
Revisiting Code Ownership and its Relationship with
Software Quality in the Scope of Modern Code Review

Patanamon Thongtanunam1, Shane McIntosh2, Ahmed E. Hassan3, Hajimu Iida1

1Nara Institute of Science and
Technology, Japan

patanamon-t@is.naist.jp,
iida@itc.naist.jp

2McGill University, Canada
shane.mcintosh@mcgill.ca

3Queen’s University, Canada
ahmed@cs.queensu.ca

ABSTRACT

Code ownership establishes a chain of responsibility for mod-
ules in large software systems. Although prior work uncovers
a link between code ownership heuristics and software qual-
ity, these heuristics rely solely on the authorship of code
changes. In addition to authoring code changes, developers
also make important contributions to a module by reviewing
code changes. Indeed, recent work shows that reviewers are
highly active in modern code review processes, often suggest-
ing alternative solutions or providing updates to the code
changes. In this paper, we complement traditional code own-
ership heuristics using code review activity. Through a case
study of six releases of the large Qt and OpenStack systems,
we find that: (1) 67%-86% of developers did not author any
code changes for a module, but still actively contributed by
reviewing 21%-39% of the code changes, (2) code ownership
heuristics that are aware of reviewing activity share a re-
lationship with software quality, and (3) the proportion of
reviewers without expertise shares a strong, increasing rela-
tionship with the likelihood of having post-release defects.
Our results suggest that reviewing activity captures an im-
portant aspect of code ownership, and should be included in
approximations of it in future studies.

CCS Concepts

•Software and its engineering → Maintaining software;
Programming teams;

Keywords

Ownership, Expertise, Software Quality

1. INTRODUCTION
Code ownership is an important concept for large software

teams. In large software systems, with hundreds or even
thousands of modules, code ownership is used to establish
a chain of responsibility. When changes need to be made
to a module with strong code ownership, there is a module

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA

c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884852

owner who is responsible for it. On the other hand, it is more
difficult to identify the developer to whom tasks should be
delegated in modules with weak code ownership.

In the literature, code ownership is typically estimated us-
ing heuristics that are derived from code authorship data.
For example, Mockus and Herbsleb use the number of tasks
that a developer has completed within a time window that
modify a given module to identify the developer that is re-
sponsible for that module [33]. Furthermore, Bird et al. esti-
mate a code ownership value for a developer within a module
by computing the proportion of code changes that the de-
veloper has authored within that module [7]. Rahman and
Devanbu estimate code ownership values at a finer granu-
larity by computing the proportion of lines of changed code
that each developer has authored [38]. Indeed, the intuition
behind traditional code ownership heuristics is that devel-
opers who author the majority of changes to a module are
likely to be the owners of those modules.

However, in addition to authorship contributions, devel-
opers can also contribute to the evolution of a module by cri-
tiquing code changes that other developers have authored in
that module. Indeed, many contemporary software develop-
ment teams use Modern Code Review (MCR), a tool-based
code review process, which tightly integrates with the soft-
ware development process [39]. In the MCR process, code
changes are critiqued by reviewers (typically other develop-
ers) to ensure that such code changes are of sufficient quality
prior to their integration with the codebase.

While several studies have shown that the modern code
review activities share a link to software quality [25, 29, 50],
the MCR process is more than just a defect-hunting exercise.
Indeed, Morales et al. show that developer involvement in
the MCR process shares a relationship with software design
quality [34]. Bacchelli and Bird report that the focus of
code review at Microsoft has shifted from being defect-driven
to collaboration-driven [1]. Others report that reviewers in
MCR processes often suggest alternative solutions [4, 49, 52]
or even provide updates to the code changes themselves [50].

Despite the active role that reviewers play in the MCR
process, review contributions are disregarded by traditional
code ownership heuristics. For example, a senior developer
who reviews many of the code changes to a module, while
authoring relatively few will not be identified as a module
owner by traditional code ownership heuristics. Therefore,
in this paper, we set out to complement traditional code
ownership heuristics using data that is derived from code
review repositories. More specifically, we adapt the popular
code ownership heuristics of Bird et al. [7] to be: (1) review-

http://dx.doi.org/10.1145/2884781.2884852

specific, i.e., solely derived from code review data and (2)
review-aware, i.e., combine code authorship and review ac-
tivity. We then use review-specific and review-aware code
ownership heuristics to build regression models that classify
modules as defect-prone or not in order to revisit the rela-
tionship between the code ownership and software quality.
Through a case study of six releases of the large Qt and
OpenStack open source systems, we address the following
three research questions:

(RQ1) How do code authoring and reviewing con-
tributions differ?
Motivation: While prior work examines the contri-
butions of developers in terms of code authorship [7,
12, 13, 32, 37, 38], the review contributions that these
developers make to a module still remains largely un-
explored. Hence, we first study how developers con-
tribute to the evolution of a module in terms of code
authorship and review.
Results: 67%-86% of the developers who contribute
to a module did not author any code changes, yet they
participated in the reviews of 21%-39% of the code
changes made to that module. Moreover, 18%-50%
of these review-only contributors are documented core
team members.

(RQ2) Should code review activity be used to re-
fine traditional code ownership heuristics?
Motivation: Prior work finds that modules with many
minor authors (i.e., developers who seldom wrote code
changes in that module) are likely to be defective [7].
However, there are likely cases where minor authors
review several of the code changes in that module.
Hence, we investigate whether refining traditional code
ownership heuristics by using code review activity will
provide a more comprehensive picture of the associa-
tion between code ownership and software quality.
Results: 13%-58% of developers who are flagged as
minor contributors of a module by traditional code
ownership heuristics are actually major contributors
when their code review activity is taken into consid-
eration. Moreover, modules without post-release de-
fects tend to have a large proportion of developers
who have low traditional code ownership values but
high review-specific ownership values. Conversely, the
modules with post-release defects tend to have a large
proportion of developers who have both low traditional
and review-specific ownership values.

(RQ3) Is there a relationship between review-specific
and review-aware code ownership heuristics and
defect-proneness?
Motivation: Prior work uses defect models to under-
stand the relationship between traditional code own-
ership heuristics and software quality [7, 9, 14, 35].
Such an understanding of defect-proneness is essential
to chart quality improvement plans, e.g., developing
code ownership policies. Yet, since traditional code
ownership heuristics do not include code review ac-
tivity, little is known about the role that reviewing
plays in ownership and its impact on defect-proneness.
Hence, we revisit the relationship between code own-
ership and software quality using review-specific and
review-aware heuristics.

Comments

(1) Upload a proposed

change

(2) Examine and

discuss the

proposed change

(3) Revise the

proposed change

(4) Integrate approved

change into upstream VCS

repositoriesA code review tool

(e.g., Gerrit)

✓

Figure 1: An overview of the MCR process.

Results: When controlling for several factors that are
known to share a relationship with defect-proneness,
our models show that the proportion of developers who
have both low traditional and review ownership values
shares a strong, increasing relationship with the likeli-
hood of having post-release defects.

Our results lead us to conclude that code reviewing ac-
tivity provides an important perspective that contributes to
the code ownership concept. Future approximations of code
ownership should take code reviewing activity into account
in order to more accurately model the contributions that
developers make to evolve modern software systems.
Paper organization. Section 2 describes the MCR pro-
cess and the studied code ownership heuristics in more de-
tail. Section 3 describes the design of our case study, while
Section 4 presents the results with respect to our three re-
search questions. Section 5 discusses the broader implica-
tions of our observations. Section 6 discloses the threats to
the validity of our study. Section 7 surveys related work.
Finally, Section 8 draws conclusions.

2. BACKGROUND & DEFINITION
In this section, we provide a brief description of the MCR

process and the studied code ownership heuristics.

2.1 Modern Code Review
Modern Code Review (MCR) is a tool-based code review

process [1], which tightly integrates with the software de-
velopment process. MCR is now widely adopted by pro-
prietary and open source software organizations [39]. Re-
cent studies have shown that MCR actively shares a rela-
tionship with post-release defects [29], the quality of code
changes [1, 49, 52], and software design quality [34]. Fur-
thermore, MCR provides a hub-like mechanism for sharing
knowledge among developers [39].

Figure 1 provides an overview of MCR processes in the
studied Qt and OpenStack systems. The studied processes
are composed of four main steps:
(1) Upload a proposed change. Once a proposed change
has been made, the author uploads it to a code review tool
and invites reviewers to examine it.
(2) Examine and discuss the proposed change. Re-
viewers examine the technical content of the proposed change
and provide feedback to the author. Reviewers also provide
a review score from −2 to +2 to indicate agreement (positive
value) or disagreement (negative value).
(3) Revise the proposed change. The author or review-
ers update the proposed change to address the feedback, and
upload a new revision to the code review tool.

(4) Integrate the approved change. Steps 2 and 3 are
repeated until reviewers are satisfied that the code change
is of sufficient quality to be integrated. Then, the proposed
change is automatically integrated into upstream Version
Control System (VCS, e.g., Git).

2.2 Code Ownership
Code ownership heuristics that operate at different gran-

ularities have been proposed in the literature [7, 13, 14, 33,
38]. For example, Bird et al. estimate code ownership values
using the code change granularity [7]. Fritz et al. propose
code ownership heuristics at element (i.e., class) granular-
ity [13]. Rahman and Devanbu estimate code ownership
values at the finer granularity of a code fragment. Since the
studied MCR processes are connected with code changes,
i.e., proposed changes should be reviewed prior to integra-
tion into the VCS, we opt to extend the code ownership
heuristics of Bird et al. [7] using code review activity.

Below, we describe the traditional, review-specific, and
review-aware code ownership heuristics.

2.2.1 Traditional Code Ownership Heuristics

The traditional code ownership heuristics of Bird et al. [7]
are computed using the authorship of code changes to esti-
mate the code ownership of a developer for a module. For a
developer D, Traditional Code Ownership (TCO) of a
module M is computed as follows:

TCO(D,M) =
a(D,M)

C(M)
(1)

where a(D,M) is the number of code changes that D has au-
thored in M and C(M) is the total number of code changes
made to M .

In addition, Bird et al. also define two levels of developer
expertise within a module. Developers with low TCO values
(i.e., below 5%) are considered to be minor authors, while
developers with high TCO values (i.e., above 5%) are con-
sidered to be major authors.

2.2.2 Review-Specific Ownership Heuristics

We define review-specific ownership heuristics that use
code review data to estimate the code ownership of devel-
opers according to the review contributions that they have
made to a module. For a developer D, Review-Specific
Ownership (RSO) of a module M is computed as follows:

RSO(D,M) =

∑r(D,M)
k=1 p(D, k)

C(M)
(2)

where r(D,M) is the number of reviews of code changes
made to M in which D has participated and p(D, k) is a pro-
portion of review contributions that D made to code change
k. Since one review can have many reviewers, we normalize
the value of review-specific ownership in each code change
using p(D, k) in order to avoid having RSO values that do
not sum up to 100%. We explore two RSO heuristics by
varying the definition of p(D, k):

1. RSOEven, where p(D, k) = 1
R(k)

: This normalization evenly

divides the share of review contributions to every re-
viewer of k. Hence, R(k) is the total number of de-
velopers who participated in the review of k. This
normalization assumes that every reviewer contributes
equally to k.

Table 1: A contingency table of the review-aware
ownership expertise category.

Traditional code ownership
≤ 5% > 5%

Review-
specific
ownership

≤ 5%
Minor author &
minor reviewer

Major author &
minor reviewer

> 5%
Minor author &
major reviewer

Major author &
major reviewer

2. RSOProportional, where p(D, k) = F (D, k): This normal-
ization assigns a share of the review contribution to D

that is proportional to the amount of feedback (i.e.,
number of review comments) that D has provided to
the review of k. The intuition behind this normaliza-
tion is that the more the feedback that D provides
during the review of k, the larger the share of review
contributions that D made to k.

Similar to traditional code ownership, we consider devel-
opers with low RSO values (i.e., below 5%) to be minor
reviewers, and developers with high RSO values (i.e., above
5%) to be major reviewers.

2.2.3 Review-Aware Ownership Heuristics

In practice, developers act as both authors and reviewers.
For example, a developer can be the author of a code change
to a module, while also being a reviewer of code changes that
other developers have authored to that module. However,
the traditional and review-specific ownership heuristics inde-
pendently estimate code ownership using either authorship
or review contributions, respectively.

To address this, we propose review-aware code ownership
heuristics. We adapt the traditional code ownership heuris-
tics to be review-aware using the pair of TCO and RSO
values that a developer can have within a module. Then, we
refine the levels of the traditional code ownership using the
levels of review-specific code ownership as shown in Table 1.
For example, for a module M , if a developer D has a TCO
value of 3% and an RSO value of 25%, then D would have a
review-aware ownership value of (3%, 25%), which falls into
the minor author & major reviewer category.

3. CASE STUDY DESIGN
In this section, we outline our criteria for selecting the

studied systems and our data preparation approach.

3.1 Studied Systems
In order to address our research questions, we perform

an empirical study on large, rapidly-evolving open source
systems. In selecting the subject system, we identified two
important criteria that needed to be satisfied:

Criterion 1: Traceability — We focus our study on sys-
tems where the MCR process records explicit links be-
tween code changes and the associated reviews.

Criterion 2: Full Review Coverage — Since we will in-
vestigate the effect of review-specific and review-aware
ownership heuristics on software quality, we need to
ensure that unreviewed changes are not a confounding
factor [29]. Hence, we focus our study on systems that
have a large number of modules with 100% review cov-
erage, i.e., modules where every code change made to
them has undergone a code review.

Table 2: Overview of the studied systems. Those above the double line satisfy our criteria for analysis.
System Commits Modules Personnel

Name Version Tag name Total Linkage rate Total With 100% review coverage With defects Authors Reviewers

Qt
5.0 v5.0.0 2,955 95% 389 328 (84%) 70 (21%) 156 156
5.1 v5.1.0 2,509 96% 450 438 (97%) 77 (18%) 186 170

OpenStack

Folsom 2012.2 2,315 99% 258 241 (93%) 70 (29%) 235 152
Grizzly 2013.1 2,881 99% 336 326 (97%) 123 (37%) 330 205
Havana 2013.2 3,583 99% 527 515 (97%) 128 (25%) 451 359
Icehouse 2014.1 3,021 100% 499 499 (100%) 198 (40%) 499 480

VTK 5.10 v5.10.0 1,431 39% 170 8 (5%) - - -
ITK 4.0 v4.3.0 352 97% 218 125 (57%) - - -

(DP1) Link code

changes to reviews

(DP2) Compute

code ownership

heuristics

(DP3) Calculate

module metrics

Code

dataset

Review

dataset

Code

database

Module

data

Code

ownership data

Data Preparation

Figure 2: An overview of data preparation approach.

To satisfy criterion 1, we began our study with four soft-
ware systems that use the Gerrit code review tool. To miti-
gate bias that may be introduced into our datasets through
noisy manual linkage [5], we select systems that use the Ger-
rit code reviewing tool for our analysis. Gerrit automatically
records a unique ID that can link code changes to the re-
views that they have undergone. We then discard VTK,
since its linkage rate is too low. We also remove ITK from
our analysis, since it does not satisfy criterion 2.

Table 2 shows that the Qt and OpenStack systems satisfy
our criteria for analysis. Qt is a cross-platform application
and UI framework that is developed by the Digia corpora-
tion, while welcoming contributions from the community-
at-large.1 OpenStack is an open-source software platform
for cloud computing that is developed by many well-known
companies, e.g., IBM, VMware, and NEC.2

3.2 Data Preparation
We use the review datasets that are provided by Hamasaki et

al. [16], which describes patch information, reviewer scor-
ing, the involved personnel, and review discussion. We use
the code dataset for the Qt system provided by our prior
work [29], which describes the recorded commits on the re-
lease branch of the Qt VCSs during the development and
maintenance of each studied Qt release. We also expand
the code dataset for the OpenStack system using the same
approach as our prior work [29].

In order to produce the datasets that are necessary for our
study, we link the review and code datasets, and compute
the code ownership heuristics. Figure 2 provides an overview
of our data preparation process, which is broken down into
the following three steps.
(DP1) Link code changes to reviews. Similar to our
prior work [29], we link the code and review datasets using
the change ID, i.e., a review reference that is automatically
generated by Gerrit. For each code change, we extract the
change ID recorded in the commit message. To link the

1http://qt-project.org/
2http://www.openstack.org/

associated review, Gerrit uses “<subsystem name> <VCS
branch> <change ID>” as a unique reference. Hence, we
extract the commit data from the VCSs to generate a refer-
ence, then link the code change to the associated review.

Once the code and review datasets are linked, we measure
review coverage for each module (i.e., directory). Since this
study revisits the traditional code ownership heuristics [7]
which were previously studied at the module level, we con-
duct our study at the same module level to aid the compa-
rability of our results with the prior work. We then remove
modules that do not have 100% review coverage from our
datasets in order to control for the confounding effect that
a lack review coverage may have [29].
(DP2) Compute code ownership heuristics. To es-
timate the code ownership of a developer for a module, we
first identify code changes that the developer has authored
using the owner field recorded in Gerrit. We then identify
the code changes that the developer has reviewed using the
review comments that the developer posted. A code change
that spans multiple modules is treated as contributing to all
of the changed modules.

Next, we estimate code ownership using the traditional,
review-specific, and review-aware code ownership heuristics
(see Section 2.2) for every developer who was involved with
the development of each module. Similar to prior work [22,
30], we use a six-month period prior to each release date to
capture the authorship and review contributions that devel-
opers made during the development cycle.
(DP3) Calculate module metrics. Prior work has found
that several types of metrics have an impact on software
quality. Hence, we also measure popular product and pro-
cess metrics that are known to have a relationship with
defect-proneness in order to control for their impact [20, 47].

For the product metrics, we measure the size of the source
code in a module at the time of a release by aggregating the
number of lines of code in each of its files. For the process
metrics, we use churn and entropy to measure the change ac-
tivity that occurred during the development cycle of a stud-
ied release. We again use use the six-month period prior
to each release date to capture the change activity. Churn
counts the total number of lines added to and removed from
a module prior to release. Entropy measures how the com-
plexity of a change process is distributed across source code
files [20]. We measure the entropy of a module using a cal-
culation of H(M) = − 1

log2n

∑n

k=1(pk × log2pk), where n is
the number of source code files in module M , and pk is the
proportion of the changes to M that occur in file k.

We also detect whether there are post-release defects in
each module. To detect post-release defects in a module,
we identify defect-fixing changes that occurred after a stud-
ied release date. By studying the release practice of the

http://qt-project.org/
http://www.openstack.org/

●

●●●●●●●

●

●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●●
●

●●●●

●
●

●

●●

●●
●●
●

●
●

●●
●●

●

●●
●●●
●

●

●

●

●
●
●
●

●
●

●

●
●

●

●

●

●

●●

●

●● ●

●

●

●

●

●●

●

●
●
●

●●●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●●

●

●

●

●●●

●●

●

●
●
●●

●
●●
●
●●●

●

●
●●

●

●

●

●

●
●
●

●●●
●●●●●●

●●
●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●●

●

●
●
●
●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●
●

●
●●●
●
●
●●●●

●
●●

●

●
●

●●●
●
●●

●

●●●
●●●●

●

●
●
●
●

●

●●●●
●●●●
●●

●●
●
●
●●
●

●

●●

●
●

●●●

●
●●
●
●●●

●

●●

●

●●
●

●

●●●

●
●

●●
●
●●
●
●

●
●●●●●●●●
●
●●

●●

●

●
●●●

●

●●●●
●●●●●●●●
●●
●●

●

●
●●

●

●●
●

●●
●

●

●

0

25

50

75

100

Qt
5.0

Qt
5.1

OpenStack
Folsom

OpenStack
Grizzly

OpenStack
Havana

OpenStack
Icehouse

P
ro

p
o
rt

io
n
 o

f
C

o
n
tr

ib
u
to

rs
 (

%
)

Contributions Author and Review Only Author Only Review

Figure 3: Number of developers who contribute to a
module (i.e., authoring vs reviewing code changes).

studied systems, we found that the studied systems release
sub-versions every two month after the main version is re-
leased. Hence, we use a two-month window to capture the
defect-fixing changes. Similar to prior work [29], we search
the VCS commit messages for co-occurrences of defect iden-
tifiers with keywords like “bug”, “fix”, or “defect”. A similar
approach is commonly used to determine defect-fixing and
defect-inducing changes in prior work [22, 24, 30].

4. CASE STUDY RESULTS
In this section, we present the results of our case study

with respect to our three research questions. For each re-
search question, we present our empirical observations, fol-
lowed by a general conclusion.

(RQ1) How do code authoring and reviewing
contributions differ?

Approach. To address our RQ1, we examine the contri-
butions of developers in each release of the studied systems.
We analyze descriptive statistics of the number of developers
who contribute by authoring or reviewing code changes to
modules. Since the number of involved developers can vary
among modules, we analyze the proportion of developers in
a module instead of the actual number of developers.
Results. Observation 1 — 67%-86% of developers
who contribute to a module did not previously au-
thor any code changes, yet they had previously re-
viewed 21%-39% of the code changes in that mod-
ule. We find that there are on average 6-8 (Qt) and 17-32
(OpenStack) developers who contribute to a module. Figure
3 shows that the developers who previously only reviewed
code changes are the largest set of developers who contribute
to a module. 67%-70% (Qt) and 67%-86% (OpenStack) of
developers are review-only contributors. On average, these
review-only contributors have reviewed 29%-39% (Qt) and
21%-31% (OpenStack) of the code changes made to a mod-
ule. This suggests that many developers contribute by only
reviewing code changes to a module, yet their expertise is
not captured by traditional code ownership heuristics.

Observation 2 — 18%-50% of the developers who
only review code changes made to a module are doc-
umented core developers. 44%-51% (Qt) and 18%-21%
(OpenStack) of the review-only contributors to modules are
documented core developers.3 On the other hand, 18%-20%

3Based on the list in https://wiki.openstack.org/wiki/
Project Resources and http://wiki.qt.io/Maintainers

(Qt) and 12%-26% (OpenStack) of developers who have au-
thored a code change to a module are documented as core
developers. Moreover, we observe that core developers tend
to often contribute to a module as reviewers rather than
authors. Indeed, 51%-54% (Qt) and 42%-60% (OpenStack)
of modules do not have any code changes authored by core
developers. On the other hand, 0%-8% (Qt) and 23%-36%
(OpenStack) of modules that do not have any code changes
reviewed by core developers.

The developers who only contribute to a module by review-
ing code changes account for the largest set of contributors to
that module. Moreover, 18%-50% of these review-only devel-
opers are documented core developers of the studied systems,
suggesting that code ownership heuristics that only consider
authorship activity are missing the activity of these major
contributors.

(RQ2) Should code review activity be used to
refine traditional code ownership heuristics?

Approach. To address RQ2, we first examine the TCO
values of each developer in each module against their RSO
values. Next, we analyze the relationship between owner-
ship and defect-proneness. To do so, for each module, we
compute the proportion of developers in each expertise cat-
egory of the review-aware ownership heuristic (see Table 1),
i.e., (1) minor author & minor reviewer, (2) minor author &
major reviewer, (3) major author & minor reviewer, and (4)
major author & major reviewer. Then, we compare the pro-
portion of developers in each of the expertise categories of
defective and clean modules using beanplots [23]. Beanplots
are boxplots in which the vertical curves summarize the dis-
tributions of different datasets. Defective modules are those
that have at least one post-release defect, while clean mod-
ules are those that are free from post-release defects.

We use one-tailed Mann-Whitney U tests (α = 0.05) to
detect whether there is a statistically significant difference
among the defective and clean modules in terms of the pro-
portion of developers in the different expertise categories.
We use Mann-Whitney U tests instead of T-tests because
we observe that the distributions of the proportions of de-
velopers do not follow a normal distribution (Shapiro-Wilk
test p-values are less than 2.2 × 1016 for all distributions).
We also measure the effect size, i.e., the magnitude of the
difference using Cliff’s δ [27]. Cliff’s δ is considered as triv-
ial for δ < 0.147, small for 0.147 ≤ δ < 0.33, medium for
0.33 ≤ δ < 0.474 and large for δ ≥ 0.474 [43].
Results. Observation 3 — 13%-58% of minor au-
thors are major reviewers. When we assume that re-
viewers contribute equally (i.e., using RSOEven), 41%-58%
(Qt) and 13%-22% (OpenStack) of minor authors fall in the
minor author & major reviewer category. Similarly, when we
assume that reviewers who post more comments make more
of a contribution (i.e., using RSOProportional), 32%-48% (Qt)
and 11%-18% (OpenStack) of minor authors fall in the mi-
nor author & major reviewer category. This indicates that
many minor authors make large review contributions.

Observation 4 — Clean modules tend to have more
developers in the minor author & major reviewer
category than defective modules do. Figure 4(a) shows
that when we use RSOEven, the proportion of developers in
the minor author & major reviewer category of clean mod-
ules is larger than that of defective modules. Table 3 shows

https://wiki.openstack.org/wiki/Project_Resources
https://wiki.openstack.org/wiki/Project_Resources
http://wiki.qt.io/Maintainers

0
2
0

4
0

6
0

8
0

1
0
0

P
ro

p
o
rt

io
n
 o

f
d
e
ve

lo
p
e
rs

 (
%

)

Qt
5.0

Qt
5.1

OpenStack
Folsom

OpenStack
Grizzly

OpenStack
Havana

OpenStack
Icehouse

(a) Minor author & major reviewer category

0
2
0

4
0

6
0

8
0

1
0
0

P
ro

p
o
rt

io
n
 o

f
d
e
ve

lo
p
e
rs

 (
%

)

Qt
5.0

Qt
5.1

OpenStack
Folsom

OpenStack
Grizzly

OpenStack
Havana

OpenStack
Icehouse

(b) Minor author & minor reviewer category

Figure 4: The distribution of developers of defective (blue) and clean (gray) modules when using RSOEven.
The horizontal lines indicates the median of distributions.

Table 3: Results of one-tailed Mann-Whitney U tests for the developers in defective and clean models.
RSOEven RSOProportional

Release Minor author &
minor reviewer

Minor author &
major reviewer

Major author &
minor reviewer

Major author &
major reviewer

Minor author &
minor reviewer

Minor author &
major reviewer

Major author &
minor reviewer

Major author &
major reviewer

5.0 D>C∗∗∗ (M) D<C∗∗∗ (L) D>C∗ (S) ◦ D>C∗∗∗ (M) D<C∗∗∗ (L) D>C∗ (S) ◦
5.1 D>C∗∗∗ (L) D<C∗∗∗ (L) D>C∗∗∗ (M) D<C∗∗∗ (M) D>C∗∗∗ (L) D<C∗∗∗ (L) D>C∗∗∗ (S) D<C∗∗∗ (M)

Folsom D>C∗∗∗ (L) D<C∗∗∗ (L) D<C∗ (S) D<C∗∗∗ (M) D>C∗∗∗ (L) D<C∗∗∗ (L) ◦ D<C∗∗∗ (L)
Grizzly D>C∗∗∗ (L) D<C∗∗∗ (L) ◦ D<C∗∗∗ (M) D>C∗∗∗ (L) D<C∗∗∗ (L) D>C∗ (N) D<C∗∗∗ (M)
Havana D>C∗∗∗ (L) D<C∗∗∗ (L) ◦ D<C∗∗∗ (M) D>C∗∗∗ (L) D<C∗∗∗ (L) D>C∗∗ (N) D<C∗∗∗ (L)
Icehouse D>C∗∗∗ (L) D<C∗∗∗ (M) ◦ D<C∗∗∗ (M) D>C∗∗∗ (L) D<C∗∗∗ (L) D>C∗∗∗ (S) D<C∗∗∗ (L)
Statistical significance: ◦p ≥0.05, *p <0.05, **p <0.01, ***p <0.001; Effect size: (L) Cliff’s δ ≥0.474, (M) 0.33≤ δ <0.474, (S) 0.147≤ δ <0.33, (N) δ <0.147

that when using either RSOEven or RSOProportional, the dif-
ferences are statistically significant, with medium or large
effect sizes. Our results indicate that post-release defects
occur less frequently in the modules with a large proportion
of developers in the minor author & major reviewer category
than those with a smaller proportion of developers in minor
author & major reviewer category.

Observation 5 — Conversely, defective modules
tend to have more developers in the minor author &
minor reviewer category than clean modules do. Fig-
ure 4(b) shows that when we use RSOEven, the proportion of
developers in the minor author & minor reviewer category
of defective modules is larger than that of clean modules.
Table 3 shows that the differences are statistically signifi-
cant, with medium or large effect sizes when using either
RSOEven or RSOProportional. Our results indicate that post-
release defects occur more frequently in the modules with a
large proportion of developers in the minor author & minor
reviewer category than those with a smaller proportion of
developers in minor author & minor reviewer category.

We observe similar differences among the defective and
clean modules for the major author & minor reviewer and
the major author & major reviewer categories. When we use
RSOEven, Table 3 shows that the proportion of developers
in the major author & minor reviewer category of defective
modules is significantly larger than that of clean modules,
with small or medium effect sizes for the Qt datasets. On
the other hand, the proportion of developers in the major
author & major reviewer category of defective modules is sig-
nificantly smaller than that of clean modules, with medium
effect sizes for the Qt 5.1 and all OpenStack datasets. We
obtain similar results when using RSOProportional.

Many minor authors are major reviewers who actually make
large contributions to the evolution of modules by reviewing
code changes. Code review activity can be used to refine tra-
ditional code ownership heuristics to more accurately iden-
tify the defect-prone modules.

(RQ3) Is there a relationship between review-
specific and review-aware code ownership heuris-
tics and defect-proneness?

Although in RQ2 we find that there is a relationship between
the expertise categories of review-aware heuristics and the
tendency of having post-release defects in modules of the
studied datasets, their effects could be correlated with other
metrics that are known to share a relationship with defect
proneness (e.g., module size) [55]. Hence, we examine the
impact that review-specific and review-aware code owner-
ship heuristics can have on defect-proneness using defect
models that control for several confounding factors.
Approach. Similar to Bird et al. and other work [7, 10, 30,
55], our main goal of building defect models is not to predict
defect-prone modules, but to understand the relationship
between the explanatory variables and defect-proneness. To
build defect models, we use logistic regression models to fit
our studied datasets. Similar to our prior work [30], we
adopt a nonlinear regression modeling approach, which en-
hances the fit of the data to be more accurate and robust,
while carefully considering the potential for overfitting [18].

Our models operate at the module-level, where the re-
sponse variable is assigned a value of TRUE if a module
has at least one post-release defect, and FALSE otherwise.
The explanatory variables are outlined in Table 4. Similar
to prior work [7], we estimate the traditional and review-
specific code ownership for a module by using the largest
TCO and RSO values of the developers who contributed to
that module. We also estimate the review-aware ownership
for a module by computing the proportion of developers in
each expertise category (cf. RQ2). Furthermore, in addi-
tion to the product and process metrics (i.e., size, churn,
and entropy), we control for the number of contributors, au-
thors, and reviewers in our models, since these metrics may
have an impact on defect-proneness. Figure 5 provides an
overview of the model construction and analysis approaches,
which we describe below.

Table 4: A taxonomy of the considered control (top)
and code ownership metrics (bottom).
Metrics Description
Control Metrics
Size Number of lines of code.
Churn Sum of added and removed lines of code.
Entropy Distribution of changes among files.
#Contributor The number of developers who contribute by

authoring or reviewing code changes to the
module.

#Author The number of developers who have authored
code changes to the module.

#Reviewer The number of developers who have reviewed
code changes to the module.

Code Ownership Metrics
Top TCO The traditional code ownership value of the

developer who authored the most code changes
to the module.

Top RSO The review-specific ownership value of the de-
veloper who reviewed the most code changes
to the module.

Review-Aware Ownership Metrics
Proportion of minor author
& major reviewer

A proportion of developers in the minor author
& major reviewer category.

Proportion of major author
& major reviewer

A proportion of developers in the major author
& major reviewer category.

Proportion of minor author
& minor reviewer

A proportion of developers in the minor author
& minor reviewer category.

Proportion of major author
& minor reviewer

A proportion of developers in the major author
& minor reviewer category.

Minimize collinearity : We remove highly correlated ex-
planatory variables before constructing our models to re-
duce the risk that those correlated variables interfere with
our interpretation of the models. We measure the correlation
between explanatory variables using Spearman rank correla-
tion tests (ρ), which are resilient to data that is not normally
distributed. We then use a variable clustering analysis ap-
proach [44] to construct a hierarchical overview of the inter-
variable correlation and select one explanatory variable from
each cluster of highly-correlated variables, i.e., |ρ| > 0.7 [26].

We also check for redundant variables (i.e., variables that
do not offer a unique signal with respect to the other vari-
ables). We use the redun function in the rms R package [19]
to detect redundant variables. However, we find that none of
the explanatory variables that survive our correlation anal-
ysis are redundant.

Fit logistic regression models: In fitting our models, we
carefully relax the linearity of the modeled relationship be-
tween explanatory and response variables, while being mind-
ful of the risk of overfitting. To do so, we only allocate ad-
ditional degrees of freedom (i.e., the number of regression
parameters) to the explanatory variables that have more
potential for sharing a nonlinear relationship with the re-
sponse variable. We measure the potential for nonlinearity
in the relationship between explanatory and response vari-
ables using a calculation of the Spearman multiple ρ2. We
then allocate five, three, and one degree of freedom to the
explanatory variables that have strong (ρ2 > 0.3), moder-
ate (0.15 < ρ2 ≤ 0.3), and weak (ρ2 ≤ 0.15) potential for
nonlinearity relationship, respectively.

Assess models and reliability : After fitting our defect mod-
els, we measure how well a model can discriminate between
the potential response using the Area Under the receiver op-
erating characteristic Curve (AUC) [17]. Furthermore, we
evaluate the reliability of our models, since AUC can be too
optimistic if the model is overfit to the dataset. Similar to
our prior work [30], we estimate the optimism of AUC using

Model Construction Model Analysis

Response

variable

Explanatory

variables

Module

data

Minimize

collinearity

Assess model and

reliability

Analyze explanatory

variables

Fit logistic

regression

model

Figure 5: An overview of defect model construction
and analysis approaches.

a bootstrap-derived approach [11]. Small optimism values
indicate that the model does not suffer from overfitting.

Analyze explanatory variables: We first measure the power
of the explanatory variables that contribute to the fit of our
models using Wald statistics. We use the anova function in
the rms R package [19] to estimate the explanatory power
(Wald χ2) and the statistical significance (p-value) of each
explanatory variable in our models. The larger the Wald χ2

value, the larger the explanatory power of that variable.
We then examine the explanatory variables in relation to

the predicted likelihood of module defect-proneness. We
use the Predict function in the rms R package [19] to plot
changes in the estimated likelihood of defect-proneness while
varying one explanatory variable under test and holding the
other explanatory variables at their median values.
Results. During correlation analysis, we find that the top
TCO, the number of contributors, authors, and reviewers are
often highly correlated. We select the number of contribu-
tors as the representative for these variables, since the num-
ber of contributors is simpler to calculate and can capture
the number of both authors and reviewers. After remov-
ing the highly correlated variables, we repeat the variables
clustering analysis and find that the number of contributors,
the proportions of minor author & major reviewer and mi-
nor author & minor reviewer are highly correlated. We opt
to remove the number of contributors, since the proportion
of minor author & major reviewer and minor author & mi-
nor reviewer metrics are already controlled by the number
of contributors. We also remove the proportion of minor
author & major reviewer, since we want to revisit the rela-
tionship between the proportion of minor contributors (i.e.,
minor author & minor reviewer) and defect-proneness. For
the sake of completeness, we analyze models that use the
proportion of minor author & major reviewer instead of the
proportion of minor author & minor reviewer, and found
that the proportion of minor author & major reviewer had
no discernible impact on model performance.

Table 5 shows that when using RSOEven to estimate review-
specific and review-aware ownership, our defect models achieve
an AUC of between 0.81 (Qt 5.0 and OpenStack Icehouse)
and 0.89 (OpenStack Havana). The AUC optimism is also
relatively small ranging from 0.01 (OpenStack Havana and
Icehouse) to 0.03 (OpenStack Folsom). We obtain similar
model statistics when using RSOProportional. The AUC val-
ues of the RSOProportional models range from 0.81 (Qt 5.0)
to 0.87 (Qt 5.1 and OpenStack Havana), with an AUC opti-
mism of 0.01-0.03. Since RSOEven models use a simpler ap-
proximation of review-specific and review-aware ownership,
we report our observations of the explanatory variables in
the RSOEven models below.
Observation 6 — The proportion of developers in

the minor author & minor reviewer category shares
a strong relationship with post-release defect prone-

Table 5: Statistics of defect models where review-specific and review-aware ownership are estimated using
RSOEven. The explanatory power (χ2) of each variable is shown in a proportion to Wald χ2 of the model.

Qt 5.0 Qt 5.1 OpenStack Folsom OpenStack Grizzly OpenStack Havana OpenStack Icehouse
AUC 0.81 0.86 0.89 0.83 0.88 0.81

AUC optimism 0.02 0.02 0.03 0.02 0.01 0.01
Wald χ2 48∗∗∗ 81∗∗∗ 57∗∗∗ 68∗∗∗ 114∗∗∗ 93∗∗∗

Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear Overall Nonlinear

Size
D.F. 2 1 2 1 2 1 2 1 2 1 2 1
χ2 13%∗ 0%◦ 4%◦ 1%◦ 24%∗∗∗ 10%∗ 13%∗ 0%◦ 4%◦ 0%◦ 27%∗∗∗ 1%◦

Churn
D.F. 1

−
1

−
1

−
1

−
1

−
1

−
χ2 4%◦ 0%◦ 0%◦ 1%◦ 15%∗∗∗ 12%∗∗

Entropy
D.F. 1

−
1

−
1

−
1

−
1

−
1

−
χ2 1%◦ 2%◦ 6%◦ 2%◦ 0%◦ 2%◦

Top TCO
D.F.

† †
1 4 3 2 1

†
χ2 5%◦ 13%◦ 2%◦ 1%◦ 0%◦

Top RSOEven
D.F. 1

−
1

−
1

−
1

−
1

−
1

−
χ2 0%◦ 5%∗ 2%◦ 6%∗ 0%◦ 4%◦

Major author & major reviewer
D.F. 1

−
2 1 2 1 2 1 1

−
1

−
χ2 11%∗ 8%∗ 1%◦ 14%∗ 6%◦ 2%◦ 1%◦ 3%∗ 2%◦

Minor author & minor reviewer
D.F. 2 1 4 3 4 3 2 1 4 3 2 1
χ2 46%∗∗∗ 4%◦ 42%∗∗∗ 8%◦ 10%◦ 9%◦ 11%∗ 6%∗ 32%∗∗∗ 6%◦ 13%∗∗ 1%◦

Major author & minor reviewer
D.F. 1

−
2 1 1

−
1

−
1

−
1

−
χ2 6%◦ 1%◦ 0%◦ 5%◦ 3%◦ 1%◦ 3%◦

†: Discarded during variable clustering analysis (|ρ| ≥ 0.7)
The number of contributors, authors, reviewers, and the proportion of minor author & major reviewer are also discard during variable clustering analysis.

−: Nonlinear degrees of freedom not allocated.
Statistical significance of explanatory power according to Wald χ2 likelihood ratio test: ◦p ≥ 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001

ness. Table 5 shows that the proportion of minor author &
minor reviewer contributes a significant amount of explana-
tory power to the fit of our models (shown in the overall
Wald χ2 column). The OpenStack Folsom model is the
only one where the proportion of minor author & minor
reviewer did not contribute a significant amount of explana-
tory power. Furthermore, we observe that the proportion
of minor author & minor reviewer accounts for most of the
explanatory power in the Qt 5.0, Qt 5.1, and OpenStack
Havana models. This result indicates that the rate of con-
tributors who lack both authorship and reviewing expertise
in a module shares a strong relationship between with the
post-release quality.

Table 5 also shows that the additional degrees of freedom
that we allocate to the proportion of minor author & minor
reviewer did not contribute a significant amount of explana-
tory power to the fit of our models (shown in the nonlinear
Wald χ2 column). This result indicates that there was no
significant benefit in spending additional degrees of freedom
on this metric—the relationship is primarily log-linear.

Observation 7 — Modules with a higher rate of
developers in the minor author & minor reviewer
category are more likely to be defect-prone. Figure
6 shows that there is an increasing trend in the probabil-
ity that a typical module will have post-release defects as
the proportion of minor author & minor reviewer increases.
The narrow breadth of the confidence interval (gray area)
indicates that there is sufficient data to support the curve.
Moreover, Figure 6 shows that the probability of having
post-release defects rapidly increases when the proportion
of minor author & minor reviewer increases beyond 0.5 in
the Qt 5.0, Qt 5.1, OpenStack Grizzly and Havana models.

We also analyze the defect models that use the propor-
tion of minor author & major reviewer instead of the pro-
portion of minor author & minor reviewer. We find that the
proportion of minor author & major reviewer contributes a
significant amount of explanatory power to the Qt 5.0, Qt
5.1, OpenStack Havana and Icehouse models. Furthermore,
we observe that there is an inverse relationship between the
proportion of minor author & major reviewer and the prob-

ability that a typical module will have post-release defects in
the Qt 5.0, Qt 5.1, OpenStack Havana and Icehouse models.
This result indicates that the larger the proportion of devel-
opers in the minor author & major reviewer category, the
lower the likelihood of a module having post-release defects.

Even when we control for several confounding factors, the
proportion of developers in the minor author & minor re-
viewer category shares a strong relationship with defect-
proneness. Indeed, modules with a larger proportion of de-
velopers without authorship or reviewing expertise are more
likely to be defect-prone.

5. PRACTICAL SUGGESTIONS
In this section, we discuss the broader implications of our

observations by offering the following suggestions:

(1) Code review activity should be included in fu-
ture approximations of code ownership.
Observations 1 and 2 show that apart from the devel-
opers who author code changes to a module, there are
major contributors who only contribute to that mod-
ule by reviewing code changes. Furthermore, observa-
tion 3 shows that many developers who were identified
as minor contributors by traditional code ownership
heuristics are actually major contributors when their
code review contributions are taken into consideration.

(2) Teams should apply additional scrutiny to mod-
ule contributions from developers who have nei-
ther authored nor reviewed many code changes
to that module in the past.
Observation 5 shows that modules with post-release
defects tend to have a larger proportion of minor au-
thors who are also minor reviewers than modules with-
out post-release defects do. Furthermore, observations
6 and 7 show that the proportion of developers in
the minor author & minor reviewer category shares
a strong increasing relationship with the likelihood of
having post-release defects in a module, even when we
control for several confounding factors.

Qt 5.0 Qt 5.1 OpenStack Grizzly OpenStack Havana OpenStack Icehouse

0.00

0.25

0.50

0.75

1.00

0 0.25 0.50 0.75 0 0.25 0.50 0.75 0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1 0 0.25 0.50 0.75 1
Proportion of minor author & minor reviewer

P
ro

b
a

b
ili

ty

Figure 6: The estimated probability in a typical module for the proportion of developers in the minor author
& minor reviewer category ranging. The gray area shows the 95% confidence interval.

(3) A module with many developers who have not
authored many code changes should not be con-
sidered risky if those developers have reviewed
many of the code changes to that module.
While observations 6 and 7 confirm the findings of
prior work [7, 38], i.e., the number of minor contrib-
utors shares a relationship with defect-proneness, we
find that the proportion of developers in another cate-
gory of minor authors (i.e., minor author & major re-
viewer) shares an inverse relationship with the defect-
proneness (see RQ3). Indeed, observation 4 shows that
modules without post-release defects tend to have a
larger proportion of developers in minor author & ma-
jor reviewer than modules with post-release defects do.

6. THREATS TO VALIDITY
We now discuss the threats to the validity of our study.

External validity. We focus our study on two open source
systems, due to the low number of systems that satisfied our
eligibility criteria for analysis (see Section 3.1). Thus, our
results may not generalize to all software systems. However,
the goal of this paper is not to build a theory that applies to
all systems, but rather to show that code review activity can
have an impact on code ownership approximations. Our re-
sults suggest that code review activity should be considered
in future studies of code ownership. Nonetheless, additional
replication studies are needed to generalize our results.
Construct validity. Our analysis is focused on the code
review activity that is recorded in the code review tools of
the studied systems, i.e., Gerrit. However, there are likely
cases where developers perform code reviews through other
communication media, such as through in-person discus-
sions [4], a group IRC [46], or a mailing list [15, 41]. Unfor-
tunately, there are no explicit links of code changes to those
communication threads, and recovering these links is a non-
trivial research problem [2, 6]. Nevertheless, we perform our
study on modules where every code change could be linked
to the reviews in Gerrit, which should capture the majority
of the review discussion in the studied systems.

Since we identify defect-fixing changes using keyword-based
approach, there are likely cases that our defect data is in-
accurate [5]. To evaluate this, we measure the accuracy
of our approach by manually examining samples of defect-
fixing changes. For each studied system, we randomly select
50 code changes that are flagged as bug-fixing changes by
our keyword-based approach. We find that 88%-92% of the
sampled code changes are correctly identified.
Internal validity. We identify developers who post at

least one review comment as reviewers of a module, although
some of the identified reviewers may only leave superficial or
unrelated review comments [8, 36]. We attempt to mitigate
this risk with our RSOProportional heuristic, which allocates
less ownership value for reviewers who provide less feedback.
We find that the results of our study using RSOProportional

heuristic are similar to the results using the simpler, RSOEven

heuristic, which allocates an even share of the ownership
value to every reviewer of a code change. This suggests that
the noise of reviewer contributions is not heavily biasing our
results. Nonetheless, we plan to explore more advanced re-
view contribution heuristics in future work.

In this paper, we opt to measure RSO and TCO values
separately. Even when they are combined in our the review-
aware ownership heuristics, the values are plotted on or-
thogonal axes rather than summed. Summation of RSO
and TCO values may have a different association with soft-
ware quality. However, since reviewing and authoring are
different activities, a naive summation may not be desired.
Additional work is needed to investigate appropriate means
of computing a generic expertise metric.

There may still be cases where developers who make many
contributions by either authoring or reviewing code changes
are not the actual owner of the modules. Unfortunately,
ground truth data is not available for us to validate against.
Nevertheless, we use a list of core developers that is available
in the documentation of the studied systems to validate our
heuristics. Our results also show that many of these core
developers can only be module owners if their code review
contributions are considered in code ownership heuristics.

7. RELATED WORK
In this section, we discuss the related work with respect

to code review and code ownership dimensions.
Code review. Defect prevention is not the sole concern of
modern code reviews [41, 49]. Beller et al. find that review
comments are often focused on improving maintainability
rather than fixing defects [4]. Tsay et al. report that re-
viewers are concerned with the appropriateness of a code
solution and often provide alternative solutions during code
reviews [52]. Bacchelli and Bird find that code reviews at
Microsoft provide additional benefits to development teams,
such as knowledge transfer among team members [1]. Our
study shows that the review contributions of developers can
be used to estimate their module-specific expertise.

Other recent work has analyzed the usefulness of code
reviews in the MCR process. Rigby et al. investigate sev-
eral factors that have an impact on the effectiveness of code

reviews [40]. Bosu et al. uncover characteristics of useful
review comments and investigate the factors that influence
the comment usefulness density in Microsoft projects [8].
Baysal et al. also study the influence of many technical and
non-technical factors on the timeliness of code reviews in
the WebKit and Google Blink open source projects [3]. In-
spired by these studies, we propose RSOProportional in order
to take the number of review comments into an account
when weighting review contributions.

Several studies propose an approach to optimize the code
review processes. Shull et al. report that perspective-based
reviews catch 35%more defects than non-directed reviews [48].
Rigby and Bird find that two reviewers find an optimal num-
ber of defects [39]. Recent work also proposes approaches to
find reviewers who should be included in a review [51, 53, 54].
In this paper, our results suggest that reducing the propor-
tion of developers who neither author nor review many code
changes in a module tends to decrease the likelihood of hav-
ing defects in the future.

Moreover, many recent studies have investigated the effect
that MCR has on software quality. Meneely et al. analyzed
the association between review activities and the risk of hav-
ing security-related problems [31]. Our prior work investi-
gates the relationship between developer involvement in the
code review process and the incidence of post-release defects
in several open source projects [29, 30]. Morales et al. also
examine the impact that review investment has on software
design quality [34]. Moreover, our recent work investigates
code review activity in the files that have been defective in
the past, and files that will be defective in the future [50]. In
this paper, our results show that the review-aware ownership
heuristics shares a strong relationship with the likelihood of
having post-release defects in a module.

This related work strengthens our assertion that reviewers
make a non-trivial contribution to the evolution of a soft-
ware system. In this paper, we argue that this non-trivial
contribution of reviewers should be taken into consideration
when approximating code ownership. Our results indicate
that reviewing activity can indeed be used to refine exist-
ing code ownership heuristics, narrowing their focus to the
developers who truly lack module-specific expertise.
Code ownership. Prior work has shown that the code au-
thorship can be used to estimate developer expertise. Mockus
and Herbsleb use Experience Atoms (EA), i.e., the develop-
ment and maintenance tasks that a developer has completed,
as a measure of developer expertise [33]. Schuler and Zim-
mermann create an expertise profile from a set of methods
that developers have implemented or referenced [45]. We
find that code review activities also should be considered
when estimating developer expertise.

Several studies also use code authorship to identify the
defect-prone modules. Pinzger et al. show that contribu-
tion networks that are built from author contributions can
accurately identify defect-prone modules in the Microsoft
Vista system [37]. Meneely et al. examine the association
between the number of commits that developers have made
to a module and the incidence of security-related problems
in the Red Hat Enterprise Linux 4 kernel [32]. Matsumoto et
al. also find that developer metrics, e.g., the code churn or
the number of commits that are generated by each devel-
oper are good indicators of defect-prone source code files
in the Eclipse Platform project [28]. Furthermore, recent
work studies the relationship between software quality and

code ownership approximations that are derived from code
authorship data. Nagappan et al. study the influence that
organizational structure has on software quality [35]. Bird et
al. find that code ownership of developers shares a strong re-
lationship with defect-proneness [7]. Rahman and Devanbu
also report that an area of source code that has been associ-
ated with defects in the past tends to be written by develop-
ers with low code ownership [38]. We find that refining code
authorship by using code review activities provides a more
comprehensive picture of the association between developer
contributions and software quality.

On the other hand, recent work by Fritz et al. shows that
authorship data was not strongly associated with knowledge
about a module [12]. Indeed, several studies complement au-
thorship data with the data recorded during developer IDE
activities to compute developer expertise [13, 21, 42]. Sim-
ilar to these studies, our study aims to incorporate another
overlooked source of expertise data—we adapt traditional
code ownership heuristics to include code review activity.

8. CONCLUSIONS
Code ownership heuristics have been used in many studies

for identifying the developers who are responsible for main-
taining modules. These heuristics are traditionally com-
puted using code authorship contributions. However, de-
velopers can also make important contributions to modules
by critiquing code changes during the code review process.

In this paper, we extend the traditional code ownership
heuristics to be: (1) review-specific, i.e., a code ownership
approximation that is derived solely using review contribu-
tions and (2) review-aware, i.e., a code ownership approx-
imation that is derived using both authorship and review
contributions. Through a case study of six releases of the
large Qt and OpenStack open source systems, we make the
following observations:

– 67%-86% of developers only contribute to a module
by reviewing code changes. 18%-50% of these review-
only contributors are documented core developers of
the studied systems (Observations 1 and 2).

– 13%-58% of developers who are flagged as minor con-
tributors by traditional code ownership heuristics are
actually major contributors when their code review ac-
tivity is considered (Observation 3).

– When traditional code ownership heuristics are refined
by code review activity, we find that modules without
post-release defects tend to have a higher rate of devel-
opers in the minor author & major reviewer category,
but a lower rate of developers in the minor author
& minor reviewer category than modules with post-
release defects do (Observations 4 and 5).

– Even when we control for several factors that are known
to have an impact on software quality, the proportion
of developers in the minor author & minor reviewer
category shares a strong, increasing relationship with
the likelihood of having post-release defects in a mod-
ule (Observations 6 and 7).

Our results suggest that future approximations of code own-
ership should take code review activity into consideration in
order to more accurately model the contributions that devel-
opers have made to evolve software systems and to identify
defect-prone modules.

9. REFERENCES

[1] A. Bacchelli and C. Bird. Expectations, Outcomes, and
Challenges Of Modern Code Review. In Proceedings
of the 35th International Conference on Software Engi-
neering, pages 712–721, 2013.

[2] A. Bacchelli, M. Lanza, and R. Robbes. Linking E-
Mails and Source Code Artifacts. In Proceedings of the
32nd International Conference on Software Engineer-
ing, pages 375–384, 2010.

[3] O. Baysal, O. Kononenko, R. Holmes, and M. W. God-
frey. Investigating Technical and Non-Technical Factors
Influencing Modern Code Review. Empirical Software
Engineering, page to appear, 2015.

[4] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens.
Modern Code Reviews in Open-Source Projects: Which
Problems Do They Fix? In Proceedings of the 11th
International Working Conference on Mining Software
Repositories, pages 202–211, 2014.

[5] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. Devanbu. Fair and Balanced? Bias in
Bug-Fix Datasets. In Proceedings of the 7th joint meet-
ing of the European Software Engineering Conference
and the International Symposium on the Foundations
of Software Engineering, pages 121–130, 2009.

[6] C. Bird, A. Gourley, and P. Devanbu. Detecting Patch
Submission and Acceptance in OSS Projects. In Pro-
ceedings of the 4th International Working Conference
on Mining Software Repositories, pages 26–29, 2007.

[7] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. De-
vanbu. Don’t Touch My Code! Examining the Effects
of Ownership on Software Quality. In Proceedings of
the 8th joint meeting of the European Software Engi-
neering Conference and the Internaltional Symposium
on the Foundations of Software Engineering, pages 4–
14, 2011.

[8] A. Bosu, M. Greiler, and C. Bird. Characteristics
of Useful Code Reviews: An Empirical Study at Mi-
crosoft. In Proceedings of the 12th International Work-
ing Conference on Mining Software Repositories, pages
146–156, 2015.

[9] B. Caglayan, B. Turhan, A. Bener, M. Habayeb, A. Mi-
ransky, and E. Cialini. Merits of Organizational Met-
rics in Defect Prediction: An Industrial Replication.
In Proceedings of the 37th International Conference on
Software Engineering, pages 89–98, 2015.

[10] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herb-
sleb. Software Dependencies, Work Dependencies, and
Their Impact on Failures. Transactions on Software
Engineering, 35(6):864–878, 2009.

[11] B. Efron. How Biased is the Apparent Error Rate of a
Prediction Rule? Journal of the American Statistical
Association, 81(394):461–470, 1986.

[12] T. Fritz, G. C. Murphy, and E. Hill. Does a Pro-
grammer’s Activity Indicate Knowledge of Code? In
Proceedings of the 6th joint meeting of the European
Software Engineering Conference and the International
Symposium on the Foundations of Software Engineer-
ing, pages 341–350, 2007.

[13] T. Fritz, J. Ou, G. C. Murphy, and E. Murphy-Hill. A
Degree-of-Knowledge Model to Capture Source Code
Familiarity. In Proceedings of the 32nd International
Conference on Software Engineering, pages 385–394,
2010.

[14] M. Greiler, K. Herzig, and J. Czerwonka. Code Owner-
ship and Software Quality: A Replication Study. In
Proceedings of the 12th International Working Con-
ference on Mining Software Repositories, pages 2–12,
2015.

[15] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and
A. Van Deursen. Communication in Open Source Soft-
ware Development Mailing Lists. In Proceedings of the
10th International Working Conference on Mining Soft-
ware Repositories, pages 277–286, 2013.

[16] K. Hamasaki, R. G. Kula, N. Yoshida, C. C. A. Erika,
K. Fujiwara, and H. Iida. Who does what during a
Code Review? An extraction of an OSS Peer Review
Repository. In Proceedings of the 10th International
Working Conference on Mining Software Repositories,
pages 49–52, 2013.

[17] J. A. Hanley and B. J. McNeil. The Meaning and
Use of the Area under a Receiver Operating Charac-
teristic Curve. Radiological Society of North America,
143(1):29–36, 1982.

[18] F. E. Harrell Jr. Regression Modeling Strategies: With
Application to Liniear Models, Logistic Regression, and
Survival Analysis. Springer, 1st edition, 2002.

[19] F. E. Harrell Jr. rms: Regression Modeling Strategies,
2015.

[20] A. E. Hassan. Predicting Faults Using the Complex-
ity of Code Changes. In Proceedings of the 31st In-
ternational Conference on Software Engineering, pages
78–88, 2009.

[21] L. P. Hattori, M. Lanza, and R. Robbes. Refining code
ownership with synchronous changes. Empirical Soft-
ware Engineering, 17(4-5):467–499, 2012.

[22] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan,
A. Mockus, A. Sinha, and N. Ubayashi. A Large-Scale
Empirical Study of Just-in-Time Quality Assurance.
Transactions on Software Engineering, 39(6):757–773,
2013.

[23] P. Kampstra. Beanplot: A Boxplot Alternative for Vi-
sual Comparison of Distributions. Journal of Statistical
Software, 28(1):1–9, 2008.

[24] S. Kim, J. Whitehead Jr., and Y. Zhang. Classifying
Software Changes: Clean or Buggy? Transactions on
Software Engineering, 34(2):181–196, 2008.

[25] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and
M. W. Godfrey. Investigating Code Review Quality: Do
People and Participation Matter? In Proceedings of the
31st International Conference on Software Maintenance
and Evolution, pages 111–120, 2015.

[26] H. C. Kraemer, G. A. Morgan, N. L. Leech, J. A. Gliner,
J. J. Vaske, and R. J. Harmon. Measures of Clinical
Significance. Journal of the American Academy of Child
& Adolescent Psychiatry, 42(12):1534–1529, 2003.

[27] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma.
Cliff’s Delta Calculator: A Non-parametric Effect Size
Program for Two Groups of Observations. Universitas
Psychologica, 10:545–555, 2011.

[28] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto,
and M. Nakamura. An Analysis of Developer Metrics
for Fault Prediction. In Proceedings of the 6th Inter-
national Conference on Predictive Models in Software
Engineering, pages 18:1–18:9, 2010.

[29] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan.
The Impact of Code Review Coverage and Code Review
Participation on Software Quality. In Proceedings of
the 11th International Working Conference on Mining
Software Repositories, pages 192–201, 2014.

[30] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan.
An Empirical Study of the Impact of Modern Code Re-
view Practices on Software Quality. Empirical Software
Engineering, page to appear, 2015.

[31] A. Meneely, A. C. R. Tejeda, B. Spates, S. Trudeau,
D. Neuberger, K. Whitlock, C. Ketant, and K. Davis.
An Empirical Investigation of Socio-technical Code Re-
view Metrics and Security Vulnerabilities. In Proceed-
ings of the 6th International Workshop on Social Soft-
ware Engineering, pages 37–44, 2014.

[32] A. Meneely and L. Williams. Secure Open Source Col-
laboration: An Empirical Study of Linus’ Law. In Pro-
ceedings of the 16th Conference on Computer and Com-
munications Security, pages 453–462, 2009.

[33] A. Mockus and J. D. Herbsleb. Expertise Browser: A
Quantitative Approach to Identify Expertise. In Pro-
ceedings of the 24th International Conference on Soft-
ware Engineering, pages 503–512, 2002.

[34] R. Morales, S. McIntosh, and F. Khomh. Do Code Re-
view Practices Impact Design Quality? A Case Study
of the Qt, VTK, and ITK Projects. In Proceedings of
the 22nd International Conference on Software Analy-
sis, Evolution, and Reengineering, pages 171–180, 2015.

[35] N. Nagappan, B. Murphy, and V. R. Basili. The Influ-
ence of Organizational Structure on Software Quality:
An Empirical Case Study. In Proceedings of th 30th In-
ternational Conference on Software Engineering, pages
521–530, 2008.

[36] T. Pangsakulyanont, P. Thongtanunam, D. Port, and
H. Iida. Assessing MCR Discussion Usefulness using
Semantic Similarity. In Proceedings of the 6th Interna-
tional Workshop on Empirical Software Engineering in
Practice, pages 49–54, 2014.

[37] M. Pinzger, N. Nagappan, and B. Murphy. Can
Developer-Module Networks Predict Failures? In Pro-
ceedings of the 16th International Symposium on Foun-
dations of Software Engineering, pages 2–12, 2008.

[38] F. Rahman and P. Devanbu. Ownership, Experience
and Defects: A Fine-Grained Study of Authorship. In
Proceedings of the 33rd International Conference on
Software Engineering, pages 491–500, 2011.

[39] P. C. Rigby and C. Bird. Convergent Contemporary
Software Peer Review Practices. In Proceedings of the
9th joint meeting of the European Software Engineer-
ing Conference and the International Symposium on the
Foundations of Software Engineering, pages 202–212,
2013.

[40] P. C. Rigby, D. M. German, L. Cowen, and M.-
a. Storey. Peer Review on Open-Source Software
Projects: Parameters, Statistical Models, and Theory.
Transactions on Software Engineering and Methodol-
ogy, 23(4):35:1–35:33, 2014.

[41] P. C. Rigby and M.-A. Storey. Understanding Broad-
cast Based Peer Review on Open Source Software
Projects. In Proceedings of the 33rd International Con-
ference on Software Engineering, pages 541–550, 2011.

[42] R. Robbes and D. Röthlisberger. Using developer in-
teraction data to compare expertise metrics. In Pro-
ceedings of the 10th International Working Conference
on Mining Software Repositories, pages 297–300, 2013.

[43] J. Romano, J. D. Kromrey, J. Coraggio, and
J. Skowronek. Appropriate Statistics for Ordinal Level
Data: Should We Really Be Using T-Test and Cohen’s
d for Evaluating Group Differences on the NSSE and
Other Surveys? In the annual meeting of the Florida
Association of Institutional Research, pages 1–33, 2006.

[44] W. S. Sarle. The VARCLUS Procedure. In SAS/STAT
User’s Guide. SAS Institute, Inc, 4th edition, 1990.

[45] D. Schuler and T. Zimmermann. Mining Usage Exper-
tise from Version Archives. In Proceedings of the 5th
International Working Conference on Mining Software
Repositories, pages 121–124, 2008.

[46] E. Shihab, Z. M. Jiang, and A. E. Hassan. Studying
the Use of Developer IRC Meetings in Open Source
Projects. In Proceedings of the 25th International Con-
ference on Software Maintenance, pages 147–156, 2009.

[47] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E.
Hassan. High-Impact Defects: A Study of Breakage and
Surprise Defects. In Proceedings of the 8th joint meet-
ing of the European Software Engineering Conference
and the Internaltional Symposium on the Foundations
of Software Engineering, pages 300–310, 2011.

[48] F. Shull, V. Basili, B. Boehm, A. W. Brown, P. Costa,
M. Lindvall, D. Port, I. Rus, R. Tesoriero, and
M. Zelkowitz. What We Have Learned About Fighting
Defects. In Proceedings of the 8th International Soft-
ware Metrics Symposium, pages 249–258, 2002.

[49] Y. Tao, D. Han, and S. Kim. Writing Acceptable
Patches: An Empirical Study of Open Source Project
Patches. In Proceedings of the 30th International Con-
ference on Software Maintenance and Evolution, pages
271–280, 2014.

[50] P. Thongtanunam, S. McIntosh, A. E. Hassan, and
H. Iida. Investigating Code Review Practices in De-
fective Files: An Empirical Study of the Qt System. In
Proceedings of the 12th International Working Confer-
ence on Mining Software Repositories, pages 168–179,
2015.

[51] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula,
N. Yoshida, H. Iida, and K.-i. Matsumoto. Who
Should Review My Code? A File Location-Based Code-
Reviewer Recommendation Approach for Modern Code
Review. In Proceedings of the the 22nd IEEE Interna-
tional Conference on Software Analysis, Evolution, and
Reengineering, pages 141–150, 2015.

[52] J. Tsay, L. Dabbish, and J. Herbsleb. Let’s Talk About
It: Evaluating Contributions through Discussion in
GitHub. In Proceedings of the 22nd International Sym-
posium on Foundations of Software Engineering, pages
144–154, 2014.

[53] X. Xia, D. Lo, X. Wang, and X. Yang. Who Should
Review This Change? Putting Text and File Loca-
tion Analyses Together for More Accurate Recommen-
dations. In Proceedings of the 31st International Con-
ference on Software Maintenance and Evolution, pages
261–270, 2015.

[54] M. Zanjani, H. Kagdi, and C. Bird. Automatically Rec-
ommending Peer Reviewers in Modern Code Review.
Transactions on Software Engineering, page to appear,
2015.

[55] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Mur-
phy. Characterizing and Predicting Which Bugs Get
Reopened. In Proceedings of the 34th International
Conference on Software Engineering, pages 1074–1083,
2012.

