQ1śRQ3 suggest that linkage may impact

reviewer analytics, the extent of that impact is unknown. We set

out to quantify that impact by comparing prior review analytics

techniques [16, 48] to extended versions that are link aware.

Results: Code review analytics tend to underperform on linked

reviews. In 41%ś84% of linked reviews, reviewer recommenders

omit at least one shared reviewer. Moreover, review outcome

predictors misclassify 35%ś39% of linked reviews. Link-aware

approaches improve the F1-score of reviewer recommenders by

37%ś88% (5ś14 percentage points).

Our empirical study indicates that linkage is a rich activity that

should be taken into consideration in future MCR studies and tools.

In addition, this paper contributes a replication package,1 which

includes (a) review linkage graphs that feature 1,466,702 reviews and

231,341 links from the six studied communities; (b) 752 manually

coded links spanning 16 types and five categories [RQ2]; and (c)

scripts that reproduce our statistical analyses [RQ1, RQ3, RQ4].

Paper Organization. The remainder of this paper is organized as

follows. Section 2 situates this paper with respect to the related

1https://github.com/software-rebels/ReviewLinkageGraph

work. Section 3 describes the studied communities and their MCR

processes. Sections 4ś7 present the experiments that we conducted

to address RQ1śRQ4, respectively. Section 8 discusses the broader

implications of our results. Section 9 discloses threats to the validity

of our study. Finally, Section 10 draws conclusions.

2 RELATED WORK

Linkage of related software artifacts has long been considered an

important phenomenon. Canfora et al. [11] found that links between

issue reports of different software projects are not uncommon.

Boisselle and Adams [8] reported that 44% of bug reports in Ubuntu

are linked to indicate duplicated work. Ma et al. [29] showed that

linked issues delay the release cycle and increase maintenance costs.

Moreover, they found that recovering a link is a difficult task, often

taking developers more than one day to do by hand.

To ease the recovery of links, researchers have proposed auto-

matic approaches. Antoniol et al. [2] applied Natural Language Pro-

cessing (NLP) techniques to detect links between source code and

related documents. Alqahtani et al. [1] proposed an automatic ap-

proach to recover links between API vulnerabilities. Guo et al. [17]

used deep learning techniques that exploit domain knowledge to

detect semantic links. Rath et al. [34] detect missing links between

commits and issues using process and text-related features.

Linkage also appears in peer code review settings. Zampetti et

al. [46] found that developers reference other resources in reviews

to enhance documentation of pull requests. Perhaps the most sim-

ilar prior work is that of Li et al. [27], who reported that 27% of

GitHub pull requests from 16,584 Python projects on GitHub have

links, which span six types. This paper expands upon the work of

Li et al. by studying linkage in six large and successful software

communities (rather than a broad sample of GitHub projects), and

the impact of linkage on review analytics approaches.

2.1 Reviewer Recommendation

Selecting appropriate reviewers plays an important role in the

value that is generated by a code review. Bosu et al. [9] found

that the reviewer expertise is an important factor in determining

whether Microsoft developers consider code review feedback useful.

Kononenko et al. [25] also found that reviewer expertise is a key

factor in developer perceptions of code review quality at Mozilla.

To support authors in selecting appropriate reviewers, researchers

have proposed reviewer recommenders. For example, Balachan-

dran [4] proposed ReviewBot, which recommends reviewers based

on past contributions to the lines that were modified by the patch.

Thongtanunam et al. [42] proposed RevFinder, which recommends

reviewers based on their prior contributions to files in similar

locations within the codebase. More recent work has improved

reviewer recommendations by leveraging past review contribu-

tions [48], technological experience and experience with other

related projects [31], and the content of the patch itself [44]. Ko-

valenko et al. [26] question the value of recommending reviewers

in cases where the best reviewers are already known.

Review links may also provide useful information for the re-

viewer recommenders. Since links may indicate a (strong) relation-

ship between connected reviews, reviewers who are recommended

for one of the linked reviews may also need to be recommended

The Review Linkage Graph for Code Review Analytics ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 1: An overview of our subject communities.

Product Language Studied Period #Reviews #Revs #Projects

OpenStack Python 09/2011ś01/2018 533,050 12,359 1,804

Chromium JavaScript 04/2011ś01/2018 364,079 7,442 410

Android Java 10/2008ś01/2018 229,210 7,614 1,049

Qt C++ 07/2011ś01/2018 188,981 2,377 170

Eclipse Java 04/2012ś01/2018 106,515 2,191 380

Libreoffice Python 04/2012ś01/2018 44,867 822 34

Total 31.8 years 1,466,702 32,805 3,847

for the others. For example, Review #109178 is another attempt at

tackling the underlying task of (the abandoned) Review #105238.2

To preserve continuity of the review discussion, the reviewers of

Review #105238 should also be recommended for Review #109178.

2.2 Code Review Outcome

Not all changes that are submitted for code review end up being

integrated. Indeed, Weißgerber et al. [43] found that 39% and 42%

of OpenAFS and FLAC code changes were eventually integrated.

Jiang et al. [23] found that 33% of Linux code reviews were eventu-

ally integrated. Baysal et al. [5] found that 36%ś39% of code changes

in Mozilla Firefox were rejected and resubmitted at least once.

To better understand the chances of submissions being inte-

grated, researchers have studied the characteristics of code changes

(and their reviews) that were eventually integrated. For example,

Weißgerber et al. [43] found that small code changes are integrated

more frequently than large ones. Jiang et al. [23] showed that prior

experience, patch maturity, and code churn significantly impact

the likelihood of integration. Baysal et al. [6, 7] found that non-

technical issues are a common reason for abandonment in WebKit

and Blink projects. Moreover, Tao et al. [41] found that patch de-

sign issues like suboptimal solutions and incomplete fixes are often

raised during the reviews of the abandoned code changes of the

Eclipse and Mozilla projects.

Review links may affect or imply review outcomes. For example,

since reviews that supersede prior reviews have had the opportunity

to improve the design of the code change, they may have a higher

likelihood of being integrated than initial submissions. Moreover,

large tasks that have been divided into a series of reviews (e.g.,

Reviews #1025323 and #1025434 of OpenStack) will have review

outcomes that are inherently linked.

Prior work suggests that review linkage is important; however, the

extent of linkage in large communities and its impact on review

analytics is unclear. In this paper, we set out to bridge these gaps.

3 STUDIED COMMUNITIES

The goal of our study is to extract and analyze review graphs of

large software communities that have invested in their MCR pro-

cesses. To do so, we focus on the six popular communities that

appear in the recent related work [19, 42, 45]. OpenStack is a cloud

computing platform. Chromium is an open source web browser.

Android is a mobile software platform. Qt is a cross-platform

2https://review.openstack.org/#/c/105238/
3https://review.openstack.org/#/c/102532/
4https://review.openstack.org/#/c/102543/

application framework. Eclipse is an Integrated Development Envi-

ronment (IDE) and associated tools. Libreoffice is a free and open

implementation of the Office software suite.

The studied communities use Gerrit for code review. To con-

duct our study, we collect MCR data using the Gerrit API. Table 1

provides an overview of the collected data. Below, we provide an

overview of the Gerrit processes of the studied communities.

Gerrit Code Review Process. Gerrit is a popular, web-based code

reviewmanagement tool that tightly integrates with the Git version

control system. Rather than pushing code changes directly to an

upstream Git repository, developers push changes to Gerrit, where

only after satisfying project-specific review criteria (e.g., a member

of the core team approves the changes) may the author push their

changes into the upstream Git repository. Similar to other code

reviewing processes (e.g., GitHub pull requests), each Gerrit review

goes through the following phases:

(1) Uploading a proposed set of changes. An author uploads

a proposed set of changes to the Gerrit system and invites

reviewers to critique it by leaving comments for the author to

clarify, discuss, or address.

(2) Soliciting peer feedback.Reviewers critique the premise, con-

tent, and structure of the proposed set of changes and provide

feedback in the form of general or inline comments that corre-

spond to the entire change and lines within it, respectively.

(3) Revising the proposed patch. Authors may revise their set

of changes to address reviewer feedback. After revising, the

review returns to phase 2.

(4) Automated testing. Automated tests are executed on each set

of changes to mitigate the risk of introducing regression issues.

If these tests fail, the set of changes is blocked from integration

until the author uploads a revision that addresses the issues.

When revisions are uploaded, the review returns to phase 2.

(5) Final integration. Once the set of changes satisfies reviewer

and automated testing criteria, the author can integrate it into

upstream Git repositories.

4 REVIEW GRAPH EXTRACTION (RQ1)

In this section, we set out to study the extent to which reviews are

linked to one another in our studied communities. To do so, we

extract review graphs from the studied communities. The review

graph RG = (R,L) is a directed graph with the following properties:

• Graph nodes R represent review entries. Each review entry

r ∈ R is comprised of a set of properties, such as IDr (a

unique review identifier), Dr (the change description), PRr
(the set of patch revisions), REVr (the set of reviewers). GCr
and ICr (general and inline comments, respectively).

• Graph edges L represent links between review entries. Each

edge l ∈ L has a type Tl that describes why the link was

recorded, which we study in Sections 5ś7.

The set of reviews R is what has typically been extracted and

analyzed by prior work on code review. In this section, we first

propose a lightweight approach to recover graph edges L from the

Dr , GCr , and ICr fields of each r ∈ R (4.1). Then, we apply that

approach to the studied communities and analyze the extracted

graphs to address RQ1 (4.2).

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto

4.1 Link Recovery Approach

Weperform a preliminary analysis of 410 randomly selected reviews

to gain insight into the linkage habits within the studied commu-

nities. We observe that links appear in review description fields

(Dr), as well as within general and inline comment threads (GCr
and ICr). Moreover, we observe two ways that links are recorded:

(1) By Change ID (e.g., Ic8aaa0728a43936cd4c6e1ed590e01b-

a8f0fbf5b), i.e., a 40-digit hexadecimal identifier assigned

to each review at creation time (prefixed with an I to avoid

confusion with Git commit IDs).

(2) By URL (e.g., https://review.openstack.org/#/c/1111).

Thus, to recover links from a review r ∈ R, we scan its description

Dr aswell as all of the general and inline comments (GCr , ICr) using

regular expressions. To detect Change IDs, our regular expression

scans for terms of the form I[0-9a-f]{40}. To detect URLs, our reg-

ular expression is of the form https?://PROJ/#/c/[1-9]+[0-9]*,

where PROJ is replaced with the base URL of the project (e.g.,

review.openstack.org). For theChromium community, our regu-

lar expressions needed to be adapted to: https?://chromium-revi-

ew.googlesource.com/c/REPO/+/[1-9]+[0-9]*, where REPO cor-

responds to any of the 410 repositories within the Chromium com-

munity. The link recovery process is repeated ∀r ∈ R.

4.2 Results

By applying our link recovery approach to the six studied commu-

nities, we set out to better understand (i) the prevalence of review

linkage and (ii) linkage trends over time. To do so, we measure a

linkage rate for each studied system, i.e., the proportion of reviews

that are connected by at least one link.

Prevalence of Linkage.Table 2 shows that 17% and 25% of Chrom-

ium and OpenStack reviews are connected by at least one link,

respectively. Although the linkage rate in Qt, Eclipse, and An-

droid reviews are lower (5%ś8%), linkage is not uncommon. How-

ever, the Libreoffice linkage rate is only 3%. We suspect that

this result is reflective of the differences in the importance that

the studied communities have placed on code review. Indeed, re-

views in the OpenStack and Chromium communities receive 17

and 12 comments on average, whereas reviews in other subject

communities receive 4ś8 comments on average. Two-tailed, un-

paired Mann-Whitney U tests between OpenStack and the other

studied communities (after Bonferroni correction to control for

family-wise errors, α = 0.05
5 = 0.01) indicate that OpenStack

receives significantly more comments than the other studied com-

munities (p < 0.001) with Cliff’s delta effect sizes of negligible

when compared to Chromium (δ = 0.021 < 0.147), small when

compared to Android and Qt (0.147 ≤ δ = 0.288, 0.287 < 0.330),

medium when compared to Eclipse (0.330 ≤ δ = 0.413 < 0.474),

and large when compared to Libreoffice (0.474 ≤ δ = 0.580).

Furthermore, OpenStack reviews tend to involve more review-

ers than the other studied communities, averaging two reviewers

per review more than the next highest community (Chromium).

Two-tailed, unpaired Mann-Whitney U tests indicate that Open-

Stack reviews have significantly more reviewers than the other

studied communities (p < 0.001) with Cliff’s delta effect sizes of

mediumwhen compared toChromium (0.330 ≤ δ = 0.407 < 0.474),

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
● ● ● ● ●

● ● ●
● ●

●

●
●

●
●

●
● ●

●
●

●

● ● ● ●

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

2
0
0
8
−

1
0

2
0
0
9
−

0
4

2
0
0
9
−

1
0

2
0
1
0
−

0
4

2
0
1
0
−

1
0

2
0
1
1
−

0
4

2
0
1
1
−

1
0

2
0
1
2
−

0
4

2
0
1
2
−

1
0

2
0
1
3
−

0
4

2
0
1
3
−

1
0

2
0
1
4
−

0
4

2
0
1
4
−

1
0

2
0
1
5
−

0
4

2
0
1
5
−

1
0

2
0
1
6
−

0
4

2
0
1
6
−

1
0

2
0
1
7
−

0
4

2
0
1
7
−

1
0

2
0
1
8
−

0
4

Studied period

L
in

k
e
d
 R

e
v
ie

w
 R

a
te

Subject System
●

●

OPENSTACK

CHROMIUM

AOSP

QT

ECLIPSE

LIBREOFFICE

Figure 1: Monthly linkage rate in the studied communities.

and large when compared to Android, Qt, Eclipse, and Libre-

office (0.474 ≤ δ = 0.553, 0.520, 0.703, 0.712). We also find that

there is no tendency where the larger systems are likely to re-

ceive more comments in terms of an individual contribution (i.e.,

2ś4 comments per reviewer on average across our studied sys-

tems). Indeed, despite of the significant differences of unpaired

Mann-Whitney U tests across our six studied systems, Cliff’s delta

effect sizes are negligible when compared to Qt and Libreoffice

(δ = 0.051, 0.020 < 0.147), small when compared to Android and

Eclipse (0.147 ≤ δ = 0.219, 0.213 < 0.330), and medium when

compared to Chromium (0.330 ≤ δ = 0.357 < 0.474).

Table 2 also shows that the largest proportion of links are recov-

ered from discussion threads (GC , IC). Indeed, 72%ś97% of links are

recovered from GC and IC threads. This indicates that links tend

to emerge during the review rather than when it is created.

Furthermore, Table 2 shows that 5%ś40% of links connect re-

views across project boundaries. For example, Review #1027045

links from the Nova project to the Cinder project of OpenStack.

Furthermore,OpenStack shows a greater rate of cross-project links

than the other studied communities, likely because the OpenStack

community develops more projects than the other studied commu-

nities. Indeed, Table 1 shows that OpenStack contains at least four

times as many projects as the other studied communities.

Linkage Trends. Figure 1 shows that linkage rates in the four com-

munities that have made the largest investments in code review (i.e.,

personnel and activity per review) have stabilized or peaked in the

more recent studied periods. Indeed, the linkage rate in the Open-

Stack community has a rapidly increasing trend until late 2014 and

more gradual increases in recent months. The Chromium commu-

nity began with moderate linkage rates until mid-2014, when rates

dropped to below 5%. However, the rates have climbed above 30%

5 https://review.openstack.org/#/c/102704/

The Review Linkage Graph for Code Review Analytics ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 2: Review graph characteristics in the subject communities.

Product
Linked Reviews Per Review (Mean) Per Reviewer Description General Comment Inline Comment Cross-project

#Reviews %Reviews Comments Reviewers Comments #Links %Links #Links %Links #Links %Links #Links %Links

OpenStack 133,650 25% 17 5 3 77,400 28% 151,411 54% 50,110 18% 110,964 40%

Chromium 62,065 17% 12 3 4 10,295 5% 182,929 93% 3,968 2% 44,869 23%

Android 11,584 5% 8 2 3 6,082 22% 21,491 77% 466 2% 2,508 9%

Qt 14,266 8% 8 2 3 574 3% 19,450 87% 2,309 10% 4,353 19%

Eclipse 8,227 8% 6 2 3 1,255 6% 19,995 90% 917 4% 1,359 6%

Libreoffice 1,549 3% 4 2 2 211 10% 1,774 86% 88 4% 107 5%

in mid-2017. This growth may be due to several factors (e.g., com-

munity initiative, growth in task complexity). The Qt and Android

communities had linkage rates below 7% until mid-2014, when rates

roughly stabilized at 13% and 9%, respectively.

On the other hand, linkage rates remain stable or are decreasing

in the two studied communities that have made the least investment

in code review. Indeed, the Libreoffice community shows a stable

trend, while the Eclipse community’s trend is decreasing.

RQ1: Linked reviews occur regularly in communities that have

made large investments in code review. Thus, code review analytics

should look to linkage as a potential source of useful information.

5 QUALITATIVE ANALYSIS OF REVIEW
LINKS (RQ2)

Reviews may be linked to other reviews for several reasons. For

example, a link may express a dependency between reviews (e.g.,

ł[Review #106918]6 is dependent on [Review #106274]ž) or the evolu-

tion of an earlier idea into its current form (e.g., ł[Review #475649]7

is a follow up patch to [Review #411830]ž).

In this section, we set out to better understand the underlying

reasons for review linkage through a qualitative analysis. To under-

stand why a link has been recorded, we use a manually-intensive

research method, which creates practical limitations on the breadth

of communities that we can analyze. Thus, we elect to analyze the

OpenStack communityÐthe largest and most dynamic graph in

our set of studied communities (see Tables 1ś2 and Figure 1). The

OpenStack community is composed of several projects, of which,

we select the two largest for analysis, i.e., Nova (the provisioning

management module) and Neutron (the networking abstraction

interface). Below, we describe our approach to classify links in the

studied projects (5.1) and present the results (5.2).

5.1 Approach

We apply an open coding approach [12] to classify randomly sam-

pled links between reviews. Open coding is a qualitative data anal-

ysis method by which artifacts under inspection (review links in

our case) are classified according to emergent concepts (i.e., codes).

After coding, we apply open card sorting [30] to lift low-level codes

to higher level concepts. Below, we describe our sampling, coding,

and card sorting procedures in more detail.

Sampling. Section 4 shows that there are 133,650 linked reviews in

theOpenStack community, 16,144 of which appear in theNova and

6 https://review.openstack.org/#/c/106918/
7https://review.openstack.org/#/c/475649/

1/23/2019 Change I7b18b767: Fix wrong exception return in fixed_ips v2 extention | review.openstack Code Review

https://review.openstack.org/#/c/126831/ 3/3

Powered by Gerrit Code Review (2.13.12-11-g1707fec) | Get Help | Press '?' to view keyboard shortcuts

 body = {"reserve": "None"}
 self.assertRaises(exceptions.NotFound,
 self.client.reserve_fixed_ip,
 "my.invalid.ip", body)
any suggestions?
Eli.
Ken'ichi Ohmichi
Patch Set 3:
@Eli
We faced this kind of problems, and we can change Tempest code before this like:
 - self.assertRaises(exceptions.NotFound,
 + self.assertRaises((exceptions.NotFound, exceptions.BadRequest),
 self.client.reserve_fixed_ip,
 "my.invalid.ip", body)

Oct 11, 2014 ↩

Eli Qiao
Patch Set 3:
hi Ken'ichi
thanks, I'v post a patch to tempest at
https://review.openstack.org/#/c/127457/
let's wait for it merged first.

Oct 13, 2014 ↩

Christopher Yeoh
Patch Set 3: Code-Review+2
(pending tempest change merge)

Oct 14, 2014 ↩

Alex Xu Patch Set 3: Code-Review+1 Oct 14, 2014
Ken'ichi Ohmichi Patch Set 3: recheck Oct 14, 2014
Elastic Recheck Patch Set 3: I noticed jenkins failed, I think you hit bug(s): - check-tempest-dsvm-ironic-pxe_ssh-nv: https://bugs.launchpad.net/bugs/1270710 If you b…Oct 14, 2014
Ken'ichi Ohmichi Patch Set 3: Code-Review+2 Workflow+1 Oct 14, 2014
Elastic Recheck Patch Set 3: I noticed jenkins failed, I think you hit bug(s): - gate-grenade-dsvm: https://bugs.launchpad.net/bugs/1244457 If you believe we've correctl…Oct 14, 2014
Ken'ichi Ohmichi Patch Set 3: recheck Oct 14, 2014
Eli Qiao Patch Set 3: recheck Oct 15, 2014
Jenkins Change has been successfully merged into the git repository. Oct 15, 2014
Jordan Pittier Patch Set 3: Reverted This patchset was reverted in change: I191b626a471626f334e4835fab602acea505ff78 Feb 10, 2016

Reviewer 1

Author

@Author

@Reviewer 1

Figure 2: An example of a review link from Review #126831

in Nova.

Neutron projects. Since coding of all of these links is impractical,

we randomly sample Nova and Neutron review links for coding.

To discover as complete of a set of link types as possible, we

strive for saturation. Similar to prior work [47], we set our saturation

criterion to 50, i.e., we continue to code randomly selected links

until no new codes have been discovered for 50 consecutive links.

To ensure that we analyze links that appear in descriptions and

comments, we aim to achieve saturation twiceÐonce when coding

description-based links and again when coding comment-based

links. We reach saturation after coding 340 comment-based links

and 146 description-based links in Nova, and 161 comment-based

links and 105 description-based links in Neutron.

Coding. Coding was performed by the first and second authors

during collocated coding sessions. Both coders have experience

with code reviews both in research and commercial software devel-

opment settings (acting as both patch authors and reviewers). In

total, these coding sessions took 56 hours (or 112 person-hours).

When coding links, the coders focused on the key reasons why

the link was recorded. For example, Figure 2 shows that comments

from Reviewer 1 on Nova Review #126831 have inspired the author

to create Review #127457. Both coders independently code and then

discuss each link until a consensus is reached. We also record the

direction of the link, e.g., Review #126831 links to Review #127457.

In theory, multiple codes may apply to each link; yet in practice,

we find that multi-coded links are rare. Indeed, while a link may

have different codes if interpreted in different directions, we do not

find any multi-coded directional links.

Since open coding is an exploratory data analysis technique,

it may be prone to errors. To mitigate errors, we code in three

passes. First, since codes that emerge late in the process may apply

to earlier reviews, after completing an initial round of coding, we

perform a second pass over all of the links to correct miscoded

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto

Table 3: The frequency of the discovered types of review

linkage in OpenStack Nova and Neutron.

Category
Frequency

Nova Neutron

C1: Patch Dependency 269 (55%) 148 (56%)

Patch Ordering 124 (26%) 62 (24%)

Root Cause 50 (11%) 28 (11%)

Shallow Fix 6 (2%) 4 (2%)

Follow-up 28 (6%) 29 (11%)

Merge Related Reviews 19 (4%) 13 (5%)

Multi-part 42 (9%) 12 (5%)

C2: Broader Context 96 (20%) 50 (19%)

Related Feedback 43 (9%) 14 (6%)

Demonstration 29 (6%) 26 (10%)

Additional Evidence 24 (5%) 10 (4%)

C3: Alternative Solution 69 (14%) 39 (15%)

Superseding 35 (8%) 17 (7%)

Duplicated 34 (7%) 22 (9%)

C4: Version Control Issues 27 (6%) 17 (6%)

Integration Concern 15 (4%) 13 (5%)

Gerrit Misuse 5 (2%) 2 (1%)

Revert 7 (2%) 2 (1%)

C5: Feedback Related 23 (5%) 10 (4%)

Fix Related Issues 11 (3%) 3 (2%)

Feedback Inspired Reviews 12 (3%) 7 (3%)

entries. During the first coding pass, we code only using the link

source (description/comment). In several cases, more contextual

information was needed. We coded such cases as łNeeds Additional

Contextž during the first coding pass. During a third coding pass,

we check additional sources of information (e.g., the content of the

patch, the linked review, comments in discussion threads) to code

these cases more specifically. After the three coding passes, all of

the sampled links have been assigned to a specific code.

Card Sorting. Similar to prior studies [3, 18, 24, 39], we apply open

card sorting to construct a taxonomy of codes. This taxonomy helps

us to extrapolate general themes from our detailed coded data. The

card sorting process is comprised of two steps. First, the coded

links are merged into cohesive groups that can be represented by

a similar subgraph. Second, the related subgraphs are merged to

form categories that can be summarized by a short title.

5.2 Results

Table 3 provides an overview of the categories that summarize

related labels (the complete table is available online1). We observe

that the frequencies at which the link labels appear are consistent

between the two studied projects. Moreover, we only coded two

of 486 links from Nova and two of 266 links from Neutron as

false positives (i.e., spuriously detected links that do not indicate

a relationship between reviews), suggesting that our link extrac-

tion approach does not produce much noise (precision > 0.99 in

both cases). Furthermore, we required additional context informa-

tion (beyond the link source) to code 63 links, all of which were

more specifically coded during the third pass when we analyze

additional information sources. Below, we describe the discovered

codes according to the categories to which they belong.

Patch Dependency (C1). We find that 55% and 56% of the ana-

lyzed links in Nova and Neutron connect reviews to others that

they depend upon. Patch Dependency links may influence inte-

gration decisions and the reviewers who should be recommended.

Indeed, the integration decision in one review may be inherently

linked to that of another if they share a dependency. For example,

Review #1027045 of the Nova project was only abandoned because

of its dependency on Review #102705, which was abandoned earlier.

Moreover, reviewers of a dependent review may need to review its

dependency as well. For example, a reviewer of Review #1027498

was added only because they reviewed its dependency (Review

#101424). We further explore the usefulness of these linkage-based

reviewer invitations in Section 7 (RQ4).

A

B

B

A

A

(1) Patch Ordering
(2) Root Cause
(3) Shallow Fix
(4) Follow-up

(5) Merge Related
Reviews

(6) Multi-Part

B

C

(C1) Patch Dependency

C Code

Base

Linkage direction Patch Integration

Figure 3: The Patch Dependency subgraphs.

Figure 3 shows three shapes that patch dependency links take.

First, Patch Ordering, Root Cause, Shallow Fix, and Follow-up take

the shape of two eventually integrated (or abandoned) reviews that

share a link. While they share a shape, the semantics of the patterns

differ, i.e., Patch Ordering links indicate a timing dependency that

must be respected at integration time, while Follow-up, Root Cause,

and Shallow Fix links provide rationale for Review B by pointing to

enabling enhancements or limitations in Review A. Second, Merge

Related Reviews links merge two or more reviews into a more

cohesive whole. Finally, Multi-part links indicate that a large review

has been split into a series of smaller reviews.

Weißgerber et al. [43] observed that smaller patches tend to

be accepted in two large open source projects. Rigby et al. [35]

argue that one of the statutes of an efficient and effective code

review process is the łearly, frequent review of small, independent,

complete solutionsž. The frequency of the Multi-part pattern (i.e.,

the splitting of large patches into smaller ones) may be an indication

that these prior observations still hold.

8https://review.openstack.org/#/c/102749/

The Review Linkage Graph for Code Review Analytics ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Broader Context (C2). We find that 20% and 19% of the analyzed

links point to other reviews with relevant resources. The individual

analysis of reviews that are connected with Broader Context links

may not be valid. Indeed, analyses of review outcome prediction

often compute the length of discussion threads [16, 23]. However, a

discussion may span across several reviews when Broader Context

links are present. For instance, a reviewer of Review #1552239 asks

the author to refer to a similar discussion on Review #215608.

(1) Related Feedback
(2) Demonstration
(3) Additional Evidence

A

B
comment

code

(C2) Broader Context (1) or (3)

(2) or (3)

Code

Base

Figure 4: The Broader Context subgraph.

Figure 4 shows that our three codes within the Broader Con-

text category share the same shape; however, the codes differ in

the artifact to which they refer. Related Feedback links connect

discussions on one review to discussions in other reviews, while

Demonstration links point to example code from other reviews.

Additional Evidence links point to other reviews as proof (code,

discussions, specifications) of the existence, removal, or relevance

of the problems that are addressed by the review under inspection.

Alternative Solution (C3).We find that 14% and 15% of the ana-

lyzed links connect reviews to others that implement similar func-

tionality. Similar to Patch Dependency links, Alternative Solution

links may also impact integration decisions and reviewer recom-

mendations. For example, Review #6743110 was abandoned because

another submitted solution for the same underlying issue (Review

#61041) was preferred. Especially in such examples where an łei-

ther orž decision needs to be made, the same reviewers should

likely be invited to all of the competing reviews for the sake of

fairness [15]. Furthermore, prior work has demonstrated that a lack

of awareness of concurrently developed solutions may result in re-

dundant work [10, 49] and is a key source of software development

waste [37]. These conflated integration decisions are not congruent

with review outcome or reviewer recommendation models that

assume each submission is independently adjudicated [21ś23].

(C3) Alternative Solution

(1) Superseding
(2) Duplication

A’

BA Code

Base

(1)

(2)

Figure 5: The Alternative Solution subgraph.

9https://review.openstack.org/#/c/155223/
10 https://review.openstack.org/#/c/67431/

Figure 5 shows that our two codes within the Alternative Solu-

tion category share the same shape, yet differ in their semantics.

Superseding links show that the solution in an earlier review has

been replaced with an updated solution in the current review, while

Duplication links highlight the existence of another (competing)

solution to the same underlying problem. In a large-scale, cross-

company software organization like OpenStack, it is difficult to

coordinate development effort. However, the frequency at which

work is duplicated suggests that tooling [10, 49] may help.

Version Control Issues (C4). We find that 6% of analyzed links

point to reviews that introduced version control issues. Rigby and

Storey [36] also found such issues are often discussed during the

broadcast-based reviews in several open source systems. Shima-

gaki et al. [38] found that 5% of commits in a large industrial system

were reverted after being integrated. Since Revert is one of the codes

within our category, our review graphs can complement version

control data to better understand the practice of reverting commits.

A

B(1) Integration Concerns
(2) Gerrit Misuse
(3) Revert

(C4) Version Control Issues

Conflict Code

Base

Figure 6: The Version Control Issues subgraph.

Figure 6 shows that our three codes within the Version Control

Issues category share the same shape. Integration Conflict and

Gerrit Misuse links expose technical integration or Gerrit issues,

while Revert links indicate that a partial or complete rollback.

Feedback Related (C5).We find that 5% and 4% of analyzed links

in Nova and Neutron connect reviews to others that resolve or

were inspired by reviewer comments. Reviews that were inspired

by feedback in another review might be more likely to be accepted,

since one reviewer is already in favour of the idea. For example, in

Review #167100,11 a reviewer’s feedback inspired the creation of

the new Review #167082. Then, one of reviewers of #167100 joined

Review #167082, and eventually approves it for integration. There

are two possible ways to act upon C5-linked reviews. The reviewer

who inspired the change may be well suited to review the inspired

change. Thus, reviewer recommenders may need to recommend

them. On the other hand, since the reviewer who inspired the

change may not be impartial when reviewing the inspired review,

reviewer recommenders may need to recommend other reviewers.

Figure 7 shows that our two codes within the Feedback Related

category share the same shape. Fixed Related Issues links show that

(part of) a raised concern has been addressed by another review.

Feedback-inspired links show a new contribution where feedback

on Review A inspires the creation of a new patch.

RQ2: A broad variety of reasons for linkage exist. These differ-

ent types of links may introduce noise in or opportunities for

improvement of code review analytics.

11https://review.openstack.org/#/c/167100/

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto

(C5) Feedback Related

(1) Feedback Inspired
(2) Fix Related Issues

A

B

C

(1)

(2) Code

Base

Figure 7: The Feedback Related subgraph.

6 AUTOMATED LINK CLASSIFICATION (RQ3)

In Section 5, we find that several types of links may impact reviewer

recommendation and outcome prediction. Since different review

analytics techniques may need to traverse or ignore links depending

on the type, a more scalable approach to link type recovery is

needed. Indeed, it took the authors 112 person-hours to code 752

review links (see Coding in Section 5.1). If we continue to code at

this rate, it would take an additional 19,793 person-hours to code

the remaining 132,898 reviews in the OpenStack data set.

In this section, we study the feasibility of using machine learning

techniques to automatically classify links by categories. To do so,

we use the manually coded data from Section 5 as a sample on

which to train and evaluate classifiers that identify the link category

(C1śC5) based on the document that it appears within (i.e., the

review description field or the comment in the general or inline

discussion thread). Below, we describe our approach to automated

link category classification (6.1) followed by the results (6.2).

6.1 Classification Approach

Feature Extraction.We apply standard text preprocessing tech-

niques to lessen the impact of noise on our classifiers. We first

tokenize the document and remove stop words using the Python

NLTK stop word list. Next, we apply lemmatization to handle term

conjugation using the Python NLTK lemmatize function. Finally,

we convert each sampled description or comment to a vector of the

Term Frequency-Inverse Document Frequency (TF-IDF) weights

of its terms. Broadly speaking, terms that appear rarely across doc-

uments, and/or often within one document are of higher weight.

We use the Python Scikit-Learn TfidfVectorizer function to

compute TF-IDF scores for all documents in a training sample.

Classifier Validation Technique. To estimate classifier perfor-

mance on unseen data, we apply the out-of-sample bootstrap val-

idation technique [13], which tends to yield more robust results

than other validation techniques (e.g., k-fold cross validation) [40].

First, a bootstrap sample of size N is randomly drawn with replace-

ment from the original sample of the same size N. This bootstrap

sample is used to train our classifiers, while the documents from

the original sample that do not appear in the bootstrap sample are

set aside for testing. Since the bootstrap sample is selected with

replacement, on average, 36.8% of the documents will not appear

in the bootstrap sample and can be used to evaluate classifier per-

formance. We perform 1,000 iterations of the bootstrap procedure

(reporting the mean performance scores across these iterations) to

ensure that our performance measurements are robust.

Classification Techniques. To train our classifiers, we experi-

ment with a broad selection of popular classification techniques.

Support Vector Machines (SVM) use a hyperplane to classify docu-

ments by first transforming feature values into a multidimensional

feature space. Random Forest is an ensemble learning technique

that builds a large number of decision trees, each using a subset of

the features, and then aggregates the results from each tree to clas-

sify documents. Multinomial Naïve Bayes (MNB) is a conditional

probability model that uses a multinomial distribution for each of

the features. Multi-Layer Perceptron (MLP) is a supervised learning

technique where weighted inputs are delivered through neurons in

sequential layers. Multinomial Logistic Regression (MLR) general-

izes the logistic regression technique to the multi-class classifica-

tion setting. We use the Python Scikit-Learn implementations of

the classification techniques (svm.SVC, RandomForestClassifier,

MultinomialNB, MLPClassifier, and LogisticRegression).

Hyperparameter Optimization. The classification techniques

that we use have configurable parameters that impact their per-

formance. Similar to prior work [40], we use a grid search to tune

the parameter settings. Grid search is an exhaustive searching tech-

nique that examines all of the combinations of a specified set of

candidate settings to find the best combination. We explore the

same set of candidate settings as Tantithamthavorn et al. [40, p. 5].

We search for the optimal parameter settings for each classification

technique in each bootstrap sample (i.e., without using the testing

data) using the Scikit-Learn GridSearchCV function.

Performance Evaluation. To evaluate our classifiers, we use com-

mon performance measures. Precision is the proportion of links

that are classified as a given category that are correct. Recall is the

proportion of links of a given category that a classifier can detect.

The F1-score is the harmonic mean of precision and recall. The

Area Under the Curve (AUC) computes the area under the curve

that plots the true positive rate against the false positive rate as

the threshold that is used for classifying documents varies. AUC

ranges from 0 to 1, where random guessing achieves an AUC of 0.5.

Since our links have more than two categories, we need to use

multi-class generalizations of these performance measures. Each

measure is computed for each category before being aggregated

into an overall score. Since the link categories are imbalanced (see

Table 3), we weigh the category scores by their overall proportion.

We also compare our classifiers to a ZeroR classifier, which al-

ways reports the most frequently occurring class. In our setting,

a ZeroR classifier achieves a recall of one and a precision equal

to the frequency of the most frequently occurring category (C1)

for that class, and a precision and recall of zero for the other cate-

gories. Note that AUC does not apply to ZeroR classifiers because

likelihood estimates are not produced. We use the Scikit-Learn

metrics library to compute our performance measurements.

6.2 Results

Table 4 shows that while no classification technique consistently

outperforms the others, the classifiers achieve a precision of 0.71ś

0.77, a recall of 0.72ś0.92, and F1-scores of 0.71ś0.79. Since these

performance scores are on par with those of prior classification

studies [28, 32, 33], we believe that our classifiers show promise.

Moreover, Table 4 shows that our classifiers outperform baseline

The Review Linkage Graph for Code Review Analytics ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 4: The performance of our five link category classi-

fiers, all of which outperform the ZeroR and random guess-

ing baselines in all cases.

Model
Nova Neutron

Prec. Rec. F1. AUC Prec. Rec. F1. AUC

SVM 0.75 0.88 0.79 0.72 0.72 0.92 0.77 0.82

RF 0.77 0.72 0.71 0.57 0.76 0.84 0.72 0.89

MNB 0.71 0.80 0.74 0.72 0.71 0.82 0.75 0.76

MLP 0.74 0.81 0.76 0.61 0.75 0.84 0.74 0.68

MLR 0.75 0.88 0.79 0.65 0.72 0.92 0.77 0.79

ZeroR 0.26 0.50 0.34 ś 0.27 0.50 0.34 ś

approaches, achieving precision, recall, and F1-scores that are 22ś51

percentage points better than the ZeroR baseline and AUC values

above the 0.5 random guessing benchmark.

RQ3: Despite the complexity of the five-class classification prob-

lem, our classifiers achieve precision, recall, and F1-scores that

exceed the ZeroR baseline by 22ś51 percentage points.

7 LINKAGE IMPACT ANALYSIS (RQ4)

Our analysis in RQ2 suggests that linkage can impact code review

analytics. In this section, we measure that impact on reviewer

recommendation (7.1) and review outcome prediction (7.2).

7.1 Reviewer Recommendation

Approach. In Section 5, we observe that Patch Dependency links

(C1), Alternative Solution links (C3), and Feedback Related links

(C5) may impact reviewer recommendation because reviewers of a

linking review may need to review its linked review.

To measure the degree to which reviewers contribute to both

linking and linked reviews, we compute the Overlapping Reviewer

Rate (ORR), i.e., the proportion of reviewers from the linking review

who also review the linked review. We compute the ORR rates on

our sampled links from Section 5.

To study the extent to which state-of-the-art reviewer recom-

menders identify overlapping reviewers, we apply cHRev [48],

which makes recommendations based on prior contribution and

working habits. We approximate data sets where C1, C3, and C5-

linked reviews are known by applying our top-performing classifier

(SVM) from Section 6 to the linked Nova and Neutron reviews.

We exclude C5-linked reviews from further analysis because we

detect too few instances (i.e., five) to draw meaningful conclusions.

We then compare the performance of cHRev to an extended ver-

sion that ranks reviewers of linking reviews at the top of the list for

linked reviews. Since links appear as reviews evolve, we select only

those links that are available at prediction times zero, one, three,

and six hours after the review has been created. Moreover, we only

identify candidate overlapping reviewers who have commented on

linking reviews at or before those prediction time settings.

Results. The ORR rates of C1 and C3 are 50%ś51% and 65%ś77%,

respectively. By way of comparison, we find that the ORR rate is

less than 1% for randomly selected pairs of non-linked reviews. The

results indicate that reviewers are more likely to participate in both

reviews when links are present.

A closer inspection reveals that cHRev misses at least one over-

lapping reviewer in 96%ś100% of linked reviews across Top 1ś5

recommendation lists. Since medians of 12 and 15 reviewers par-

ticipate in Nova and Neutronreviews, respectively, missing at

least one overlapping reviewer is a concern. Moreover, none of the

overlapping reviewers are recommended in 41%ś81% of Nova and

48%ś84% of Neutron reviews. When overlapping reviewers are

omitted, they appear in 13thś15th place on average. Increasing the

weight of overlapping reviewers may improve recommendations.

Table 5 shows that the precision, recall, and F1-scores of cHRev

improve by 33%ś88% (3ś17 percentage points) if reviewers of a

linked review are recommended at the top of the list. Moreover,

the degree of the improvement remains consistent across the four

studied prediction time settings, indicating that no prediction delay

is necessary to gain the bulk of the value. Longer delaysmay achieve

better results but would be less useful in practice, since waiting

more than six hours for reviewer recommendations is impractical.

7.2 Review Outcome

Approach. In Section 5, we report that C1, C2 (Broader Context),

and C3 links may impact review outcome prediction because the

integration decision in one review may be inherently linked to that

of the other. Similar to the reviewer recommendation experiment

above, we apply our SVM classifier to identify C1, C2, and C3 links

in the full Nova and Neutron data sets.

For C1, C2, and C3 reviews, we compute the Identical Outcome

Rate (IOR), i.e., the rate at which linking and linked reviews result

in the same outcome (i.e., integration or abandonment). Moreover,

to study the extent to which state-of-the-art outcome predictors

misclassify identical outcomes, we apply the outcome prediction

approach of Gousios et al. [16].More specifically, we train prediction

models that classify reviews as integrated or abandoned based on

review properties (e.g., # comments, # participants). In our setting,

we train the predictors on unlabeled linked reviews and evaluate

them on our labeled samples.

Results. The IOR rates of integrated C1 and C2-linked reviews

are 73%ś87% in Nova and 55%ś71% in Neutron, while the IOR

rates for abandonment are 57%ś86% and 45%ś75%, respectively.

This suggests that reviews that are connected with C1 and C2 links

tend to have the same outcome. Since C3 links connect competing

solutions, it is unlikely that they will have the same outcome. This is

reflected in lower IOR rates of 18%ś26% for integration, respectively.

On the other hand, the IOR rates for abandonment are 46% in Nova

and 62% in Neutron, indicating that it is not uncommon for both

competing solutions to be abandoned.

Outcome predictors may misclassify review outcomes for linked

reviews when the feature values span multiple reviews (e.g., discus-

sion contexts, # participants). Indeed, we find that prior approach

misclassifies 35% and 39% of C1, C2, and C3-linked reviews in Nova

and Neutron, respectively.

RQ4: Reviewer recommenders tend to omit or poorly rank review-

ers who participate in both linking and linked reviews. Moreover,

review outcome predictors tend to misclassify linked review out-

comes. Leveraging links that are available at prediction time can

yield considerable performance improvements.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto

Table 5: The mean performance scores of cHRev [48] and our proposed link-aware reviewer recommenders at different pre-

diction delays. The bulk of the performance improvement is achieved in the no delay (0 hour) setting.

Nova Neutron

Top 1 Top 3 Top 5 Top 1 Top 3 Top 5

Model Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1. Pre. Rec. F1.

Baseline 0.25 0.06 0.09 0.28 0.18 0.22 0.30 0.32 0.30 0.24 0.05 0.08 0.26 0.17 0.20 0.28 0.31 0.29

0 hour 0.39 0.09 0.14 0.40 0.26 0.31 0.40 0.43 0.41 0.39 0.09 0.14 0.40 0.26 0.31 0.41 0.44 0.42

1 hour 0.39 0.09 0.14 0.40 0.26 0.31 0.40 0.43 0.41 0.41 0.09 0.14 0.41 0.26 0.32 0.42 0.44 0.43

3 hours 0.40 0.09 0.14 0.40 0.26 0.31 0.40 0.43 0.41 0.41 0.09 0.14 0.41 0.26 0.32 0.42 0.45 0.43

6 hours 0.40 0.09 0.14 0.40 0.26 0.31 0.40 0.43 0.41 0.41 0.09 0.15 0.41 0.27 0.32 0.42 0.45 0.43

8 PRACTICAL IMPLICATIONS

Linkage should be taken into consideration in code review

analytics. Our quantitative study (Section 4) shows that up to

25% of reviews in our subject communities link to at least one

other review. Moreover, in the four studied communities that have

made the largest investment in reviewing (OpenStack, Chromium,

Android, and Qt), we observe increasing or stable trends in the

monthly linkage rate. Prior work has shown that linked artifacts can

impact repository mining analytics [8, 20]. Indeed, our impact anal-

ysis (Section 7) shows that reviewer recommenders and outcome

predictors can be improved by taking linkage into account.

Duplicate detectionwould enhance review efficiency.Our qual-

itative study shows that 14%ś15% of congruent links in Nova and

Neutron fall in the Alternative Solution category (i.e., superseding

and duplication). Duplicate contributions are a form of waste in

software development [37]. Boisselle and Adams [8] argued that

automatic classification of bug reports that are linked due to dupli-

cation would be helpful. However, in large projects like OpenStack

and Chromium, it is difficult to keep track of duplicated work [49].

Systematic detection of duplicates would be important from a re-

view fairness [15] perspective as well, since the competing solutions

should be subject to the same level of scrutiny.

Link category recovery may not be necessary. The majority of

links are of types that potentially impact reviewer recommendation

(C1, C3, and C5) and outcome prediction (C1, C2, and C3). Since

we find that all studied link categories are useful, future work may

assume that all links are useful and omit link type classification.

9 THREATS TO VALIDITY

Construct validity. Construct validity is concerned with the de-

gree to which our measurements capture what we aim to study. We

recover links between reviews using regular expressions that detect

Change IDs and URLs of other reviews. However, these regular

expressions may extract Change IDs or URLs that are not intended

to be links (false positives). On the other hand, Section 5 shows that

the false positive rate in our manually analyzed sample is quite low

(<0.1%). Thus, we false positives do not appear to be of concern.

In our qualitative analysis, links may be miscoded due to the

subjective nature of our open coding approach. We take several

precautions to mitigate the miscoding threat. First, the code for

each link is agreed upon by two coders who have experience with

code review in academic and commercial settings. Furthermore, we

employ a three-pass approach, where each code is revisited at least

once to ensure that the correct code was selected.

Internal validity. Internal validity is concerned with our ability

to draw conclusions from the relationship between study variables.

Links may not be detected in all of the cases when they should

be, which may introduce noise in our linkage rate observations in

Section 4. Hence, our observations in Section 4 should be interpreted

as lower bounds rather than as exact linkage rate values.

If we stop coding too early during our qualitative analysis (Sec-

tion 5), it may threaten the completeness of the discovered set of

link types. To mitigate the threat, we continue to code until our

samples saturateÐa concept that we operationalized by continuing

until we coded a span of 50 coded links without discovering any

new codes. Others have used similar saturation criteria [36, 47].

Other classification techniques or hyperparameter settings may

yield better results than the ones that we studied in Section 6. To

combat this, we select a broad set of popular classification tech-

niques and use an automatic parameter optimization approach to

select the best configuration of hyperparameter settings for each

bootstrap iteration. Nonetheless, exploration of other classification

techniques and hyperparameter settings may yield better results.

External validity. External validity is concerned with our abil-

ity to generalize based on our results. We extract review graphs

(Section 4) from six communities that use the Gerrit code review

tool. Due to the manually intensive nature of our coding approach,

we focus on an in-depth analysis of the two largest projects from

the OpenStack community. As such, our linkage types, classifiers,

and impact analyses may not generalize to code reviewing envi-

ronments in all software communities. Replication studies may be

needed to arrive at more general conclusions. To simplify replica-

tion, we have made our scripts and data publicly available.1

10 CONCLUSION

Researchers have recently proposed several analytics-based tech-

niques to support stakeholders in the MCR process. However, those

techniques have tacitly or explicitly treated each review as an inde-

pendent observation, which overlooks relationships among reviews.

Our empirical study suggests that linkage is not uncommon

in six studied software communities. Moreover, adding linkage

awareness to review analytics approaches yields considerable per-

formance improvements. Thus, review linkage should be taken into

consideration in future MCR studies and tools.

ACKNOWLEDGMENTS

This work was supported by the SCAT Technology Research Foun-

dation and JSPS KAKENHI Grants JP17J09333, 17H00731, 18KT0013.

The Review Linkage Graph for Code Review Analytics ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Sultan S. Alqahtani, Ellis E. Eghan, and Juergen Rilling. 2017. Recovering Semantic

Traceability Links between APIs and Security Vulnerabilities: An Ontological
Modeling Approach. In Proceedings of International Conference on Software Testing,
Verification and Validation. 80ś91.

[2] Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza, Andrea De Lucia, and Et-
tore Merlo. 2002. Recovering traceability links between code and documentation.
IEEE Transactions on Software Engineering 28, 10, 970ś983.

[3] Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Chal-
lenges of Modern Code Review. In Proceedings of the 35th International Conference
on Software Engineering. 712ś721.

[4] Vipin Balachandran. 2013. Reducing Human Effort and Improving Quality in Peer
Code Reviews Using Automatic Static Analysis and Reviewer Recommendation.
In Proceedings of the 35th International Conference on Software Engineering. 931ś
940.

[5] Olga Baysal, Oleksii Kononenko, Reid Holmes, andMichaelW. Godfrey. 2012. The
Secret Life of Patches: A Firefox Case Study. In Proceedings of the 19th Working
Conference on Reverse Engineering. 447ś455.

[6] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey. 2013.
The influence of non-technical factors on code review. In Proceedings of the 20th
Working Conference on Reverse Engineering. 122ś131.

[7] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W. Godfrey. 2016.
Investigating Technical and Non-Technical Factors Influencing Modern Code
Review, In Empirical Software Engineering. Empirical Software Engineering 21, 3,
932ś959.

[8] Vincent Boisselle and Bram Adams. 2015. The impact of cross-distribution bug
duplicates, empirical study on Debian and Ubuntu. In Proceedings of the 15th
International Working Conference on Source Code Analysis and Manipulation. 131ś
140.

[9] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics of
Useful Code Reviews: An Empirical Study at Microsoft. In Proceedings of the 12th
International Conference on Mining Software Repositories. 146ś156.

[10] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. 2011. Proactive
Detection of Collaboration Conflicts. In Proceedings of the 8th Joint Meeting on
European Software Engineering Conference and the Symposium on the Foundations
of Software Engineering. 168ś178.

[11] Gerardo Canfora, Luigi Cerulo, Marta Cimitile, and Massimiliano Di Penta. 2011.
Social Interactions Around Cross-system Bug Fixings: The Case of FreeBSD
and OpenBSD. In Proceedings of the 8th Working Conference on Mining Software
Repositories. 143ś152.

[12] Kathy Charmaz. 2014. Constructing Grounded Theory. SAGE Publications.
[13] Bradley Efron and Robert J. Tibshirani. 1993. An Introduction to the Bootstrap.

Chapman & Hall.
[14] Michael E. Fagan. 1976. Design and Code Inspections to Reduce Errors in Program

Development. IBM Systems Journal 15, 3, 182ś211.
[15] Daniel M. German, Gregorio Robles, Germán Poo-Caamaño, Xin Yang, Hajimu

Iida, and Katsuro Inoue. 2018. łWas My Contribution Fairly Reviewed?ž: A
Framework to Study the Perception of Fairness in Modern Code Reviews. In
Proceedings of the 40th International Conference on Software Engineering. 523ś534.

[16] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory
Study of the Pull-based Software Development Model. In Proceedings of the 36th
International Conference on Software Engineering. 345ś355.

[17] Jin L. C. Guo, Jinghui Cheng, and Jane Cleland-Huang. 2017. Semantically
Enhanced Software Traceability Using Deep Learning Techniques. In Proceedings
of the 39th International Conference on Software Engineering. 3ś14.

[18] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, and Arie van
Deursen. 2013. Communication in Open Source Software Development Mailing
Lists. In Proceedings of the 10th International Conference on Mining Software
Repositories. 277ś286.

[19] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro Yoshida, A. E. Camargo Cruz,
Kenji Fujiwara, and Hajimu Iida. 2013. Who Does What During a Code Review?
Datasets of OSS Peer Review Repositories. In Proceedings of the 10th International
Conference on Mining Software Repositories. 49ś52.

[20] Hideaki Hata, Christoph Treude, Raula G. Kula, and Takashi Ishio. 2019. 9.6
Million Links in Source Code Comments: Purpose, Evolution, and Decay. In
Proceedings of the 41st International Conference on Software Engineering. 1211ś
1221.

[21] Vincent J. Hellendoorn, Premkumar T. Devanbu, and Alberto Bacchelli. 2015.
Will They Like This? Evaluating Code Contributions with Language Models. In
Proceedings of the 12th International Conference on Mining Software Repositories.
157ś167.

[22] Gaeul Jeong, Sunghun Kim, Thomas Zimmermann, and Kwangkeun Yi. 2009.
Improving Code Review by Predicting Reviewers and Acceptance of Patches. Tech-
nical Report. Reserach On Software Analysis for Error-free Computing. 215ś226
pages.

[23] Yujuan Jiang, Bram Adams, and Daniel M. German. 2013. Will My Patch Make
It? And How Fast?: Case Study on the Linux Kernel. In Proceedings of the 10th

International Conference on Mining Software Repositories. 101ś110.
[24] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. 2014. Why do Auto-

mated Builds Break? An Empirical Study. In Proceedings of the 30th International
Conference on Software Maintenance and Evolution. 41ś50.

[25] Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey. 2016. Code Review
Quality: HowDevelopers See It. In Proceedings of the 38th International Conference
on Software Engineering. 1028ś1038.

[26] Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Al-
berto Bacchelli. 2018. Does Reviewer Recommendation Help Developers? IEEE
Transactions on Software Engineering.

[27] Lisha Li, Zhilei Ren, Xiaochen Li, Weiqin Zou, and He Jiang. 2018. How are Issue
Units Linked? Empirical Study on the Linking Behavior in GitHub. In Proceedings
of the 25th Asia-Pacific Software Engineering Conference. 386ś395.

[28] Zhixing Li, Yue Yu, Gang Yin, Tao Wang, Qiang Fan, and Huaimin Wang. 2017.
Automatic Classification of Review Comments in Pull-based Development Model.
In Proceedings of the 29th International Conference on Software Engineering and
Knowledge Engineering.

[29] Wanwangying Ma, Lin Chen, Xiangyu Zhang, Yuming Zhou, and Baowen Xu.
2017. How Do Developers Fix Cross-Project Correlated Bugs? A Case Study on
the GitHub Scientific Python Ecosystem. In Proceedings of the 39th International
Conference on Software Engineering. 381ś392.

[30] Peter Morville and Louis Rosenfeld. 2006. Information Architecture for the World
Wide Web: Designing Large-Scale Web Sites. O’Reilly Media.

[31] Mohammad M. Rahman, Chanchal K. Roy, and Jason A. Collins. 2016. CORRECT:
Code Reviewer Recommendation in GitHub Based on Cross-Project and Technol-
ogy Experience. In Proceedings of the 38th International Conference on Software
Engineering. 222ś231.

[32] Mohammad Masudur Rahman, Chanchal K. Roy, and Raula G. Kula. 2017. Im-
pact of Continuous Integration on Code Reviews. In Proceedings of the 14th
International Conference on Mining Software Repositories. 499ś502.

[33] Mohammad Masudur Rahman, Chanchal K. Roy, and Raula G. Kula. 2017. Predict-
ing Usefulness of Code Review Comments Using Textual Features and Developer
Experience. In Proceedings of the 14th International Conference on Mining Software
Repositories. 215ś226.

[34] Michael Rath, Jacob Rendall, Jin L. C. Guo, Jane Cleland-Huang, and PatrickMäder.
2018. Traceability in the Wild: Automatically Augmenting Incomplete Trace
Links. In Proceedings of the 40th International Conference on Software Engineering.
834ś845.

[35] Peter C. Rigby, Daniel M. German, and Margaret-Anne Storey. 2008. Open source
software peer review practices: a case study of the apache server. In Proceedings
of the 30th International Conference on Software Engineering. 541ś550.

[36] Peter C. Rigby and Margaret-Anne Storey. 2011. Understanding Broadcast Based
Peer Review on Open Source Software Projects. In Proceedings of the 33rd Inter-
national Conference on Software Engineering. 541ś550.

[37] Todd Sedano, Paul Ralph, and Cécile Péraire. 2017. Software Development Waste.
In Proceedings of the 39th International Conference on Software Engineering. 130ś
140.

[38] Junji Shimagaki, Yasutaka Kamei, Shane McIntosh, David Pursehouse, and Naoy-
asu Ubayashi. 2016. Why are Commits being Reverted? A Comparative Study
of Industrial and Open Source Projects. In Proceedings of the 32nd International
Conference on Software Maintenance and Evolution. 301ś311.

[39] Mini Shridhar, Bram Adams, and Foutse Khomh. 2014. A Qualitative Analysis of
Software Build System Changes and Build Ownership Styles. In Proceedings of the
8th International Symposium on Empirical Software Engineering and Measurement.
29:1ś29:10.

[40] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. 2018. The
Impact of Automated Parameter Optimization on Defect Prediction Models. IEEE
Transactions on Software Engineering, 1ś1.

[41] Yida Tao, Donggyun Han, and Sunghun Kim. 2014. Writing Acceptable Patches:
An Empirical Study of Open Source Project Patches. In Proceedings of the 30th
International Conference on Software Maintenance and Evolution. 271ś280.

[42] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and KenichiMatsumoto. 2015. Who Should Review
My Code? A File Location-Based Code-Reviewer Recommendation Approach
for Modern Code Review. In Proceedings of the 22nd International Conference on
Software Analysis, Evolution, and Reengineering. 141ś150.

[43] Peter Weißgerber, Daniel Neu, and Stephan Diehl. 2008. Small patches get in!. In
Proceedings of the 5th International Conference on Mining Software Repositories.
67ś76.

[44] Xin Xia, David Lo, XinyuWang, and Xiaohu Yang. 2015. Who Should Review This
Change? Putting Text and File Location Analyses Together for More Accurate
Recommendations.. In Proceedings of the 31st International Conference on Software
Maintenance and Evolution. 261ś270.

[45] Xin Yang, Raula Gaikovina Kula, Norihiro Yoshida, and Hajimu Iida. 2016. Mining
the Modern Code Review Repositories: A Dataset of People, Process and Product.
In Proceedings of the 13th International Conference on Mining Software Repositories.
460ś463.

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto

[46] Fiorella Zampetti, Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimil-
iano Di Penta, andMichele Lanza. 2017. HowDevelopers Document Pull Requests
with External References. In Proceedings of the 25th International Conference on
Program Comprehension. 23ś33.

[47] Farida El Zanaty, Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi
Matsumoto. 2018. An Empirical Study of Design Discussions in Code Review. In
Proceedings of the 12th International Symposium on Empirical Software Engineering

and Measurement. 11:1ś11:10.
[48] Motahareh Zanjani, Huzefa Kagdi, and Christian Bird. 2015. Automatically

Recommending Peer Reviewers in Modern Code Review. IEEE Transactions on
Software Engineering 42, 6, 530ś543.

[49] Shurui Zhou, Ştefan Stănciulescu, Olaf Leßenich, Yingfei Xiong, Andrzej
Wa̧sowski, and Christian Kästner. 2018. Identifying Features in Forks. In Proceed-
ings of the 40th International Conference on Software Engineering. 105ś116.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Reviewer Recommendation
	2.2 Code Review Outcome

	3 Studied Communities
	4 Review Graph Extraction (RQ1)
	4.1 Link Recovery Approach
	4.2 Results

	5 Qualitative Analysis of Review Links (RQ2)
	5.1 Approach
	5.2 Results

	6 Automated Link Classification (RQ3)
	6.1 Classification Approach
	6.2 Results

	7 Linkage Impact Analysis (RQ4)
	7.1 Reviewer Recommendation
	7.2 Review Outcome

	8 Practical Implications
	9 Threats To Validity
	10 Conclusion
	Acknowledgments
	References

