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Continuous Integration (CI) is a common practice adopted by modern software organizations. It plays an
especially important role for large corporations like Ubisoft, where thousands of build jobs are submitted daily.
Indeed, the cadence of development progress is constrained by the pace at which CI services process build
jobs. To provide faster CI feedback, recent work explores how build outcomes can be anticipated. Although
early results show plenty of promise, the distinct characteristics of Project X—a AAA video game project
at Ubisoft—present new challenges for build outcome prediction. In the Project X setting, changes that do
not modify source code also incur build failures. We also observe that the code changes that have an impact
that crosses the source-data boundary are more prone to build failures than code changes that do not impact
data files. Since such changes are not fully characterized by the existing set of features for build outcome
prediction, state-of-the-art models tend to underperform.

To incorporate the data context, we propose RavenBuild—a novel approach to build outcome prediction
that leverages context-, relevance-, and dependency-aware features. In the Project X context, we observe
that RavenBuild improves the F1-score of the failing class by 50%, the recall of the failing class by 105%,
and the AUC by 11% with respect to the state-of-the-art BuildFast approach. To ease adoption in settings
with heterogeneous project sets, we also provide a simplified alternative RavenBuild-CR, which excludes
dependency-aware features. We observe across-the-board improvements when RavenBuild-CR is applied to
22 open-source projects and Project X. On the other hand, we find that a naïve Parrot approach, which simply
echoes the previous build outcome as its prediction, is surprisingly competitive with BuildFast and RavenBuild.
Though Parrot fails to predict when the build outcome differs from their immediate predecessor, Parrot serves
well as a tendency indicator of the sequences in build outcome datasets. Thus, we recommend that future
studies also compare to the Parrot approach as a baseline when evaluating build outcome prediction models.
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1 INTRODUCTION
Continuous Integration (CI) [6] enables rapid feedback by invoking build and test jobs for the
change sets that development teams produce. For large organizations, adopting CI can accelerate
development [38], but it is not without costs. The execution of a slow CI job can delay time-to-
feedback [11], forcing developers to perform a mentally taxing context switch [41] to another task
or remain effectively idle. Moreover, CI execution consumes a large quantity of computational
resources [16, 17], which can quickly accrue annual costs on the order of millions of dollars [18].
Ubisoft heavily invests in the execution of builds for its games. For example, for Project X (the

latest installment in a ten-year video game franchise), thousands of build jobs are submitted daily,
consuming an average of 49 build hours on the main branch. The build duration for Project X
ranges between 10 to 30 minutes, delaying developers from receiving immediate feedback and
incurring expensive computational costs. Solutions that leverage build outcome prediction [14]
has been proposed to address these limitations. Those solutions may reduce CI feedback time by
reporting predicted outcomes to developers before the build has been performed [1, 3, 15, 22, 32,
35, 36]. Solutions may also save computational resources by skipping CI builds that are deemed
unnecessary [1, 2, 21–24]. Since both contributors to open-source communities [3] and developers
at Ubisoft have expressed concerns about the stability of CI after adopting a skipping strategy, our
goal in this paper is to reduce CI feedback time.

Although early results show plenty of promise, the distinct characteristics of Project X present
new challenges for build outcome prediction. Prior work on build outcome prediction has largely
focused on open-source projects that are code-intensive. As such, many features adopted by these
studies are code-specific, e.g., the number of lines changed in source code. In the Project X setting,
data artifacts and changes therein are more prevalent than source code and code changes. These
data artifacts play a crucial role in the user experience when playing the game. The game engine
compiles the data artifacts with source code in an order-sensitive manner that respects the specified
dependencies. Therefore, if data artifacts are corrupted, or dependencies are not respected, data
changes will incur build failures.

To assess the code and data dependencies, we construct amultidisciplinary dependency graph [37]
that connects code, data, and computational nodes that enable interactions between them (i.e.,
boundary nodes). Our analysis of the multidisciplinary dependency graph of Project X shows that
code changes that have an impact that crosses the code-data boundary are more prone to build
failures than code changes that do not impact data files. These risky cross-boundary changes also
impact a large number of nodes that depend on them within the graph. The method by which we
analyze the multidisciplinary dependency graph forges a new direction for extracting features for
build outcome prediction. We also believe that this sort of change impact analysis will generalize
to other (non-game) settings.
To incorporate dependency data, we propose RavenBuild—a novel approach to build outcome

prediction that considers three families of file type-agnostic features when making predictions: (1)
context-aware features that characterize the intention and location of the change being submitted;
(2) relevance-aware features compare the current build and its immediate predecessor to provide
indicators that suggest when the model should consider or ignore metadata about the previous
build; and (3) dependency-aware features that assess the impact of the change on other files in the
dependency graph. We apply the state-of-the-art BuildFast model [3] and our proposed RavenBuild
enhancements to Project X, and observe that RavenBuild improves BuildFast by 50% in the F1-score
of the failing class, 105% in the recall of the failing class, and 11% in AUC.
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While our results indicate that dependency-aware features are valuable for build outcome
prediction and can generalize to non-game settings, extracting them requires extensive project-
specific knowledge. Therefore, to ease adoption in settings with heterogeneous project sets, we
also provide a simplified alternative, RavenBuild-CR, which only relies on context- and relevance-
aware features. We apply RavenBuild-CR to 22 open-source projects and Project X, and observe
across-the-board improvements as well.

Surprisingly, we find that although both BuildFast and RavenBuild have promising performance,
they cannot consistently outperform a naïve Parrot approach, which simply echoes the previous
build outcome as its predictions. In a project-level comparison, even though Parrot does not
outperform BuildFast and RavenBuild across all of the evaluation metrics, Parrot outperforms
BuildFast and RavenBuild in, respectively, 6 and 4 of the 23 studied projects with respect to 3 of
the 4 evaluation metrics. While Parrot outperforms the state of the art, it fails to capture the cases
where build outcomes flip from passing to failing or failing to passing. These are the cases that build
outcome prediction models provide the most value for developers. Nevertheless, the surprising
performance of Parrot illustrates natural tendencies in build outcome prediction datasets. Since
build outcomes tend to occur in sequences, we recommend that future studies compare with the
Parrot approach as a baseline when evaluating build outcome prediction models.

2 RELATEDWORK
In this section, we situate our work with respect to the literature on the benefits and costs of CI
(Section 2.1), the sets of features that are typically used for build outcome prediction (Section 2.2),
and work that leverages dependency analytics to improve developer experience (Section 2.3).

2.1 Benefit and Cost of CI
CI is widely adopted in modern software organizations [19] to automate integration and release
routines [26, 38]. Prior work reports that developers face trade-offs [17] when adopting CI. As
the software evolves, the cost of maintaining [28] and executing [19] build tools tend to grow.
Therefore, researchers have invested in reducing the time-to-feedback and resource consumption.

To accelerate CI feedback, build outcome prediction has been proposed [15, 35, 36]. Hassan
and Zhang [14] use decision trees to predict the outcome of certification testing. To conserve
computational resources, Jin and Servant [2, 21, 22, 24] propose to skip passing builds using
machine learning classifiers. A less aggressive approach is to select and only (re-)execute the tests
that failed in prior builds [7, 16, 29, 34] and/or skip the tests that are unaffected (i.e., likely to
pass) [8]. Gallaba et al. [9] propose Kotinos—a CI service that skips unaffected build steps in a
technology-agnostic fashion. Jin and Servant also propose HybridCISave [23], which skips entire
builds, as well as tests within builds, that are anticipated to pass.

The context-, relevance-, and dependency-aware features that we propose in this paper comple-
ment and enhance build outcome prediction. In addition, while prior work has focused on the code
and test aspects of change sets, to the best of our knowledge, this paper is the first to expand build
outcome prediction to accommodate changes to data files.

2.2 Build Prediction Features
Features that are extracted for build outcome prediction can be classified into those that characterize:
(1) the current build, (2) the previous build, (3) historical trends, and (4) the relevance between
the previous and current build. Hassan and Wang [15] use features that characterize current and
previous builds. Chen et al. [3] use current, previous, and historical features to provide faster time-
to-feedback. To execute as many failing builds as early as possible, Jin and Servant [22] propose
SmartBuildSkip, which predicts the first builds in a sequence of build failures and the consequent
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build failures separately with current build data. To the best of our knowledge, only Ni and Li [32]
use the relevance features and refer to them as “connection to last push”. Our proposed RavenBuild
features differ in that RavenBuild characterizes the change-level relevance between the current
build and its immediate predecessor, rather than the status of source or configuration files in the
previous build. While the two sets of features have names that sound similar, the relevance features
of RavenBuild are fundamentally different from Ni and Li’s “connection to last push”.

In addition to features for build outcome prediction, Abdalkareem et al. [1, 2] use CI-skip rules to
determine which builds can be entirely skipped. PreciseBuildSkip [24] also proposes CI-run rules
that supersede skip rules for safety improvements. PreciseBuildSkip is not a suitable baseline for
video-game repositories like Project X. Indeed, 61% of the build failures of Project X are due to
changes made solely to data files, which are not well-handled by the ruleset of PreciseBuildSkip. For
example, according to the rule “NoSrcFileChange”, all data changes should be skipped. Developing
such rules for the data files would be impractical because there are numerous types of data files,
each requiring deep subject matter expertise to formulate effective and safe CI-skip and CI-run
rules.

2.3 Dependency Graph Analysis
Dependency graph information is valuable for research on CI because it contains rich data about how
artifacts are depending on each other, which can be used to reason about build behaviour. In our prior
work [37], we analyzed video game dependency graphs, demonstrated the prevalence of changes
that have cross-boundary impact, as well as their tendency to incur build breakages and induce
future fixes. In terms of CI acceleration, Kotinos [9] infers file dependencies and identifies unaffected
files and artifacts, avoiding unnecessary build activity for subsequent builds. Zimmermann and
Nagappan [40] use graph complexity metrics that were extracted from dependency graphs to
predict subsystem failures.

Dependency analysis has also been leveraged for test case selection. Gligoric et al. [12] developed
Ekstazi, which analyzes dependencies to select influenced tests for execution. The file-level depen-
dencies captured in the dependency graph allow for effective regression test selection. Gligoric
et al. also conducted experiments to compare dependency granularities at the method, class, and
file levels, concluding that using the file-level dependencies (i.e., the same granularity that we
use in our multidisciplinary dependency graph) is the safest because it also captures external file
dependencies. In contrast, Gligoric et al. discussed the limitations of FaultTracer [39]—a test case
selection approach that uses an extended call graph to identify suspicious changes and the tests
that they influence.

3 CHARACTERISTICS AND CHALLENGES OF THE VIDEO GAME SETTING
In this section, we describe the Project X setting (Section 3.1) and the challenges that it presents for
build outcome prediction (Section 3.2).

3.1 Characteristics of Project X
Project X is the most recent installment of a popular video game in a franchise that was first released
more than ten years ago by Ubisoft. Project X contains millions of production files, including source
code, graphical assets, and audio samples. Throughout its development history, more than 10
million build steps have been logged, providing a rich source of build data.
Project X is rapidly evolving. Thus, to mitigate concept drift [27], we select a sample of 4,640

consecutive code and data builds from a recent 80-day period. During the period, an average of
58 build jobs were submitted daily, each taking an average of 21 minutes to execute. Each build
in Project X is executed and logged in a stepwise fashion. On average, each build comprises 27

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 45. Publication date: July 2024.



RavenBuild: Context, Relevance, and Dependency Aware Build Outcome Prediction 45:5

Code Change #0

Code Change #2

Code Change #5

Code
Changes

...

Data Change #1

Data Change #3

Data Change #4

Data
Changes

...

General Change Data

Build System

Build #5

1 2 2 ... N

Pass Fail Pass ... Pass

Step

Result

Pass

Data
Graph

Code
Graph

Dependency
Parser

Import ...
Import ...

Dependency Graph

Boundary
Node

= Code Change #5 + Data Change #4

Fig. 1. Characteristics of Project X build system.

steps, with each step taking an average of 46 seconds to execute. In total, the code and data build
jobs on the main branch of Project X consume 21 build hours daily. This excludes builds that are
performed on other branches in Project X and the other games being developed by Ubisoft. With
this in mind, it becomes clear why opportunities to reduce the time-to-feedback of the project and
organizational build workload are being actively explored by Ubisoft.

General Change Data: Every change made to Project X is logged in Perforce and is indexed by a
change number. The database includes typical change metadata, such as the author, timestamp, and
updated file lists. Perforce provides the necessary data to compute process features for build outcome
prediction, such as the number of lines of code added/edited/deleted, file revisions, committer
identity, and file types.

Both code and data changes are stored in Perforce. At build time, a change to one discipline will
be complemented by the most recent successfully built change from the other discipline. Figure 1
shows an example of the build process, where code change #5 triggers build #5 that is built using
data change #4, which was included in passing build #4.
Build System: The build process of video games is particularly complex due to the size of the

game project and the variety of file types that each must be transformed and assembled in a precise
(and often unique) manner. Depending on the complexity of the change set, and the corresponding
build, it may invoke hundreds of steps. To extract the build outcome, we first group the build steps
by their change numbers and step names, as shown in Figure 1.

Builds can fail for many reasons. For example, network failures or bandwidth limits can introduce
non-deterministic build failures even if the code and artifacts are not to blame. If a step fails, the
Project X build system may automatically re-invoke it. Thus, the existence of a failing step does
not necessarily indicate that the build outcome is a failure. Olewicki et al. [33] refer to these
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non-deterministic build outcomes as “brown builds”. To mitigate the noisy influence of brown
builds, we label builds with failure outcomes only when the latest invocation of a build step that
is associated with the build is failing. For example, Figure 1 shows that Build #5 has a passing
outcome even though step 2 had an initially failing invocation (second column) because the step
passed when it was retried (third column).
Multidisciplinary Dependency Graph: Video games are composed of a broad mix of digital

artifacts in addition to source code [30], such as images, textures, and other so-called assets.
These other digital artifacts are rapidly changing in tandem with the source code. Since their
representations are often in binary form, traditional software engineering features like code churn
cannot always be collected for change sets in this context. To better describe the data changes, our
prior work [37] extracted the multidisciplinary dependency graph of Project X, which describes
how all code and data artifacts are connected.

Similar to dependencies among code modules, other digital artifacts in video games also depend
on each other in compositional and hierarchical ways. For example, a city in a game is composed
of buildings, each of which being composed of building frames, doors, and windows, which may
inherit properties like the texture weight and hardness of their composing materials. Therefore,
dependency graphs can be constructed from data artifacts as well. In this way, dependency graphs
of video games are multidisciplinary, i.e., they combine the work products of software engineers
(code), artists (textures, images), game designers (level design artifacts), and many more.

Fig. 2. Example of a file-level multidisciplinary dependency graph, with green nodes representing data
nodes, pink nodes representing code nodes, and orange nodes representing boundary nodes. Extracting a
multidisciplinary dependency graph of this scale requires extensive knowledge of Project X.
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Fig. 3. Example of a video game dependency graph, with the boundary node lie between code and data nodes.

The complete dependency graph of Project X is not directly generated by the game engine (a
critical component used in the development and build process of a video game). To construct a
multidisciplinary dependency graph of Project X, we analyze the binary file that is generated by
the game engine, which contains dependency information of the data artifacts, and the compile
commands of the source codes, which contain the code dependency information. Therefore, each
dependency graph of Project X consists of a code dependency sub-graph and a data dependency
sub-graph. Figure 2 shows an example of the extracted multidisciplinary graph with millions of
nodes and edges. Indeed, our analysis shows that 98.48% of the edges in our multidisciplinary graph
are intra-node edges, i.e., code-to-code or data-to-data edges. Figure 3 shows an example of the
video game dependency graph with a clear boundary between the code and data dependencies. At
the disciplinary boundaries, code and data nodes interact with each other through boundary nodes.
Boundary nodes do not exist as files, but instead are generic and game-specific computational
nodes that are provided by game developers for the artists to integrate their work into the game.
Figure 1 shows an example of how the multidisciplinary dependency graph is constructed.
Although the game engine can produce the data dependency sub-graph and the compilation

commands that contain the code sub-graph, recompiling all of the change sets that were recorded
during the studied period would be impractical, as the number of data artifacts can reach the
scale of millions. Figure 1 shows that our approach starts with an initial dependency graph and
incrementally updates it using lightweight parsers that can extract dependency information from
data artifacts and source files. For further details about the graph, please refer to our prior work [37].

3.2 Challenges of the Build Process in Project X
A close inspection of the Project X setting reveals two characteristics that hinder the application of
build outcome prediction.

Challenge 1—Changes to data files often break the build: In video game development, data
files are essential components that define the game’s content, behavior, and appearance. The name
“data file” is a general name for textures, models, animations, and other such game components.
In Project X, there are more data files than source files (e.g., .cpp and .h) in the repository. As an
example, the latest multidisciplinary dependency graph in our dataset contains 1,104,037 nodes in
total, while code nodes only account for 30,675 of them (2.8%).
In addition to their prevalence, data files in Project X are modified more frequently than code

files. Indeed, of the 277 types of modified files, header files (.h) and source code (.cpp) rank as the
11th and 14th most frequently modified file types, respectively.

If builds are triggered by changes that only modify data files, they are referred to as data builds.
Similar to builds that are triggered by code changes, data builds in video game development can
also fail, since data builds also involve compiling the various data files into a format that the game
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Table 1. Build failure rates and the number of impacted nodes of data and code changes. Data builds also
incur build failures. Cross-boundary changes are more prone to build failures than other code changes.

Total Fail Cross Boundary Total Fail Mean Impact Median Impact

Data 4,010 11% N/A N/A N/A 452 2

Code 630 46% Yes 278 51% 212,104 120,368
No 352 41% 49 0a

a Impacted nodes counts exclude the directly changed nodes.

engine can efficiently use during gameplay as specified by their dependencies. Table 1 shows build
failures for data builds account for 61% of all of the build failures in our dataset.

Data builds and their failures pose a challenge for traditional build outcome prediction approaches
because prior build outcome features are mainly designed to represent code changes (e.g., using
the number of changed source code lines) that do not apply to data files. It is also impractical to
design such features for data files because the definition would vary for each of the hundreds of
types of data files that we observe in the Project X setting.
Challenge 2—Code changes with a cross-boundary impact break the build more often

than code changes that have a code-only impact: In video game development, the interaction
between code and data files defines the game functions, manages the game assets, and determines
the player experience of the game. Cross-boundary changes occur when a code change updates a
code file upon which data files depend. Figure 3 shows an example of a cross-boundary change
using a sub-graph from a multidisciplinary dependency graph. The impacted nodes refer to the
nodes that are dependent upon the changed node.

Table 1 shows that cross-boundary changes impact a large number of nodes in the dependency
graph with a mean of 212,104 and a median of 120,368 nodes impacted, whereas data changes and
changes that do not cross boundaries only impact a mean of 452 and 49 nodes, and a median of 2
and 0 nodes, respectively. The statistical significance of the discrepancies is confirmed by Mann-
Whitney U tests (two-tailed, unpaired, 𝛼 = 0.05), yielding Holm-Bonferroni corrected p-values of
2.2 × 10−162 and 1.5 × 10−107, respectively.

In addition to having a larger scale of impact, Table 1 also shows that 278 cross-boundary changes
account for 44% of the code changes, with 51% of cross-boundary changes and 41% of the changes
that do not cross boundaries being implicated in build failures. The statistical significance of this
discrepancy is confirmed by Boschloo’s Exact test, yielding a p-value of 0.008. We conclude that
cross-boundary changes are significantly more likely to break the build pipeline than those changes
that do not cross boundaries.

While cross-boundary changes do not (strictly speaking) present a challenge for the adoption of
build outcome prediction in the Project X setting, they do present an opportunity that previous
approaches have not yet exploited. Since changes that cross boundaries are significantly more
likely to fail than changes that do not cross boundaries, we believe that leveraging this association
will improve build outcome prediction in the Project X setting, and more broadly across Company Y.

In the Project X setting, 61% of build failures are incurred by data changes. Cross-boundary
changes tend to impact a large number of nodes and are more prone to build failures than
other code changes.
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4 RAVENBUILD ON PROJECT X
In this section, we present a set of new features designed for build outcome prediction on Project X
(Section 4.1), and an evaluation of the performance of the state-of-the-art BuildFast [3] model on
Project X before and after adopting our features (Section 4.2).

4.1 Approach
We implement BuildFast [3]—the state-of-the-art build outcome prediction model that aims to
provide early feedback—as our baseline to which RavenBuild can be compared. Indeed, other build
outcome prediction models that aims to optimize CI cost-saving [22] are considered out of scope.
More recent work has used deep learning to perform build outcome prediction [35, 36]; however,
BuildFast and other state-of-the-art baselines were not compared. Moreover, the performance was
not reported on the passing and failing classes separately. Prior work has shown that correctly
predicting the failing builds is of greater practical concern than that of passing builds [22, 32].
Table 2 shows the features for build outcome prediction that have been adopted by BuildFast.

In addition to adopting BuildFast features, we engineer features that are file type-agnostic to
better accommodate the context of video game development into build outcome prediction. Table 3
provides an overview of RavenBuild features, which characterize three aspects of a change set.

Context-Aware Features: Change sets are typically submitted with the intention of integrating
new features or bug fixes. This context transitively applies to the builds that are invoked to test a
change set. We infer the context of a build from the metadata of its change set, such as commit
messages, file types, and prior build activity. We classify change sets according to five intention
categories using the keyword list that was originally proposed by Hindle et al. [20] and updated by
Nayrolles and Hamou-Lhadj [31]. In addition to the intention of changes, we classify the studied
changes based on the types of files being modified. Change sets can be code-only, data-only, or a
mix of both. Finally, we implement a feature to detect if any of the commits in the change set being
built have been built before. For example, in the Project X setting, builds can go through a preflight
build before it is merged. In open-source settings, it is also possible for a commit to be built during
the review of a pull request, and that same commit will be built again when the PR is merged.

Relevance-Aware Features: A set of builds may relate to a single task. For example, subsequent
builds may be attempts to fix a failure that was introduced by an earlier build, or a large task may
be decomposed into a series of incremental change sets that are built independently. Therefore, the
features that exploit the status or context of a previous build should be constrained to the context
when the prior and current builds are part of the same task. Thus, we propose features to suggest
to the model when features that characterize previous builds are relevant for the current prediction,
and when they should be ignored.
We compare the current build to its immediate predecessor to extract the relevance-aware

features that are shown in Table 3. 𝑅1, 𝑅2, and 𝑅4 are binary features, while 𝑅3 is computed as
len(set(current actions) − set(previous action)). Path relevance (𝑅5) measures the similarity between
the modified directories of the previous and current builds. A pair of builds that modify files in the
same location is more likely to build on interdependent targets than a pair of builds changing files
in completely different locations. The path length is measured by counting the sub-directories in
that common path. We then compute the relevance score as the length of the longest common path
between the file paths of the previous (LCMprev) and current builds (LCMcur) divided by the sum of
len(LCMprev) and len(LCMprev).

Path Relevance Score =
len(LCMprev,cur)

len(LCMprev) + len(LCMcur)
(1)

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 45. Publication date: July 2024.



45:10 Gengyi Sun, Sarra Habchi, and Shane McIntosh

Table 2. Build outcome features adopted by BuildFast.

BuildFast Features

Current
Build

𝐶1 src_churn 𝐶2 test_churn 𝐶3 src_ast_diff
𝐶4 test_ast_diff 𝐶5 line_added 𝐶6 line_deleted
𝐶7 files_added 𝐶8 files_deleted 𝐶9 files_modified
𝐶10 src_files 𝐶11 test_files 𝐶12 config_files
𝐶13 doc_files 𝐶14 class_changed 𝐶15 met_sig_modified
𝐶16 met_body_modified 𝐶17 met_changed 𝐶18 field_changed
𝐶19 import_changed 𝐶20 class_modified 𝐶21 class_added
𝐶22 class_deleted 𝐶23 met_added 𝐶24 met_deleted
𝐶25 field_modified 𝐶26 field_added 𝐶27 field_deleted
𝐶28 import_added 𝐶29 import_deleted 𝐶30 commits
𝐶31 fix_commits 𝐶32 merger_commits 𝐶33 committers
𝐶34 by_core_member 𝐶35 is_master 𝐶36 time_interval
𝐶37 day_of_week 𝐶38 time_of_day

Previous
Build

𝑃1 pr_state 𝑃2 pr_compile_error 𝑃3 pr_test_exception
𝑃4 pr_tests_ok 𝑃5 pr_tests_fail 𝑃6 pr_duration
𝑃7 pr_src_churn 𝑃8 pr_test_churn

Historical
Builds

𝐻1 fail_ratio_pr 𝐻2 fail_ratio_pr_inc 𝐻3 fail_ratio_re
𝐻4 fail_ratio_com_pr 𝐻5 fail_ratio_com_re 𝐻6 last_fail_gap
𝐻7 consec_fail_max 𝐻8 consec_fail_avg 𝐻9 consec_fail_sum
𝐻10 commits_on_files 𝐻11 file_fail_prob_max 𝐻12 file_fail_prob_avg
𝐻13 file_fail_prob_sum 𝐻14 pr_src_files 𝐻15 pr_src_files_in
𝐻16 pr_test_files 𝐻17 pr_test_files_in 𝐻18 pr_config_files
𝐻19 pr_config_files_in 𝐻20 pr_doc_files 𝐻21 pr_doc_files_in
𝐻22 log_src_files 𝐻23 log_src_files_in 𝐻24 log_test_files
𝐻25 log_test_files_in 𝐻26 team_size

We compute the sum instead of the max because the longest common path of the build also pro-
vides a perspective on the dispersion across the changed files. A shorter LCM suggests that changed
files are spread across multiple sub-directories, while a longer LCM suggests that the changed files
are located in the same sub-directory. We strive to detect whether a low path relevance score is due
to the broad dispersion of changed files, or due to changed files being located in completely different
sub-directories, e.g., consider two cases where in the first case, len(LCMprev) = 3, len(LCMcur) = 4,
and len(LCMprev,cur) = 1, whereas in the second case, len(LCMprev) = 3, len(LCMcur) = 1, and
len(LCMprev,cur) = 1. By using the sum in Equation 1, we can differentiate the two cases, whereas if
we used the max, the path relevance score for both cases would be the same.

Dependency-Aware Features: Modifying files upon which a large number of files depend is
riskier than modifying a file that has no dependents. For example, a change to a popular library
function will propagate that change to its many use points, and is inherently more risky than
changing a short script that calls a function from that library. Therefore, we propose a set of features
that we extract from build dependency graphs as shown in Table 3. Our multidisciplinary approach
to dependency graph construction (see Section 3) enables us to compute dependency-aware features
on all types of files. We detect if the impact of a change set crosses the code-data boundary (i.e.,
𝐷1), the total number of nodes impacted (i.e., 𝐷2), and the number of data/code/boundary nodes
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Table 3. RavenBuild Features

ID Name Description

Context

𝑇1 Is Corrective If the commit message has ‘fix’, ‘bug’, ‘wrong’, ‘fail’, and ‘problem’
𝑇2 Is Additive If the commit message has ‘new’, ‘add’, ‘requirement’, ‘initial’, and ‘create’
𝑇3 Is Non-Functional If the commit message has ‘doc’ and ‘merge’
𝑇4 Is Perfective If the commit message has ‘clean’ and ‘better’
𝑇5 Is Preventive If the commit message has ‘test’, ‘junit’, ‘coverage’, and ‘assert’
𝑇6 Built-Before If any of the commits in the current build have been built before (preflight)
𝑇7 Change Type The modified files are source files only, data files only, or a mix of both.

Relevance

𝑅1 Committer Changed The pair of builds are submitted by different developers.
𝑅2 Type Changed The pair of builds have different change types (i.e., 𝑇7).
𝑅3 Action Changed The pair of builds have different actions.
𝑅4 Is Same Intention The pair of builds are of the same intention (i.e., 𝑇1 −𝑇5)
𝑅5 Path Relevance The similarity between the modified directories of the pair of builds

Dependency

𝐷1 Is Cross Boundary Is a cross-boundary change
𝐷2 #Impacted Number of nodes impacted by the changed nodes
𝐷3 #Impacted Data Number of data nodes impacted by the changed nodes
𝐷4 #Impacted Code Number of code nodes impacted by the changed nodes
𝐷5 #Impacted Boundary Number of boundary nodes impacted by the changed nodes

impacted (i.e.,𝐷3–𝐷5). In the context of Project X, since data files also have dependencies, examining
the set of impacted nodes provides an additional perspective on the riskiness of the change sets,
which is not captured by any of the prior features.

Model Description: To study the contribution of the new features, we first adopt the original
BuildFast model architecture and its hyper-parameters. BuildFast [3] uses an adaptive prediction
mechanism that consists of two XGBoost [4] models: (1) one is trained on the previous builds
that passed and current builds that failed, and (2) the other is trained on the previous builds that
failed and current builds that also failed. During the training phase, the previous-passing model
uses Information Gain [25] to select the top-25 features, whereas the previous-failing model uses
Chi-Square Testing [13] to select the top-30 features. At inference time, BuildFast predicts build
outcomes based on their immediate predecessor’s outcome, i.e., if the previous build failed, BuildFast
predicts the current build outcome using the previous-failing model, whereas if the previous build
passed, BuildFast predicts the current build outcome using the previous-passing model.
Model Evaluation: To respect the chronological order of builds, the most recent one-third of

our dataset is held out as the testing set, with the prior two-thirds being used for training. Table 4
shows the performance of BuildFast and RavenBuild, and the difference between the two in F1-fail,
F1-pass, recall-fail, recall-pass, precision-fail, precision-pass, and AUC when applied to Project X.
We also compute the benefit, cost, and gain metrics that were proposed by Chen et al. [3]. Benefit is
the number of build hours that would have been saved by skipping the correctly predicted passing
builds. Cost is the number of unnecessary build hours that would have been spent due to incorrectly
predicted failing builds. Gain is the difference between benefit and cost, i.e., Benefit − Cost.

4.2 Results
Observation 1: In Project X, RavenBuild matches or outperforms BuildFast in terms of
F1-score, recall, precision, and AUC, but underperforms in terms of precision-fail and recall-
pass. Table 4 shows that after adopting the context-, relevance-, and dependency-aware features,
RavenBuild outperforms BuildFast in most of the failing classes, by 21.2 percentage points of F1-fail
and 31.1 percentage points of recall-fail. Although RavenBuild also incurs a 1.9 percentage point
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Table 4. Performances of BuildFast, RavenBuild, and the improvements on Project X

BuildFast RavenBuild Improvement

F1-fail .426 .638 +.212
F1-pass .963 .967 +.004
Recall-fail .296 .607 +.311
Recall-pass .991 .972 -.019
Precision-fail .755 .672 -.083
Precision-pass .936 .963 +.027
AUC .791 .877 +.086

Benefit 301.3 280.4 -20.9
Cost 83.5 40.3 +43.2
Gain 217.8 240.1 +22.3

Table 5. Open-Source projects and Project X Statistics

ID Project Durationa Pass Fail ID Project Name Durationa Pass Fail

1 atlasdb 37 2,135 1,021 12 interlok 7 120 29
2 auth0-java 2.3 328 29 13 java-jwt 3 274 55
3 cassandra 117 313 180 14 micrometer 18 322 76
4 cbioportal 29 58 217 15 opennms b 1 244 37
5 client_java 4 87 18 16 react-native-share 12 24 41
6 conjure-java-runtime 7 354 83 17 rskj 18 844 198
7 docker-compose-rule 4 105 131 18 spring-cloud-aws 5 419 265
8 fresco 11 79 559 19 spring-cloud-security 2 113 366
9 gradle-baseline 8 378 111 20 Strata 16 136 27
10 gradle-git-version 6 96 37 21 styx 9 109 81
11 grakn 20 106 13 22 testcontainers-java 2 1018 16
X Project X 21 3,898 743

ain minutes. bopennms-provisioning-integration-server.

penalty in recall-pass and 8.3 percentage point penalty in precision-fail, RavenBuild outperforms
BuildFast by 0.4 percentage points in F1-pass, 2.7 percentage points in precision-pass, and 8.6
percentage points in AUC.

Observation 2: Although RavenBuild does not save as much as BuildFast, it makes fewer
mistakes when recommending builds, leading to a better overall gain score. Table 4 shows that
RavenBuild accrues 20.9 fewer build hours of savings when compared to BuildFast. We suspect that
this is because RavenBuild has a slightly lower recall-pass score. On the other hand, RavenBuild
reduces costs by 40.3 build hours by more accurately predicting the failing class. The overall
perspective shows that RavenBuild improves the net gain of build outcome prediction in the Project
X setting by 22.3 build hours.

RavenBuild outperforms the state-of-the-art approach to build outcome prediction in the Project
X setting by a substantial amount.
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5 RAVENBUILD-CR ON OPEN-SOURCE PROJECTS AND PROJECT X
While dependency-aware features are promising a new direction for build outcome prediction,
the dependency graphs from which they are extracted are expensive to construct and require
project-specific knowledge to be reliably produced. Dependency features can be generalized to
open-source projects with few data artifacts. Features 𝐷2–𝐷5 compute the number of files that are
affected by the change set through dependencies. The challenging aspect is the project-specific
knowledge required to define disciplinary boundaries for different types of projects. Software
repositories may contain data artifacts like pre-trained models (e.g., .tflite), front-end design
(e.g., .html), or configuration files (e.g., .xml, .pom, .config) and others may also have more
than one type of programming language. Project-specific knowledge is also required to obtain
dependency graphs for each submitted change. In settings that have many projects, the effort
required to produce the dependency features quickly becomes impractical. Therefore, in this
section, we present an alternative RavenBuild-CR that only uses the context- and relevance-aware
features and excludes dependency-aware features (Section 5.1). Since the need for deep knowledge
of dependency structures has been relaxed, we evaluate RavenBuild-CR model on Project X and on
a sample of active open-source projects (Section 5.2).

Commit #1

Commit #2

Commit #3

Build #1 Pass

Build #5 Fail

GitHub Circle CI

Build #2 Pass

Build #3 Fail

Build #4 Fail

Dataset

Data #1 Pass

Data #2 Fail

Data #3 Fail

Fig. 4. Builds triggered on the same commit ID are merged into one data point.

5.1 Approach
Studied Open-Source Projects: Gallaba et al. [10] provide a large dataset that contains 23,330,690
builds that were performed using Circle CI [5] that span 7,795 projects and 40 programming
languages. To be consistent with BuildFast, we exclude all repositories for which Java is not the
primary language (i.e., GitHub uses the Linguist software1 to determine the primary language).
Then, for each such project, we collect its build data from Circle CI. Since Circle CI does not retain
data about all of the past builds, we filter out the repositories that have fewer than 100 builds
available at the time of our analysis, resulting in a dataset with 45,247 builds from 22 projects.

Circle CI is a versatile platform. As such, the studied projects configure the platform in various
ways to meet their needs. For example, we observe that some projects trigger multiple builds with
different parameter settings on the same change set to, e.g., execute test cases in parallel. Since
many features are extracted at the change set level, we avoid duplicate entries in our dataset by
merging builds that are triggered for the same commit ID as shown in Figure 4. We consider that
the merged entry has a passing build outcome if and only if all of the merged entries have passing
outcomes. The duration of the merged build is calculated by summing up the durations of each of
the merged entries. Finally, to ensure that previous build features can be computed, we exclude
1https://github.com/github-linguist/linguist/
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Table 6. Performances of BuildFast and RavenBuild-CR on Open-Source projects and Project X.

Open-Source Project X

BuildFast RavenBuild-CR Improvement BuildFast RavenBuild-CR Improvement

F1-fail .478 .502 +.024 .426 .555 +.129
F1-pass .756 .771 +.015 .963 .968 +.005

Recall-fail .583 .612 +.029 .296 .430 +.134
Recall-pass .732 .736 +.004 .991 .989 -.002
Precision-fail .457 .489 +.032 .755 .784 +.029
Precision-pass .805 .842 +.037 .936 .948 +.012

AUC .723 .738 +.015 .791 .861 +.070

Benefit 331.8 356.9 +25.1 301.3 300.8 -.5
Cost 207.0 200.2 +6.8 83.5 61.1 +22.4
Gain 124.8 156.7 +31.9 217.8 239.7 +21.9

the first build of each project, since it will not have a predecessor from which the features can be
extracted. Table 5 provides an overview of the 22 studied open-source projects and Project X.

5.2 Results
Observation 3: With only the context-aware and relevance-aware features, RavenBuild-CR
still outperforms BuildFast on Project X.Without the dependency-aware features, Table 6 shows
that RavenBuild-CR still outperforms BuildFast in the Project X setting by 12.9 percentage points in
F1-fail, 13.4 percentage points in recall-fail, 2.9 percentage points in precision-fail, and 7 percentage
points in AUC. RavenBuild-CR also improves slightly on the performance in the passing class as
well, even outperforming RavenBuild itself in terms of precision-pass (cf. Table 4).

In terms of time-to-feedback, RavenBuild-CR leads to 22.4 hours less in Cost, with a negligible
0.5 hours reduction in Benefit, resulting in 21.9 more hours of Gain than BuildFast. Although
RavenBuild-CR improves both precision and recall on Project X, the improvements in the passing
class are relatively small. Since the benefit is calculated by summing up the execution time of the
correctly predicted passing builds, we suspect that the minor decrease in benefit is due to the build
duration of the correctly predicted passing builds of RavenBuild-CR being slightly shorter than the
passing builds that are correctly predicted by BuildFast.

Observation 4: RavenBuild-CR outperforms BuildFast on all metrics in the open-source
setting. Table 6 also shows that RavenBuild-CR outperforms BuildFast in the open-source setting by
2.4 percentage points in F1-fail, 1.5 percentage points in F1-pass, 2.9 percentage points in recall-fail,
0.4 percentage points in recall-pass, 3.2 percentage points in precision-fail, 3.7 percentage points in
precision-pass, and 1.5 percentage points in AUC. In terms of time-to-feedback, RavenBuild-CR
saves a total of 25.1 hours more than BuildFast. As RavenBuild-CR also incurs 6.8 hours less Cost
than BuildFast, the net Gain is improved by 31.9 hours.

Without dependency-aware features, although a negligible reduction in Benefit was ob-
served, RavenBuild-CR still outperforms the state of the art in the Project X setting. Moreover,
RavenBuild-CR is general enough to apply to the open-source setting, where we observe across-
the-board improvements with respect to the state of the art.
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Table 7. The ablated performance of RavenBuild with various families of features disabled.

Open-Source Project X

RavenBuild-C RavenBuild-R RavenBuild-CR RavenBuild-C RavenBuild-R RavenBuild-D RavenBuild

F1-fail .489 .481 .502 .560 .45 .571 .638
F1-pass .775 .774 .771 .968 .962 .968 .967

Recall-fail .598 .583 .612 .430 .333 .459 .607
Recall-pass .741 .743 .736 .990 .986 .986 .972
Precision-fail .467 .462 .489 .806 .692 .756 .672
Precision-pass .839 .839 .842 .948 .939 .95 .963

AUC .744 .728 .738 .818 .823 .797 .877

Benefit 350.8 334.2 356.9 297.1 294.4 289.7 280.4
Cost 186.6 198.3 200.2 58.8 77.3 56.7 40.3
Gain 164.2 136 156.7 238.3 217.1 232.2 240.1

6 ABLATION STUDY
In this section, we conduct an ablation study to understand the contribution that the context-,
relevance-, and dependency-aware features make to RavenBuild.

6.1 Approach
To assess the importance of each family of features, we train and evaluate RavenBuild with various
combinations of features disabled, and observe the model performance. Table 7 shows the result of
our ablation study to measure the contribution of the context-aware features (i.e., RavenBuild-C),
relevance-aware features (i.e., RavenBuild-R), and dependency-aware features (i.e., RavenBuild-D)
to RavenBuild in the open-source projects and Project X.

6.2 Results
Observation 5: RavenBuild-CR outperforms RavenBuild-C and RavenBuild-R in F1-fail,
recall-fail, precision-fail, and precision-pass.With only the context-aware features, RavenBuild-
C is outperformed by RavenBuild-CR in the open-source projects by 1.3 percentage points in F1-fail,
1.4 percentage points in recall-fail, 2.2 percentage points in precision-fail, and 0.3 percentage
points in precision-pass. With only the relevance-aware features, RavenBuild-R is outperformed by
RavenBuild-CR in the open-source projects by 2.1 percentage points in F1-fail, 2.9 percentage points
in recall-fail, 2.7 percentage points in precision-fail, and 0.3 percentage points in precision-pass.
RavenBuild-C or RavenBuild-R only negligibly outperforms RavenBuild-CR by 0.4 percentage
points in F1-pass, 0.7 percentage points in recall-pass, and 0.6 percentage points in AUC.

Observation 6: RavenBuild outperforms RavenBuild-C, RavenBuild-R, and RavenBuild-
D in F1-fail, recall-fail, precision-pass, and AUC. With only the context-aware features,
RavenBuild-C is outperformed by RavenBuild in Project X by 7.8 percentage points in F1-fail,
17.7 percentage points in recall-fail, 0.3 percentage points in precision-pass, and 5.9 percentage
points in AUC. With only the relevance-aware features, RavenBuild-R is outperformed by Raven-
Build in Project X by 18.8 percentage points in F1-fail, 27.4 percentage points in recall-fail, 1.5
percentage points in precision-pass, and 5.4 percentage points in AUC. With only the dependency-
aware features, RavenBuild-R is outperformed by RavenBuild in Project X by 6.7 percentage points
in F1-fail, 14.8 percentage points in recall-fail, 1.3 percentage points in precision-pass, and 8 per-
centage points in AUC. RavenBuild-C, RavenBuild-R, or RavenBuild-D only negligibly outperforms
RavenBuild by 0.1 percentage points in F1-pass and 1.8 percentage points in recall-pass. Although
RavenBuild-C performs the best among all model variations in precision-fail, RavenBuild has the
best overall performance for its superiority in F1-fail, recall-fail, and AUC.
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Table 8. The performance of Parrot, BuildFast, and RavenBuild. Values in boldface fonts indicate the best
performance among the three.

Open-Source Project X

Parrot BuildFast RavenBuild-CR Parrot BuildFast RavenBuild

F1-fail .421 .478 .502 .657 .426 .638
F1-pass .797 .756 .771 .967 .963 .967

Recall-fail .422 .583 .612 .652 .296 .607
Recall-pass .797 .732 .736 .968 .991 .972
Precision-fail .420 .457 .489 .662 .755 .672
Precision-pass .798 .805 .842 .967 .936 .963

AUC .610 .723 .738 .810 .791 .877

Benefit 336.3 331.8 356.9 292.7 301.3 280.4
Cost 158.3 207.0 200.2 39.1 83.5 40.3
Gain 178 124.8 156.7 253.6 217.8 240.1
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Fig. 5. The parrot approach repeats the previous build outcome as its prediction, achieving accuracy, precision,
and recall of .60.

Context-, relevance-, and dependency-aware features all substantially contribute to the perfor-
mance of RavenBuild in the open-source projects and Project X.

7 AN INTROSPECTIVE LOOK AT THE STATE OF BUILD OUTCOME PREDICTION
Although RavenBuild and RavenBuild-CR improve on the state-of-the-art BuildFast model, we find
that a naïve “parrot” approach to build outcome prediction that simply echoes the previous build
as a prediction for the current one can perform as well as these state-of-the-art approaches. In this
section, we describe the parrot approach (Section 7.1) and evaluate the performance of Parrot in
comparison to BuildFast, RavenBuild, and RavenBuild-CR (Section 7.2).

7.1 Approach
Figure 5 provides an example application of Parrot. We use Parrot as a benchmark to which we
compare the performance of BuildFast, and RavenBuild-CR on the studied open-source projects,
and BuildFast and RavenBuild on Project X.
Figure 6 plots the performance of the parrot approach (y-axis) against that of BuildFast and

RavenBuild/RavenBuild-CR (x-axis) in terms of precision-fail, precision-pass, recall-fail, and recall-
pass, respectively. Each open-source project is represented by a point, and Project X is denoted by
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Fig. 6. RavenBuild (Project X), RavenBuild-CR, and BuildFast cannot consistently outperform the parrot
approach.

a diamond-shaped point. To visually compare the performance of BuildFast and RavenBuild with
the Parrot approach, we divide the coordinate space with a diagonal line into unshaded and shaded
regions. Points falling in the unshaded region indicate that the Parrot approach yields better results,
whereas points falling in the shaded region indicate that the other approach is performing better.

To further refine the comparison, we include two lines adjacent to the diagonal line, which
denote a 5% confidence interval. We consider points that fall within the confidence interval to have
a performance within the margin of error, and the difference between the model and Parrot is likely
indistinguishable. Conversely, points that fall outside of the confidence interval are considered
to have performance that is distinguishable between the state-of-the-art models and the parrot
approach. Therefore, by counting the number of points falling in the unshaded region, we can infer
how often Parrot outperforms state-of-the-art build outcome prediction models.

To study why naïve predictions that simply echo the previous build outcome achieve comparable
performance to the state of the art, we count the number of builds that have the same outcome as
their immediate predecessors. Table 9 shows the total number of passing and failing builds, the
number of passing and failing builds that have the same outcome as their immediate predecessors,
and the relative percentages in each category for the studied open-source projects and Project X.

7.2 Results
Observation 7: The naïve Parrot outperforms both BuildFast and RavenBuild in terms
of time-to-feedback. Table 8 shows the performance of Parrot, BuildFast, and RavenBuild(-CR).
While both BuildFast and RavenBuild(-CR) outperform Parrot in F1-fail, recall-fail, precision-fail,
precision-pass and AUC in the open-source context, and in F1-pass, recall-pass, precision-fail, and
AUC in the Project X context, Parrot outperforms both approaches in terms of Gain by reducing
the Cost considerably.
Observation 8: BuildFast, RavenBuild, and RavenBuild-CR often underperform with

respect to Parrot in terms of precision and recall. Figure 6 shows 7, 10, 6, and 12 points in the four
sub-graphs associated with BuildFast performance, and 6, 8, 5, and 11 points in the four sub-graphs
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Table 9. The number of builds that have the same outcome as their immediate predecessor in the passing and
failing class, the total number of builds in the passing and failing class, and the percentage of the builds that
have the same build outcome as their immediate predecessor in all builds in the passing and failing class.

Open-Source Project X

Passing Failing All Passing Failing All

Samea 6,302 2,229 8,531 3,587 744 4,031
Total 7,662 3,590 11,252 3,898 743 4,640
% 82% 62% 76% 92% 59% 82%

a Builds that have same outcomes as their immediate predecessor.

associated with RavenBuild performance, indicating that the parrot approach can outperform
BuildFast and RavenBuild in at least one of the evaluation metrics (i.e., precision-fail, precision-pass,
recall-fail, and recall-pass) in at least seven of the studied projects. Overall, BuildFast and RavenBuild
underperform with respect to the parrot approach in 38% and 33% of the 92 evaluation cases (i.e.,
23 projects × 4 evaluation metrics). Indeed, a project-level inspection reveals that although Parrot
does not outperform BuildFast and RavenBuild in terms of all of the studied evaluation metrics,
Parrot outperforms BuildFast and RavenBuild in, respectively, 6 and 4 of the 23 studied projects in
terms of 3 of the 4 evaluation metrics.

In the cases where build outcome prediction models outperform the Parrot approach, the differ-
ence in performance is often within the margin of error. Figure 6 shows BuildFast and RavenBuild
only outperform the Parrot approach by more than the margin of error in 5–12 of the 23 studied
projects in terms of precision-fail, precision-pass, recall-fail, and recall-pass. In 64% and 61% of the
evaluated cases, BuildFast and RavenBuild do not significantly outperform the Parrot approach.
We suspect that Parrot takes advantage of repeated build outcomes and provides predictions

that offer little practical value. For example, if the testing set contains True labels only, a naïve
model can achieve perfect performance in all evaluation metrics by simply predicting True, whereas
it would be much harder for any model to score 100% in all evaluation metrics. Although Parrot
outperforms both BuildFast and RavenBuild, Parrot fails to predict the cases when a build outcome
flips from passing to failing or vice versa. These cases are the ones that provide developers with
the most insight. Therefore, Parrot outperforming BuildFast and RavenBuild does not imply the
build outcome prediction work is meaningless. Instead, Parrot should be interpreted as a baseline
that encompasses the degree to which sequences of outcomes are present in the dataset.

Observation 9: Build outcomes tend to repeat their previous outcome. The fact that the Parrot
approach achieves performance that is comparable to or better than the state-of-the-art models
reveals build outcomes tend to repeat their previous outcome. Indeed, Table 9 shows that 76% of
builds from open-source projects have the same outcome as their previous builds. More specifically,
82% of the passing builds and 62% of the failing builds have the same outcome as their immediately
preceding build. In terms of Project X, 87% of all builds, 92% of the passing builds, and 59% of the
failing builds have the same outcome as their immediately preceding build. Our finding aligns with
the observation of Jin and Servant [22], and demonstrates that a bias towards the previous build
outcome exists not only in open-source contexts but also in AAA video game projects like Project X.
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Despite the improvements achieved in build outcome prediction, both RavenBuild and BuildFast
are often outperformed by the naïve Parrot approach. However, Parrot cannot capture the flip
cases, which are of greatest practical importance. Nonetheless, we recommend that future work
on build outcome prediction include Parrot performance as a tendency indicator to ground the
evaluation.

8 THREATS TO VALIDITY
Below, we describe the threats to the validity of our study.

8.1 Construct Validity
Construct validity concerns may creep into our study if our measurements are misaligned with the
phenomena that we set out to study. In our work, these threats could be related to the selection
of evaluation metrics. We rely on cost metrics from state-of-the-art studies [3] to ensure a fair
comparison between RavenBuild, BuildFast [3], and other baseline approaches. Nevertheless, the
cost measured by these metrics might still not reflect the real cost incurred by build outcome
prediction in practice. More specifically, in deployments that aggressively pursue savings, negative
side effects may emerge when these approaches are actually adopted. To capture such costs, we
would need to deploy the studied approaches in a live CI service and measure costs that are actually
impacting practitioners and stakeholders. Unfortunately, this evaluation is not feasible at this stage
given the critical role that CI services play in production pipelines at Ubisoft.

8.2 Internal Validity
One potential threat to our internal validity is the existence of flaky builds in the studied datasets.
Flaky builds are builds that fail intermittently due to non-deterministic factors in the system under
test, the CI service, or the deployment environment. At Ubisoft, failing build steps are automatically
retried. Therefore, to mitigate the effect of flaky builds on our study and datasets, we consider a
build step to be passing as long as it has one passing execution.
Another threat to internal validity has to do with the use of machine learning in the studied

approaches, especially the steps of feature selection in the BuildFast model architecture. Some
features might be left out in the feature selection process. Through project-level inspection, we
confirm that the RavenBuild features are selected to train the models in the feature selection step.

In addition, the dependency-aware features are collected from the multidisciplinary dependency
graphs, which take time to be fully extracted. To address the issue, we propose to use the previous
version of the dependency graph. Indeed, our analysis shows that only 34% of the studied changes
alter edges within the graph, but those changes only affect one side of the dependency (i.e., the files
upon which the added files depend), and thus would not invalidate dependency analyses performed
on the prior graph state. The changes that do alter the graph structure in analysis-invalidating ways
are easily identified by scanning for differences in the import section of the edited files, which can
be used to prevent results of the dependency analysis that are incorrect from being adopted by
the model. However, future work needs to address the cases where the prior dependency graph is
invalidated for analysis.

8.3 External Validity
Threats to external validity have to do with the generalizability of our results to other systems.
To ensure consistency with BuildFast, we sample Java projects from GitHub to construct our
open-source dataset. The performance of RavenBuild might differ when applied to other projects,
but the key insights of the context-, relevance-, and dependency-aware features remain the same,
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as these features are extracted from change information that does not depend on the platform or
programming languages.

8.4 Reliability Validity
Reliability validity threats may impact the replicability of this study. Due to legal constraints, we
cannot share our dataset from Project X, since datasets collected on a proprietary project may
leak confidential information. We conduct our evaluation of state-of-the-art approaches on 22
open-source projects as well as Project X. This selection of the same language of subject systems as
prior work [3] ensures consistency when comparing results.

9 CONCLUSION
In this paper, we describe the unique characteristics of AAA video game project development that
make build outcome prediction particularly challenging. In the context of Project X, we observe
that data changes that do not modify source code also incur build failures, as data artifacts should
be compiled in an order-sensitive manner that respects the specified dependencies. Moreover,
code changes that have an impact that crosses the source-data boundary are more prone to build
failures than code changes that do not impact data files. The method by which we construct
the multidisciplinary dependency graph forges a new direction for the extraction of features for
build outcome prediction. To better accommodate the data changes into build outcome prediction,
and to exploit the abundant and rich dependency data, we propose features that are context,
relevance, and dependency aware. We incorporate those features into RavenBuild—a novel solution
for build outcome prediction. We find that RavenBuild outperforms BuildFast by a substantial
amount on Project X. While extracting the dependency graphs requires extensive project-specific
understanding, we provided an alternative to RavenBuild that only adopts the context-aware
and relevance-aware features, namely RavenBuild-CR. We find that RavenBuild-CR outperforms
BuildFast in both the open-source and Project X settings. Surprisingly, however, we find that neither
BuildFast nor RavenBuild can consistently outperform a naïve Parrot approach that simply echoes
the previous build outcome as predictions. Though Parrot fails to capture the important flip cases,
the comparable performance of Parrot reveals that build outcomes tend to repeat their immediate
predecessor. Therefore, future build outcome prediction work should consider Parrot performance
as a tendency indicator when evaluating.

While the concept of multidisciplinary dependency graph and cross-boundary changes can also
generalize to other settings, the project-specific knowledge required to construct the dependency
graph for every submitted change set constrains researchers from conducting dependency analysis
at a large-scale across projects. Therefore, we encourage future replication work to be conducted to
further demonstrate the effectiveness of dependency-aware features in build outcome prediction.

10 DATA AVAILABILITY
The presented dataset and results, as well as data collection scripts for open-source projects, are
available in our replication package.2
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