
Build System Maintenance∗

Shane McIntosh
Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University, Canada
mcintosh@cs.queensu.ca

ABSTRACT
The build system, i.e., the infrastructure that converts source
code into deliverables, plays a critical role in the develop-
ment of a software project. For example, developers rely
upon the build system to test and run their source code
changes. Without a working build system, development
progress grinds to a halt, as the source code is rendered
useless. Based on experiences reported by developers, we
conjecture that build maintenance for large software sys-
tems is considerable, yet this maintenance is not well under-
stood. A firm understanding of build maintenance is essen-
tial for project managers to allocate personnel and resources
to build maintenance tasks effectively, and reduce the build
maintenance overhead on regular development tasks, such
as fixing defects and adding new features. In our work, we
empirically study build maintenance in one proprietary and
nine open source projects of different sizes and domain. Our
case studies thus far show that: (1) similar to Lehman’s first
law of software evolution, build system specifications tend
to grow unless effort is invested into restructuring them, (2)
the build system accounts for up to 31% of the code files
in a project, and (3) up to 27% of development tasks that
change the source code also require build maintenance. Cur-
rently, we are working on identifying concrete measures that
projects can take to reduce the build maintenance overhead.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming environments—
Programmer workbench; D.2.9 [Software Engineering]:
Management—Productivity, Programming teams, Software
configuration management

General Terms
Management, Measurement

Keywords
Empirical software engineering, build systems, mining soft-
ware repositories

∗This work is a joint effort with Dr. Bram Adams and Dr.
Ahmed E. Hassan of Queen’s University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

1. INTRODUCTION
Software build systems are responsible for automatically

transforming the source code of a software project into a
collection of deliverables, such as executables and develop-
ment libraries. A build process may involve hundreds of
command invocations that must be executed in a specific
order to produce a set of deliverables swiftly and correctly.

Most of the stakeholders in the software development pro-
cess directly or indirectly interact with the build system
on a daily basis. Developers constantly interact with the
build system to produce testable artifacts after completing
a source code change. Software testers rely on the build
system to be able to test the developer changes for regres-
sions in the software behaviour. Project managers use the
build system to generate releases of the software system for
delivery to customers.

We conjecture that, similar to source code, the build sys-
tem itself requires substantial maintenance, based on the fol-
lowing three supporting examples: (1) Through a developer
survey, Kumfert et al. estimate that developers spend 12%
of their time maintaining the build system rather than fixing
defects and adding features [5]; (2) Adams et al. find that
the Linux build engineers spent numerous releases evolving
the core build machinery of the Linux kernel to simplify
the integration of new code by contributors [1]; and (3) The
KDE 3 project’s build system was such a burden to maintain
that it limited the productivity of KDE developers, and even
warranted migration to newer build technologies. The mi-
gration required a substantial investment of developer time
and effort, as the existing build infrastructure had to be
reimplemented [9].

Despite its critical role and non-trivial maintenance, the
build system is often disregarded by researchers [10] and
project managers [5]. Without a strong understanding of
how build systems evolve, resources cannot be properly allo-
cated, and software releases may be delivered late and over-
budget. For example, Firefox 3.0 was delayed by a build
defect that prevented users from accessing the address and
search bars in a networked environment [11]. The root cause
was uncovered four months after the defect was opened and
involved the linking of an incorrect version of the SQLite
library with the Firefox product during the build process.

Our main research goal is to identify concrete measures
that projects can take to reduce the overhead of build main-
tenance (Section 4). To achieve our goal, we first need to
perform empirical studies to grasp the scale and character-
istics of build maintenance (Sections 2 and 3).

Table 1: Listing of the studied projects. Asterisks (*) denote previously used build technologies.

Arg
oUM

L

Hibern
ate

Ecli
pse

Jazz
GCC

Git Linux
M

ozil
la

PLplot

Postg
reS

QL

Timespan ’98-’09 ’01-’07 ’01-’10 ’07-’08 ’88-’05 ’05-’09 ’05-’10 ’98-’10 ’92-’09 ’96-’09
Program lang. Java Java Java Java C C C C C C
Build techs. Make* ANT* PDE PDE Autotools Make Make Make Make* Autotools

ANT Maven Autoconf KConfig Autoconf Autotools*
CMake

Build Files
614 211 483 5,967 1,719 43 3,726 10,709 652 771

(BF)

Prod Files 7,116 9,272 2,391 45,275 14,181 743 42,912 43,952 659 2,683
Test Files 891 7,426 1,211 14,738 21,109 824 340 30,835 791 1,377
Total (TS) 8,007 16,698 3,602 60,013 35,290 1,567 43,252 74,787 1,450 4,060

BF
BF+TS 7% 1% 12% 10% 5% 3% 8% 12% 31% 16%

2. UNIQUENESS OF APPROACH
We first mine the Version Control Systems (VCS) of ten

projects to classify all files that existed in an analyzed times-
pan as either a build, test, or source code file (Table 1). We
then analyze this data at two levels of granularity: (1) per
revision, and (2) per group of revisions related to a common
work item (as recorded in an Issue Tracking System).

Using the classified revision and work item data, we mea-
sure how strong the relationships between the build, test,
and source code components are using metrics such as log-
ical coupling [4] (Table 2). A Src ⇒ Bld coupling of 0.03
indicates that the 3% of source code changes require accom-
panying build maintenance.

At each granularity, an author can be labeled as a build,
test, or source code developer. We assume that developers
who produce at least one source code revision are source
code developers, since source code development is the main
focus of a development team. We only label authors as build
developers if their personal Src ⇒ Bld coupling is greater
than or equal to the project Src ⇒ Bld coupling. Similarly,
we only label authors as test developers if their personal Src
⇒ Test coupling is greater than or equal to the project Src
⇒ Test coupling. We measure the logical coupling between
author labels to study the distribution of build maintenance
work across developers.

3. EMPIRICAL STUDY
We include a synopsis of our results. We present the re-

lated work as it motivates five of our research questions. Full
details are provided in our publications [6, 7].

RQ1) How large is a typical build system?
Motivation –Robles et al. find that the KDE build system
is made up of some 39,337 files (9% of all files) [10]. To
gain a perspective on the amount of development activ-
ity associated with build systems, we want to know if this
percentage is consistently across other software projects.

Results – As shown in Table 1, the build system accounts
for up to 31% of all project files, with a median of 9%,
which complements the earlier results for KDE [10].

RQ2) How much does the build churn?
Motivation – Prior studies have found that frequently chang-
ing source code, i.e., code with high churn, has a higher
defect density [8]. We want to measure the churn rate in
the build system to gain insight into how susceptible the

Table 2: Logical coupling of source and build code.

Eclipse Jazz Mozilla

Revisions Src ⇒ Build 0.03 0.04 0.08
Test ⇒ Build 0.03 0.07 0.16

Work Items
Src ⇒ Build 0.16 0.04 0.27
Test ⇒ Build 0.20 0.08 0.44

build system is to defects. We compare the churn rate to
that of the source code.

Results – Since the build system is a much smaller compo-
nent than the source code (RQ1), we normalize each com-
ponent by the component size to ensure that the compar-
ison is fair. When the normalized churn rate of the build
system is compared to that of the source code, we find that
the two are very similar, at most differing by 7%. Fur-
thermore, build system changes induce more relative churn
than source code changes do.

RQ3) How do Java build systems evolve?
Motivation – Initial findings suggest that build mainte-
nance in C projects, e.g., Linux [1] and Amd [13], is diffi-
cult since they use arcane technology and must manually
track dependencies among artifacts. The Java compiler
provides features like automatic dependency resolution [3]
that should reduce build maintenance. We want to find out
whether Java and C build systems evolve differently.

Results – Similar to C build systems [1, 13], we find that
the build systems for Java projects tend to grow in size
and complexity from release to release unless explicit effort
is invested to restructure them [6]. This indicates that
Java build systems require continual maintenance, which
project managers should explicitly account for, regardless
of the build technology used.

RQ4) How much developer overhead is created by the build?
Motivation – Based on a developer survey, Kumfert et al. es-
timate that developers spend 12% of their time on build
maintenance [5]. We want to verify this result empirically.

Results – As shown in Table 2, source and test code re-
visions rarely contain build changes, however source- and
test-changing work items in Mozilla often require build
changes (27% and 44% respectively).

RQ5) How is the build maintenance process managed?
Motivation – Since build systems have high churn (RQ2),
members of the development team must be making changes
to the build. Yet, it is not clear what proportion of the de-
velopment team is responsible for these changes. We want

to analyze the different ways in which projects allocate per-
sonnel to the build system.

Results – We observe two build ownership styles in the
analyzed systems: (1) Concentrated: The Linux and Git
projects have 25% and 22% coupling between source code
and build authors, i.e., given that an author produces source
code changes, it is relatively rare that the author also pro-
duce a considerable number of build code changes. In both
Linux and Git, only 5% of all developers are responsible
for writing 80% of the build changes. (2) Dispersed: The
Jazz project has a high coupling between source code and
build authors (79%) and requires 34% of the developers to
account for 80% of the build changes.

4. REDUCING BUILD MAINTENANCE
OVERHEAD

The groundwork that we have established in Sections 2
and 3 enables us to identify concrete measures that projects
can take to reduce the build maintenance overhead, such
as: (1) build resolution prediction, (2) build maintenance
recommendation, and (3) build ownership assessments. We
briefly discuss each measure below.

Build resolution prediction – Build-related defects such
as the Firefox 3.0 one [11] are difficult to resolve. In addition,
we have found that 27% of all source code-related work items
require accompanying build changes in the Mozilla project
(RQ4). To better understand whether build maintenance
slows down development, we are performing an empirical
study of the impact that build maintenance has on the res-
olution time of developer work items, i.e., the elapsed time
between developer investigation and resolution delivery.

Build maintenance recommendation – Developers of-
ten struggle with code that they are not familiar with [2]. As
the same holds for build code. Projects such as Linux [1] and
Perl [12] have dedicated build teams. However, since build
and source code tend to co-evolve [1, 6], i.e., changes to the
source code often require changes to the build system, and
vice versa, a novice developer may easily introduce a source
code change, unaware that build maintenance is required. If
the build system is not changed when a change is required,
the source code may not compile or may produce incorrect
deliverables. Hence, we are currently working on a recom-
mendation system to assist developers with identifying code
changes that require build maintenance.

Build ownership assessment – We find that the stud-
ied projects adopt either a concentrated or dispersed build
ownership style (RQ5). However, we did not have data to es-
tablish whether either style performed better or worse than
the other. Hence, we are in the process of qualitatively and
quantitatively studying the impact that the different build
ownership styles have on development progress in other C
and Java systems. This will allow us to identify the build
ownership style of those projects, and to recommend best
practices for build maintenance.

5. CONCLUSIONS
According to our findings, project managers can antic-

ipate that the build system requires considerable mainte-
nance (RQ1-RQ4). We find that 4-16% of work items in
the studied Java projects require build maintenance, and
27% for the studied C project. Development teams adopt
dispersed or concentrated styles for coping with the build

maintenance process (RQ5). We are currently leveraging
our empirical findings to produce tools that practitioners
can use to reduce the build maintenance overhead.

REFERENCES
[1] B. Adams, K. De Schutter, H. Tromp, and W. De

Meuter. The evolution of the linux build system. Elec-
tronic Communications of the ECEASST, 8, 2008.

[2] G. Antoniol and Y. G. Guéhéneuc. Feature Identifica-
tion: A Novel Approach and a Case Study. In Proc. of
the 21st Int’l Conf. on Software Maintenance (ICSM),
pages 357–366. IEEE Computer Society.

[3] M. Dmitriev. Language-Specific Make Technology for
the Java Programming Language. In Proc. of the 17th
Conf. on Object-Oriented Programming, Systems, Lan-
guages & Applications (OOPSLA). ACM, 2002.

[4] H. Gall, K. Hajek, and M. Jazayeri. Detection of Log-
ical Coupling Based on Product Release History. In
Proc. of the 14th Int’l Conf. on Software Maintenance
(ICSM), pages 190–198, Washington, DC, USA, 1998.
IEEE Computer Society.

[5] G. Kumfert and T. Epperly. Software in the DOE:
The Hidden Overhead of “The Build”. Technical Re-
port UCRL-ID-147343, Lawrence Livermore National
Laboratory, CA, USA, 2002.

[6] S. McIntosh, B. Adams, and A. E. Hassan. The Evolu-
tion of ANT Build Systems. In Proc. of the 7th working
conf. on Mining Software Repositories (MSR), pages
42–51. IEEE Computer Society, 2010.

[7] S. McIntosh, B. Adams, T. H. D. Nguyen, Y. Kamei,
and A. E. Hassan. An Empirical Study of Build Main-
tenance Effort. In Proc. of the 33rd Int’l Conf. on Soft-
ware Engineering (ICSE). ACM, 2011.

[8] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Proc. of
the 27th Int’l Conf. on Software Engineering (ICSE),
pages 284–292, New York, NY, USA, 2005. ACM.

[9] A. Neundorf. Why the KDE project switched to CMake
– and how (continued). http://lwn.net/Articles/

188693/, 2010. last viewed: 06-Mar-2010.

[10] G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo.
Beyond Source Code: The Importance of Other Arti-
facts in Software Development (A Case Study). Journal
of Systems and Software (JSS), 79(9):1233–1248, 2006.

[11] T. Steiner. mozStorage chokes on databases over
AFP. https://bugzilla.mozilla.org/show_bug.

cgi?id=417037. Last viewed: 18-Aug-2010.

[12] Q. Tu and M. Godfrey. The build-time software ar-
chitecture view. In Proc. of Int’l Conf. on Software
Maintenance (ICSM), pages 398–407. IEEE Computer
Society, 2002.

[13] E. Zadok. Overhauling Amd for the ’00s: A Case Study
of GNU Autotools. In Proc. of the FREENIX Track on
the USENIX Technical Conf., pages 287–297, Berkeley
(CA, USA), 2002. USENIX Association.

