
The Classics Never Go Out of Style
An Empirical Study of Downgrades from the Bazel Build Technology

Mahmoud Alfadel
Software REBELs

University of Waterloo, Canada
malfadel@uwaterloo.ca

Shane McIntosh
Software REBELs

University of Waterloo, Canada
shane.mcintosh@uwaterloo.ca

ABSTRACT
Software build systems specify how source code is transformed
into deliverables. Keeping build systems in sync with the software
artifacts that they build while retaining their capacity to quickly
produce updated deliverables requires a serious investment of de-
velopment effort. Enticed by advanced features, several software
teams have migrated their build systems to a modern generation
of build technologies (e.g., Bazel, Buck), which aim to reduce the
maintenance and execution overhead that build systems impose
on development. However, not all migrations lead to perceived
improvements, ultimately culminating in abandonment of the build
technology. While prior work has focused on upward migration
towards more advanced technologies, so-called downgrades, i.e.,
abandonment of a modern build technology in favour of a tradi-
tional one, remains largely unexplored.

In this paper, we perform an empirical study to better under-
stand the abandonment of Bazel—a modern build technology with
native support for multi-language software projects and (local/dis-
tributed) artifact caching. Our investigation of 542 projects that
adopt Bazel reveals that (1) 61 projects (11.2%) have abandoned
Bazel; and (2) abandonment tends to occur after investing in Bazel
for a substantial amount of time (a median of 638 days). Thematic
analysis reveals seven recurring reasons for abandonment, such
as technical challenges, lack of platform integration, team coordi-
nation issues, and upstream trends. After abandoning Bazel, the
studied projects have adopted a broad set of alternatives, spanning
from language-specific tools like Go Build, to more traditional build
technologies like CMake and even pure Make. These results demon-
strate that choosing a build technology involves balancing tradeoffs
that are not always optimized by adopting the latest technology.
This paper also lays the foundation for future work on balancing
the tradeoffs that are associated with build technology choice (e.g.,
feature richness vs. maintenance costs) and the development of
tools to support migration away from modern technologies.

KEYWORDS
Build Systems, Downgrades, Empirical Software Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639169

ACM Reference Format:
Mahmoud Alfadel and Shane McIntosh. 2024. The Classics Never Go Out of
Style: An Empirical Study of Downgrades from the Bazel Build Technology.
In 2024 IEEE/ACM 46th International Conference on Software Engineering
(ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3597503.3639169

1 INTRODUCTION
Build systems automate the process of transforming source code
into deliverables by invoking tools (e.g., compilers, testing har-
nesses, code generators) in a dependency-based and configuration-
dependent manner. Build systems are used to automate builds in
development environments, e.g., within IDEs or on the CLI, and can
even be used in deployment environments, e.g., where users invoke
the build system to install open-source systems that are compiled
from source. An effective build system helps to manage risk in
software development by helping developers to detect compilation
and integration problems early in the development cycle [12].

Maintaining a fast and robust build system requires a continuous
investment of maintenance effort to stay in sync with the other soft-
ware artifacts [32]. When software projects exceed the complexity
that a developer can grasp, code changes can impact unexpected
parts of the system, which lead to inconsistencies during the build
and at runtime [28]. Moreover, as projects age, their build processes
tend to slow down [26, 27]. Since build speed directly impacts the
pace at which developers can test their changes, slow builds are a
common complaint among developers [29].

In response to the maintenance and execution overhead of build
systems, the software community has created modern build tech-
nologies, such as Bazel1 and Buck.2 Such build technologies pro-
vide native support for multi-language software projects, which
are known to be problematic [36], and support local/distributed
artifact caches to accelerate individual/team builds [13].

Prior work also shows that migrating to modern build tech-
nologies can be achieved with promising results [9, 30, 45, 47];
however, not all migrations lead to perceived improvements. In-
deed, framework-driven build technologies (e.g., Maven) tend to
be more tightly coupled to source code than more traditional tech-
nologies (e.g., Make, CMake) [31]. Moreover, framework-driven
build technologies are often more prone to cloning-related issues
than the more traditional technologies. This stems from strict ver-
sion compatibility requirements leading to version conflicts and
limited customization options. In contrast, the more traditional
technologies offer a greater degree of control and flexibility, which
contributes to their lower proneness to cloning-related pitfalls [33].

1https://bazel.build/
2https://buck.build/

https://doi.org/10.1145/3597503.3639169
https://doi.org/10.1145/3597503.3639169
https://bazel.build/
https://buck.build/

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Mahmoud Alfadel and Shane McIntosh

Upward migrations that are not perceived improvements may
influence stakeholders to abandon feature-rich build technologies.
For example, within the kubernetes/kubernetes project,3 the
complexity and maintenance overhead of their Bazel build system
led the community to abandon Bazel in favour of Go Build—a less
feature-rich build technology. A similar event within the istio/istio
project prompted a lively discussion about abandoning Bazel.4

Understanding why communities choose to migrate away from
modern build systems can help stakeholders to adopt these build
systems with realistic expectations and in a fashion that suits their
needs. It can also help researchers and tool developers to focus on
the most relevant barriers to adoption within these build systems.
Hence, in this paper, we set out to study the prevalence of and ratio-
nale for downgrades of build technology. We conduct an empirical
study of 542 open-source projects that adopt Bazel—one of the most
(if not the most) popular modern build technologies available.

Prevalence (Section 3). First, we study the extent to which
open-source projects that adopt Bazel end up abandoning it. We
observe that 61 of the 542 studied projects (11.2%) that adopted Bazel
abandoned it. The abandonment occurred in the studied projects
despite maintaining Bazel specifications for a median of 638 days.

Rationale (Section 4). Next, to understand the reasons that led
adopters to abandon Bazel, we conduct a thematic analysis on 212
records of commits, issue reports, and pull requests that document
the final removal of Bazel specifications in the 61 projects that
abandoned Bazel. We identify seven emergent themes, which span
from technical challenges, such as the complexity of the build spec-
ifications and their maintenance, to a (perceived) lack of platform
integration and interoperability, team coordination and onboarding
challenges, and the influence of community trends.

Replacements (Section 5). Then, we analyze the build technolo-
gies that the 61 projects adopted after abandoning Bazel, observing
a broad set of common replacements, including language-specific
tools, such as Go Build, as well as more conventional options like
CMake and even low-level build technologies like pure Make. These
replacements are often less feature-rich, but more familiar to their
community members, simplifying their maintenance.

Generalizability (Section 6). Finally, we explore the analytic
generalizability of our themes by conducting a confirmatory study
of a second downgrade case (from Gradle to other build technolo-
gies) and a contradictory upgrade case (from other build technolo-
gies to Bazel). We find that five of the seven emergent themes from
the Bazel downgrade context also appear in the Gradle downgrade
context, and that only one of the themes (the influence of commu-
nity trends) appears in the contradictory Bazel upgrade context.

Contributions. This paper contributes: (1) empirically grounded
estimates of the prevalence of build technology downgrades; (2) a
catalogue of seven emergent themes that explainwhy 61 projects have
downgraded their build systems; (3) a list of popular replacement
technologies while shedding light on key factors that influence their
adoption; and (4) a checklist that stakeholders can consult before
adopting modern build technologies. To foster future work, we
make our replication package publicly available.5

3https://github.com/kubernetes/kubernetes/pull/99561
4https://twitter.com/kelseyhightower/status/958834738650755072
5https://zenodo.org/records/10499104

2 STUDY DESIGN
In this section, we provide an overview of the most common build
technologies (Section 2.1). Then, we describe our rationale for fo-
cusing on the Bazel build technology (Section 2.2) and explain our
approach to project selection (Section 2.3).

2.1 Existing Build Technologies
Dozens of build technologies are available for communities to use.6
Broadly speaking, these technologies have converged on various
design paradigms [30, 42, 43]. The four most common ones are:

• Low-level technologies that require explicitly defined build
dependencies (which may also be pattern-based or inferred)
between each input and output file (e.g., Make [14]).

• Abstraction-based technologies that use high-level project
information, such as the project name and the list of files to
build, to generate low-level specifications (e.g., CMake).

• Framework-driven technologies that reduce “boilerplate” de-
pendency expressions that are typical of low-level technolo-
gies in favour of conventions by expecting that, e.g., input
and output files appear in predefined locations (e.g., Maven).

• Modern build technologies provide native support for multi-
language software projects and support local/distributed
artifact caches to accelerate individual/team builds [13]. Such
build technologies differ from traditional systems by using
fine-grained dependency management, monorepo support,
and integrated static analysis (e.g., Bazel).

2.2 Studied Build Technology
To counteract increases in project complexity, organizationally-
scaling build technologies have been created to build, test, and
package large amounts of cross-language code simultaneously. In
contrast to prior build technologies (e.g., Make, CMake, Maven),
these modern ones use more abstraction for targets and sources,
and provide native support for producing deliverables of common
types, such as libraries, binaries, scripts, and datasets.

These modern technologies also natively support projects that
are implemented in multiple languages, which makes them an at-
tractive choice for managing the build process of so-called “monore-
pos” [34], i.e., where several related projects are versioned within
a single repository. The entirety of the dependency graph is com-
puted, inferred, and tracked to parallelize work, cache results, and
mitigate non-determinism in build behaviour.

In our study, we choose to focus on the Bazel technology due
to its popularity among modern build technologies. For example,
compared to Buck and Pants (i.e., its closest competitors), Bazel
is gaining more traction in the StackOverflow community,7 with
3,229 questions posted (as of December 2023), whereas only 112
and 48 questions are tagged with Buck and Pants, respectively.
Furthermore, our preliminary analysis in Section 3 reveals that the
number of projects that have adopted Bazel exceeds the combined
count of projects that have adopted Buck and Pants by a substantial
margin, i.e., the number of projects adopting Bazel, Buck, and Pants
in the World of Code corpus [24] is 542, 8, and 7, respectively.

6https://en.wikipedia.org/wiki/List_of_build_automation_software
7https://stackoverflow.com/

https://github.com/kubernetes/kubernetes/pull/99561
https://twitter.com/kelseyhightower/status/958834738650755072
https://zenodo.org/records/10499104
https://en.wikipedia.org/wiki/List_of_build_automation_software
https://stackoverflow.com/

The Classics Never Go Out of Style ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Typical build technology paradigms and supported
features (adapted from McIntosh et al. [30, 32]).

Feature Low-
level

Abst
racti

on-b
ased

Fram
ewor

k-dri
ven

Moder
n

Manual build steps. ✓ ✓ ✓ ✓
Configuration-based build. ✓ ✓ ✓
Cross-platform support. ✓ ✓ ✓
Convention-based build. ✓
Scalability and optimizations. ✓
Caching/incremental builds. ✓
Language-agnostic. ✓
Support for monorepo. ✓
Example Make CMake Maven Bazel

Select
non-

forked
projects

Select
projects of
community

interest

Select
active

projectsWoC
105,471

Data Filtration (DF)

DF1

Subject
projects

35,102
2,190,957

DF2 DF3

Figure 1: An overview of our data filtering approach.

Bazel is an open-source, declarative build system that was ini-
tially released by Google in 2015. Bazel is fast because it only re-
builds what is needed, which is achieved by its built-in support for
local and distributed caching of both build artifacts and tests, along
with an optimized dependency analysis.1 Moreover, although Bazel
already supports a plethora of platforms and languages, it can be
extended to support other frameworks and languages.

2.3 Candidate Projects
Our goal is to study abandonment of the Bazel build technology.
To perform our study, we need to collect a dataset of projects that
have, at one point, adopted Bazel. It is important that we study a
large sample of software projects in order to improve confidence
in the conclusions that we draw. Hence, we analyze the large cor-
pus of open-source version history collected in the World of Code
(WoC) [24]. The WoC corpus is updated on a monthly basis and
contains over 18 billion Git objects. We begin our analysis by query-
ing the WoC corpus for projects that are hosted on GitHub. This
query returns 7,731,242 public GitHub repositories.

Since GitHub hosts projects that are not yet mature or of suffi-
cient complexity to warrant analysis, we apply three filters to select
projects that are appropriate for our study. Figure 1 provides an
overview of those filters, each of which we describe below.

DF1: Select non-forked projects. Forking a repository allows
developers to experiment with changes without affecting the origi-
nal project. We remove forks to reduce the quantity of duplicated
project history, which can skew our results. This filter reduces our
corpus to 2,190,957 candidate projects.

DF2: Select projects of community interest.We choose projects
with at least ten stars, as such projects are considered of interest to
the development community. Prior work [10] has shown that a ten-
star threshold is a reasonable mechanism to remove most projects
that are unlikely to be relevant for empirical studies. Also, a survey
of over 700 developers shows that most developers consider the
number of stars before using or contributing to GitHub projects [7].
This filter reduces our corpus to 105,471 candidate projects.

DF3: Select active projects.We select active projects to prevent
the swaths of immature projects from impacting our conclusions.
To detect projects with a high level of activity, inspired by prior
work [15, 32], we plot the distributions of the number of com-
mits and contributors per project. We select a threshold for them
to ensure that our analyzed projects are representative and have
attracted a contributor team of a size where build systems play
an important coordination role. Due to space limitations, we rele-
gate the corresponding plots to our replication package.5 Selecting
thresholds of 150 commits and 10 contributors reduces the corpus
to 76,282 and then 35,102 candidate projects, respectively.

After applying the three filters, our corpus of candidate projects
comprises popular and large projects from large organizations and
communities, e.g., Google, Microsoft, Golang, Kubernetes, and Py-
torch. Overall, the projects in our dataset have a rich development
history (medians of 641 commits and 21 contributors).

3 PREVALENCE OF BAZEL ABANDONMENT
Previous studies have shown that migrating to more powerful build
technologies is a promising solution to reduce maintenance over-
head and build durations [47]. While newer technologies provide
numerous features to support the build process, prior work (e.g.,
[31, 33]) demonstrates that they tend to induce more churn and be
more tightly coupled to source code than traditional technologies,
which exacerbates the overhead rather than mitigating it.

If a build technology is costing more than anticipated, it would
not be unreasonable to explore alternatives. Thus, in this section, we
study the degree to which Bazel is being abandoned in our corpus
of projects. Our analysis focuses on the rate of Bazel abandonment
(Section 3.1) and the duration of Bazel adoption (Section 3.2).

3.1 Rate of Bazel Abandonment
If Bazel is only rarely abandoned, it may not be a phenomenon
worthy of further study. Therefore, we set out to study the rate at
which projects that adopt Bazel have eventually abandoned it.

Approach.We perform two analyses to study the abandonment
rate of Bazel among the studied projects. First, we examine whether
each studied project is still using Bazel at the time when our anal-
ysis was performed. Typically, a project that adopts Bazel must
contain at least one BUILD.bazel or BUILD file located in its root
folder, which specifies what to build and how to build it.1 Therefore,
to identify projects that use Bazel, we first clone a local copy of
the 35,102 repositories in our corpus. Then, we traverse the root
directory of the HEAD commit of each cloned repository in search
of a BUILD.bazel or BUILD file. If a match is found, we store the
repository and the file for further inspection.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Mahmoud Alfadel and Shane McIntosh

19.4%

9.1%

3.4%
1.9% 2.1%

14.3% 7.7% 15.4%18.2%16.7%25.0%0
50

10
0

15
0

Go
C++

Pyth
on

Ja
va C

Has
ke

ll

Ja
va

Scr
ipt

Swift

Sca
la

She
ll

Ty
pe

Scr
ipt

N
um

be
r

of
 P

ro
je

ct
s

Status

Abandoned

Not Abandoned

Figure 2: Bar-plot showing the distribution of both the num-
ber of projects abandoning and not abandoning Bazel, per
programming language (the primary language). The rate of
Bazel abandonment per language appears on top of each bar.

Our second analysis focuses on the projects that did not contain
a Bazel specification. These projects either adopted Bazel in the
past but abandoned it prior to the time of our analysis, or have
never adopted Bazel. We set out to identify projects that abandoned
Bazel and the commit where the final removal was performed. To
do so, we first mine the commit records for each repository that
does not contain a Bazel specification in the HEAD commit in reverse
chronological order. We search the history of each repository for
commits that delete the BUILD.bazel or BUILD file from the root
directory. When we detect such commits, we store them for further
inspection. For each removal commit, we extract (meta)data, such
as the commit SHA, message, and timestamps.

Results. Of the 35,102 candidate projects, 542 adopted Bazel at one
point in a project’s lifetime. Although our primary focus in this
paper is on Bazel abandonment, and not its overall popularity, we
briefly discuss the proportion of Bazel projects that we detected
next. While the rate of Bazel adoption (∼1.5%) in our corpus may
seem low, there are two factors that we believe illustrate the impact
and importance of studying Bazel. First, among the 542 adopters
are projects that are hosted by several organizations of influence in
the software development community, such as Google, Microsoft,
and Meta. Second, Bazel was only publicly released in 2015. When
one also considers the crowded marketplace of build technologies
(e.g., Wikipedia’s incomplete list of build automation solutions6
already lists 52 technologies), the fact that Bazel has reached 1.5%
market share in our curated corpus of large, active, and popular
open-source projects is impressive.

Turning to Bazel abandonment, we observe that while a total of
542 projects initially adopted Bazel at some point in the project’s
lifetime, 61 projects (11.2%) abandoned Bazel.

Additionally, we stratify our analysis by programming language.
To identify the main programming language of each studied project,
we use the Linguist tool,8 which is the tool that the GitHub platform

8https://github.com/github-linguist/linguist

uses to detect language usage. We invoke the tool once for each
project, which generates a report of the percentage of code bytes
written in each language. The language with the highest proportion
of bytes is considered the main language of the project.

We find that the abandonment of Bazel varies across different
languages, with the highest abandonment rates being observed
in Go and C++ projects. Figure 2 illustrates the pattern of adop-
tion and abandonment of Bazel per programming language. For
example, among the projects that are mainly implemented in Go
and initially adopted Bazel, 37 projects (19.4%) eventually aban-
doned Bazel. Similarly, in the case of C++ projects, 12 projects
(9.1%) decided to abandon Bazel after being initially adopted.

For the other programming languages depicted in the figure, the
rate of Bazel abandonment is relatively low, with only one or two
projects each showing such a trend. It is important to note, however,
that projects written in these languages had a lower overall rate
of Bazel adoption when compared to the adoption rates of Go and
C++ projects. For instance, for Python projects, of the 59 Python
projects that initially adopted Bazel, two eventually abandoned
Bazel, highlighting a modest rate of Bazel adoption in Python.

Moreover, we study the organizations that develop the projects
that have abandoned Bazel, since abandonment may be unfairly
inflated by immature organizations that were unprepared to adopt
Bazel. To achieve this, we group the studied repositories that aban-
don Bazel by their organization name, which can be extracted from
the URI of a GitHub repository. For example, the organization of
the reddit/baseplate.go repository is reddit.

We discover that even well-established organizations are not
exempt from choosing to abandon Bazel. Indeed, 20 of the 61 stud-
ied projects that abandoned Bazel are hosted by prominent orga-
nizations, such as Google, Meta, Kubernetes, Microsoft, Reddit,
and Chromium. These findings suggest that even for large-scale
projects, organizationally-scaling build technologies like Bazel may
not always be the most suitable technology choice.

Finally, we also consider the number of contributors and project
size to characterize projects that abandon Bazel. Below, we provide
a summary of the results. We compute project size in Source Lines
Of Code (SLOC) using cloc and extract the number of contributors
using the GitHub API. We find that projects that abandoned Bazel
have medians of 133,452 SLOC and 70.5 contributors. These metrics
indicate that these projects are not small in terms of the volume of
code or the number of contributors.

Complementary Analysis of Buck and Pants. As mentioned in
Section 2.2, our primary focus remains on the popular Bazel build
technology. Nonetheless, we also explore Buck and Pants using the
same approach from Section 3.1. A project that adopts Buck must
contain a BUCK file located in its root directory.2 Similarly, projects
that adopt Pants must have a pants.toml file in its root directory.9
We only find eight projects using Buck and nine projects using
Pants within our dataset. Furthermore, we find one project that
abandoned Buck (12.5%), which is roughly on par with the rate of
Bazel abandonment that we observed earlier in this section (11.2%).
Nonetheless, the limited quantity of projects that have adopted
Buck and Pants within our dataset prevent us from drawing stable
conclusions about their rates of abandonment at this time.

9https://www.pantsbuild.org/

https://github.com/github-linguist/linguist
https://www.pantsbuild.org/

The Classics Never Go Out of Style ICSE ’24, April 14–20, 2024, Lisbon, Portugal

0 500 1000 1500 2000 2500

Time (in days)

Figure 3: Box-plot showing the distribution of the duration
of Bazel adoption.

3.2 Duration of Bazel Adoption
In Section 3.1, we observe that Bazel abandonment occurs in the
studied projects; however, it is unclear if such projects have truly
invested in their Bazel build systems before abandonment. Since
adopting a build technology requires time for project maintain-
ers to become familiar enough to perform required tasks, if the
abandonment event happens too soon, it may have occurred due to
premature decision making. Therefore, we study the duration of
adoption of Bazel in the projects that have abandoned it.

Approach. To measure the duration of Bazel adoption, we count
the number of days between the introduction date and the aban-
donment date of Bazel for each studied project where Bazel was
eventually abandoned. To identify the introduction (removal) of
Bazel, we mine each repository for the first (last) commit in which
BUILD.bazel or BUILD file was added (removed).

Results. Figure 3 shows the distribution of the duration in which
Bazel was adopted. From the figure, we observe thatBazel remains
adopted in the abandoning projects for a median of 638 days.
We also find that renowned projects had invested in Bazel for a
considerable amount of time prior to abandonment. For example,
the main Kubernetes project10 started adopting Bazel on December
13th, 2016 and only abandoned it on February 28th, 2021. This is an
investment of more than four years. Similarly, the Reddit Baseplate
project11 is another large and popular project that adopted Bazel for
more than a year (19.6 months) before abandonment. This indicates
that even after investing in it for a substantial amount of time, large
and active projects can still end up abandoning Bazel.

Summary. 11.2% of large and active projects in our dataset
abandoned Bazel. The counts and rates of Bazel abandonment
are largest in projects that are primarily implemented in Go and
C++. Projects tend to abandon Bazel even after investing in it
for a substantial amount of time (a median of 638 days).

10https://github.com/kubernetes/kubernetes
11https://github.com/reddit/baseplate.go

4 THEMATIC ANALYSIS
In this section, we set out to understand the underlying dynamics of
abandonment of Bazel. More specifically, we set out to understand
the rationale that the studied projects have for the abandonment of
Bazel by analyzing historical records that document its removal.

Approach. First, for each of the 61 projects that have abandoned
Bazel, we obtain links to community discussions, issue reports,
and Pull Requests (PRs) that document Bazel abandonment by an-
alyzing the set of commits that we collect in Section 3.1 (i.e., the
commits that abandon Bazel). For example, commit 14a034612 in the
Berty project describes their abandonment of Bazel. The PR that
corresponds to the commit contains further detail and discussion
about the Bazel removal event.13 In some cases, we find that links
from the commit record are insufficient to determine the cause of
the abandonment. In such cases, we use GitHub’s query feature
to search for issues, discussions, and PRs that include the “bazel”
keyword. We inspect each match to determine if it provides any
context about the rationale for Bazel abandonment. In total, we
collect a set of 212 documents from the 61 studied projects.

After collecting the set of documents that we deem to be relevant,
we perform a systematic inspection and a thematic analysis [41]. We
perform the analysis in multiple rounds. In the first round, the first
and last authors meet and inspect the collected documents, focusing
on their titles, description fields, and discussion threads, to generate
codes, i.e., brief descriptions of the content that summarizes the
reasons for abandoning Bazel. Subsequently, we identify common
themes that span across the set of discovered codes. The themes
that emerge group together codes that relate to common topics or
that point to similar underlying concerns.

It is important for us to ensure that our themes are accurate
representations of the abandonment events that they describe. Thus,
we set out to ensure that (a) it is clear when a given theme should
apply and (b) the themes are independent. Thus, in the second round
of our analysis, the first and last authors independently examine
abandonment documents, and label each project with the set of
themes that apply. Note that although the themes are independent,
they are not mutually exclusive, i.e., the same project can be labelled
with more than one theme. In other words, a project may abandon
Bazel for more than one (coded or thematic) reason.

Finally, when disagreements occurred, the authors met to discuss
each one. For each disagreement, the two authors discussed it until
a consensus was reached. In theory, the discussion may not produce
a consensus. If no consensus was reached, a third rater would cast
the deciding vote. In practice, a consensus was reached for each
disagreement through discussion. No deciding vote was needed.

To evaluate our list of themes and assess the stability of the
coding process, we calculate the Cohen’s Kappa coefficient [8].
This statistic is commonly used to evaluate inter-rater agreement.
The value of Cohen’s Kappa ranges from −1.0 to +1.0, with values
greater than 0 indicating a level of agreement that is greater than
expected due to chance. We obtained a Kappa score of 0.812, which
is considered to be an “excellent” level of agreement [23].

12https://github.com/berty/berty/commit/14a03463751db6bc7514964d12444e3c42be87c4
13https://github.com/berty/berty/pull/2127

https://github.com/kubernetes/kubernetes
https://github.com/reddit/baseplate.go
https://github.com/berty/berty/commit/14a03463751db6bc7514964d12444e3c42be87c4
https://github.com/berty/berty/pull/2127

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Mahmoud Alfadel and Shane McIntosh

Table 2: The extracted themes for Bazel abandonment. An
example of each theme is provided in the footnotes.

ID Theme & Example Freq. (#)

T1 Difficulty in maintenance and troubleshooting.14 10 (20%)
T2 Lack of platform support and interoperability.16 13 (26%)
T3 Replacement by toolchain-native/platform-specific build tech-

nology.4
11 (22%)

T4 Experimental adoption of Bazel.24 2 (4%)
T5 Obstacles faced by external contributors or users.31 7 (14%)
T6 Bazel consumer is no longer required.33 3 (6%)
T7 Influence of upstream trends.34 13 (26%)

Results. Seven themes emerged to describe the reasons for
Bazel abandonment. Table 2 summarizes the themes of Bazel
abandonment that emerged during our inspection. Note that the to-
tal frequency of the identified reasons is greater than 100% because
we observe that multiple themes can apply to the studied abandon-
ment examples. Also, note that of the 61 projects that abandoned
Bazel, we were not able to find relevant documents (e.g., PRs, issue
reports) that explain the reason for abandonment in 11 projects.
Below, we describe each emergent theme.

T1. Difficulty in maintenance and troubleshooting (10
projects). This theme describes cases where the project main-
tainers face difficulties maintaining Bazel files. Bazel’s complex
rule structure can make it difficult to understand why a build is
failing and how to fix it. In such cases, projects face recurring
and frequent build failures related to Bazel that are difficult for
maintainers to fix. For example, PR #2369314 reports a test failure
due to an issue in Bazel configurations.

Through our inspection of such cases, we observe issue reports
stating that maintaining Bazel is not practical when most of the
code is implemented in a single programming language. In issue
#23796,15 the maintainer states that more than 77% of the code
is implemented in Go, and the bulk of the build breakages of the
project are not related to its own code, but rather to other Bazel
rules that do not follow module properties in the go.mod file.

To gain a richer perspective on this theme, we examine whether
abandonment of Bazel is associated with the proportion of code
that is implemented in the most prevalent programming language
within the project. We perform a statistical analysis to evaluate
if it is likely that the project will abandon Bazel if the majority
of the code is implemented in a single programming language.
First, we group projects into those that, during the analysis period,
(a) abandon Bazel or (b) continue to use Bazel. Then, we perform
statistical tests comparing the projects that abandon Bazel to those
that do not. For each project, we measure the proportion of code
that is implemented in the primary programming language. To do
so, we again use the Linguist tool.8 We invoke the tool once for
each project, which generates a report of the percentage of code
bytes of each language. Note that for projects abandoning Bazel,
we calculate the proportion of the primary language at the time of
abandonment (i.e., the abandoning commit). For non-abandoning
projects, we evaluate the latest snapshot.

14https://github.com/kubernetes/test-infra/pull/23693
15https://github.com/kubernetes/test-infra/issues/23796

Table 3: The proportion of bytes written in the primary lan-
guage of the abandoning and non-abandoning projects.

Project type Min. Median Max.

Abandoning 47.42 91.54 97.6
Non-abandoning 19.67 80.46 94.31

Table 3 lists minimum, median, and maximum proportions of
code that is implemented in the primary language per project type.
It shows that, the primary programming language comprises a me-
dian of 91.5% in the projects that abandoned Bazel, whereas the me-
dian for non-abandoning projects is eleven percentage points less.
A Mann-Whitney U test (unpaired, two-tailed, 𝛼 = 0.05) indicates
that a statistically significant difference exists between abandon-
ing and non-abandoning projects (𝑝 = 0.0143). Furthermore, we
find, that the Cliff’s delta effect size [16] has a medium magnitude
(|𝛿 | = 0.391). This statistical evidence supports our suspicion that
abandonment of Bazel is associated with the proportion of code that
is implemented using the most prevalent programming language.
That is, projects that are more homogeneous in their implementa-
tion language tend to abandon Bazel at higher rates than projects
that are more heterogeneous in their implementation languages.

T2. Lack of platform support and interoperability (13
projects). Another common reason why projects abandon Bazel
is due to a lack of integration with other tools and systems
that the development team is already using. For example, the
microsoft/tensorflow-directml-plugin project replaced Bazel
with CMake in commit 44d7bef.16 The description of PR #4617

explains challenges that the team encountered with respect to
Bazel support for Windows and other UNIX-like platforms. The
facebookresearch/CompilerGym project provides another
example.18 In the discussion of PR #478,19 project maintainers
described the challenges that they encountered when trying
to use Bazel with the LLVM toolchain. Ultimately, the project
team migrated their build system to CMake, which was known
to integrate smoothly with their required external tools and
libraries. A third example is present in the discussion of PR #3
of the joneshf/terraform-provider-openwrt project.20 The
discussion describes the challenges that project maintainers
encountered while trying to use Bazel on macOS devices.

T3. Replacement by toolchain-native/platform-specific build
technology (11 projects). Another reason for Bazel abandonment
is to replace it with a toolchain-native/platform-specific build tech-
nology. In these cases, the projects abandoned Bazel because a less
complicated build technology has advanced, achieving parity with
respect to Bazel features that compelled the projects to use Bazel
in the first place. In such cases, discussions pointed out that Bazel
was adding complexity without providing benefits to offset the cost.

16https://github.com/microsoft/tensorflow-directml-plugin/pull/46/commits/
44d7bef871b92d34d39c2da5669fffbfaefcb61f

17https://github.com/microsoft/tensorflow-directml-plugin/pull/46
18https://github.com/facebookresearch/CompilerGym/issues/506#issuecomment-

1058975790
19https://github.com/facebookresearch/CompilerGym/pull/478
20https://github.com/joneshf/terraform-provider-openwrt/pull/3

https://github.com/kubernetes/test-infra/pull/23693
https://github.com/kubernetes/test-infra/issues/23796
https://github.com/microsoft/tensorflow-directml-plugin/pull/46/commits/44d7bef871b92d34d39c2da5669fffbfaefcb61f
https://github.com/microsoft/tensorflow-directml-plugin/pull/46/commits/44d7bef871b92d34d39c2da5669fffbfaefcb61f
https://github.com/microsoft/tensorflow-directml-plugin/pull/46
https://github.com/facebookresearch/CompilerGym/issues/506#issuecomment-1058975790
https://github.com/facebookresearch/CompilerGym/issues/506#issuecomment-1058975790
https://github.com/facebookresearch/CompilerGym/pull/478
https://github.com/joneshf/terraform-provider-openwrt/pull/3

The Classics Never Go Out of Style ICSE ’24, April 14–20, 2024, Lisbon, Portugal

This complexity can make it difficult to understand how to cor-
rectly configure and use Bazel, leading to frustration and a lack of
confidence in project build systems. An example of T3 can be seen
in PRs #65221 and #90322 of the cortextproject/cortex project.
As indicated by the discussion on PR #672,23 the cortexproject/-
cortex project abandoned Bazel because one of the Go language
releases (i.e., Go 1.10) accelerated (incremental) builds to a degree
that the difference between Bazel and Go Build became negligible.

T4. Experimental adoption of Bazel (2 projects). This theme
describes the challenges and consequences that arise when organi-
zations or development teams experimentally adopt Bazel, encoun-
tering issues related to the lack of ongoing support andmaintenance.
For example, a contributor in the skypjack/entt project suggested
introducing Bazel. As discussed in issue #287,24 maintainers state
that they lack knowledge of Bazel, but they are still willing to
merge a Bazel build system if the contributor agrees to maintain it.
The contributor configured Bazel in textitcommit 90798c1.25 Three
months later, Bazel was removed due to lack of maintenance sup-
port from the original contributor.26 In fact, PR #43027 shows that
the original contributor of the Bazel system later returned to the
project, and suggested adding Bazel again.

In other cases, we find that the projects introduced Bazel as a
secondary build system. In other words, the Bazel build system was
added for specific purposes, such as its dependency caching feature
or its capacity for producing faster builds, as an additional build
system to be maintained in tandem with the other (official) build
system. In fact, some projects (e.g., the main Kubernetes project28)
reported that it is challenging to maintain multiple build systems
simultaneously in their Bazel removal documents.

Build systems can also be used in a nested fashion, rather than in
a parallel one. We discuss two examples as follow. The first one is
parallel usage with Bazel (e.g., the skypjack/entt project). In this
case, a contributor suggested Bazel integration as another build tool
to support the project, which was accepted by maintainers but later
removed due tomaintenance issues.29 The second example is nested
usage with Bazel and Make (e.g., the kubernetes/kubernetes
project). In such a case, we observe the Kubernetes project using
Bazel alongside Make through the “make bazel-build” rule.30

To gain a richer perspective on this theme, we examine whether
projects adopting multiple build systems in parallel tend to aban-
don Bazel. We count the number of build systems in abandoning
and non-abandoning projects. To do so, for each studied project,
we inspect the repository documentation. Such resources often
describe how to build and install the project in detail. We perform
the evaluation on the abandoning commit for abandoning projects.
For non-abandoning projects, we consider the latest snapshot.

21https://github.com/cortexproject/cortex/pull/652
22https://github.com/cortexproject/cortex/pull/903
23https://github.com/cortexproject/cortex/pull/652#issuecomment-397822795
24https://github.com/skypjack/entt/issues/287
25https://github.com/skypjack/entt/commit/90798c161b08a0ec24da268267d58b3d327bf776
26https://github.com/skypjack/entt/commit/99f81e82d57fbe21e18e1f2ff26e37363b8992d2
27https://github.com/skypjack/entt/pull/430
28https://github.com/kubernetes/kubernetes/issues/88553
29https://github.com/skypjack/entt/issues/287
30https://github.com/kubernetes/kubernetes/commit/

f73254826d1a8c22b215bc25d60fe724f93e4221

Table 4: The number of build systems being maintained in
the abandoning and non-abandoning projects.

Project type Min. Median Max.

Abandoning 1 2 2
Non-abandoning 1 1 2

Table 4 provides an overview of the number of build systems
adopted in the abandoning and non-abandoning projects. The ta-
ble shows that abandoning projects adopt a median of two build
systems simultaneously, whereas non-abandoning projects adopt
a median of one. A Mann-Whitney U test (unpaired, two-tailed,
𝛼 = 0.05) indicates a statistically significant difference between
the number of build systems adopted in the abandoning and non-
abandoning projects (𝑝 = 1 × 10−7). Moreover, the magnitude of
the Cliff’s delta effect size is large (|𝛿 | = 0.872).

T5. Obstacles faced by external contributors or users (7
projects). Another reason that Bazel is being abandoned is
that projects find Bazel presents challenges for onboarding new
contributors. Such projects abandon Bazel to remove this barrier
to entry for their communities. Also, projects report that Bazel
has a smaller community of users and contributors than other
build technologies, which can make it difficult to find help when
working with Bazel. For example, the pipe-cd/pipecd project
abandoned Bazel in commit 6e8eb9b31 due to this very reason.

Issue #163432 of the pipe-cd/pipecd project explains that the
biggest disadvantage of adopting Bazel was the learning curve. They
argue that Bazel has a steeper learning curve compared to other
build technologies, and it requires more configuration than other
build technologies, which is perceived to be a barrier to adoption.

T6. Bazel consumer is no longer required (3 projects). Another
reason to abandon Bazel is when a project has a client project
that depends on it, and that client is built using Bazel. The client’s
adoption of the project may be contingent on the project also being
built using Bazel. Bazel abandonment can occur if that client ceases
to build using Bazel or no longer depends on the project in question.
For example, issue #428033 of theqantumlib/Cirq project explains
that their Bazel build system can be retired because the TFQ client
(tensorflow/qantum) no longer depends on their project.

T7: Influence of upstream trends (13 projects). In several cases,
the abandonment happens for the sake of following a trend set
by upstream projects. For example, the istio/test-infra project
abandoned Bazel in PR #411634 because the other repositories being
developed by the Istio organization had already abandoned Bazel.35

Summary. Emergent themes of Bazel abandonment span from
technical challenges, such as the complexity of the build specifi-
cations and tool integration (T1, T2, T3, T6), to team coordination
and onboarding challenges (T4, T5) and community trends (T7).

31https://github.com/pipe-cd/pipecd/commit/6e8eb9b294f7a27422039beec0cc1b50886996df
32https://github.com/pipe-cd/pipecd/issues/1634
33https://github.com/quantumlib/Cirq/issues/4280
34https://github.com/istio/test-infra/pull/4116
35https://github.com/istio/test-infra/issues/1580

https://github.com/cortexproject/cortex/pull/652
https://github.com/cortexproject/cortex/pull/903
https://github.com/cortexproject/cortex/pull/652#issuecomment-397822795
https://github.com/skypjack/entt/issues/287
https://github.com/skypjack/entt/commit/90798c161b08a0ec24da268267d58b3d327bf776
https://github.com/skypjack/entt/commit/99f81e82d57fbe21e18e1f2ff26e37363b8992d2
https://github.com/skypjack/entt/pull/430
https://github.com/kubernetes/kubernetes/issues/88553
https://github.com/skypjack/entt/issues/287
https://github.com/kubernetes/kubernetes/commit/f73254826d1a8c22b215bc25d60fe724f93e4221
https://github.com/kubernetes/kubernetes/commit/f73254826d1a8c22b215bc25d60fe724f93e4221
https://github.com/pipe-cd/pipecd/commit/6e8eb9b294f7a27422039beec0cc1b50886996df
https://github.com/pipe-cd/pipecd/issues/1634
https://github.com/quantumlib/Cirq/issues/4280
https://github.com/istio/test-infra/pull/4116
https://github.com/istio/test-infra/issues/1580

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Mahmoud Alfadel and Shane McIntosh

Kubernetes Case Study
To enrich our qualitative analysis, we perform an in-depth study
of the rationale for Bazel abandonment in the main Kubernetes
project. We choose to study the main Kubernetes project (i.e., ku-
bernetes/kubernetes36) because it is a large, thriving, and actively
maintained system. The project initially employed both Bazel and
Go Build to specify their build process in 2017. Four years later,
the project abandoned Bazel. Furthermore, the abandonment of
Bazel by Kubernetes has had an influence on the abandonment of
Bazel in other Kubernetes subprojects.37,38 The abandonment by
Kubernetes has even been referenced in projects beyond its subpro-
jects, showcasing its wide-ranging influence.39 We cross-reference
our findings with the insights that we derived from the inspected
documents. Below, we discuss each emergent abandonment theme
that applies to the Kubernetes project.

T1. Difficulty in maintenance and troubleshooting. In Kuber-
netes, maintenance challenges with respect to three types of tools
were implicated in the abandonment of Bazel abandonment.

Linters. Linters (i.e., tools that perform lightweight code anal-
yses to identify potential issues) are typically configured using a
dedicated Go module to simplify handling dependencies separately
from those needed for the official project deliverables. Decompos-
ing the project into separate Go modules for linter configuration
and project deliverables helps to cleanly separate these concerns.
Kubernetes uses a build tool called rules_go (part of Bazel) to build
Go code, but it does not handle Go projects that are decomposed
into modules seamlessly. When Go projects are organized into mul-
tiple modules, rules_go creates build maintenance challenges. For
instance, handling dependencies may become complex during the
coordination of updates across modules.

Code Generators. A key component of the Kubernetes build
process is code generation. While Bazel can invoke code generators,
the developers often commit the generated code to be consumed
by non-Bazel users (i.e., external projects). As a result, Kubernetes
developers have avoided using Bazel’s code generation features
to re-generate templated code during the build process. Making
matters worse, they observed that the generators that they use
are largely incompatible with Bazel. For example, Kubernetes code
generation is designed to load the entire Go codebase and subse-
quently generate all required code in a single operation. However,
this approach poses challenges as it is incompatible with Bazel’s
feature, which generates code for each package individually.

Build Systems Themselves. For a period, the Kubernetes
project maintained both Go build and Bazel build systems. However,
any inconsistencies in the configuration of the two build systems
led to differences in the Kubernetes deliverables that were being
produced. Consequently, it became a priority to meticulously
maintain both sets of build specifications such that identical
builds would be produced. This required considerable effort to not
only synchronize the build processes, but also to maintain clear
developer and user documentation for two build systems.

36https://github.com/kubernetes/kubernetes
37https://github.com/kubernetes/test-infra/pull/26039
38https://github.com/istio/test-infra/pull/4116
39https://github.com/cert-manager/cert-manager/issues/4030

T2: Lack of platform support and interoperability. Kubernetes
developers have reported that integrating Go code into a Bazel-
based project can require additional effort, as Bazel and Go do not
have a consistent nomenclature for managing dependencies and
reasoning about build commands (Kubernetes is primarily written
in Go). Moreover, ensuring that specific platforms and tools (e.g.,
macOS machines with M1 CPUs) integrate correctly with Bazel
can also present non-trivial technical challenges for contributors.

T5. Obstacles faced by external contributors and users. Kuber-
netes developers also sought to simplify the developer experience
when they abandoned Bazel. Bazel builds are specified in BUILD
files (written in Starlark), which differs from Go Build files like
go.mod or go.sum (written in Go). Since Go has its own ecosystem
and tools, such as go get and go build—tools that are more likely
to be familiar for Go developers—shifting contexts to Bazel’s BUILD
files may introduce overhead for contributors.

5 REPLACEMENT BUILD TECHNOLOGIES
In this section, we study the alternative build technologies that
have been adopted after Bazel abandonment. These replacements
can serve as examples to developers navigating similar transitions
in their projects, seeking alternatives to modern build technologies
like Bazel. We are particularly interested in studying the extent to
which the replacement technologies offer feature parity with Bazel.

Approach. To identify the build technologies that have been
adopted by projects after abandoning Bazel, we again inspect the
project artifacts. Building upon our prior analysis in Section 4,
where we examine 212 documents that are associated with the
abandonment of Bazel, we find that these documents often contain
information about the post-abandonment build technology.

In some cases, the abandonment documents do not provide
sufficient detail to determine the replacement build technology.
Thus, we also inspect other project artifacts, such as the README
and CONTRIBUTING files, as well as the main project website,
to identify the current build technology that has been adopted by
each studied project. For instance, in the googleforgames/open-
saves project,40 although Bazel was abandoned, the inspected doc-
ument did not explicitly specify the adopted build technology; how-
ever, the README file41 contains detailed instructions that ex-
plain how to build the project from which we can infer that the
replacement technology is Make. In certain instances, when docu-
mentation does not clearly explain the replacement build technol-
ogy, we detect suspected replacements by searching for files with
names that are known to map to particular build technologies, such
as build.gradle (Gradle), Makefile (Make), or CMakeLists.txt
(CMake) within the project repository.

Results. Table 5 provides the list of build technologies that re-
placed Bazel in the studied projects. As the table shows, abandon-
ing projects tend to migrate to less feature-rich alternatives.
Specifically, we observe an association between certain languages
and build technologies (D1: language-specific). For instance, Go
Build—a build solution specifically for pure Go projects—naturally

40https://github.com/googleforgames/open-saves/pull/41#issuecomment-
627033775

41https://github.com/firedancer-io/firedancer/blob/main/doc/getting-started.md

https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/test-infra/pull/26039
https://github.com/istio/test-infra/pull/4116
https://github.com/cert-manager/cert-manager/issues/4030
https://github.com/googleforgames/open-saves/pull/41#issuecomment-627033775
https://github.com/googleforgames/open-saves/pull/41#issuecomment-627033775
https://github.com/firedancer-io/firedancer/blob/main/doc/getting-started.md

The Classics Never Go Out of Style ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 5: Build technologies adopted after Bazel abandonment.

Domain Build Technology # Projects Language

Go Build 28 Go
SPM 2 Swift
Mage 1 Go
SBT 1 Scala
Gradle 1 Java

D1

Setuptools 1 Python
CMake 11 C++, Go, Python, ShellD2 Make 8 Go, JavaScript, C
Nix 4 Go, TypeScript, Scala, HaskellD3 Google Cloud Build 4 Go

Total 61

attracted most projects that are primarily implemented in Go (28
projects). Similarly, SPM (Swift Package Manager) replaced Bazel in
two projects that are primarily implemented in Swift. In addition,
we find one project that has adopted Mage—a Makefile alterna-
tive for Go projects42—and one that has adopted Setuptools43—a
Python-specific build technology.

Surprisingly, 19 projects replaced Bazel with conventional and
low-level build technologies (D2: conventional and low-level),
including CMake (11 projects) and pure Make (8 projects). These
replacements are far less feature-rich than Bazel, but are well un-
derstood within the development communities (cf. T5 in Section 4).
Indeed, this tradeoff between feature richness of a modern tech-
nology like Bazel and the complexities of its maintenance in an
open-source community that must attract and retain contributors
to grow seems to have influenced abandonment decisions.

Furthermore, eight projects replaced Bazel with build tech-
nologies that are tailored to particular deployment platforms (D3:
platform-specific). For example, Google Cloud Build—a cloud-
based build solution for the Google Cloud Platform—was adopted
by four projects. In fact, we find that the four projects that adopted
Google Cloud Build implement cloud-based services, specifically in
the context of managing Kubernetes cluster deployments on other
cloud platforms, e.g., the kubernetes-sigs/cluster-api-provider-
azure project facilitates the provisioning and management of
Kubernetes clusters on Microsoft Azure.

In addition, four projects replaced Bazel with Nix, which is not
a build technology per se, but rather a package manager for the
NixOS platform. The choice to replace a build technology with a
packaging script is primarily motivated by Nix’s simplified depen-
dency management and enhanced platform stability. For instance,
PR #89944 of the brendanhay/amazonka project explains that
Bazel was abandoned in favour of Nix to streamline dependencies
and prevent potential CI failures by reducing complexities.

Summary. Projects that abandoned Bazel tend to migrate to less
feature-rich build technology alternatives, spanning language-
specific tools (e.g., Go Build and SPM), conventional and low-
level options (e.g., CMake and pure Make), and platform-specific
technologies like Google Cloud Build and Nix.

42https://github.com/magefile/mage
43https://setuptools.pypa.io/en/latest
44https://github.com/brendanhay/amazonka/pull/899

6 ANALYTIC GENERALIZABILITY
In this section, we explore the analytic generalizability [50] of our
themes by studying a confirmatory downgrade case from Gradle to
other build technologies (Section 6.1) and a contradictory upgrade
case from other build technologies to Bazel (Section 6.2).

6.1 Confirmatory Downgrade Case
Approach. Projects that adopt Gradle must contain a
build.gradle file located in its root directory. We follow
the same approach in Section 3.1 to identify projects that aban-
doned Gradle within our curated set of projects. To verify that
the detected commits are actually indicating the abandonment of
Gradle, we inspect the corresponding GitHub commit records, as
well as referenced PRs and issue reports to ensure that they discuss
a true removal of Gradle. Then, we follow our approach of thematic
analysis in Section 4 to discover the rationale for abandonment by
analyzing historical records that document the removal of Gradle.

Results.We find that the phenomenon of build system downgrades
is not exclusive to Bazel. Of the 413 projects that initially adopted
Gradle, 7.1% eventually abandoned it for less feature-rich alterna-
tives (e.g., Maven, SBT). This finding aligns with our observations
regarding Bazel, where we identified an abandonment rate of 11.2%.
Furthermore, our manual analysis of the projects that have aban-
doned Gradle reveals that the themes that we observe in Bazel
abandonment context also apply to these projects that abandon
Gradle. Specifically, we find examples of T1, T2, T3, T5, and T7
among the projects that have abandoned Gradle.

6.2 Contradictory Upgrade Case
Approach. We follow the same approach in Section 3.1; however,
instead of searching for projects that have abandoned Bazel, we
search for projects that have upgraded to Bazel. Note that a project
might initially adopt Bazel as a complement to their existing build
technology rather than as a replacement (cf. the case study of the
Kubernetes project in Section 4).

We begin by identifying the latest commit that introduces a
Bazel file (i.e., BUILD.bazel or BUILD in the root folder). To verify
that the detected commits are actually indicating the adoption of
Bazel as a replacement for another build technology, we inspect
the corresponding GitHub commit records, as well as referenced
PRs and issue reports. Then, we follow our approach of thematic
analysis in Section 4 to discover the rationale for Bazel adoption by
analyzing historical records that document the upgrade to Bazel.

Results. Of the 481 projects that adopted Bazel, 439 projects had
Bazel as their initial build system. However, 8.7% of the projects
transitioned from other build technologies to Bazel. The primary
themes that emerged to describe the rationale for upgrading from
other build technologies to Bazel include: (1) improved dependency
management, (2) build acceleration through remote caching, (3)
enabling downstream builds for client projects that have already
adopted Bazel, and (4) the influence of upstream trends. We can
observe that only one emergent theme (the influence of upstream
trends) that overlaps with the themes that we identified in cases of
Bazel abandonment. This suggests that the reasons for abandoning
Bazel tend to differ from those that drive Bazel adoption.

https://github.com/magefile/mage
https://setuptools.pypa.io/en/latest
https://github.com/brendanhay/amazonka/pull/899

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Mahmoud Alfadel and Shane McIntosh

7 THREATS TO VALIDITY
Internal Validity. Threats to internal validity are related to the
experimenter bias and errors. We conduct a thematic analysis in
our study to investigate the most common reasons for Bazel aban-
donment. This analysis is subject to inspector bias. We mitigate this
threat by having two authors independently code the reasons for
abandoning Bazel and calculate the inter-rater agreement (Cohen’s
Kappa coefficient). The level of agreement (> 0.8) indicates that
our results are likely robust.

External Validity. Threats to external validity relate to the gen-
eralizability of our findings. Although we study a corpus of 542
projects that have adopted Bazel (61 of which have abandoned it),
we focus on open-source projects that are hosted on GitHub. As
such, our results may not generalize to other open-source or propri-
etary repository hosts. Yet even if our results remain constrained
to the studied projects, the set contains several of the most popular
projects that are well-renowned in the development landscape.

Construct Validity. We rely on the Linguist tool, which is known
to have been initially prone to errors like misclassifying Type-
Script languages [5]. The specific errors were addressed in release
v2.10.10.45 Our analysis, based on the latest release in September
2023 (v7.24.0), produced consistent results across projects.

8 RELATEDWORK
In our estimation, the most closely related work falls into build
maintenance (Section 8.1) and migration (Section 8.2) categories.

8.1 Build Maintenance
Prior work focused on build maintenance effort and how it evolves
across different build systems [11, 22, 25, 27, 30]. For example, McIn-
tosh et al. [30] found that build maintenance imposes up to a 27%
overhead on source code development and a 44% overhead on test
development. Hochstein et al. [22] found that there is a hidden over-
head associated with maintaining build systems. Macho et al. [25]
proposed an approach to extract fine-grained build changes from
Maven specifications, which achieved an average precision of 97%.

Other work focused on proposing frameworks to reduce the
overhead imposed by build maintenance [2, 18, 46]. For example,
Adams et al. [2] proposed MAKAO, a reverse-engineering frame-
work for Make-based build systems. MAKAO constructs a build
dependency graph by parsing the trace output produced by a build
execution. It displays a Make dependency graph using colour cod-
ing, configurable layouts, and zooming, allowing dependency infor-
mation in the graph to be queried and filtered. Tamrawi et al. [46]
proposed SYMake, a tool for analyzingMake specifications. SYMake
produces a Symbolic Dependency Graph (SDG) by statically an-
alyzing Make code. SYMake extracts a model that describes how
build artifacts are initialized and manipulated via the build process.
The tool can detect several types of code smells and errors in Make-
files. Formiga [18] is another build maintenance tool for the Ant
build technology, which focuses on source file changes that require
build maintenance. Formiga allows dependencies created during
the build process to be identified at a fine granularity.

45https://github.com/github-linguist/linguist/releases/tag/v2.10.10

Bezemer et al. [6] developed an approach to detect unspecified
dependencies in Make-based build systems. Empirical studies of
four open-source projects showed that unspecified dependencies
are not uncommon. Sotiropoulos et al. [44] present Buildfs, which
also uncovers faults related to incremental and parallel builds. AlKo-
fahi et al. [4] extract the semantics of build specification changes
using MkDiff to aid in change comprehension.

Our study differs from the prior work both in terms of its tar-
get and its scope. First, the target of our study is Bazel—a modern,
organizationally-scaling build technology. Bazel was designed to
address limitations in the technologies that were the focus of prior
work (e.g., Make), such as local/distributed artifact caches to accel-
erate individual/team builds and first-class support for common de-
liverable types, spanning from executables to datasets. Second, the
focus of our study is on (open-source) projects that have migrated
away from Bazel to less feature-rich, traditional build technologies.

8.2 Build Migration
Prior work has studied migration between build technologies [1, 32,
45]. For example, McIntosh et al. [32] studied projects that migration
upwards toward more feature-rich technologies (i.e., Ant to Maven
and Make/Autotools to CMake), observing that they often pay off
in terms of quantitative indicators of build maintenance activity
(e.g., rate of change, logical coupling with source code). Suvorov et
al. [45] mined the developer mailing lists in KDE and the Linux
kernel to understand their build migration projects.

Otherwork proposed solutions to aidwith buildmigrations [3, 17,
47]. For example, Westfelt and Aleksandrauskas [47] provided tool
support to aid in build migrations from Make to Bazel. AlKofahi et
al. [3] proposed a platform to identify configuration settings that
exercise different parts of Makefiles. Gligoric et al. [17] proposed
Metamorphosis, a dynamic approach to automate the migration of
build specifications to a new build technology.

Similar to build technologies, CI tools compete for adoption
in the development marketplace. Mazrae et al. [40] performed a
qualitative analysis of CI tool usage based on interviews with 22
experienced practitioners. The study revealed diverse reasons for
usage and a shift towards cloud-based solutions. Other recent stud-
ies focused on barriers to the adoption of CI services [20, 37, 48, 49].
For example, Hilton et al. [19–21] studied the benefits and costs of
using CI at all, observing that practitioners face problems, such as
increased complexity and new security concerns when working
with Travis CI [19]. Widder et al. [48, 49] observed that the use of
CI services imposes costs (e.g., resource usage) and that projects
that use language toolchains with limited support from CI services
are more likely to abandon them.

The aforementioned studies have explored the abandonment of
CI services, which differs substantially from build systems. Build
systems ensure the repeatable and optimal assembly and testing of
project deliverables, while CI services make the integration process
routine for providing rapid feedback and producing official releases.
This fundamental shift in scope implies that downgrades of build
technology will differ substantially from that of CI services. Our
approach also differs from that of prior work, as we analyze commit
records, inspect issue reports, and analyze PR discussions, providing
a fresh perspective on build technology abandonment.

https://github.com/github-linguist/linguist/releases/tag/v2.10.10

The Classics Never Go Out of Style ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Nonetheless, perhaps the most similar work to ours is that of
Widder et al. [49], who discovered themes of abandonment of the
Travis CI platform. The themes of Bazel abandonment that we dis-
cover both complement and extend that list of themes. First, T1,
T2, and T5 complement Widder et al.’s themes of build failures,
unsupported technology, and poor user experience, respectively, ex-
tending them to the new context of abandonment of modern build
technology. The fact that similar themes emerge in our context
suggests that these themes may be fundamental to all release au-
tomation, but further studies are needed to confirm this. In addition,
T3, T4, T6, and T7 are entirely unique to our studied context, further
deepening our understanding within the build abandonment scope.

9 CONCLUSION AND LESSONS LEARNED
In this paper, we study the prevalence of and rationale for the aban-
donment of Bazel—a modern build technology—in large, active, and
popular open-source projects. We also investigate which technolo-
gies replaced Bazel in the studied projects. Below, we distill lessons
for the development, research, and tool building communities, as
well as discussing promising opportunities for future research.

On Development. The latest build technologies are not with-
out limitations, and may not be the optimal choice for all
projects. Although prior work shows that migrating to advanced
build technologies could be promising to reduce the maintenance
overhead of build systems [30, 47], our results show that it is not
always the case. We find that 11.2% of the studied Bazel projects
downgraded to a less powerful technology, citing challenges, such
as the complexity of the build specifications, a lack of tool and plat-
form support, and team coordination and onboarding (Section 4).
There are situations where these costs do not outweigh the per-
ceived benefits. For example, the abandonment themes that we
identify can form the basis for a checklist for avoiding some com-
mon challenges of Bazel adoption. Below, we provide examples of
checklist items that we formulate based on our study results.

• Is the project implemented in multiple languages (T1)? If not,
it is unlikely that the project will benefit sufficiently from
Bazel, since other key features (e.g., dependency caching)
are provided by similar tools (e.g., Gradle) nowadays.

• Is there an alternative tool that has introduced similar desirable
features (e.g., dependency caching) and is easier to configure
(T3)? Our results show that adopting Bazel for common
features, such as dependency caching is often associatedwith
abandonment. Platform-specific tools that provide similar
features with less configuration will likely be easier to adopt.

• If Bazel is adopted, will it be handled by a champion main-
tainer (T4)? Our inspection shows that when a project has
only one developer capable of maintaining Bazel specifica-
tions, once the maintainer leaves, the project cannot sustain
the Bazel system. Projects that plan to adopt modern build
tools like Bazel are encouraged to have multiple maintainers
familiar with Bazel to minimize the risk of turnover-induced
knowledge loss [35, 38, 39].

• Does the project maintain another build system in parallel
(T4)? If yes, the project will likely face difficulties keeping
both build systems in sync. Our results demonstrate that this
is a recurring reason for the abandonment of Bazel.

• How likely is it that potential contributors will understand how
to configure and maintain the build system (T5)? Our results
demonstrate that external contributors are often deterred
from projects when complex Bazel specifications are being
maintained. Therefore, if a project is interested in attract-
ing such contributors, it would be prudent to adopt a more
broadly understood build technology.

On Research. Researchers should explore ways that assist
projects with recommendations prior to adopting build tech-
nologies. Our results show that large and mature projects aban-
doned Bazel, even after they had invested in Bazel for a considerable
amount of time (Section 3), suggesting that project maintainers need
assistance when adopting a modern build technology. Researchers
should explore techniques for helping projects to make pragmatic
decisions prior to adopting feature-rich build technologies. One
initial approach would be to train machine learning or statistical re-
gression models based on features related to project characteristics.
One simple example of potential project features is the proportion
of project code that is implemented in the most prevalent program-
ming language in the project. We observe significant differences in
these proportions between the projects that abandon Bazel and the
projects that do not (Section 4)

OnTools. Tool builders should supply development teams with
tools to support the downgrade transition. Prior work shows
that build migration requires substantial effort and resources [45].
To reduce this imposed overhead, the community has developed
tools to (partially) automate the upgrade process. For example,
Grazel46 is a tool to migrate Android projects from Gradle to Bazel
incrementally and automatically. It generates BUILD.bazel and
other relevant specifications for a given Android project. Teams that
want to migrate away from Bazel face similar challenges. Indeed,
we observe that Bazel abandonment involves carefully editing and
removing a large number of files. For example, when the main
Kubernetes project migrated away from Bazel, 3,355 files47 needed
to be changed and/or removed.

On Bazel. Organizations are facing common integration chal-
lenges with other build tools and platforms. Our results show
that Bazel abandonment themes include cases where project main-
tainers face technical difficulties resolving Bazel issues that appear
during build time (T1). For example, we observe that maintainers
tend to report that Bazel is particularly problematic when using Go
toolchains, e.g., Bazel requires a strict separation between depen-
dency information from the code, while Go tooling is flexible in
locating dependencies. In other cases, projects face challenges when
integrating Bazel with external tools and systems (T2). For exam-
ple, project maintainers found it challenging to correctly configure
Bazel on a (typical) macOS device. If the Bazel community could
provide support for these sorts of issues, it would likely mitigate
challenges that are encouraging users to migrate to alternatives.

ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

46https://github.com/grab/Grazel
47https://github.com/kubernetes/kubernetes/pull/99561/files

https://github.com/grab/Grazel
https://github.com/kubernetes/kubernetes/pull/99561/files

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Mahmoud Alfadel and Shane McIntosh

REFERENCES
[1] Bram Adams, Kris De Schutter, Herman Tromp, and Wolfgang De Meuter. 2012.

The evolution of the linux build system. Electronic Communications of the EASST
17 (2012), 578–608.

[2] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. 2007.
Design recovery and maintenance of build systems. In Proceedings of the Interna-
tional Conference on Software Maintenance. 114–123.

[3] Jafar Al-Kofahi, Tien N Nguyen, and Christian Kästner. 2016. Escaping AutoHell:
a vision for automated analysis and migration of autotools build systems. In
Proceedings of the International Workshop on Release Engineering. 12–15.

[4] Jafar M Al-Kofahi, Hung Viet Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen,
and Tien N Nguyen. 2012. Detecting semantic changes in makefile build code. In
Proceedings of the International Conference on Software Maintenance. 150–159.

[5] Emery D Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. 2019.
On the impact of programming languages on code quality: A reproduction study.
ACM Transactions on Programming Languages and Systems 41, 4 (2019), 1–24.

[6] Cor-Paul Bezemer, Shane McIntosh, Bram Adams, Daniel M German, and
Ahmed E Hassan. 2017. An empirical study of unspecified dependencies in
make-based build systems. Empirical Software Engineering 22, 6 (2017), 3117–
3148.

[7] Hudson Borges and Marco Tulio Valente. 2018. What’s in a github star? under-
standing repository starring practices in a social coding platform. Journal of
Systems and Software 146 (2018), 112–129.

[8] James B Campbell and Randolph H Wynne. 2011. Introduction to remote sensing.
Guilford Press.

[9] Maria Christakis, K Rustan M Leino, and Wolfram Schulte. 2014. Formalizing and
verifying a modern build language. In Proceedings of the International Symposium
on Formal Methods. 12–15.

[10] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in
GitHub for MSR Studies. In Proceedings of the International Conference on Mining
Software Repositories. 560–564.

[11] Casimir Désarmeaux, Andrea Pecatikov, and Shane McIntosh. 2016. The disper-
sion of build maintenance activity across maven lifecycle phases. In Proceedings
of the International Conference on Mining Software Repositories. 492–495.

[12] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:
improving software quality and reducing risk. Pearson Education.

[13] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac,
Wolfram Schulte, Newton Sanches, and Srikanth Kandula. 2016. CloudBuild: Mi-
crosoft’s distributed and caching build service. In Proceedings of the International
Conference on Software Engineering Companion. 11–20.

[14] Stuart I Feldman. 1979. Make—a program for maintaining computer programs.
Software: Practice and experience 9, 4 (1979), 255–265.

[15] Keheliya Gallaba and Shane McIntosh. 2018. Use and misuse of continuous
integration features: An empirical study of projects that (mis) use Travis CI. IEEE
Transactions on Software Engineering 46, 1 (2018), 33–50.

[16] Jean Dickinson Gibbons and Subhabrata Chakraborti. 2014. Nonparametric
statistical inference. CRC press.

[17] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny Van Velzen, Iman
Narasamdya, and Benjamin Livshits. 2014. Automated migration of build scripts
using dynamic analysis and search-based refactoring. ACM SIGPLAN Notices 49,
10 (2014), 599–616.

[18] Ryan Hardt and Ethan V Munson. 2013. Ant build maintenance with formiga. In
Proceedings of the International Workshop on Release Engineering. 13–16.

[19] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexibility.
In Proceedings of the Joint Meeting on Foundations of Software Engineering. 197–
207.

[20] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In Proceedings of the International Conference on Automated Software Engineering.
426–437.

[21] Michael C Hilton, Nicholas Nelson, Danny Dig, Timothy Tunnell, and Darko
Marinov. 2016. Continuous Integration (CI) Needs and Wishes for Developers of
Proprietary Code. In Proceedings of the Joint Meeting on Foundations of Software
Engineering.

[22] Lorin Hochstein and Yang Jiao. 2011. The cost of the build tax in scientific
software. In Proceedings of the International Symposium on Empirical Software
Engineering and Measurement. 384–387.

[23] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. biometrics (1977), 159–174.

[24] Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam Tutko,
David Kennard, Russell Zaretzki, and Audris Mockus. 2021. World of code:
enabling a research workflow for mining and analyzing the universe of open
source VCS data. Empirical Software Engineering 26 (2021), 1–42.

[25] Christian Macho, Stefanie Beyer, Shane McIntosh, and Martin Pinzger. 2021.
The nature of build changes: An empirical study of Maven-based build systems.

Empirical Software Engineering 26, 3 (2021).
[26] Shane McIntosh, Bram Adams, and Ahmed E Hassan. 2010. The evolution of ANT

build systems. In Proceedings of the International Conference on Mining Software
Repositories. 42–51.

[27] Shane McIntosh, Bram Adams, and Ahmed E Hassan. 2012. The evolution of
Java build systems. Empirical Software Engineering 17, 4 (2012), 578–608.

[28] Shane McIntosh, Bram Adams, Meiyappan Nagappan, and Ahmed E Hassan.
2014. Mining co-change information to understand when build changes are
necessary. In Proceedings of the International Conference on Software Maintenance
and Evolution. 241–250.

[29] Shane McIntosh, Bram Adams, Meiyappan Nagappan, and Ahmed E Hassan.
2016. Identifying and understanding header file hotspots in c/c++ build processes.
Automated Software Engineering 23, 4 (2016), 619–647.

[30] ShaneMcIntosh, BramAdams, ThanhHDNguyen, Yasutaka Kamei, and Ahmed E
Hassan. 2011. An empirical study of build maintenance effort. In Proceedings of
the International Conference on Software Engineering. 141–150.

[31] Shane McIntosh, Meiyappan Nagappan, Bram Adams, Audris Mockus, and
Ahmed E. Hassan. 2015. A Large-Scale Empirical Study of the Relationship
between Build Technology and Build Maintenance. Empirical Software Engineer-
ing 20, 6 (2015), 1587–1633.

[32] Shane McIntosh, Meiyappan Nagappan, Bram Adams, Audris Mockus, and
Ahmed E Hassan. 2015. A large-scale empirical study of the relationship between
build technology and build maintenance. Empirical Software Engineering 20, 6
(2015), 1587–1633.

[33] Shane McIntosh, Martin Poehlmann, Elmar Juergens, Audris Mockus, Bram
Adams, Ahmed E Hassan, Brigitte Haupt, and Christian Wagner. 2014. Collecting
and leveraging a benchmark of build system clones to aid in quality assessments.
In Companion Proceedings of the International Conference on Software Engineering.
145–154.

[34] PJ McNerney and PJ McNerney. 2020. Code Organization and Bazel. Beginning
Bazel: Building and Testing for Java, Go, and More (2020), 97–113.

[35] Mathieu Nassif and Martin P Robillard. 2017. Revisiting turnover-induced knowl-
edge loss in software projects. In Proceedings of the International Conference on
Software Maintenance and Evolution. 261–272.

[36] Andrew Neitsch, Kenny Wong, and Michael W Godfrey. 2012. Build system
issues in multilanguage software. In Proceedings of the International Conference
on Software Maintenance. 140–149.

[37] Gustavo Pinto, Marcel Rebouças, and Fernando Castor. 2017. Inadequate testing,
time pressure, and (over) confidence: a tale of continuous integration users. In
Proceedings of the International Workshop on Cooperative and Human Aspects of
Software Engineering. 74–77.

[38] Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli, and Audris Mockus. 2016.
Quantifying and mitigating turnover-induced knowledge loss: case studies of
Chrome and a project at Avaya. In Proceedings of the International Conference on
Software Engineering. 1006–1016.

[39] Martin P Robillard. 2021. Turnover-induced knowledge loss in practice. In Pro-
ceedings of the Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1292–1302.

[40] Pooya Rostami Mazrae, Tom Mens, Mehdi Golzadeh, and Alexandre Decan. 2023.
On the usage, co-usage and migration of CI/CD tools: A qualitative analysis.
Empirical Software Engineering 28, 2 (2023), 52.

[41] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on software engineering 25, 4 (1999), 557–572.

[42] Mike Shal. 2009. Build system rules and algorithms. gitup. org (2009).
[43] Peter Smith. 2011. Software build systems: principles and experience. Addison-

Wesley Professional.
[44] Thodoris Sotiropoulos, Stefanos Chaliasos, Dimitris Mitropoulos, and Diomidis

Spinellis. 2020. A model for detecting faults in build specifications. ACM on
Programming Languages 4, 1–30.

[45] Roman Suvorov, Meiyappan Nagappan, Ahmed E Hassan, Ying Zou, and Bram
Adams. 2012. An empirical study of build system migrations in practice: Case
studies on kde and the linux kernel. In Proceedings of the International Conference
on Software Maintenance. 160–169.

[46] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen.
2012. Build code analysis with symbolic evaluation. In 2012 34th International
Conference on Software Engineering. 650–660.

[47] Vidar Westfelt and Arturas Aleksandrauskas. 2019. Automated migration of
large-scale build systems.

[48] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu.
2018. I’m leaving you, Travis: a continuous integration breakup story. In Proceed-
ings of the International Conference on Mining Software Repositories. 165–169.

[49] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu.
2019. A conceptual replication of continuous integration pain points in the
context of Travis CI. In Proceedings of the Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
647–658.

[50] Robert K Yin. 2009. Case study research: Design and methods. Vol. 5. sage.

	Abstract
	1 Introduction
	2 Study Design
	2.1 Existing Build Technologies
	2.2 Studied Build Technology
	2.3 Candidate Projects

	3 Prevalence of Bazel Abandonment
	3.1 Rate of Bazel Abandonment
	3.2 Duration of Bazel Adoption

	4 Thematic analysis
	5 Replacement Build Technologies
	6 Analytic Generalizability
	6.1 Confirmatory Downgrade Case
	6.2 Contradictory Upgrade Case

	7 Threats to Validity
	8 Related Work
	8.1 Build Maintenance
	8.2 Build Migration

	9 Conclusion and Lessons Learned
	References

