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Abstract—Build systems automate the integration of source
code into executables. Maintaining build systems is known to
be challenging. Lax build maintenance can lead to costly build
breakages or unexpected software behaviour. Code review is a
broadly adopted practice to improve software quality. Yet, little
is known about how code review is applied to build specifications.

In this paper, we present the first empirical study of how
code review is practiced in the context of build specifications.
Through quantitative analysis of 502,931 change sets from the
Qt and Eclipse communities, we observe that changes to build
specifications are at least two times less frequently discussed
during code review when compared to production and test code
changes. A qualitative analysis of 500 change sets reveals that
(i) comments on changes to build specifications are more likely
to point out defects than rates reported in the literature for
production and test code, and (ii) evolvability and dependency-
related issues are the most frequently raised patterns of issues.
Follow-up interviews with nine developers with 1-40 years of
experience point out social and technical factors that hinder
rigorous review of build specifications, such as a prevailing lack of
understanding of and interest in build systems among developers,
and the lack of dedicated tooling to support the code review of
build specifications.

Index Terms—build systems, build specifications, code review

I. INTRODUCTION

Build systems orchestrate the process by which source
code is transformed into deliverables. The build process is
configured in build specifications, which describe the internal
and external dependencies and set up the build dynamics.
Build tools process build specifications to reason about the
order- and configuration-dependent commands that must be
invoked to produce the deliverables. Examples of such systems
are Maven,1 CMake,2 and Gradle.3

Studies suggest that lax build maintenance can have severe
and far-reaching consequences. A poorly maintained build
system may underperform [1], which can hinder development
progress as developers have to wait for slow feedback on
their change sets. For example, Zhang et al. [2] reported
that by skipping unnecessary re-compilations, builds can be
accelerated up to 44.20%. A poorly maintained build system
may also be prone to build breakages [3]–[5], which are
disruptive for developers, who need to stop what they are
doing and diagnose the failures. For example, Kerzazi et al.

1https://maven.apache.org/
2https://cmake.org/
3https://gradle.org/

[6] reported that in a six-month period, 893–2,133 person-
hours were lost due to build breakage in a commercial setting.
Perhaps most seriously, a poorly maintained build system may
introduce defects that impact the behaviour of the software
in production environments. For example, the Knight Capital
Group lost $440 million in less than an hour when an outdated
piece of code in a module was resurrected due to an incorrect
configuration setting [7].

Code review, i.e., the practice of developers critiquing each
others’ change sets, is a lynchpin of modern software quality
assurance. Its technical and non-technical benefits are well-
documented in the literature [8]–[13], including increases
in code quality, peer mentorship, and knowledge transfer.
However, it is still unclear whether such a well-established
practice is applied to build specifications and what purposes
it serves in this context. Spadini et al. [14] found that even in
projects where code review is extensively performed, test files
are less likely to be discussed. We suspect that this might also
be true for build specifications.

Similar to test code, the review process for build specifi-
cations is perhaps even more important than production code.
Build specifications are rarely (if ever) systematically tested
themselves. Thus, the review process for build specifications
is often the only quality assurance step that is applied. Prior
work has also focused on the content of review discussions in
different contexts [10], [14]–[17]. However, to the best of our
knowledge, none have explored the problem in the context of
build specifications. As build code is inherently different from
source code (e.g., build code is often declarative rather than
imperative in nature), the prior findings are unlikely to apply
to the build context.

Therefore, we set out to conduct a mixed-method study [18]
to address the following research questions:
RQ1. How rigorously are build specifications reviewed?

Code review has been shown to improve code stability
and early defect detection [8], [10], [19]. A more
extensive review of changes increases the quality of
the software [20], [21]. Prior studies have shown that
as part of a software project, build specifications also
need to be maintained and controlled for their quality
[22]. To understand the extent to which code review is
applied to changes to build specifications, we analyze
502,931 change sets from the large and active Qt and
Eclipse communities. We compute popular measures
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of review intensity [23] for build specifications and
compare them to those of production and test code.
We find that changes to build specifications are at least
two times less likely to receive comments during code
review, even when the change is solely focused on the
build specifications.

RQ2. What are the purposes of the discussions on build
specifications? In line with prior studies [10], [14],
we aim to understand the purpose of the discussions
on changes to build specifications. Bacchelli and Bird
[10] discovered a set of categories that characterize the
expectations and outcomes of code review. Spadini et
al. [14] studied whether the same categories of concerns
are discussed during the reviews of test code. Informed
by those categories, we perform a closed coding [24]
analysis on comments raised during the review of
build specifications to investigate the purposes of the
discussions and whether they are similar to those of
production and test code. In some aspects, our study
yields similar observations to the ones reported in
the contexts of production and test code; however, in
other aspects, our results show that the build context
departs from the literature. For example, we observe
that comments about defects in the code are 15.6–20.6
percentage points more prevalent in the build context
when compared to the reported rates in the contexts
of production and test code, where understanding and
social communication categories are more prevalent
than the defect category.

RQ3. What are the patterns of issues discussed during
reviews of build specifications? Motivated by the
fundamental differences in the nature of build spec-
ifications, aside from the purpose of the comments,
we investigate what patterns of issues reviewers raise
during the review of build specifications. We do so to
understand whether maintenance of build specifications
calls for attention to specific issues. We perform an
open coding [25], followed by an open card sorting
[26] analysis on the comments raised during the review
of build specifications, resulting in a taxonomy of
14 issues, 10 of which are specific to build systems.
We find that code evolvability and dependency-related
issues are the most frequently raised issues.

RQ4. How do developers perceive the review of build
specifications? We aim to understand developers’ per-
spectives on code review of build specifications, the
current policies for the practice, and the challenges that
reviewers of build specifications face. To do so, we
conduct semi-structured interviews [27], [28] involving
nine practitioners, four with experience as core build
maintainers and three from our studied projects. We
thematically code [29] their responses to understand
prevailing perceptions. We find that eight of the inter-
viewees agree that the review of build specifications
is critical for software projects. Unfortunately, they
report that brunt of the reviewing burden is placed on

a small team of dedicated build maintainers. Finally,
interviewees mentioned a number of challenges that im-
pede a more rigorous review of build specifications. A
lack of developer attention to the maintenance of build
specifications (eight interviewees), their lack of interest
in and knowledge about the build technology being
used (eight interviewees), and poor tooling to support
build maintenance (six interviewees) were among the
most poignant responses.

Our results show that discussions on changes to build speci-
fications are infrequent, but often target a more pressing prob-
lem, i.e., defect detection. This, combined with our interview
results, suggest that the criticality of well-maintained build
specifications is still not fully perceived by the community.
Moreover, we believe engaging more developers in the review
of build specifications can have multiple positive impacts due
to the non-technical benefits of code review including knowl-
edge transfer and peer mentoring. It familiarizes developers
with build specifications, leading to fewer mistakes in build
specifications and knowledgeable reviewers. Finally, our study
reveals that build maintainers are in need of dedicated tools
that support the review of build specifications. For example,
a tool to enforce the correct coding style for build languages
was raised as a potential solution to the problem of lack of
knowledge about build languages.

II. RELATED WORK

In this section, we position our work in the current body
of research on the topics of code review and maintenance of
build systems.

A. Code Review

Prior studies have highlighted the benefits of code re-
view in terms of both technical (e.g., code quality) and
non-technical (e.g., team communication) properties [8]–[13].
Bacchelli and Bird [10] characterized the motivations for
code review, as well as its outcomes, and discovered nine
categories of purposes that code review serves, including code
improvement, finding defects, and knowledge transfer. Rigby
et al. [8] showed that up to 66% of the reviews successfully
detect bugs. Mäntylä and Lassenius [15] reported that 75% of
the discussions during code review raise concerns about the
evolvability of the system and Beller et al. [16] found that
75% of the fixes that occur during code review successfully
address maintainability concerns.

Noting the benefits of a well-conducted code review pro-
cess, Spadini et al. [14] investigated whether this practice
is equally applied to test code. They found that this shift
of context from production to test code is associated with a
decrease in the intensity of the code review process. They
reported that when changes impact both production and test
code, reviewers tend to favour review of production code over
test code. However, they discovered that review of test code
serves similar purposes to the review of production code.
Inspired by Spadini et al.’s work, we study the code review
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process in the context of build specifications to answer similar
research questions.

B. Maintenance of Build Systems

Studies have shown that extensive effort goes into the
maintenance of build systems. For example, Kumfert and
Epperly [30] showed that build systems impose up to 30%
of overhead in maintenance effort due to the maintenance
of build specifications. However, despite the costs of build
maintenance, its elimination can be even more cumbersome
as poor maintenance of the build specifications can have far
more expensive consequences. It can slow down the build
process [1], lead to build breakages [3]–[5], or result in
erroneous behaviour of the software.

Cao et al. [31] argued that a slow build negatively affects
the developers’ productivity and hinders the development
progress. They proposed an approach to forecast build du-
rations to aid developers in their scheduling of tasks. Other
studies aimed to alleviate this issue by accelerating the build
process through eliminating false dependencies from the build
specifications [32], [33], eliminating redundant compilations
[2], [33], or delaying test dependencies [34].

Kerzazi et al. [6] quantified the time developers expend
to address build breakages and reported that in a six-month
period, 893–2,133 person-hours were spent on this in a com-
mercial setting. To mitigate this issue, studies have focused
on automatically fixing build breakages. Macho et al. [22]
focused on dependency-related breakages and managed to
automatically address 54% of such build breakages. Hassan
and Wang [35] used historical data on build specification
patches and proposed an automated approach based on build-
fixing patterns.

The detection of build defects has also been studied.
Bezemer et al. [36] proposed an approach that could detect
unspecified internal dependencies of a project by analyzing
the specified dependencies in the build specifications and a
concrete model of files in the project. Sotiropoulos et al. [37]
proposed an approach that analyzed the dynamic behaviour of
the build to find defects in build specifications.

Much of the aforementioned work focused on mitigating the
consequences of poorly maintained build specifications. Our
work complements prior studies by investigating the extent to
which code review is leveraged to improve the maintenance
of build specifications

III. DATA PREPARATION

In this section, we describe how we prepare a meaningful
corpus of data to address our research questions. Figure 1
provides an overview of the data preparation process, which
is composed of three main steps: (A) selecting the subject
communities, (B) collecting review data from the communi-
ties, (C) cleaning review data, and (D) grouping the changed
files by their types. We elaborate on each of these below.

TABLE I: An overview of the subject communities.

Project # Changes # Unique
Files # Comments # Reviewers

Eclipse 163,702 957,091 182,730 1,667
Qt 339,229 1,049,480 565,429 2,596

A. Select Subject Communities

To select our subject communities, we follow Spadini et al.’s
[14] approach. We select communities that (1) perform code
review intensively, (2) incorporate Gerrit as their main code
review tool, and (3) review build specifications and test code.
Gerrit is a modern code review tool for Git-based projects.
This tool allows for a traceable code review process [20]. With
the exception of the build specifications condition, Spadini et
al. [14] applied the same criteria and studied Eclipse, Qt, and
OpenStack communities. The first two communities satisfy
our build specifications condition. However, OpenStack is a
Python-based project and does not include build specifications.
Therefore, we focus our analysis on Eclipse and Qt.

B. Collect Review Data

We extract the review data from the Gerrit instances of
our subject communities using the Gerrit REST API.4 We
issue a request for each of the review records from initial
adoption of Gerrit (2009 for Eclipse and 2011 for Qt) to the
time of our data collection (March 1st, 2022). Fewer than 1%
of our issued requests failed. Our inspection of the failure logs
reveals that the original review records have been deleted from
the Gerrit database. For each review, we store (meta)data about
the status of the review (e.g., merged, abandoned, open), as
well as the lists of modified files, reviewers, and comments
with their exact location in the files.

C. Clean Review Data

To prepare our data for analysis, we perform a set of
data cleaning steps. First, we select the merged reviews,
since changes with other statuses are still subject to ongoing
discussions. We only study changes that have been reviewed
by at least one reviewer [38], [39]—comments recorded by
bots5 and the author of the change are omitted from our
analysis. We filter out mega changes, i.e., changes affecting
more than 50 files [14], [38], [39]. This is because studies
have shown that code review is most effective when performed
on small, independent, and atomic changes, which allows the
reviewers to scrutinize the code closely [40]. We select the
threshold of 50 affected files in line with prior work [14] and
conduct a sensitivity analysis to confirm the suitability of the
threshold in our dataset. Our investigation yields that among
the merged changes with at least one reviewer, only 2.1%
affect 50 or more files (mega-changes), 48% of which affect
build specifications (1% of changes). For a threshold between
40 and 60 affected files, this number varies between 2.7% and

4https://gerrit-review.googlesource.com/Documentation/rest-api.html
5See the Data Cleaning section of our replication package7 for the list of

detected bot accounts.
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Fig. 1: An overview of our data preparation workflow.

1.7%. In fact, the number of affected files in changes follows
a power-law distribution and only 4.6% of the changes affect
25 or more files.

Since each review may contain one or more revisions, and
the same file can be modified in multiple versions, we focus
on whether a file has been modified during a review at any
revision rather than counting the number of times it is changed
within a single review. However, we retain the comments from
all versions, since these discussions are all relevant to the
review. Finally, we trim leading and trailing whitespace from
comments prior to measuring their length, since whitespace
does not add meaning. Table I shows descriptive statistics
about our corpus after this data cleaning step has been applied.

D. Group by File Types

Our quantitative analysis requires data on different file
types. For a comprehensive comparison with prior work [14],
we classify files into three categories: production, test, and
build specification files. Any file that is not classified under
one of these categories is disregarded.

To identify file types, we use file extension, naming and
location conventions. First, in line with Spadini et al. [14],
we assume that files containing source code are production
and test files. For each project, we only consider files written
in the project’s primary programming language, i.e., C++ for
Qt and Java for Eclipse. To do so, we match file extensions
.h and .cpp for Qt and .java for Eclipse as source code
files. Then, following Spadini et al.’s approach, we use naming
and file location conventions in the projects to design regular
expressions that match test files. Source files that do not match
this regular expression are labelled as production code. We
evaluate our regular expression by applying it to the data in the
replication package from Spadini et al.’s study.6 We find that
our approach yields similar production and test proportions
(within 0.30–0.65 percentage points) as those reported in their
prior work [14]. We suspect that the small discrepancies are
likely due to the additional data that has accrued since the
paper was published.

Lastly, to identify build specifications, we follow naming
conventions. As we only consider the primary programming

6https://doi.org/10.5281/zenodo.4075318

language in each project, we do the same for build systems.
Eclipse is built using Maven, so we identify pom.xml files
as build specifications. Qt was built using QMake, but is
now built using CMake. For QMake files, we match all files
with .pri and .pro extensions. For CMake, we match
CMakeLists.txt and .cmake files.

IV. QUANTITATIVE ANALYSIS (RQ1)
In this section, we aim to understand how rigorously build

specifications are reviewed. Below, we first describe our ap-
proach to the quantitative analysis and then present our results.

A. Approach

To answer RQ1, we measure and compare the comment
frequency and discussion intensity of production, test, and
build code. We employ metrics that have been previously
applied in the literature [23]. To measure discussion frequency,
we report the proportion of files with comments and present
the odds ratios for clear comparison among pairs of file types.
As a measure of discussion intensity, we analyze the number
of comments and their average length.

To draw comparisons and valid conclusions, we perform an
analysis over a grid of settings along two dimensions. First, as
our initial inspections over the corpus suggest that the majority
of modifications to the files are not discussed (only 11.79% of
modifications to the subject types of files receive comments),
we perform our analysis in the following two settings:

• Discussed reviews: This setting selects only the reviews
with at least one comment on one of the subject file types.
This analysis controls for the skew from the large portion
of non-discussed reviews, i.e., reviews in which all files
have zero comments.

• All reviews: This setting does not omit any reviews.
Second, we conjecture that reviewing multiple software arti-
facts simultaneously may alter reviewer behaviour. Hence, we
conduct our analysis in another two settings:

• Cross-artifact setting: For each comparison between file
types, we only consider reviews that modify both of the
file types. This will indicate how differently file types are
treated by reviewers when their changes are coupled.

• Isolated setting: We focus on reviews that modify only
one file type.
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B. Results

Tables II and III provide an overview of the results of our
quantitative analysis. We perform comparisons between pairs
of production code, test code, and build specifications over
the grid of our settings. We structure the discussion of results
around our key observations. Detailed results for all settings
are included in our online appendix.7

Discussion occurrence frequency. Reviews of both produc-
tion and test code are at least two times more likely to include
comments when compared to reviews of build specifications.
This observation holds in both cross-artifact and isolated set-
tings. Table II shows that the proportions of reviews receiving
comments in the cross-artifact setting are 14.18% against
7.18% and 12.45% against 6.59% for production and test
code, respectively, when compared against build specifications.
Similarly, in the isolated setting, only 5.87% of the reviews
of the build specifications receive comments, while 16.61%
of the reviews of production code and 12.52% of the reviews
of test code in this setting receive comments. The odds ratios
reported in Table III further support this observation, ranging
from 2.02 to 2.30 in all settings for production and test code
compared against build specifications.

Finding 1. Build specifications are at least two times
less frequently discussed during code review than pro-
duction and test code, even when build specifications
are the sole focus of the review.

Discussion intensity. We estimate discussion intensity using
the average length of discussion (in terms of the number of
comments) and the average length of the comments. When
analyzing the intensity of the discussions, we notice that the
differences are much smaller in the all reviews setting than
the discussed reviews setting. This is due to the multitude of
the non-discussed reviews (only 11.79% of the modifications
on production code, test code, or build specifications receive
comments) for which all file types have zero comments.
Therefore, we focus the remainder of the analysis of discussion
intensity on the discussed reviews setting.

In the cross-artifact setting, the discussions of production
and test code are composed of more comments than those of
build specifications; however, the comments tend to be shorter.
In the isolated setting, there is no statistically significant
difference in discussion intensities, i.e., although we observe
that in the isolated setting, review discussions about build
specifications are less frequent than that of production and
test code, when a discussion does occur, the intensity of the
discussion is not substantially different for any of the file types.

In the cross-artifact setting, discussions on production and
test code take 5.41 and 4.59 comments, respectively, whereas
build specifications take 3.00 and 2.68 comments, respectively.
The differences are statistically significant (Wilcoxon signed
rank test, p < 2.0 × 10−16). When build specifications and

7https://doi.org/10.5281/zenodo.7042930

production code are compared, the difference is large (Cliff’s
delta = 0.7465) and when build specifications and test code are
compared, the difference is medium (Cliff’s delta = 0.4199).
In terms of the average length of comments in the cross-
artifact setting, the comments on build specifications are longer
than those of production code (95.24 for build vs. 89.39 for
production) and test code (101.93 for build vs. 99.58 for test).
The differences are statistically significant in the cross-artifact
setting (Wilcoxon signed rank test, p < 2.0 × 10−16). For
the comparison with production code, the difference is large
(Cliff’s delta = 0.6788) and when compared with test code,
the difference is medium (Cliff’s delta = 0.3804).

However, results from the isolated setting show that for
both production and test code, the differences in both heuris-
tics are not statistically significant (Mann-Whitney U test,
p > 0.05) with one exception for the comparison of the number
of comments on production code and build specifications
where the difference is still negligible (Mann-Whitney U test,
p = 3.04 × 10−9, Cliff’s delta = 0.0708).

Finding 2. The discussions on build specifications take
fewer but lengthier comments when changes to build
specifications are coupled with production or test code.
When the reviews modify only one type of file, the
differences in both heuristics of discussion intensity
are not statistically significant.

V. QUALITATIVE ANALYSIS FOR PURPOSES (RQ2)

In this section, we aim to understand the purposes of the
discussions on build specifications. To do so, we analyze the
content of the review comments of build specifications to
characterize the concerns of the reviewers. Below, we describe
our approach, followed by our results.

A. Approach

Table IV provides an overview of the nine categories that
Bacchelli and Bird [10] used to characterize the purposes of
code review. Spadini et al. [14] classified comments from the
reviews of test code using the same categories. In this study,
we also analyze the content of the comments to characterize
the purposes that reviews of build specifications serve.

To do so, we first draw a random sample of the comments
raised during the reviews of production code, test code, and
build specifications. We then apply closed coding [24] to
our sampled set of comments to label them with previously
discovered categories of purposes in code review [10]. The
following describes the sampling and closed coding steps in
more detail.
Sampling: We focus on the discussion initiations and exclude
comments made in reply to other comments. This is because
the first comment of a thread raises the main concerns of the
discussion and sets the topic of the discussion. We also exclude
comments that refer to the content of other comments, e.g.,
“Same here”, “Ditto”, because their content does not clarify
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TABLE II: Prevalence of reviews and their intensity in different file types and settings.

Setting File Type Avg. # of
reviewers # Files # Files w/

Comments

Percent of
Files w/

Comments

# Files wo/
Comments # Comments

Avg. Discussion
Length

(# Comments)

Avg. Length
of Comments

Production 122,461 17,366 14.18 105,095 93,946 5.41 89.39Cross-artifact
(P vs. B) Build 2.76 35,763 2,567 7.18 33,196 7,692 3.00 95.24

Test 16,789 2,091 12.45 14,698 9,524 4.59 99.58Cross-artifact
(T vs. B) Build 2.90 17,234 1,136 6.59 16,098 3,048 2.68 101.93

Production 137,936 21,214 15.38 116,722 108,043 5.09 106.05Cross-artifact
(P vs. T) Test 2.62 52,086 6,214 11.93 45,872 24,033 3.87 101.01

Build 2.52 52,344 3,070 5.87 49,274 10,310 3.36 108.26
Production 2.17 341,902 56,775 16.61 436,846 205,244 3.62 98.74Isolated
Test 2.13 23,464 2,937 12.52 20,527 11,106 3.78 98.32

TABLE III: Odds ratios of receiving comments by different
file types in different comparison settings.

Setting Pairs Odds Ratio Upper 95%
CI

Lower 95%
CI

P vs B (B vs P) 2.14 (0.47) 2.23 (0.49) 2.05 (0.45)
T vs B (B vs T) 2.02 (0.50) 2.17 (0.53) 1.87 (0.46)Cross-

artifact
P vs T (T vs P) 1.34 (0.75) 1.38 (0.77) 1.30 (0.72)
P vs B (B vs P) 2.09 (0.48) 2.17 (0.50) 2.01 (0.46)
T vs B (B vs T) 2.30 (0.44) 2.42 (0.46) 2.18 (0.41)Isolated
P vs T (T vs P) 0.91 (1.10) 0.95 (1.15) 0.87 (1.06)

the concern. These comments were previously categorized as
Miscellaneous by Spadini et al.6 (57 of the 600 samples).
Closed Coding: We apply a closed coding analysis [24] on
the randomly sampled set of comments from the reviews of
build specifications. We take the set of labels proposed by
Bacchelli and Bird [10] as our code booklet. The coding
task is performed by the first two authors as coders. When
labelling the comments, coders focus their attention on the
content of the comment and refer to the changes to build
specifications when additional context is required to make a
category assignment. First, to gain a solid understanding of the
labelling guidelines and label definitions, the coders discuss a
set of 113 comments and collaboratively label them.8 Then, as
an evaluation of the agreement among the coders, the first and
second authors independently label 387 comments in batches
of 37–50 samples. Note that our sample size of 500 review
comments is similar to the samples used in the exploratory
analyses in prior studies (570 comments on production code
[10] and 600 comments on test code [14]). After labelling each
batch, the coders discuss the conflicts to reach an agreement.
In cases where a consensus could not be reached, the last
author casts the deciding vote. The coders achieve a Cohen’s
Kappa score of 0.8647, indicating a strong agreement among
the coders [41].

Coding was completed in multiple rounds. First, as the
coding process takes weeks to complete and the discussions
lead to more refined labelling guidelines, coders must make
sure that the lessons learned from later coding activities are
also applied to earlier coding activities. To ensure this, after
completing a coding pass, the entire set of comments are re-
examined and labels are adjusted as necessary. Second, as the

8This set of 113 comes from the exploratory coding process described in
Section VI, where we reach saturation after coding 113 comments.

TABLE IV: Prevalence of purposes in code review.

Purpose fBuild
fProd

−fBuild

fTest

−fBuild

Code Improvement 41.2 -12.2 -6.2
Defect 29.6 -15.6 -20.6
Understanding 22.6 -0.6 +9.4
Knowledge Transfer 5.4 -2.9 -1.4
Review Tool 1.2 +1.8 -1.2
Social Communication 0.0 +16.0 +11.0
External Impact 0.0 +5.0 +0.0
Testing 0.0 +5.0 +0.0
Miscellaneous 0.0 +7.0 +10.0

fx refers to the frequency of comments with the subject
purpose appearing in review of x code.

results show a substantial deviation from previous studies for
the understanding category, we perform a third coding pass.
Inspection of Spadini et al.’s replication package6 shows that
they took a more lenient approach when applying this label.
Therefore, during the third coding pass, we apply this more
lenient approach to produce results that are more comparable
to the prior work.

B. Results

Table IV provides a summary of our results from the closed
coding and compares them with the reported ones in the liter-
ature for production [10] and test [14] code comments. We did
not observe any comments related to social communications,
external impact, or testing. Finally, we exclude miscellaneous
comments from this analysis. We account for this by scaling
the reported rates for production and test code over only the
first five categories—those that have also been discovered in
the context of build specifications. We structure our discussion
of results around the following observations.
The defect category occurs 15.6–20.6 percentage points more
often in the build setting than was observed in the production
and test setting of prior work. Unlike review of production
and test code, in reviews of build specifications, the defect
category tends to occur more frequently, appearing in 29.6%
(36.2% with our stricter “understanding” coding approach) of
the reviews, 9.7 percentage points more than production code
and 18.3 percentage points more than test code even when
accounting for categories that we did not encounter.
The most prevalent concern is code improvement (41.2%,
47.6% with our stricter “understanding” coding approach).
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These comments aim to improve the readability and maintain-
ability of the code. This conforms with the findings of both
Bacchelli and Bird [10] and Spadini et al. [14], where it is
reported that code improvement is the purpose of the majority
of the comments made on production and test files. While the
exact rates fluctuate, accounting for the categories we did not
encounter, the differences are only 0.1 percentage points lower
for production and 2.6 percentage points higher for test code.

Studies have previously reported that code improvement and
the maintainability of the software are the most prominent
outcomes of code review [10], [15], [16]. It is not surprising
that build specifications also follow the same pattern as they
are part of a software project.

Finding 3. Discussion of defects is more prevalent
in reviews of build specifications than reviews of
production and test code. However, code improvement
remains the most prevalent category of comments.

VI. QUALITATIVE ANALYSIS OF ISSUE PATTERNS (RQ3)

To understand the patterns of issues that are raised during
the review of build specifications, we inspect the content of
the comments on build specifications. In the following, we
describe our approach and results.

A. Approach

We perform open coding [25] on a randomly sampled set
of review comments on build files. Then, we apply open card
sorting [26] to the codes to construct a taxonomy of the issue
types discovered. The following describes the sampling, open
coding, and open card sorting processes.
Sampling: We use the same sample of comments from our
content analysis in Section V. Thus, we use a sample of
500 review comments, 113 of which we analyzed through
the exploratory coding and the remaining 387 during the
evaluation process.
Open Coding: Our open coding process is composed of
code discovery and code evaluation steps. As was done in
Section V, when making coding decisions, we prioritize the
content of the comments over the content of the change to the
build specifications. In this analysis, we encountered instances
where the content of the comment did not contain enough
information to identify the issue type. These comments were
tagged as “not self-explanatory” (199 of the comments, 39.8%,
see this comment9 for an example). In such cases, we defer our
attention to the changes in the build code and the discussion
in the comment to identify the issue type.

For the code discovery step, the first and second authors
randomly draw and inspect comments on changes in build
specifications, one at a time. For each comment, the coders
discuss the content of the comments to label them with an issue
pattern, creating new patterns as they emerge. Throughout the
code discovery process, coders define and refine the patterns

9https://codereview.qt-project.org/c/qt/qtdeviceutilities/+/208369/3/src/
settingsui/settingsuiplugin/settingsuiplugin.pro#29

through discussions, iteratively establishing coding guidelines.
The coders continue to draw and inspect comments until
they reach saturation [42] for the issue patterns. We set
our saturation criterion to 50 consecutive comments where
new patterns are not discovered. We reached saturation after
inspecting 113 comments.

To evaluate the reliability of the coding approach, after
saturation is achieved, the coders independently label 387
comments in batches of 37–50 samples. Similar to the evalua-
tion for the closed coding process (Section V), after labelling
each batch, the coders discuss disagreements in search of
a consensus. In cases where a consensus is not reached,
the last author casts the deciding vote. During this code
evaluation step, despite reaching our saturation criterion, new
issue patterns may emerge. In our case, only two new issue
patterns emerged during the code evaluation step. The coders
achieve a Cohen’s Kappa score of 0.9093, indicating a strong
agreement among the coders [41].

Finally, to mitigate errors in the coding process, we perform
coding in multiple passes. In particular, coders do so to ensure
that the labels that emerged later in the coding process do not
apply to the comments coded earlier in the process. Moreover,
as coders progress through the set of comments and the
patterns become more clear, we iteratively refine the labels.
These iterative improvements may decompose overly general
patterns to more specific ones or merge overly specific patterns
into more applicable general patterns. Such improvements to
the set of patterns call for re-analyzing the previously labelled
comments to ensure consistency and integrity. A final pass
to correct the miscoded comments concludes the process.
Although the patterns are not inherently mutually exclusive,
we find that multi-pattern comments are rare—we only apply
more than one pattern to two of the inspected comments. In
these cases, we select the more prominent label or an arbitrary
one and note the instances in our labelling sheet.7

Open Card Sorting: Similar to prior work [6], [10], [43]–
[45], we apply open card sorting to construct a taxonomy of
issue patterns that reviewers focus on when reviewing changes
to build specifications. During the card sorting process, we
first group patterns based on topic similarity and then assign
descriptive names to each of these groups to refer to their
higher level category.

B. Results

Table V presents an overview of our taxonomy, which is
composed of 14 patterns that span six categories. Examples
are available in our online appendix.7 Below, we describe each
category in more detail.
(C1) Evolvability. We find that 35.0% of the comments focus
on evolvability of build specifications. Among the comments
in this category, 77.71% are concerned with the maintain-
ability of build specifications (IP1). Such comments discuss
the coding style and readability, redundant code, and the
placement and visibility of methods. The remaining 22.29%
of the patterns in this category discuss documentation issues

7

https://codereview.qt-project.org/c/qt/qtdeviceutilities/+/208369/3/src/settingsui/settingsuiplugin/settingsuiplugin.pro#29
https://codereview.qt-project.org/c/qt/qtdeviceutilities/+/208369/3/src/settingsui/settingsuiplugin/settingsuiplugin.pro#29


TABLE V: Taxonomy of issue patterns in build code review.

Category Count Frequency
C1: Evolvability 175 35.0%
Maintainability (IP1) 136 27.2%
Documentation Issues (IP2) 39 7.8%
C2: Externals 108 21.6%
Platform Configuration (IP3) 46 9.2%
Tool Configuration (IP4) 30 6.0%
Libraries and Plugins (IP5) 16 3.2%
Artifact Versioning (IP6) 16 3.2%
C3: Behavioural 93 18.6%
Dynamic Settings (IP7) 90 18.0%
Logging (IP8) 3 0.6%
C4: File System 73 14.6%
Logical File System (IP9) 58 11.6%
Physical File System (IP10) 15 3.0%
C5: Build Language 38 7.6%
Syntactic Issues (IP11) 29 5.8%
Semantic Issues (IP12) 9 1.8%
C6: Miscellaneous 13 2.6%
Patch Content Reorganization (IP13) 11 2.2%
Review Tool (IP14) 2 0.4%

(IP2) such as misleading, missing, or unclear documentation,
all of which could impede the evolution of build specifications.
(C2) Externals. We find that 21.6% of the comments on build
specifications focus on factors that are external to the project.
External factors include artifacts outside of the project that
are used in or interact with the software to satisfy needs.
Platforms, both the hardware (e.g., the architecture of CPU)
and software (e.g., operating system, language toolchain), are
common examples of such externals. Configuring the build
for different platforms (IP3) is the focus of 42.59% of the
comments in this category. In 27.79% of the comments,
reviewers raise concerns about configuring external tools (IP4)
by changing their dynamic behaviour or invoking the tool
from within the build system. Sixteen of the 30 comments are
specifically about configuring the compiler toolchain. Issues
configuring libraries and plugins (IP5) represent 14.81% of
the comments in this category. Finally, versioning of any of
these artifacts (IP6) represents the remaining 14.81% of the
comments in this category.
(C3) Behavioural. In 18.6% of the comments, reviewers focus
on the behaviour of the build system, which is configured
with (environment) variables and flags that alter the commands
that must be invoked for the build process to complete. The
majority of these comments (96.77%) are concerned with the
setting and configuration of this dynamic behaviour (IP7). The
remaining 3.23% focus on logging (IP8), a passive behaviour
that does not affect artifacts produced by the build system.
(C4) File System. We find that 14.6% of the comments discuss
issues related to the project’s file system schema and content,
both on the logical and physical layer. Comments discussing
the file system on a logical layer (IP9) are concerned with
requiring project modules as sources and headers for the build
invocations and consist of 79.45% of the comments in this
category. The physical layer of file systems (IP10) refer to the
existence of files and directories in certain locations and cover
the remaining 20.55% in this category. Such comments discuss

TABLE VI: Interviewees’ experience (in years) and working
context (OSS project or company)

Years of Experience as
ID Dev. Rev. Build

Dev.
Build
Rev.

Working
Context

Build
Maint.

P1 20 13 13 13 Qt Yes
P2 10 7 7 7 Co. A Yes
P3 40 15 10 4 Qt Yes
P4 11 5 8 3 OSS No
P5 8 8 3 3 Qt Yes
P6 5 2 2 1 Co. B No
P7 4 2 1 1 Co. C No
P8 14 5 1 0 OSS No
P9 1 1 0 0 Co. D No

moving, renaming, deleting, or creating files or directories in
the project.
(C5) Build Language. In 7.6% of the comments, reviewers
point out issues related to the use of the build language. These
issues consist of syntactic issues (IP11) and semantic issues
(IP12), pointed out in 76.32% and 23.68% of the comments
in this category, respectively. Syntactic issues include the best
practices for assignments, invocations, and conditionals. For
semantic issues, since most build languages are declarative
by nature, issues that could cause a failure in an imperative
programming language, e.g., function call before definition,
are mostly considered improvements towards better readability
and maintainability of the system. Therefore, semantic issues
in this context refer to cases, such as the use of undefined
identifiers and redefining existing identifiers.
(C6) Miscellaneous. Finally, we categorize the comments
that discuss the ordering and the content of patches (IP13),
as well as those focusing on misuse of review or version
control tools (IP14) under the miscellaneous category, which
account for only 2.60% of the comments. These comments are
not particularly discussing build-specific concerns and mainly
focus on the atomicity of the changes and the order of patches.

Finding 4. Evolvability and dependency-related issues
are the most frequent patterns of issues raised during
the review of build specifications.

VII. INTERVIEW ANALYSIS FOR DEVELOPERS’
PERCEPTIONS (RQ4)

To further explain our observations and complement the
results from our prior analysis, we set out to understand
how developers perceive the review of build specifications.
To do so, similar to prior work [10], [14], we conduct semi-
structured interviews, focusing on the code review process and
our findings as the themes of the interview questions [14].
We then transcribe and code interviewee responses to reveal
common perceptions among developers about the review of
build specifications. Below, we present our interview structure
and analysis approach, followed by our findings.
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A. Approach

We conduct semi-structured interviews [27], [28] that span
the following four dimensions: (1) the policies and practices of
the code review process in which the interviewee participates,
(2) specific policies and practices for the review of build
specifications, and interviewee reactions to our observations
from (3) RQ1 (Section IV) and (4) RQ2 (Section V). Instead of
sharing our results for RQ3, we indirectly investigate whether
the patterns of issues that we have detected are among the
specific issues that reviewers pay attention to when reviewing
build specifications. Focusing on these four dimensions as
the outline of the interviews, we leverage the semi-structured
nature of the interviews to allow interesting responses to
prompt follow-up questions that explore emergent themes.
A full description of our interview protocol is included in
our online appendix.7 Once all four topics had been covered,
interviewees were invited to share any thoughts or personal
experiences before we conclude the interview.

To recruit interviewees, we employ the following procedure.
We first obtain ethics approval to conduct the study.10 Then,
we invite members of the subject communities to participate
using posts on their developer mailing lists. We invite other
practitioners to participate through posts on social media. We
obtain consent to participate in the interviews through an
online form. We then schedule the interviews based on the
interviewees’ availability.

Each online interview lasted for 20 to 60 minutes. We
record the audio of the interviews upon the interviewees’
consent. We then transcribe the interviews for further analysis.
To analyze the responses, we employ a thematic analysis
[29]. First, we code the relevant pieces of information in the
responses with a brief description of their content that captures
the core idea. Then, we group codes according to common
themes. Finally, to ensure the quality of the generated themes,
we perform an editorial pass over the generated themes and
codes. We also account for the interviewees’ level of expertise
and engagement with the maintenance of build specifications,
i.e., we make note of the differences in perceptions of build
maintainers and other developers.
Participants. We interview nine practitioners with different
levels of experience in the development, maintenance, and
review of build specifications. Table VI provides an overview
of the demographics of our interviewees. Three of the inter-
viewees are active members of the Qt community. Moreover,
based on the positions interviewees hold in their projects, we
label them as build maintainers and developers. Build main-
tainers are experts who are responsible for the maintenance of
build specifications. Developers work with and review build
specifications, but do not self-identify as experts.

B. Results

Based on our analysis of the interviews, we extrapolate three
main themes.

10We obtained clearance for this study from the University of Waterloo
Research Ethics Board (application # 44388).

Importance of review of build specifications. Eight of the 9
interviewees reported that review of the build specifications is
just as crucial, if not more so, than the review of other software
artifacts. In particular, interviewees pointed out that review of
build specifications helps to mitigate build breakages. Indeed,
P9 explained “if [builds] break, they block the pipeline”,
propagating the problem to all other components of the system.
All interviewees either explicitly or implicitly pointed to a lack
of expertise and knowledge in build systems, which could
lead to more defects in changes to build specifications. In
particular, P3 stated that “Anybody who changes the code
does have to change the build code from time to time [. . . ]
because it has contact with every part of the code [. . . ] and
most people aren’t familiar with it [...]”. This makes review
of build specifications even more crucial for the purpose of
finding defects, especially since running a build can be slow
(P3, P4, P5) and “the only way to test build changes is to run
the build and see if the build is successful” (P5)—a brute-force
testing method that was mentioned by all of the interviewees.

A Qt build maintainer, P5, saw beyond build breakages
and clarified that even if the build is successful, this is
“[...] an indicator that maybe this is an OK change.” P5
alluded to concerns of the decay of maintainability of build
specifications in the absence of adequate reviews—a concern
that was echoed in the responses of three of the 4 build
maintainers (P2, P3, P5), as well as P4. Only one participant
(P7) objected to rigorously reviewing build code, arguing that
“All I care about is the ability of building my program”. In
P7’s development setting, every pull request is built prior to
landing in production, and any serious problem will result in
a build breakage. P4 held a similar opinion for small projects,
but stated that “Build files are not the center of the attention,
but if you want to have a large long-term project, you definitely
need to get it right”.

Finding 5. Eight of the 9 interviewees acknowledged
that reviewing build specifications is at least as im-
portant as reviewing production and test code. Main
concerns for those reviews included avoiding costly
build breakages (especially in projects that are slow to
build) and the maintainability of build specifications.

Current policies for review of build specifications. Eight
of the 9 interviewees mentioned that significant changes to
build specifications are always reviewed by build maintainers;
however, other developers rarely engage in this process. P5
says that in teams “if [developers] see that there is a build
change, they might just add us, [...] the build maintainers,
and defer the [review] work to us”. P1, P3, and P5 clarified
that minor and straightforward changes are reviewed by the
maintainers of the code modules. When a change to the build
specifications is substantial enough to affect users or the whole
build process, the change will also be reviewed by a build
maintainer. P7 maintained that due to the complexities of build
specifications, reviewing build files is “inefficient” and it is best
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to simply rely on the outcome of the build.
The interviewees also explained that when reviewing build

files, they search for specific patterns of issues tailored to build
specifications. Among the concerns were changes in external
dependencies and their versions, module configurations and
their versions, changes to (environment) variables, as well as
code style and naming conventions.

Finding 6. Eight of the 9 interviewees reported that
review of build specifications is mainly performed by
build maintainers who are familiar with the build
system. When reviewing build specifications, build
maintainers focus on build-specific issues, such as
dependencies, versioning, and module configuration.

Social and technical challenges. According to eight of our
9 interviewees (all four build maintainers and four of the
5 developers), one of the major challenges that hinders the
review of build specifications is that most developers do not
pay much mind to build systems and their maintenance. Build
systems are not the primary focus of developers because they
are not visible to the end user. Indeed, P1 stated that “Build
tools are seen as necessary evil and [developers] tend to
ignore them until they need them”.

Moreover, all build maintainers stated that most developers
do not take an interest in learning the build technology of the
project, which is required for a deep review of build speci-
fications as build languages are fundamentally different than
source code languages. Indeed, seven of the 9 interviewees
remarked about the lack of build system expertise leading to
the lower heuristics of review intensity that we observe in RQ1
(P1, P2, P3, P4, P5, P8, and P9).

Seven of the 9 interviewees also point out that build files
are inherently complex, especially when configured for cross-
platform builds (P1, P3, P4, P5, P7, P8, and P9). The sheer
scale of the build dependency graph (i.e., the data structure
that build tools use to reason about the commands that
should be (re-)invoked), its intra- and inter-module depen-
dencies, external package dependencies, as well as platform-
and configuration-specific behaviour make modifying build
specifications a daunting task. Moreover, as running the build
is the only way to test changes,11 slow builds are also raised
as a challenge.

Finally, the lack of dedicated tooling was a challenge
brought up by six of the 9 interviewees (P1, P2, P3, P5,
P6, and P7). Indeed, interviewees remarked about the need
for automation of the build process to reduce the complexity
of build specifications (P1, P2, P3, and P6) and for more
tool support for build languages, such as linters and IDE
plugins (P2, P5, and P7). Interestingly, when given the choice
between solving the social problem of the knowledge gap
among developers or the lack of better automated tools for

11While there are proposals in the literature about other testing approaches
for build systems [36], [37], to the best of our knowledge, they have not yet
found their way into practice-ready tools.

build languages, P5 opted for “better tooling, because people
come and go but tools stay”.

Finding 7. Interviewees believe that a pervasive lack
of interest in and knowledge about build systems, the
complexity of build specifications, and lack of tools
to support the maintenance of build specifications are
prevailing challenges that complicate the review of
build specifications.

VIII. THREATS TO VALIDITY

Below, we discuss the threats to the validity of our study.

A. Internal Validity

Our manual coding analyses introduce the subjectiveness
of the inspectors to our results. To mitigate this, we follow
common practices for all of our manual analyses [24]–[26],
[29], [42] and run multiple passes on our results. Every
disagreement is discussed in a team of three authors until
consensus is reached. The coders achieve Cohen’s Kappa
scores of 0.8647–0.9093 for the manual coding tasks.

Moreover, it is possible that the list of purpose labels in
RQ3 is not exhaustive. We chose to adhere to a closed-coding
methodology to preserve comparability with the prior work.
The coders did discuss borderline samples and considered
alternative labels; however, similar to when the Bacchelli and
Bird taxonomy [10] was applied to the testing context in prior
work [14], we did not observe any emergent purpose labels
specific to build specifications.

Furthermore, we interview nine practitioners, which inher-
ently introduces subjectivity. To account for this, we solicited
participation from a broad sample of developers with different
levels of experience with build systems. We also account for
their roles with respect to the build system as an indicator of
their expertise when reporting our observations.

Finally, we address the discrepancies between our coding
approach and the prior works’ by inspecting the samples in
their replication package if available6 and running extra passes
on the set of labelled comments to ensure our conformance
with their labelling approach. We further account for this factor
by reporting results over only the encountered categories, as
our sampling approach excludes comments from the Miscel-
laneous category.

B. Construct Validity

We measure discussion intensity using heuristics such as the
average number of comments per discussion and the average
length of comments. Descriptive statistics often do not tell
the whole story; however, the employed heuristics have been
validated and applied in prior work [23]. We also investigate
if the greater length of the comments on build specifications
is attributed to the inclusion of lengthy code snippets in the
comments. In our manual analyses, we observe that only 5%
of the sampled comments contain code snippets. Given that
this might also be the case for comments on production and
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test code, we believe that this could not have a substantial
impact on our results.

Finally, we verified our scripts by running them against
the data from the replication package of prior work6 and
comparing our results on our collected data with the reported
findings in their study [14]. We also make our replication
package available online for fomenting future work.7

C. External Validity

In the first three RQs, we study two large and active com-
munities, Qt and Eclipse. Projects in these two communities
are in two different programming languages and are built
with different build technologies, i.e., Maven and CMake. The
Qt community also has historical data on the QMake build
system. Nevertheless, these examples may not guarantee the
generalizability of our findings. More specifically, the intensity
of the results might vary from one system to another. Re-
searchers are encouraged to reproduce our study considering
other build systems and communities. All materials necessary
to reproduce the analyses are included in our online appendix.7

IX. CONCLUSION AND PRACTICAL IMPLICATIONS

In this paper, we perform a mixed-method study to explore
the code review process in the context of build specifications.
We first quantified the frequency and intensity of review
discussions on build specifications. Then, we inspected these
discussions to identify main purposes and patterns of the
issues that reviewers raise. Finally, we interview practitioners
to understand how they perceive and perform reviews of build
specifications, as well as the challenges that they face.

Below, we distill three lessons for the community and
propose the following implications based on them.
Both practitioners and researchers should be more aware
of the importance of the review of build specifications.
Our interviewees report that review of build specifications
is essential for the correctness of the build system, as well
as its maintainability and quality (Section VII). Moreover,
we find that a non-negligible portion (36.2%) of reviews on
build specifications are concerned with defects (Section V).
Omitting a careful review of build specifications could result
in builds that are likely to break, some of which being highly
costly to fix. Even when the build is successful, without a
rigorous review of build specifications, the maintainability of
the build system will likely decay over time. On the other
hand, our qualitative analysis (Section IV) shows that changes
to build specifications are at least two times less likely to be
discussed than production and test code.
Practitioners can reduce the review burden for build
specifications by educating their teams about their build
technology. Our interviewees broadly believed that there is
a lack of knowledge in build systems among developers
(Section VII). This can impact the review of build specifi-
cations in two ways. First, changes to build specifications by
less knowledgeable developers are more likely to be prone
to defects. Second, developers with little knowledge about
build systems cannot contribute much to the reviews of build

specifications, shifting the review burden on the small teams
of build maintainers. Educating developers about the build
technology in use would mitigate both concerns. Using code
review as a means of knowledge transfer and engaging more
developers in the review of build specifications can help with
this education. Moreover, structuring educational efforts based
on our discovered patterns of issues (Section VI) would be a
promising direction for future work.
Researchers and tool developers can improve the review
and maintenance of build specifications by focusing on
the needs of build maintainers. Our interviewees noted a
lack of dedicated tools for the development and maintenance
of build specifications. They pointed out their needs spanning
tools that support writing and reviewing code in build lan-
guages and enforce coding style (e.g., linters and IDEs), tools
that minimize the complexity of build specifications through
automation, and tools that accelerate builds. They also suggest
that more sophisticated testing methods for build specifications
are needed, arguing that running a build is the only way to
verify the correctness of build specifications. While research
solutions have been proposed to many of these challenges
(e.g., [31]–[34]), production-ready tools have yet to reach
developers. Future research and tool development that aims
to bridge this gap would likely be fruitful.
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