
Code Impact Beyond Disciplinary Boundaries
Constructing a Multidisciplinary Dependency Graph and Analyzing Cross-Boundary Impact

Gengyi Sun

Software REBELs

University of Waterloo, Canada

gengyi.sun@uwaterloo.ca

Mehran Meidani

Software REBELs

University of Waterloo, Canada

mehran.meidani@uwaterloo.ca

Sarra Habchi

La Forge

Ubisoft Montréal, Canada

sarra.habchi@ubisoft.com

Mathieu Nayrolles

La Forge

Ubisoft Montréal, Canada

mathieu.nayrolles@ubisoft.com

Shane McIntosh

Software REBELs

University of Waterloo, Canada

shane.mcintosh@uwaterloo.ca

ABSTRACT

To produce a video game, engineers and artists must iterate on the

same project simultaneously. In such projects, a change to the work

products of any of the teams can impact the work of other teams.

As a result, any analytics tasks should consider intra- and inter-

dependencies within and between artifacts produced by different

teams. For instance, the focus of quality assurance teams on changes

that are local to a team differs from one that impacts others. To ex-

tract and analyze such cross-disciplinary dependencies, we propose

the multidisciplinary dependency graph. We instantiate our idea

by developing tools that extract dependencies and construct the

graph at Ubisoft—a multinational video game organization with

more than 18,000 employees.

Our analysis of a recently launched video game project reveals

that code files only make up 2.8% of the dependency graph, and

code-to-code dependencies only make up 4.3% of all dependencies.

We also observe that 44% of the studied source code changes impact

the artifacts that are developed by other teams, highlighting the

importance of analyzing inter-artifact dependencies. A comparative

analysis of cross-boundary changes with changes that do not cross

boundaries indicates that cross-boundary changes are: (1) impacting

a median of 120,368 files; (2) with a 51% probability of causing build

failures; and (3) a 67% likelihood of introducing defects. All three

measurements are larger than changes that do not cross boundaries

to statistically significant degrees.

We also find that cross-boundary changes are: (4) more com-

monly associated with gameplay functionality and feature addi-

tions that directly impact the game experience than changes that

do not cross boundaries, and (5) disproportionately produced by

the same team (74% of the contributors are associated with that

team).

CCS CONCEPTS

• Software and its engineering→ Empirical software valida-

tion; Software testing and debugging; Maintaining software.

KEYWORDS

interdisciplinary dependencies, build systems, impact analysis

ICSE ’24, April 14–20, 2024, Lisbon, Portugal

2024. ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00

https://doi.org/10.1145/3639477.3639726

1 INTRODUCTION

Various software artifacts need to be carefully developed in order to

produce a software system. Naturally, source code describes system

behaviour, but automated tests are needed to exercise the system

under simulated conditions [8]. Moreover, containerization tools

(e.g., Docker) specify the execution environment in which the sys-

tem should operate [12]. To weave these artifacts into a cohesive

whole, software organizations rely on build systems, which specify

and resolve internal and external dependencies, and recognize the

conditions under which they should be traversed. In addition, build

systems orchestrate the invocation of order-dependent commands

that preprocess, compile, assemble, link, analyze, and package soft-

ware artifacts into deliverables [16]. At their core, build systems

specify and reason about build behaviour using a dependency graph,

i.e., a directed acyclical graph where nodes represent software mod-

ules (e.g., source code files) and directed edges indicate dependencies

between modules. While the dependency graph is at the heart of

build execution, it can also be leveraged to perform software anal-

yses, such as failure prediction [53], maintenance analysis [5, 6],

quality improvement [22, 28, 40], and impact analysis [29, 43, 44].

In software projects that involve personnel from different disci-

plines, the breadth of software artifacts can be vast [45]. For exam-

ple, producing high-budget (a.k.a., ‘AAA’) video games requires the

careful coordination of personnel with divergent expertise, such

as technical software staff (e.g., developers, QA, and operators), as

well as creative staff (e.g., graphic artists, composers and musicians,

script writers, and level designers). AAA games are typically com-

posed of millions of lines of code, as well as hundreds of thousands

of other digital assets, such as textures and animations [32].

Multidisciplinary teams require a multidisciplinary dependency

graph. Consider a change to a source code file that repositions an

object in a game. This repositioning may have a transitive impact

on other objects within the location in the game. To trace the impact

of that change, we need a graph that captures intra-dependencies

within each domain, as well as inter-dependencies among all of the

other digital assets involved. Inaccurate analysis due to an incom-

plete dependency graph will lead to under- or over-estimating the

impact of a change. While dependency graphs have been explored

in the general development context [5, 22, 53], the multidisciplinary

context (of which ‘AAA games’ serve as an exemplar) introduces

challenges in the extraction and analysis of dependency graphs

that need to be addressed.

https://doi.org/10.1145/3639477.3639726

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Gengyi Sun, Mehran Meidani, Sarra Habchi, Mathieu Nayrolles, and Shane McIntosh

In this paper, we show how such a multidisciplinary dependency

graph can be extracted from a AAA video game project and study

the properties of that graph (Section 2). Then, we leverage the graph

to address five research questions spanning two dimensions:

1.1 Quantification (Section 3)

RQ1: What is missed by a code-only dependency graph?

Motivation: Non-code artifacts play an important role in

video game development as they can also introduce build

breakages and runtime issues. While it is clear that excluding

these non-code artifacts will produce an incomplete graph, it

is unclear the degree to which dependency analytics will be

impacted. Thus, to better understand their potential impact,

we first set out to study the prevalence of non-code artifacts

and their dependencies in the multidisciplinary graph.

Results: In our context, non-code artifacts account for 97.2%

of nodes, and edges connected to non-code artifacts account

for 95.7% of edges. Hence, excluding non-code artifacts will

likely have a large impact on dependency analytics.

RQ2: How often does the impact of a change cross disci-

plinary boundaries?

Motivation: In an interdisciplinary context, it is not unex-

pected for changes to cross disciplinary boundaries; however,

the frequency of cross-boundary changes and their impact

are not well understood. Thus, we set out to explore the

prevalence and scope of cross-boundary changes to evaluate

their importance in a multidisciplinary setting.

Results: In our context, cross-boundary changes occur at

similar rates as changes that do not cross boundaries, but

their impact is higher. On average, cross-boundary changes

impact 212,104 nodes, with a median impact of 120,368 nodes.

Statistical tests confirm that the differences are significant

(Mann-Whitney U test, 𝛼 = 0.05).

RQ3: How risky are cross-boundary changes?

Motivation: Our results from RQ2 show that cross-boundary

changes impact a significantly larger number of nodes than

changes that do not cross boundaries. This implies that cross-

boundary changes may be riskier since they tend to have

a more widespread effect on the system. To understand

whether that risk manifests in concrete ways, we set out

to study whether cross-boundary changes are more prone to

introducing build breakages and defects than changes that

do not cross-boundaries.

Results: Cross-boundary changes introduce build breakages

(51% of the time) and defects (67% of the time) more fre-

quently than changes that do not cross boundaries (44% and

37% of the time, respectively). Statistical tests confirm that

both differences are significant (Boschloo’s test, 𝛼 = 0.05).

1.2 Characterization (Section 4)

RQ4: Which activities are performed during cross-boundary

changes?

Motivation: To explore why cross-boundary changes tend

to be riskier, we set out to characterize the activities that

are performed when changes cross disciplinary boundaries.

Understanding the nature of these activities can provide

valuable insights into the potential effects and consequences

of these changes, allowing stakeholders to take appropriate

measures to address associated risks more effectively.

Results: 43%, 68%, and 26% of the tagged cross-boundary

changes are associated with gameplay functionality, feature

additions, and file additions, respectively, whereas 36% and

68% of the tagged changes that do not cross boundaries are

associated with tools and their configuration, as well as bug

fixes. Non-code changes are rarely tagged.

RQ5: Who produces cross-boundary changes?

Motivation: It is clear that cross-boundary changes are a

common and risky type of change in multidisciplinary de-

velopment. Next, our focus shifts to identifying the teams

responsible for cross-boundary changes. We are particularly

interested in determining whether contributors of cross-

boundary changes are concentrated within one team or dis-

persed across multiple teams. Identifying these contributor

tendencies can help management to better account for the

risks associated with cross-boundary changes through, e.g.,

raising awareness of inter-team impact during code review.

Results:We find that 74% of the contributors of cross-boundary

changes aremembers of the same team. Indeed, cross-boundary

changes within the studied game tend to be concentrated

rather than dispersed.

Our findings highlight the prevalence of cross-boundary changes—

a special type of change that occurs during the development of mul-

tidisciplinary projects. Despite being a regular occurrence, cross-

boundary changes are highly impactful and risky, and they are

primarily produced by the same team. The multidisciplinary de-

pendency graph that we extract and analyze in this paper lays the

foundation for improvements to reviewer recommendation and

change prioritization for continuous integration at Ubisoft.

2 CONSTRUCTING THE MULTIDISCIPLINARY

GRAPH

The studied project is the most recent installment of a popular video

game in a franchise that was released years ago by Ubisoft. The

project contains millions of production files, including source code,

graphical assets, and audio samples. Throughout its development

history, more than 100,000 change sets have been committed since

2022, providing a rich source of dependency graph data.

In this section, we present our approach to constructing the

multidisciplinary dependency graph of the studied project.

2.1 Graph Construction Approach

We first group artifacts into code and non-code categories. Source

code, header files, and libraries are categorized as code artifacts,

while the rest of the files are categorized as non-code artifacts. In

our context, non-code artifacts include machine learning models,

animations, sound, 3D models, and textures.

We construct the dependency graph in separate steps. First, we

construct the non-code portion of the graph (Section 2.2). Second,

we construct the code portion of the graph (Section 2.3). Finally, we

connect the non-code and code portions into the multidisciplinary

dependency graph (Section 2.4).

Code Impact Beyond Disciplinary Boundaries ICSE ’24, April 14–20, 2024, Lisbon, Portugal

MGC NCGCCGC

Code
Parser

Non-Code
Parser

Boundary Node

Figure 1: An overview of the graph extraction approach.

2.2 Non-Code Graph Construction

Figure 1 provides an overview of the non-code graph construction

stage, which is composed of change set extraction (NCGC1) and

graph construction (NCGC2) phases. Below, we describe each phase.

2.2.1 Extract Non-Code Changes (NCGC1). Nowadays, software
projects may contain hundreds of thousands of non-code artifacts.

Similar to the concept of code reusability, non-code artifacts are also

created in a modular way such that they intra-depend on each other

to form composite objects. For instance, the 3D model of a table

in a game contains a surface, four legs, and a texture. The texture

describes the characteristics of the surface like its density, weight,

and smoothness. The surface, legs, and the texture are modules that

are stored in separate files on which the table model depends.

Snowdrop [2] is a game engine developed by Ubisoft, which

combines the artifacts into a cohesive whole. Although Snowdrop is

capable of producing a non-code dependency graph for each change

set, re-extracting this graph for every change set in the studied

period would be prohibitively expensive because the number of

non-code files in our studied project is on the order of millions.

Our approach starts with an initial non-code graph generated by

Snowdrop and incrementally updates it by interpreting the changed

files and performing corresponding graph updates when necessary.

Thus, we extract all changed files and determine the corresponding

graph updates from change sets that we extract from the version

control system.

2.2.2 Build Non-CodeDependencyGraph (NCGC2). There are plenty
of file types among the non-code artifacts. For example, animation

files are different from 3Dmodel files in terms of content and format.

An OBJ 3D object file depends on MTLmaterial files (expressed using

the mtllib statement), and MTL files may use .MPC color texture

files (imported using the map_Ka statement) [1].

To account for this variety, we build a specific parser for each file

extension that appears in our studied project. Each parser analyzes

non-code files with the aim of identifying dependent files. At higher

levels, files depend on multiple artifacts to build composite objects.

For example, the .uasset file format from the Unreal game engine

allows game creators to reference animations, sounds, and textures

to draw an object within the game.

Since the parsing process is time-consuming and there are plenty

of non-code files to process in a typical game project, we build the

non-code graph incrementally. We start with the onerous creation

Algorithm 1: Build Non-Code Dependency Graph

Function G.scan(𝐹𝑖𝑙𝑒):
𝐹𝑖𝑙𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 = 𝑏𝑖𝑛𝑎𝑟𝑦_𝑝𝑎𝑟𝑠𝑒𝑟 (𝐹𝑖𝑙𝑒)

for 𝑐ℎ𝑖𝑙𝑑 : 𝐹𝑖𝑙𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

if 𝑛𝑜𝑡 𝑐ℎ𝑖𝑙𝑑.𝑣𝑖𝑠𝑡𝑖𝑒𝑑 then

mark 𝑐ℎ𝑖𝑙𝑑 visited

𝐺.𝑎𝑑𝑑𝑁𝑜𝑑𝑒(𝑐ℎ𝑖𝑙𝑑)

// Node type: non-code

𝐹𝑖𝑙𝑒.𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑐ℎ𝑖𝑙𝑑) // Connect nodes

𝐺.𝐹𝑖𝑙𝑒 = 𝐹𝑖𝑙𝑒 // Initialize or Update File node

Function BuildNonCodeGraph(𝑐ℎ𝑎𝑛𝑔𝑒𝑠):
for 𝑐ℎ𝑎𝑛𝑔𝑒𝐼𝐷 : 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 do

𝑔𝑒𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑑𝐹𝑖𝑙𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑠(𝑐ℎ𝑎𝑛𝑔𝑒𝐼𝐷)

for each (𝐹𝑖𝑙𝑒, 𝐴𝑐𝑡𝑖𝑜𝑛) do

switch 𝐴𝑐𝑡𝑖𝑜𝑛 do

case 𝑎𝑑𝑑, 𝑢𝑝𝑑𝑎𝑡𝑒 do

𝐺.𝑠𝑐𝑎𝑛(𝐹𝑖𝑙𝑒)

case 𝑑𝑒𝑙𝑒𝑡𝑒 do

𝐺.𝑟𝑒𝑚𝑜𝑣𝑒(𝐹𝑖𝑙𝑒)

return Save G

of the initial graph, but can then update it based on changed files.

More specifically, for each changed file, we perform one of the

following actions:

• Add: For each added file, we add a new node to the graph

and parse it to identify its children.

• Remove: When a file is removed, the corresponding node

and its edges are removed from the graph.

• Scan: For each updated file, we remove the node and its edges

from the graph. Then, we re-parse the file from scratch using

Algorithm 1: 𝐺.𝑠𝑐𝑎𝑛(). By updating the scanned node and

its edges, we prevent the duplication of dependencies from

the updated node.

The output of this step is a directed graph representing depen-

dencies among the non-code files.

2.3 Code Graph Construction

Figure 1 provides an overview of the code graph construction stage,

which is composed of compilation database extraction (CGC1) and

graph construction (CGC2) phases. Below, we describe each phase.

2.3.1 Extract Code Compilation Database (CGC1). We rely on the

import statements in each source file to find other dependent source

code files. For example, in C++, the #include preprocessor directive
imports a referenced file within the context of the file in which

the statement appears. The preprocessor resolves imported files by

searching a list of directories in the search path. While there are

default search locations, the search path is often updated within

build specifications. In this study, we extract search path entries

from the build system.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Gengyi Sun, Mehran Meidani, Sarra Habchi, Mathieu Nayrolles, and Shane McIntosh

Algorithm 2: Build Code Dependency Graph

Function AddChildren(𝐹𝑖𝑙𝑒, 𝑆𝑒𝑎𝑟𝑐ℎ𝑃𝑎𝑡ℎ𝑠):
if not 𝐹𝑖𝑙𝑒 .𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then

mark 𝐹𝑖𝑙𝑒 visited

𝑖𝑚𝑝𝑜𝑟𝑡𝑠 = 𝑖𝑚𝑝𝑜𝑟𝑡_𝑝𝑎𝑟𝑠𝑒𝑟 (𝐹𝑖𝑙𝑒)

for 𝑖𝑚𝑝𝑜𝑟𝑡 : 𝑖𝑚𝑝𝑜𝑟𝑡𝑠 do

for 𝑝𝑎𝑡ℎ : 𝑆𝑒𝑎𝑟𝑐ℎ𝑃𝑎𝑡ℎ𝑠 do

if 𝑝𝑎𝑡ℎ+𝑖𝑚𝑝𝑜𝑟𝑡 exists then

// Node type: code or boundary

node

𝐺.𝑎𝑑𝑑𝑁𝑜𝑑𝑒(𝑖𝑚𝑝𝑜𝑟𝑡)

𝐹𝑖𝑙𝑒 .𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑(𝑖𝑚𝑝𝑜𝑟𝑡)

// Traverse up dependencies until

exhausted

𝐴𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑖𝑚𝑝𝑜𝑟𝑡, 𝑆𝑒𝑎𝑟𝑐ℎ𝑃𝑎𝑡ℎ𝑠)

break

// Terminate when all visited

Function BuildCodeGraph():
for 𝑐ℎ𝑎𝑛𝑔𝑒𝐼𝐷 : 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 do

𝐹𝑖𝑙𝑒𝑠, 𝑃𝑎𝑡ℎ𝑠 = read(𝑐𝑜𝑚𝑝𝑖𝑙𝑒_𝑐𝑜𝑚𝑚𝑎𝑛𝑑. 𝑗𝑠𝑜𝑛)

for 𝐹𝑖𝑙𝑒 : 𝐹𝑖𝑙𝑒𝑠 do

𝐺.𝑎𝑑𝑑𝑁𝑜𝑑𝑒(𝐹𝑖𝑙𝑒)

𝐴𝑑𝑑𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝐹𝑖𝑙𝑒, 𝑃𝑎𝑡ℎ𝑠)

return Save G

The compile_commands.json file is a clang standard file
1
that

the build system can generate. For example, the studied project uses

Sharpmake,
2
a build automation tool similar to CMake. Sharpmake

will generate the compile_commands.json file when the -compdb
argument is provided. This .json file contains the following infor-

mation for each compilation unit:

• file: the full path of the file in the compilation process.

• directory: The root directory from which relative paths are

being resolved.

• command: The list of arguments that have been passed to

the compiler for this specific compilation unit.

Each node in the multidisciplinary dependency graph represents

a code or non-code file. Edges in this directed graph indicate a

dependency from a source file to a destination file. In the following

steps, we describe how we construct the graph given the data that

we extracted in the previous steps.

2.3.2 Build Code Dependency Graph (CGC2). In this step, we iter-

ate over the compilation database file (compile_commands.json)
generated in step CGC1 to identify source code files. We also ana-

lyze the ‘-I’ search path arguments in the command section of each

file and store them in a list that preserves the order of precedence

from the compilation database.

Next, we resolve each file name passed to the #include prepro-

cessor directive by checking the list of search path locations in the

1
https://clang.llvm.org/docs/JSONCompilationDatabase.html

2
https://github.com/ubisoft/Sharpmake

same order of precedence as the preprocessor. If a node with the

exact path matching a referenced file does not exist in the graph, we

create the node and recursively invoke Algorithm 2: 𝐴𝑑𝑑𝐶ℎ𝑖𝑙𝑟𝑒𝑛()
with this new file as input. Finally, we connect the source node

to the dependency under analysis to connect it to the rest of the

graph. Note that it is guaranteed that the algorithm will terminate,

since we do not analyze existing (visited) nodes. The output of this

step is an adjacency list, which represents the file-level dependency

graph for code files.

2.4 Multidisciplinary Graph Construction

Figure 1 provides an overview of the multidisciplinary graph con-

struction stage (MGC), which is composed of boundary node ex-

traction (MGC1) and graph merging (MGC2) phases. Below, we

describe each phase.

2.4.1 Extract Boundary Nodes (MGC1). Eventually, the artifacts
produced by different teams must be integrated to build the final

software [31]. The game engine often enables a data-driven de-

velopment approach [19]. Thus, developers provide generic and

game-specific boundary nodes to the engine, which can be later

used by artists. These boundary nodes are the bridge between code

and non-code nodes [35]. In our study, boundary nodes are defined

as classes that inherit from the ‘NodeGraph’ class. The exact class

name also appears in the non-code files, which are inputs to these

nodes. We process each source file to detect classes that are defined

in header files and implemented in .cpp files. Unlike code and non-

code nodes that represent files, boundary nodes are not actual files,

but hyper-nodes that connect the code and non-code nodes. While

this step is implemented in a project-specific manner, we conjec-

ture that the concepts will generalize to other multidisciplinary

settings. The output of this step is a map holding the one-to-many

relationships between classes (i.e., boundary nodes) and code files.

2.4.2 Merge Non-Code and Code Graphs (MGC2). The intersection
between the non-code and code graphs are the boundary nodes

(i.e., edges from non-code to boundary node as inputs, and from

boundary node to the code files where the node is implemented).

Using the map generated by MGC1, we identify the corresponding

files for those boundary nodes and add edges from the non-code

graph (generated in NCGC2) to the code graph (generated in CGC2).

Since the dependency flow is from non-code to code, non-code

nodes tend to have a larger outdegree than code nodes, i.e., a greater

number of edges directed out of the node, whereas code nodes have

a larger indegree than non-code nodes, i.e., a greater number of

edges directed into the node. The centrality of code nodes, i.e., how

critical a node is in the graph, also tends to be larger than that of

the non-code nodes, since reuse of code artifacts seems to be more

prevalent than reuse of non-code artifacts.

While our approach relies on the build information produced

by Snowdrop for constructing the dependency graph, our main

contribution lies in the efficiency of incremental updates for the

non-code graph, as well as the creation of a novel multidisciplinary

dependency graph.

https://clang.llvm.org/docs/JSONCompilationDatabase.html

Code Impact Beyond Disciplinary Boundaries ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Number of nodes and edges and their percentages in

the multidisciplinary graph

Type Number % of Total

Node

Code 30,675 2.8

Non-Code 1,072,017 97.1

Boundary 1,345 0.1

Total 1,104,037 100%

Edge

(Code, Code) 141,412 4.30

(Boundary, Code) 2,057 0.06

(Non-Code, Boundary) 47,924 1.46

(Non-Code, Non-Code) 3,097,819 94.18

Total 3,289,212 100%

3 QUANTITATIVE ANALYSES

In this section, we present our quantitative analyses with respect

to three research questions. For each research question, we present

our approach to addressing it and the results that we observe.

RQ1: What is missed by a typical code-only

dependency graph?

Approach: Following the process described in Section 2, we con-

struct a dependency graph based on the most recent change set in

our studied period as an example. We count the nodes and edges

of different types in the graph. Though the numbers of nodes and

edges fluctuate from change to change, we have confirmed with

the project manager that the studied period is undergoing regular

and steady development. Therefore, the graph is not as volatile as

it would be in early development periods.

Results: Table 1 presents the numbers of the three types of nodes

and the four types of edges in the graph. Figure 2 provides an

overview of the graph from a visual perspective, where green nodes

represent the non-code files, pink nodes represent the code files,

and orange nodes represent the boundary nodes that connect code

and non-code nodes.

Observation 1: Non-code artifacts are prevalent, constituting 97.2%

of all nodes in the dependency graph, and the edges connecting to non-

code nodes account for 95.7% of all edges. Among the 1,104,037 nodes

in the dependency graph, only 30,675 nodes represent code files,

while a substantial majority of 1,072,017 nodes represent non-code

files. Additionally, 1,345 nodes facilitate the connection between

code and non-code nodes across disciplinary boundaries (a.k.a.,

boundary nodes).

The dependency graph consists of a total of 3,289,212 edges.

Among these edges, only 141,412 (4%) intra-connect code nodes to

other code nodes, while the other 3,147,800 edges connect non-code

or boundary nodes. The vast majority of edges (3,097,819 or 94%)

connect non-code nodes to other non-code nodes. Additionally,

2,057 edges connect code nodes to boundary nodes, and 47,924

edges connect boundary nodes to non-code nodes.

In the studied project, the vast majority of nodes (97.2%)

and edges (95.7%) will be missed if non-code artifacts

are excluded from the dependency graph.

Code

Non-
Code

Boundary Non-
Code

Non-
Code

Code

Code

Changed

Impacted

Boundary

Code

Figure 2: A cross-boundary change impacts nodes from an-

other discipline that are depending on the changed nodes.

RQ2: How often does the impact of a change

cross disciplinary boundaries?

Approach: Considering each graph contains millions of nodes, we

extract the dependency graph of 4,640 changes on the main branch

that span 11 weeks of development, occupying more than 1.8 TB

of memory space. Then, we locate the nodes that correspond to

the list of committed files in each change. For each changed node,

we traverse its incoming edges transitively to obtain a set of its

dependent nodes in the graph. Then we compare the node type (i.e.,

file type) of the changed node and the dependent nodes.

We categorize changes into two types. First, if a change adds,

updates, or deletes any code files, we call it a code change. Other-

wise, changes that only modify non-code files are called non-code

changes. We label changes as cross-boundary if any of the depen-

dent nodes are of a different node type than the changed nodes, as

shown in Figure 2.

Results: Table 2 compares the numbers of the dependent nodes

associated with each change. Figure 3 plots the number of cross-

boundary (CB) changes and code changes committed each day. The

left y-axis shows the number of cross-boundary changes committed

each day in blue, while the right y-axis shows the number of code

changes committed each day. The x-axis indicates the progression

of days. To enhance the clarity of the trend, we plot the trends using

LOESS smoothing.

Observation 2: 44% of the code changes have a large cross-disciplinary

impact that affects 212,104 nodes on average. We find that 6% of the

analyzed commits have an impact that crosses disciplinary bound-

aries. While this is a small proportion of the overall commits, it

accounts for 44% of the commits that change the source code. In

addition, we find that none of the cross-boundary changes are

non-code changes since the dependency flow is from non-code to

code, i.e., non-code nodes depend on code nodes. The comparison

in Table 2 reveals that cross-boundary changes tend to affect a

substantial number of nodes. Specifically, the mean number of im-

pacted nodes for cross-boundary changes is 212,104, with a median

of 120,368. In contrast, non-code changes and changes that do not

cross boundaries have a substantially smaller impact, with means

of 452 and 49 nodes, and medians of 2 and 0 nodes, respectively.

These findings highlight the large difference in the scale of impact

between cross-boundary changes and other types of changes.

The order of magnitude difference in the number of nodes im-

pacted suggests that the multidisciplinary graph adds an important

new perspective for analytics. The statistical significance of the

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Gengyi Sun, Mehran Meidani, Sarra Habchi, Mathieu Nayrolles, and Shane McIntosh

Table 2: Build breakage rates and the number of impacted nodes of non-code and code changes.

% of Total

Build

Breakage (%)

Defect

Inducing (%)

Cross

Boundary

% of CB

Mean

Impact

Median

Impact

Build

Breakage (%)

Defect

Inducing (%)

Non-code 86 11 N/A N/A N/A 452 2 N/A N/A

Code 14 46 50

Yes 44 212,104 120,368 51 67

No 56 49 0
a

41 37

a
Counts of impacted nodes exclude the directly changed nodes.

0 10 20 30 40 50
Days

0

5

10

#C
ro

ss
-B

ou
nd

ar
y

Ch
an

ge
s

10

20

#C
od

e
Ch

an
ge

#CB Changes
Loess(0.2) #CB Curve

#Code Changes
Loess(0.2) #Code Curve

Figure 3: The daily occurrence of cross-boundary changes

(blue y-axis on the left) and code changes that do not cross

boundaries (black y-axis on the right).

discrepancies is confirmed by Mann-Whitney U tests (two-tailed,

unpaired, 𝛼 = 0.05), yielding Holm-Bonferroni corrected p-values

of 2.2 × 10
−162

and 1.5 × 10
−107

, respectively.

Observation 3: Cross-boundary changes are not isolated incidents,

but rather frequently occur during the development process. In Fig-

ure 3, the LOESS smoothed curves representing the frequencies of

committed cross-boundary changes and changes that do not cross

boundaries closely align with each other. This alignment suggests

that changes crossing disciplinary boundaries are a common occur-

rence that follows to the number of committed code changes that

do not cross boundaries on a daily basis.

Changes crossing disciplinary boundaries are a common

daily occurrence that represents 44% of code changes

and 6% of overall changes, moreover, they impact a sig-

nificantly larger amount of nodes compared to other

changes.

RQ3: How risky are cross-boundary changes?

Approach:We study two types of risk: that of introducing build

breakages and that of being implicated in defect-inducing com-

mits. A build breakage occurs due to errors or test failures, while a

defect-inducing commit occurs when a developer unintentionally

introduces a defect or design flawwhile making changes to the code-

base, which is later discovered and fixed by another commit. Since

non-code changes do not cross the disciplinary boundaries, we fo-

cus our comparison on cross-boundary changes and code changes

that do not have an impact on non-code nodes (i.e., code changes

that do not cross boundaries). For build failures, we mine the build

logs to extract build results for each change. As for defect-inducing

commits, we rely on information from the CLEVER database [30] at

Ubisoft, which identifies the defect-inducing commits with the SZZ

algorithm presented by Kim et al. [26]. To assess the significance

of the observed differences, we apply Boschloo’s Exact test on the

build-breaking and fix-inducing rates of cross-boundary changes

and changes that do not cross boundaries.

Results: Table 2 shows the rates of build failures and defect intro-

duction in cross-boundary changes and code changes that do not

cross boundaries. While the table also reports build failure rates

in non-code changes, the defect introduction rates of non-code

changes cannot be computed since the SZZ algorithm cannot be

applied to non-code changes.

Observation 4: Cross-boundary changes introduce build breakages

at a greater rate than changes that do not cross boundaries (10 percent-

age points or 24% more). 51% of cross-boundary changes introduce

build breakages, whereas 41% of code changes that do not cross

boundaries and 11% of non-code changes introduce build break-

ages. The statistical significance of this discrepancy is confirmed

by Boschloo’s Exact test, both yielding a p-value smaller than 0.01.

Observation 5: Cross-boundary changes introduce defects at a

greater rate than changes that do not cross boundaries (30 percentage

points or 81%). Table 2 shows that 67% of cross-boundary changes

and 37% of changes that do not cross boundaries introduce de-

fects. The statistical significance of this difference is confirmed by

Boschloo’s Exact test, yielding a p-value of 8.0 × 10
−15

.

The notable disparity observed in the build breakage and defect

introduction rates indicates that cross-boundary changes have a

greater tendency to break the build pipeline and introduce defects.

We suspect that this increased risk can be attributed to the fact that

cross-boundary changes impact a larger number of interconnected

nodes within the dependency graph, exposing a larger proportion

of the system to change, which in turn increases their riskiness.

Cross-boundary changes tend to break builds (51% of

the time) and induce defects (67% of the time) with sig-

nificantly greater rates than changes that do not cross

boundaries (44% and 37% of the time, respectively).

4 CHARACTERIZATION STUDY

In this section, we present our characterization of cross-boundary

changes with respect to two research questions. For each research

question, we present our approach to addressing it and the results

that we observe.

Code Impact Beyond Disciplinary Boundaries ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: The percentage of changes that are associated with a

tag or a file action.

(%)

Tag/

Action

Code

Non-Code

CB Non-CB

@Category

GamePlay 43 21
∗∗∗

28

Tools 13 36
∗∗∗

28

AI 28 27 22

UI 13 5
∗

25

Scripts 4 3 0

Graphics 1 5 0

Servers 3 9 0

DevOps 0 2 0

Tagged 38 33 1
∗∗∗

@Type

Feature 68 22
∗∗∗

56

Bugfix 24 68
∗∗∗

37

Refactor 7 6 0

Test 1 4 0

Nodes 5 2 0

BuildSystem 0 4 4

Doc 0 0 7

Tagged 30 30 1
∗∗∗

File Action

Addition 26 11
∗∗∗

36
∗∗∗

Update 97 89
∗∗∗

81
∗∗∗

Deletion 8 5 16
∗∗∗

Tags and actions are not mutually exclusive.

Statistical significance of Boschloo’s Exact test:

∗𝑝 < 0.05;∗∗ 𝑝 < 0.01;∗∗∗ 𝑝 < 0.001;𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑝 ≥ 0.05

RQ4: Which activities are performed during

cross-boundary changes?

Approach:When a commit is focused on a specific topic, it is com-

mon for the contributors at Ubisoft to apply tags to those commits.

These tags help to organize the related commits, making it easier to

track changes and understand the collective purpose behind them.

To address our research questions, we focus on the @Category
and @Type tags. The @Category tag describes the aspect of the

game being modified (e.g., GamePlay, Tools), whereas the @Type
tag describes the development action being taken (e.g., feature,

bugfix). Contributors may apply multiple tags to their changes,

therefore, the tags are not mutually exclusive. These tags are not a

mandatory component of the commit, and hence, are unspecified

for the bulk of the commits within our studied period.

In addition to tags, we also compare the file actions (i.e., add/ up-

date/ delete) among cross-boundary changes, code changes that do

not cross boundaries, and non-code changes. We apply Boschloo’s

Exact test to assess the significance of the observed differences

between cross-boundary changes and others.

Results: Table 2 shows the rates of occurrence and the statistical

test results for the studied tags and action types.

Observation 6: Gameplay, Tools, and UI categories interact with

whether or not changes cross boundaries. Table 3 shows that 38%

of cross-boundary changes and 33% of code changes that do not

cross boundaries are tagged with categories. Although there is a

difference of five percentage points, Boschloo’s test indicates that

the null hypothesis (i.e., that the rate of tagging is not significantly

different between cross-boundary changes and code changes that

do not cross boundaries) cannot be rejected. The Gameplay, Tools,

and UI @Category tags show a significant disparity between cross-

boundary changes and code changes that do not cross boundaries.

Indeed, cross-boundary changes are more likely to be associated

with gameplay and UI. Table 3 shows that there is a statistically sig-

nificant 22 and 8 percentage point increase being observed between

cross-boundary changes and code changes that do not cross bound-

aries. On the other hand, cross-boundary changes are less likely to

be associated with Tools. Table 3 shows that there is a statistically

significant 23 percentage point decrease being observed between

cross-boundary changes and code changes that do not cross bound-

aries. Finally, we observe that only 1% of non-code changes are

tagged with a @Category, hence we refrain from comparing their

tag distribution with the one of code changes.

Observation 7: Feature additions are more often associated with

cross-boundary changes, whereas bug fixes are more often associated

with code changes that do not cross boundaries. Table 3 shows that

30% of code changes are tagged with types. There is no rate differ-

ence between cross- and non-cross-boundary code changes, and

Boschloo’s test indicates that the null hypothesis (a.k.a., that the

rate of tagging is not significantly different between cross-boundary

and code changes that do not cross boundaries) cannot be rejected.

The feature and bugfix @Type tags show substantial disparities

in rates across cross-boundary and non-cross-boundary changes.

Indeed, we observe that feature tags are more prevalent among

cross-boundary changes, with a statistically significant 46 percent-

age point increase in the rates compared to code changes that do

not cross boundaries. On the other hand, we observe that bugfix

3
tags are more prevalent among code changes that do not cross

boundaries. Table 2 shows that there is a statistically significant

44 percentage point decrease in the rates of bugfix tags among

cross-boundary changes compared to code changes not crossing

boundaries. Finally, similar to the @Category tag, we observe that

non-code changes are rarely tagged with a @Type.
Observation 8: File additions and updates aremore prevalent among

cross-boundary changes than code changes that do not cross bound-

aries. Table 3 shows that 26% and 97% of cross-boundary changes in-

clude file additions and updates, while 11% and 89% of code changes

that do not cross boundaries include file additions and updates, re-

spectively. There is a statistically significant 15 and 8 percentage

point difference in rates of file additions and file updates among

cross-boundary and non-cross-boundary code changes. Although

there is a 3 percentage point difference in the rates of file dele-

tions between the two code change categories, Table 3 shows the

difference is statistically insignificant.

Observation 9: File additions and deletions are more prevalent

among non-code changes than cross-boundary changes, whereas file

updates are less prevalent among non-code changes than cross-boundary

changes changes. Table 3 shows that 36% and 16% of non-code

changes include file additions and deletions, while 26% and 8% of

3
The defect-fix pairs are many-to-many relationships [13, 26, 39].

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Gengyi Sun, Mehran Meidani, Sarra Habchi, Mathieu Nayrolles, and Shane McIntosh

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
Level 8
Level 9
Level 10Non-Code-Contributor

Code-Contributor
CB-Contributor Less Than 10 Changes
Non-Contributor
CB-Contributor More Than 10 Changes

Figure 4: Organization graph of the contributors that committed at least one change during the studied period.

cross-boundary changes include file additions and deletions, respec-

tively. In terms of file updates, 81% of non-code changes include

file updates, while 97% of cross-boundary changes include file up-

dates. There are statistically significant differences in rates of file

additions, deletions, and updates among non-code changes and

cross-boundary changes.

Cross-boundary changes are more often associated with

GamePlay, Feature, and UI tags, as well as file addi-

tions and updates, whereas code changes that do not

cross boundaries are more often associated with Tools

and bugfix tag. Non-code changes are rarely tagged.

RQ5: Who produces cross-boundary changes?

Approach: In collaboration with the human resources team, we

extract the organizational graph of contributors who committed

during the study period. Starting from the contributors, we traverse

the graph upwards to their direct managers and continue transi-

tively until all contributors share the same manager. The levels are

defined from the bottom of the tree structure to the top, and the

leaf node is considered level 1, while the root node is placed at level

10. Nodes from the same sub-tree (i.e., those who share a manager)

are considered to be members of the same team.

The abstracted levels mentioned in this paper do not directly

correspond to the actual employee levels within Ubisoft. To pro-

tect the privacy of contributors, their personal data are no longer

recorded once they lose access to the project. Consequently, their

data are omitted. Details regarding the impact of this omission on

the validity of our conclusions will be discussed in Section 7.

Results: Figure 4 presents the complete graph, with the gray circle-

shaped nodes representing the direct managers. The green triangle-

shaped nodes represent the contributors who committed at least

one code change. The yellow hexagon-shaped nodes represent the

contributors who committed more than cross-boundary change.

The orange diamond-shaped nodes represent contributors who

committed more than ten cross-boundary changes. Finally, the blue

pentagon-shaped nodes represent the contributors who committed

non-code changes.

Observation 10: Non-code changes are committed by individu-

als from various job groups, while code changes, specifically, cross-

boundary changes, are exclusively committed by programmers. The

contributors involved are dispersed across six distinct job groups:

IT, Programming, Quality Management, Animation, Audio, Game

and Level Design, and Art. Contributors from the Quality Manage-

ment, Animation, Audio, Game, and Level Design, and Art groups

exclusively contribute to non-code changes, as represented by the

blue pentagon in Figure 4. On the other hand, contributors from the

IT and Programming groups have a more diverse range of contri-

butions, including both non-code and code changes. It is important

to note that during the studied period, the IT group contributed a

negligible fraction (0.4%) of all changes, and only the Programming

group contributes cross-boundary changes, as represented by the

yellow hexagons and orange diamonds in Figure 4.

The contributors who have committed cross-boundary changes,

namely cross-boundary contributors (i.e., CB-contributor in Figure

4), are a subset of the contributors who have committed at least one

code change, namely code contributors. 73% of code contributors

are also cross-boundary contributors.

Observation 11: 74% of cross-boundary contributors originate from

the same team. Figure 4 shows that 35 of the 47 cross-boundary

contributors are from the same sub-tree at level 6. Additionally, 82%

of cross-boundary changes are from this level 6 team. The other 12

cross-boundary contributors who produced 18% of cross-boundary

changes can be traced back to five sub-trees at level 6.

Cross-boundary changes are from the Programming

group only, while non-code changes have various group

origins. Contributors from one team commit most of

the cross-boundary changes.

5 PRACTICAL IMPLICATIONS

In this section, we discuss the potential benefits of dependency

analysis in the broader software engineering context.

(1) Dependency graphs should be expanded to include

the multidisciplinary context. Observation 1 shows that

code files only represent a small fraction of dependency

graphs that we extract. Thus, graphs that omit non-code ar-

tifacts will provide a narrow and skewed perspective when

dependency analytics are performed. Observations 2 and

3 show that code changes frequently impact non-code ar-

tifacts (i.e., cross-boundary changes), indicating non-code

files are interacting with code files even when they are not

Code Impact Beyond Disciplinary Boundaries ICSE ’24, April 14–20, 2024, Lisbon, Portugal

modified.Moreover, non-code changes also incur build break-

ages. Therefore, non-code files should not be left out when

analyzing dependency graphs. While the context of AAA

game development, is somewhat unique, we suspect that

this is not the only context where multiple disciplines in-

teract to produce software systems (e.g., operating systems

with multimedia components [53], vehicle software systems

with hardware involvements). Taking a multidisciplinary

perspective on dependency analytics in such contexts will

likely also increase the value of the results.

(2) Cross-boundary changes should receive additional scrutiny

during code review.Observation 4 shows that changes that

cross boundaries aremore likely to break builds than changes

that do not. Furthermore, Observation 5 shows that changes

that cross boundaries are more likely to be implicated in

future defect-inducing commits than changes that do not.

Therefore, to mitigate these potential risks, we believe that

additional QA rigour should be applied during the integra-

tion process of cross-boundary changes. The natural first

step in the software process at Ubisoft is to flag these changes

during the code review process.

6 RELATEDWORK

Dependency graphs have long been at the heart of software build

systems. For example, Feldman [16] introduced the Make build

system, which uses a depth-first search of the file-level dependency

graph to keep program deliverables up to date with their dependen-

cies. Other researchers proposed methods to construct and sym-

bolically analyze dependency graphs that are extracted from build

tools statically [29, 41]. Inspired by this work, we incorporate static

code analysis to extract the nodes that connect the non-code and

code graphs to each other.

Research has leveraged dependency graphs to tackle other soft-

ware engineering challenges. For example, Zimmermann et al. [53]

used complexity metrics extracted from dependency graphs to pre-

dict subsystem failures. Cao et al. [9] forecast the duration of the

build based on the changed nodes in the dependency graph.

In this section, we discuss the previous research that has incorpo-

rated dependency graphs, and future work that could benefit from

incorporating dependency analytics with respect to two existing

software engineering challenges.

6.1 Dependency Analytics In Code Reviewer

Recommendation

Code Reviewer Recommenders (CRRs) assist in the code review

process by automatically suggesting potential reviewers for a given

code change. CRRs recommend individuals who have the relevant

expertise to review the code changes using (meta)data about a

change, the review(er) tendencies of the modified files, and/or the

relationship among reviewers and reviews.

Research on various approaches and their potential benefits for

CRRs have long been explored. Some studies leverage the reviewer’s

experience and review history on changed files as a basis for rec-

ommendation [7, 11, 33, 42, 50]. Others focus on file paths [15, 46]

or social network graphs [33, 36, 49]. Hirao et al. [23] demonstrated

the performance of CRRs tend to improve if the linkage between

reviews is considered. Zhang et al. [51] take a graph neural net-

work learning approach called CORAL, which learns from a socio-

technical graph constructed using reviewer experience, reviewer

history, and changed file relations extracted from comment and re-

view history. In addition to the existing works, our multidisciplinary

dependency graph can be incorporated within such socio-technical

graphs to provide direct dependencies among files, file authors, and

reviewers, further enhancing the representativeness of the graph.

To assess the usefulness of CRRs and identify valuable factors

in selecting code reviewers from the perspective of developers,

Kovalenko et al. [27] conducted a survey of the considered factors

when developers are selecting code reviewers. The results showed

that working in an area that is dependent on and depended upon

by the changed files ranked 4th and 6th, respectively. These factors

highlight the importance of selecting reviewers with experience in

dependency-related areas.

Indeed, dependency analytics can be a valuable tool in enhanc-

ing automated CRRs by providing the accurate impact of changes

on interconnected files. Unlike relying on common file paths or

co-change frequencies, dependency analysis considers the relation-

ships between files. In this paper’s context, when the change impact

crosses boundaries and impacts a large set of files, relying on the

file paths would omit review input from experts in other domains.

6.2 Dependency Analytics for the Acceleration

of Continuous Integration

Continuous Integration (CI) acceleration refers to the optimization

of CI processes in software development, including automated build,

test, and deployment. It aims to reduce the time-to-feedback for

developers and save resources while ensuring software quality.

Jin and Servant [47] conducted an evaluation of existing tech-

niques for Continuous Integration (CI) acceleration and synthe-

sized the design decisions that proved effective in accelerating CI

processes. One extensively studied topic in CI acceleration is the

concept of build skipping, which involves skipping builds either

entirely (build selection) or partially (test selection).

To skip a build entirely, a model is employed to infer change in-

formation and predict the build result before the code change is pro-

cessed by the build system. This model can be rule-based [4, 25, 37]

or trained using statistical or machine learning approaches [3, 10,

20, 21, 24, 34, 38, 48]. Similar rules and features can be crafted from

to exploit the multidisciplinary dependency graph. For example, as

shown by Observation 3, cross-boundary changes impact a substan-

tial amount of nodes and incur more build breakages than changes

that do not cross boundaries. We suspect that an indicator of cross-

boundary impact will improve build outcome prediction, and have

begun to explore its applications within the Ubisoft context.

Partial build skipping can be achieved through regression test

selection [14], which involves selecting a subset of tests from the

existing test suite to execute, thereby reducing feedback time and re-

source usage. Dependency analytics can also assist in test selection.

The file-level dependencies captured in the dependency graph allow

for effective regression test selection. Gligoric et al. [18] developed

Ekstazi—a test selection approach that analyzes dependencies to

decide which tests must be executed. Gligoric et al. also discussed

the limitation of FaultTracer [52], which constructs an extended

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Gengyi Sun, Mehran Meidani, Sarra Habchi, Mathieu Nayrolles, and Shane McIntosh

call graph (i.e., method-level) and identifies the suspicious changes

and the impacted tests. Gligoric et al. conducted experiments to

compare dependency granularities at the method, class, and file lev-

els, concluding that using the file-level dependencies, i.e., the same

granularity as our multidisciplinary dependency graph operates is

the safest because it also captures external file dependencies.

Furthermore, by adopting dependency analytics, the build sys-

tem can identify unaffected files and artifacts, avoiding duplicate

builds on unchanged binaries. This can substantially reduce waste

in the build process. Indeed, Gallaba et al. [17] showed that unaf-

fected build steps could be effectively skipped by caching the build

environment and inferring file dependencies.

Dependency analytics can indeed assist CI acceleration by pro-

viding the accurate impact of changes on interconnected files. In

this paper’s context, resources spent on re-generating deliverables

for changes that do not have a large-scale impact (e.g., non-code

changes and those that do not cross boundaries in our project) could

be potentially saved. We are actively pursuing follow-up work on

making such improvements at Ubisoft.

7 THREATS TO VALIDITY

Below, we present the threats to the validity of our study.

7.1 Construct Validity

The process of extracting code dependencies at the file level in-

volves reading the content of source files and identifying import

statements. However, the import statements may be located within

conditional statements, e.g., when platform-dependent libraries are

loaded to accelerate graphics on PC or console platforms. As a re-

sult, our liberal approach may introduce additional nodes and edges

to the graph. while we are developing improvements to address

these overestimates, we find that they are relatively rare in our

practical setting. Moreover, the overestimates do not impact the

fundamental concepts that we present in this paper.

The compilation database that we generate (see Section 2) is

for the executable version of the game as it is deployed on the

Windows operating system. It is not uncommon for video games

to target multiple platforms, which would each produce a different

compilation database. However, during the studied period, all the

developments related to the game that we studied occurred in

platform-independent areas. Thus, the specific platform used for

generating the compilation database does not affect the results that

we present in this paper.

7.2 Internal Validity

Since the graphs generated for each revision are large enough

to present practical traversal challenges, we have restricted our

study to revisions generated within an 11-week period. Also, the

graph example that we use to count nodes and edges is only one

slice of the development process. While there could be alternative

explanations for the observations presented in this paper, such as

the occurrence of a maintenance period or frozen development

branches, our communication with project managers indicates that

our studied period aligns with regular and steady development.

In addition, due to privacy concerns, we omit cross-boundary

contributors who no longer have commit access from our analysis.

While this omission may affect the observed percentages in Section

4, it is important to note that the majority of the cross-boundary

changes originate from a team that shares a common manager

six levels up in the organization chart. Therefore, we suspect the

impact of this omission on our conclusions is minimal.

7.3 External Validity

The results for the research questions are derived from a AAA game

at Ubisoft. This limited scope may impact the generalizability of the

study’s findings to a broader context. It does not affect the concept

of the multidisciplinary dependency graphs and its implications for

future research and practical tools. Nonetheless, replication studies

may strengthen the generalizations that can be drawn.

8 CONCLUDING REMARKS

In this paper, we demonstrate the importance of multidisciplinary

dependency graphs. While our observations are drawn from the

context of the development of a AAA game at Ubisoft, we con-

jecture that similar observations may hold in other domains that

involve multidisciplinary teams. We observe that changes having

an impact that crosses disciplinary boundaries are a regular oc-

currence and tend to be associated with a greater risk of build

breakage and defect introduction than changes that do not cross

boundaries. Moreover, we show that cross-boundary changes are

more commonly associated with gameplay functionality, feature

additions, and UI-related development than changes that do not

cross boundaries, which are more commonly associated with tool

implementation and bug fixes than cross-boundary changes. Finally,

the vast majority of cross-boundary changes are contributed by

one team rather than dispersed across the organization.

8.1 Future Work

These findings have laid the foundation for improvements to depen-

dency analytics at Ubisoft. We are actively developing solutions that

leverage the multidisciplinary dependency graph to improve code

reviewer recommendations and accelerate CI processes. Currently,

research on accelerating the CI pipeline in the studied project using

a build outcome prediction model has adopted features extracted

directly from the dependency graphs. Our ongoing work is also

applying our learnings to another video game project at Ubisoft.

Indeed, analysis of their multidisciplinary dependency graph (i.e.,

Observation 3, 4 and 5) is being used by a build outcome prediction

model to decide whether pre-running a change set in a staging

environment would be likely to prevent a breakage from being

promoted to the active development branch.

Our findings may also generalize to other systems with heteroge-

neous development artifacts (e.g., some components implemented

in one programming language and other components implemented

in others). For example, in such a system, a false input that exists

in a script that coordinates components of different programming

languages will not cause a compilation error but will propagate its

impact through dependencies, and cause a test failure (or worse!)

in one of the downstream components. We encourage future re-

searchers to replicate the study on such systems to evaluate the

generalizability of our findings.

Code Impact Beyond Disciplinary Boundaries ICSE ’24, April 14–20, 2024, Lisbon, Portugal

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support ofMITACSCanada.

REFERENCES

[1] [n. d.]. MTL Material Format (lightwave, OBJ). http://paulbourke.net/

dataformats/mtl/

[2] [n. d.]. Snowdrop Game Engine. https://www.massive.se/project/snowdrop-

engine/ Accessed: August 10, 2023.

[3] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. 2021. AMachine Learning

Approach to Improve the Detection of CI Skip Commits. IEEE Transactions on

Software Engineering 47, 12 (2021), 2740–2754. https://doi.org/10.1109/TSE.2020.

2967380

[4] Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, and Juergen Rilling. 2021.

Which Commits Can Be CI Skipped? IEEE Transactions on Software Engineering

47, 3 (2021), 448–463. https://doi.org/10.1109/TSE.2019.2897300

[5] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. 2007.

Design recovery and maintenance of build systems. In 2007 IEEE International

Conference on Software Maintenance. IEEE, 114–123.

[6] Jafar M. Al-Kofahi, Hung Viet Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen,

and Tien N. Nguyen. 2012. Detecting semantic changes in Makefile build code. In

2012 28th IEEE International Conference on Software Maintenance (ICSM). 150–159.

https://doi.org/10.1109/ICSM.2012.6405266

[7] Vipin Balachandran. 2013. Reducing human effort and improving quality in

peer code reviews using automatic static analysis and reviewer recommendation.

In 2013 35th International Conference on Software Engineering (ICSE). 931–940.

https://doi.org/10.1109/ICSE.2013.6606642

[8] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2015. How (much) do

developers test?. In 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, Vol. 2. IEEE, 559–562.

[9] Qi Cao, Ruiyin Wen, and Shane McIntosh. 2017. Forecasting the duration of incre-

mental build jobs. In 2017 IEEE International Conference on Software Maintenance

and Evolution (ICSME). IEEE, 524–528.

[10] Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng. 2021. BuildFast: History-

Aware Build Outcome Prediction for Fast Feedback and Reduced Cost in Con-

tinuous Integration. In Proceedings of the 35th IEEE/ACM International Confer-

ence on Automated Software Engineering (Virtual Event, Australia) (ASE ’20).

Association for Computing Machinery, New York, NY, USA, 42–53. https:

//doi.org/10.1145/3324884.3416616

[11] Moataz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikovina Kula,

and Katsuro Inoue. 2021. WhoReview: A multi-objective search-based approach

for code reviewers recommendation in modern code review. Applied Soft Com-

puting 100 (2021), 106908. https://doi.org/10.1016/j.asoc.2020.106908

[12] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,

and Harald C Gall. 2017. An empirical analysis of the docker container ecosystem

on github. In 2017 IEEE/ACM 14th International Conference on Mining Software

Repositories (MSR). IEEE, 323–333.

[13] Daniel Alencar da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta

Coelho, and Ahmed E. Hassan. 2017. A Framework for Evaluating the Results of

the SZZ Approach for Identifying Bug-Introducing Changes. IEEE Transactions

on Software Engineering 43, 7 (2017), 641–657.

[14] Daniel Elsner, Roland Wuersching, Markus Schnappinger, Alexander Pretschner,

Maria Graber, René Dammer, and Silke Reimer. 2022. Build System Aware Multi-

language Regression Test Selection in Continuous Integration. In 2022 IEEE/ACM

44th International Conference on Software Engineering: Software Engineering in

Practice (ICSE-SEIP). 87–96. https://doi.org/10.1145/3510457.3513078

[15] Mikołaj Fejzer, Piotr Przymus, and Krzysztof Stencel. 2018. Profile based recom-

mendation of code reviewers. Journal of Intelligent Information Systems 50 (06

2018). https://doi.org/10.1007/s10844-017-0484-1

[16] Stuart I Feldman. 1979. Make—A program for maintaining computer programs.

Software: Practice and experience 9, 4 (1979), 255–265.

[17] Keheliya Gallaba, John Ewart, Yves Junqueira, and Shane McIntosh. 2022. Ac-

celerating Continuous Integration by Caching Environments and Inferring De-

pendencies. IEEE Transactions on Software Engineering 48, 6 (2022), 2040–2052.

https://doi.org/10.1109/TSE.2020.3048335

[18] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical Regression

Test Selection with Dynamic File Dependencies. In Proceedings of the 2015 In-

ternational Symposium on Software Testing and Analysis (Baltimore, MD, USA)

(ISSTA 2015). Association for ComputingMachinery, New York, NY, USA, 211–222.

https://doi.org/10.1145/2771783.2771784

[19] Jason Gregory. 2018. Game engine architecture. AK Peters/CRC Press.

[20] Ahmed E. Hassan and Ken Zhang. 2006. Using Decision Trees to Predict the

Certification Result of a Build. In 21st IEEE/ACM International Conference on

Automated Software Engineering (ASE 2006), 18-22 September 2006, Tokyo, Japan.

IEEE Computer Society, 189–198. https://doi.org/10.1109/ASE.2006.72

[21] Foyzul Hassan and Xiaoyin Wang. 2017. Change-Aware Build Prediction Model

for Stall Avoidance in Continuous Integration. In 2017 ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement (ESEM). 157–162.

https://doi.org/10.1109/ESEM.2017.23

[22] Yoshiki Higo and Shinji Kusumoto. 2009. Enhancing quality of code clone

detection with program dependency graph. In 2009 16th Working Conference on

Reverse Engineering. IEEE, 315–316.

[23] Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto. 2019. The

Review Linkage Graph for Code Review Analytics: A Recovery Approach and

Empirical Study. In Proceedings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Ma-

chinery, New York, NY, USA, 578–589. https://doi.org/10.1145/3338906.3338949

[24] Xianhao Jin and Francisco Servant. 2020. A Cost-Efficient Approach to Building

in Continuous Integration. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association

for Computing Machinery, New York, NY, USA, 13–25. https://doi.org/10.1145/

3377811.3380437

[25] Xianhao Jin and Francisco Servant. 2022. Which builds are really safe to skip?

Maximizing failure observation for build selection in continuous integration.

Journal of Systems and Software 188 (2022), 111292. https://doi.org/10.1016/j.jss.

2022.111292

[26] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James Jr. Whitehead. 2006.

Automatic Identification of Bug-Introducing Changes. In Proceedings of the 21st

IEEE/ACM International Conference on Automated Software Engineering (ASE ’06).

IEEE Computer Society, USA, 81–90. https://doi.org/10.1109/ASE.2006.23

[27] Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Al-

berto Bacchelli. 2020. Does Reviewer Recommendation Help Developers? IEEE

Transactions on Software Engineering 46, 7 (2020), 710–731. https://doi.org/10.

1109/TSE.2018.2868367

[28] ShaneMcIntosh, BramAdams,MeiyappanNagappan, and Ahmed E. Hassan. 2016.

Identifying and Understanding Header File Hotspots in C/C++ Build Processes.

Automated Software Engineering 23, 4 (2016), 619–647.

[29] Mehran Meidani, Maxime Lamothe, and Shane McIntosh. 2023. Assessing the

Exposure of Software Changes: The DiPiDi Approach. Empirical Software Engi-

neering (2023), To appear.

[30] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. 2018. CLEVER: Combining

Code Metrics with Clone Detection for Just-in-Time Fault Prevention and Resolu-

tion in Large Industrial Projects. In 2018 IEEE/ACM 15th International Conference

on Mining Software Repositories (MSR). 153–164.

[31] Matthew O’Connell, Cameron Druyor, Kyle B Thompson, Kevin Jacobson,

WilliamKAnderson, Eric J Nielsen, Jan-Reneé Carlson, Michael A Park,William T

Jones, Robert Biedron, et al. 2018. Application of the Dependency Inversion

Principle to Multidisciplinary Software Development. In 2018 Fluid Dynamics

Conference. 3856.

[32] Doriane Olewicki, Mathieu Nayrolles, and BramAdams. 2022. Towards Language-

Independent Brown Build Detection. In Proceedings of the 44th International

Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). As-

sociation for Computing Machinery, New York, NY, USA, 2177–2188. https:

//doi.org/10.1145/3510003.3510122

[33] Ali Ouni, Raula Gaikovina Kula, and Katsuro Inoue. 2016. Search-Based Peer

Reviewers Recommendation in Modern Code Review. In 2016 IEEE International

Conference on Software Maintenance and Evolution (ICSME). 367–377. https:

//doi.org/10.1109/ICSME.2016.65

[34] Cong Pan and Michael Pradel. 2021. Continuous Test Suite Failure Prediction. In

Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing

and Analysis (Virtual, Denmark) (ISSTA 2021). Association for Computing Ma-

chinery, New York, NY, USA, 553–565. https://doi.org/10.1145/3460319.3464840

[35] Partha Sarathi Paul, Surajit Goon, and Abhishek Bhattacharya. 2012. History and

comparative study of modern game engines. International Journal of Advanced

Computed and Mathematical Sciences 3, 2 (2012), 245–249.

[36] Guoping Rong, Yifan Zhang, Lanxin Yang, Fuli Zhang, Hongyu Kuang, and

He Zhang. 2022. Modeling Review History for Reviewer Recommendation:

A Hypergraph Approach. In Proceedings of the 44th International Conference

on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for

Computing Machinery, New York, NY, USA, 1381–1392. https://doi.org/10.1145/

3510003.3510213

[37] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem Mkaouer. 2021.

BF-Detector: An Automated Tool for CI Build Failure Detection. In Proceedings

of the 29th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (Athens, Greece)

(ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA,

1530–1534. https://doi.org/10.1145/3468264.3473115

[38] Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. 2022. Improving the

Prediction of Continuous Integration Build Failures Using Deep Learning. Auto-

mated Software Engg. 29, 1 (may 2022), 61 pages. https://doi.org/10.1007/s10515-

021-00319-5

[39] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. 2005. When Do

Changes Induce Fixes? SIGSOFT Softw. Eng. Notes 30, 4 (may 2005), 1–5. https:

//doi.org/10.1145/1082983.1083147

http://paulbourke.net/dataformats/mtl/
http://paulbourke.net/dataformats/mtl/
https://www.massive.se/project/snowdrop-engine/
https://www.massive.se/project/snowdrop-engine/
https://doi.org/10.1109/TSE.2020.2967380
https://doi.org/10.1109/TSE.2020.2967380
https://doi.org/10.1109/TSE.2019.2897300
https://doi.org/10.1109/ICSM.2012.6405266
https://doi.org/10.1109/ICSE.2013.6606642
https://doi.org/10.1145/3324884.3416616
https://doi.org/10.1145/3324884.3416616
https://doi.org/10.1016/j.asoc.2020.106908
https://doi.org/10.1145/3510457.3513078
https://doi.org/10.1007/s10844-017-0484-1
https://doi.org/10.1109/TSE.2020.3048335
https://doi.org/10.1145/2771783.2771784
https://doi.org/10.1109/ASE.2006.72
https://doi.org/10.1109/ESEM.2017.23
https://doi.org/10.1145/3338906.3338949
https://doi.org/10.1145/3377811.3380437
https://doi.org/10.1145/3377811.3380437
https://doi.org/10.1016/j.jss.2022.111292
https://doi.org/10.1016/j.jss.2022.111292
https://doi.org/10.1109/ASE.2006.23
https://doi.org/10.1109/TSE.2018.2868367
https://doi.org/10.1109/TSE.2018.2868367
https://doi.org/10.1145/3510003.3510122
https://doi.org/10.1145/3510003.3510122
https://doi.org/10.1109/ICSME.2016.65
https://doi.org/10.1109/ICSME.2016.65
https://doi.org/10.1145/3460319.3464840
https://doi.org/10.1145/3510003.3510213
https://doi.org/10.1145/3510003.3510213
https://doi.org/10.1145/3468264.3473115
https://doi.org/10.1007/s10515-021-00319-5
https://doi.org/10.1007/s10515-021-00319-5
https://doi.org/10.1145/1082983.1083147
https://doi.org/10.1145/1082983.1083147

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Gengyi Sun, Mehran Meidani, Sarra Habchi, Mathieu Nayrolles, and Shane McIntosh

[40] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N. Nguyen.

2012. Build code analysis with symbolic evaluation. In 2012 34th International

Conference on Software Engineering (ICSE). 650–660. https://doi.org/10.1109/

ICSE.2012.6227152

[41] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen.

2012. SYMake: a build code analysis and refactoring tool for makefiles. In 2012

Proceedings of the 27th IEEE/ACM International Conference on Automated Software

Engineering. IEEE, 366–369.

[42] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,

Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. 2015. Who should

review my code? A file location-based code-reviewer recommendation approach

for Modern Code Review. In 2015 IEEE 22nd International Conference on Software

Analysis, Evolution, and Reengineering (SANER). 141–150. https://doi.org/10.1109/

SANER.2015.7081824

[43] Shuying Wang and Miriam AM Capretz. 2009. A dependency impact analysis

model for web services evolution. In 2009 IEEE International Conference on Web

Services. IEEE, 359–365.

[44] Ruiyin Wen, David Gilbert, Michael G. Roche, and Shane McIntosh. 2018. BLIMP

Tracer: Integrating Build Impact Analysis with Code Review. In Proc. of the Inter-

national Conference on Software Maintenance and Evolution (ICSME). 685–694.

[45] Mark Werner. 1996. Barriers to a collaborative, multidisciplinary pedagogy [soft-

ware development teams]. In Proceedings 1996 International Conference Software

Engineering: Education and Practice. IEEE, 203–210.

[46] Xin Xia, David Lo, Xinyu Wang, and Xiaohu Yang. 2015. Who should review

this change?: Putting text and file location analyses together for more accurate

recommendations. In 2015 IEEE International Conference on Software Maintenance

and Evolution (ICSME). 261–270. https://doi.org/10.1109/ICSM.2015.7332472

[47] Francisco Servant Xianhao Jin. 2021. What helped, and what did not? An Evalua-

tion of the Strategies to Improve Continuous Integration. CoRR abs/2102.06666

(2021). arXiv:2102.06666 https://arxiv.org/abs/2102.06666

[48] Zheng Xie andMing Li. 2018. Cutting the Software Building Efforts in Continuous

Integration by Semi-Supervised Online AUC Optimization. In International Joint

Conference on Artificial Intelligence.

[49] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer Recommenda-

tion for Pull-Requests in GitHub. Inf. Softw. Technol. 74, C (jun 2016), 204–218.

https://doi.org/10.1016/j.infsof.2016.01.004

[50] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. 2016. Automati-

cally Recommending Peer Reviewers in Modern Code Review. IEEE Transactions

on Software Engineering 42, 6 (2016), 530–543. https://doi.org/10.1109/TSE.2015.

2500238

[51] Jiyang Zhang, Chandra Maddila, Ram Bairi, Christian Bird, Ujjwal Raizada,

Apoorva Agrawal, Yamini Jhawar, Kim Herzig, and Arie van Deursen. 2023. Us-

ing Large-scale Heterogeneous Graph Representation Learning for Code Review

Recommendations at Microsoft. In 2023 IEEE/ACM 45th International Conference

on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 162–172.

https://doi.org/10.1109/ICSE-SEIP58684.2023.00020

[52] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2012. FaultTracer: A

Change Impact and Regression Fault Analysis Tool for Evolving Java Pro-

grams. In Proceedings of the ACM SIGSOFT 20th International Symposium on

the Foundations of Software Engineering (Cary, North Carolina) (FSE ’12). As-

sociation for Computing Machinery, New York, NY, USA, Article 40, 4 pages.

https://doi.org/10.1145/2393596.2393642

[53] Thomas Zimmermann and Nachiappan Nagappan. 2007. Predicting subsystem

failures using dependency graph complexities. In The 18th IEEE International

Symposium on Software Reliability (ISSRE’07). IEEE, 227–236.

https://doi.org/10.1109/ICSE.2012.6227152
https://doi.org/10.1109/ICSE.2012.6227152
https://doi.org/10.1109/SANER.2015.7081824
https://doi.org/10.1109/SANER.2015.7081824
https://doi.org/10.1109/ICSM.2015.7332472
https://arxiv.org/abs/2102.06666
https://arxiv.org/abs/2102.06666
https://doi.org/10.1016/j.infsof.2016.01.004
https://doi.org/10.1109/TSE.2015.2500238
https://doi.org/10.1109/TSE.2015.2500238
https://doi.org/10.1109/ICSE-SEIP58684.2023.00020
https://doi.org/10.1145/2393596.2393642

	Abstract
	1 Introduction
	1.1 Quantification (Section 3)
	1.2 Characterization (Section 4)

	2 Constructing the Multidisciplinary Graph
	2.1 Graph Construction Approach
	2.2 Non-Code Graph Construction
	2.3 Code Graph Construction
	2.4 Multidisciplinary Graph Construction

	3 Quantitative Analyses
	4 Characterization Study
	5 Practical Implications
	6 Related Work
	6.1 Dependency Analytics In Code Reviewer Recommendation
	6.2 Dependency Analytics for the Acceleration of Continuous Integration

	7 Threats to Validity
	7.1 Construct Validity
	7.2 Internal Validity
	7.3 External Validity

	8 Concluding Remarks
	8.1 Future Work

	References

