
Understanding and Improving
Code Review of Changes in Build Systems

Mahtab Nejati
Software REBELs

University of Waterloo, Canada
mahtab.nejati@uwaterloo.ca

Abstract—Build systems orchestrate the transformation of
software sources into deliverable artifacts. As a component of
the ever-changing software system, they must be maintained
alongside the software they build to ensure their consistency with
the sources. Lax maintenance of build systems can lead to their
quality decay, causing costly consequences. However, maintaining
build systems is known to be challenging.

Ensuring the quality of build systems throughout their lifespan
demands rigorous quality assurance practices. As automated
quality assurance methods, such as testing, are rarely applied
to build systems, code review becomes a critical mechanism for
safeguarding the reliability and correctness of build systems.

This thesis investigates the practices used in reviewing changes
to build systems and the challenges that impede their effective
code reviews (i). It introduces Build Change Impact Analysis
(BCIA) as a method to facilitate code review of build systems
and examines the applicability of this approach (ii). Lastly, it
evaluates the effectiveness of using BCIA to improve the review
process of build system changes (iii).

I. INTRODUCTION

Build tools manage the process through which source code
is transformed into software deliverables, such as executables.
The build process is configured in build systems, a set of
build specifications that describe the internal and external
dependencies among the software sources and set up the build
dynamics. Build tools process build specifications to determine
the order- and configuration-dependent commands that must
be invoked to produce the deliverables. Build systems are
supported by a variety of build technologies such as CMake.1

Maintenance of build systems introduces a substantial over-
head on software development. Prior work [1] shows that
build maintenance imposes an overhead in up to 27% and
44% of change sets in source and test code respectively.
This significantly impacts 79% of source code developers and
89% of test code developers [1]. Moreover, maintaining build
systems supported by modern technologies incurs an increased
maintenance effort [2].

The continual changes in build systems make them suscep-
tible to quality decay [3], which can slow down builds [4],
cause build failures [5], or even lead to erroneous software
behavior [6]. Despite these risks, systematic and automated
quality assurance practices, such as automated testing, are

1https://cmake.org/

rarely (if ever) applied to build specifications.2 This leaves
manual quality assurance practices as the primary approach
for sustaining the quality of build systems.

Code review, i.e., the practice of developers critiquing
each others’ change sets, is the quintessential manual quality
assurance method in modern software development. Its tech-
nical and non-technical benefits are well-documented in the
literature [10], [11], including increases in code quality, peer
mentorship, and knowledge transfer.

Prior work shows that code review is not applied with equal
rigour across different types of software artifacts [12]. Inspired
by this evidence, we seek to test the following hypothesis:

Research Hypothesis

Code review, is not extensively implemented for
changes in build specifications due to challenges spe-
cific to the maintenance of build systems. Build Change
Impact Analysis (BCIA) is applicable to this problem.
It assists reviewers in their build code review tasks by
easing their perceived cognitive load.

To do so, as shown in Figure 1, in this thesis, we pursue the
following research objectives:
(RO1) Understand the code review of changes in build

systems. Code review, as a well-established manual quality
assurance method, plays a key role in sustaining the quality
of build systems. However, it is still unclear whether this
practice is applied to build specifications. We suspect that
similar to test code [12], build system changes are less likely
to receive thorough discussions during the code review pro-
cess. To test this hypothesis, we perform both quantitative
and qualitative analyses of real-world code review discus-
sions [13]. Our results show that changes to build systems
are at least two times less frequently discussed during code
review when compared to production and test code. Follow-
up interviews hint at social and technical challenges specific
to the review of changes in build systems.

(RO2) Improve the code review of changes in build systems.
In our work [13], practitioners complain about a perceived
lack of dedicated tools to support the maintenance of build

2Many studies propose testing approaches for build specifications [7]–[9],
However, to the best of our knowledge, they have yet to make their way to
production-ready tools.

1

https://cmake.org/


Research Objectives (RO1) Understanding
the code review of changes in build systems

(RO2) Improving
the code review of changes in build systems

Proposed Studies
(PS2) Completed

Applicable solutions to improve
code review of build systems

(PS2) In Progress
Effective solutions to improve
code review of build systems

Research Questions
RQ2. What are the challenges that
impede a thorough code review of

build systems?

RQ1. How is code review
applied to changes in

build systems?

RQ3. Is change impact analysis
applicable to the changes in

build systems?

RQ4. Can change impact analysis
improve the code review process

for changes in build systems?

Potential Outcomes
Reveals the challenges in the review of
changes in build systems, which can be

used as a lead to solutions.

Provides guidelines for allocations of
resources to the review of changes in

build systems.

Raises awareness about the prevalence
and extent of the hidden implications of

changes in build systems.

Provides effective dedicated tool support
to improve the code review process for

build systems.

(PS1) Completed
Code review of build system:

practices and perceptions

Fig. 1: An overview of our research thesis.

systems and the review of their changes. The limited support
tools leaves it a challenging task for reviewers to manually
inspect and understand the implications of changes in the
complex build configuration space [14]. Change Impact
Analysis (CIA) has shown potential in improving the ef-
fectiveness and efficiency of code reviews in the context of
production code by exposing the impact of changes across
the system [15], [16]. Inspired by the benefits of CIA, we
propose Build Change Impact Analysis (BCIA) [17]—an
approach that uses data and control flow analysis to assess
the impact of changes on the build configuration space. We
implement BuiScout,3 a prototype tool that applies BCIA to
CMake-based build systems, and evaluate the following:
Applicability of the solution. We evaluate the applicability
of BCIA in an empirical study of real-world change sets
that modify build systems. Our study [17] suggests that in
a majority of these change sets, an impact propagates to
unmodified areas of the build system. We also find that the
impact from a change is often of non-negligible magnitude
and resides in parts of the build system that are non-local
to the modifications. These results highlight the potential
of BCIA in alleviating the challenges reviewers face when
assessing the impact of changes to build systems.
Effectiveness of the solution. Applying CIA to changes
in production code has shown promising improvements in
assisting developers in finding the unintended and undesir-
able impact of changes during code review [15]. As build
specifications are inherently different from production code
due to their declarative nature, we investigate the practicality
of BCIA in their code review. To do so, we are currently
conducting user studies, using BuiScout, to evaluate the
effectiveness of BCIA in real-world code review scenarios.

II. RELATED WORK

This section situates this thesis within the existing body of
literature. We organize the section along three main themes:

3https://github.com/mahtab-nejati/BuiScout/releases/tag/ASE2024

studies on the maintenance of build systems, code review, and
change impact analysis.

A. Maintenance of Build Systems

Studies have shown that extensive effort goes into the
maintenance of build systems [1]. Recent work has focused
on supporting the maintenance of build systems through
automated defect detection [7], [9], [18] and repair [19]–[21].
While the prior work proposes promising directions, they have
not yet been implemented into practice-ready tools due to
their limited effectiveness [21] and performance [8], [22]. As a
result, quality assurance of build systems is still predominantly
a manual process, imposing a substantial cognitive load on
build maintainers [14].

Another recent line of work assists build maintenance in
other ways. For example, approaches have been proposed
to visualize the dependency graph to clarify interdependen-
cies between components [23], automate common refactoring
tasks, such as renaming and removing targets [18], [24], detect
the addition and removal of dependencies [24], and summarize
reports of build failures for debugging purposes [23], [25].

Our work complements prior studies with a focus on code
review of changes in build systems. We investigate the extent
to which code review is leveraged to improve the maintenance
of build specifications and aim to propose applicable and
effective solutions that improve this process.

B. Code Review

Code review boasts numerous technical and non-technical
benefits such as improved code stability, early detection of
bugs, increased software quality, and improved team commu-
nication [10], [11], [26], [27]. Despite its plethora of benefits,
Spadini et al. [12] found that code review is not applied with
equal rigour to test code when compared to production code.
Moreover, code review introduces a considerable overhead on
reviewers’ workload [11]. Static analysis tools can remedy the
situation by providing further insights for a better understand-
ing of the change [28].

2

https://github.com/mahtab-nejati/BuiScout/releases/tag/ASE2024


Inspired by Spadini et al.’s work, we propose to study the
code review process in the context of build specifications
to better understand the extent, purposes, and challenges of
its application on build system changes. We then set out to
improve the code review process for build system changes by
proposing BCIA, a static build change impact analysis method.
We then evaluate the applicability and effectiveness of BCIA
in real-world code review settings.

C. Change Impact Analysis
Change Impact Analysis (CIA) is the process of identifying

and assessing the consequences of a change to the software
to reveal their broader implications [29]. Prior studies have
effectively implemented CIA techniques into processes that
require a deep understanding of the changes, such as change
propagation [30], defect detection [16], and code review of
production code [15], [31].

Despite this success, studies on CIA in build systems have
been limited. While prior research has explored the effects of
changes to source or test code on build systems [32], [33]
or their output, such as targets [34], [35], the impact of
modified build specifications on the build system itself remains
unexplored. Perhaps the most similar work to ours is that of
Al-Kofahi et al. [36] where their tool, MkDiff, detects semantic
changes in Makefiles. However, because MkDiff abstracts
the build specifications into a Symbolic Dependency Graph
(SDG) [18], it may obscure the logical pathways through
which changes impact build rules, limiting its applicability
for code review and debugging.

We propose BCIA, an approach that provides a clear view
of how changes transitively affect the entire build system.
BCIA automatically performs a global analysis on the build
system, which helps to uncover a more comprehensive impact
of changes and alleviates the need for such manual effort.

III. RESEARCH HYPOTHESIS

In this thesis, we aim to understand how code review is
applied to changes in build systems and improve this process
by proposing an applicable and effective approach. Therefore,
we aim to investigate Research Hypothesis.

To do so, we study the code review practices applied
to changes in build systems and the purposes code review
serves in this context. We also identify social and technical
challenges that impede a thorough review of changes in build
specifications. We propose BCIA to facilitate understanding of
the implications changes may have on the build configuration
space. Next, we evaluate the applicability of BCIA in an
empirical study and its effectiveness in a user study, using
BuiScout, a prototype for BCIA we implement to analyze
CMake-based build systems. The remainder of this paper
reports on our current progress and future plans towards the
completion of this thesis.

IV. UNDERSTANDING THE CODE REVIEW OF CHANGES IN
BUILD SYSTEMS

Motivation. Prior work highlights the importance of sufficient
quality assurance for build systems [1]. However, automated

quality assurance practices are often limited in or inapplicable
to the context of build systems [8], [21], [22]. Among its
many other benefits, code review improves code stability and
software quality [10]. However, research shows that this well-
adopted practice is not implemented for test code as rigorously
as production code [12]. We suspect that this issue may also
extend to build specifications. To investigate, we set out to
answer two main research questions: (RQ1) How is code
review applied to changes in build systems?, and (RQ2)
What are the challenges that impede a thorough code
review of build systems?
Approach. We quantitatively analyze 502,931 change sets
from the large and active Qt and Eclipse communities. We
compute popular measures of review intensity [37] for build
systems and compare them to those of production and test code
in various settings. Moreover, we qualitatively analyze 500
change sets to understand the purposes code review serves for
build systems and the build-related concerns developers raise
when reviewing changes. Lastly, we interview nine developers
with 1-40 years of experience to understand the challenges that
hinder a more rigorous review of build systems.

Results. Our quantitative analysis shows that changes to build
systems are at least two times less likely to receive comments
during code review when compared to production and test
code, even when the change is solely focused on the build
specifications. Our qualitative analysis reveals that code re-
views in build systems are more likely to focus on defect
detection than what is reported in the literature for reviews
of production [10] and test code [12]. Furthermore, based on
our qualitative analysis, we construct a taxonomy of build-
specific issue patterns raised during code review of build
systems. The results show that evolvability and dependency-
related issues are the most frequently raised patterns of issues.
Our interviewees point out social and technical factors that
hinder a rigorous review of build specifications. While a
prevalent lack of understanding of and interest in build systems
among developers seems to be a major social challenge, our
interviewees with more expertise in build systems, often tasked
with build maintenance, hope for dedicated tooling to support
the code review of build specifications. These results have been
published in the proceedings of the International Conference
on Software Engineering [13].

V. IMPROVING THE CODE REVIEW OF CHANGES IN
BUILD SYSTEMS

Motivation. Maintenance and quality assurance of build sys-
tems imposes a considerable overhead on software devel-
opment [1] and is a cognitively demanding task for devel-
opers [14]. The prevalent lack of interest and expertise in
build systems [13], together with the complexities of build
systems, may lead to developers dismissing seemingly small
changes in build systems as trivial. However, similar to source
code [38], such changes may have a far-reaching impact
on the build configuration and output. Research shows that
assisting reviewers in understanding the impact of changes

3



through accurate CIA techniques improves the effectiveness
and efficiency of the code review process in the context of
production code [15], [16]. We reckon that CIA for changes
in build specifications, i.e., Build Change Impact Analysis
(BCIA), can achieve the same success in code review of
changes in build systems.

Proposed Solution. To summarize the impact of changes to
build specifications across the build configuration space, we
propose Build Change Impact Analysis (BCIA). BCIA first
traverses the data and control flow paths from before and
after a change is applied to the build system and computes
Conditional Definition-Use (CDU) chains [39] in a static
analysis of the build specifications. BCIA then generates an
Impact Knowledge Graph (IKG)—a knowledge graph that
represents the impact of the change within and across CDU
chains throughout the build system. To realize our BCIA, we
produce BuiScout—a prototype implementation of BCIA for
build systems that are written using CMake. Our prototype
reveals the areas in the build system that are influenced by
a change, which might not be readily apparent to developers
when making or reviewing a change.

A. Applicability of Build Change Impact Analysis

Motivation. As build specifications are inherently different
from source code (e.g., build code is often declarative rather
than imperative in nature), it is not clear whether changes
in build specifications propagate any impact to unmodified
parts of the build system. As such, BCIA may prove to be
inapplicable to changes in build systems. Therefore, we aim
to answer the following research question: (RQ3) Is change
impact analysis applicable to the changes in build systems?
Approach. To investigate the applicability of BCIA, we use
BuiScout to conduct an empirical study of 10,000 change sets
that span 10 large projects that have used CMake for a total of
28 years. In this empirical study, we measure the prevalence
of change sets that propagate their impact to unmodified parts
of the build system. Next, we characterize the impact these
change sets propagate in terms of magnitude and breadth as
heuristics to demonstrate that tracing them manually is not an
insignificant effort.

Results. We find that in 93% of the change sets, the mod-
ifications exhibit characteristics that indicate an impact may
propagate to areas of the build system beyond the modified
locations. As such, a CIA is required to confirm the impact of
the changes. BuiScout detects an impact on unmodified build
configurations in over 77% of the change sets. Furthermore,
these changes affect a median of 14 unmodified commands,
out of which a median of 95.5% are non-local to the change
set, i.e., they reside in unmodified build files.

B. Effectiveness of Build Change Impact Analysis

Motivation. Our findings in [17] suggest that changes in build
systems may have an impact beyond the change set, and
tracing the impact may involve investigating unmodified files.
Our study of code review for build systems revealed that

User study design
and platform

implementation

Participant recruitment
and experiment

execution
2024-12

2025-02

2025-03

Analysis of experiment
data and evaluation of

BuiScout

2025-05

Thesis
Completion

Fig. 2: An overview of our timeline for the thesis completion.

build system maintainers suffer from this cognitive burden and
require dedicated tool support to reduce this challenge [13].
We conjecture that dedicated approaches—such as BCIA—
can alleviate the cognitive load developers endure when trying
to grasp the full impact of changes in build systems, a
key step in code review. We test this idea by answering
the following research question: (RQ4) Can change impact
analysis improve the code review process for changes in
build systems?
Approach. We plan to answer this research question in a
controlled within-subject user study. In this user study, the
participants are asked to complete a series of tasks that
involve identifying the impact of change sets. Each partic-
ipant completes each task twice: once as a control without
assistance from BuiScout, and once, on a different change
set, as a treatment where they receive support through reports
generated by BuiScout. We assess the accuracy and speed
of impact localization as indicators of BCIA’s effectiveness.
Additionally, we explore whether using BuiScout reduces the
perceived cognitive load associated with understanding the
impact of build system changes. Figure 2 provides our timeline
for the completion of this thesis.

VI. CONCLUSION

Due to the lack of readily deployable automated quality
assurance techniques tailored for build systems, code review
plays a key role in sustaining the quality of build systems.
In this thesis, we establish that as important as code re-
view is for sustaining the quality of build systems, it is not
rigorously implemented into the build system maintenance
process. Guided by the challenges that practitioners point
out, we propose Build Change Impact Analysis (BCIA) as
a dedicated approach to assist developers in understanding the
impact of changes in build systems. We then demonstrate the
applicability and effectiveness of BCIA in the context of code
review for build systems.

This thesis provides insights into the current state of code
review practices for Build system changes and presents ac-
tionable guidelines for managing the challenges that impede
this process. It also proposes an applicable method to assist
developers in understanding the impact of the changes in build
systems. Our future plan demonstrates the effectiveness of our
approach in real-life code review scenarios.

4



REFERENCES

[1] S. McIntosh, B. Adams, T. H. Nguyen, Y. Kamei, and A. E. Hassan,
“An Empirical Study of Build Maintenance Effort,” in the Proceedings
of the International Conference on Software Engineering (ICSE), 2011,
pp. 141–150.

[2] S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. E. Hassan,
“A Large-Scale Empirical Study of the Relationship between Build
Technology and Build Maintenance,” Empirical Software Engineering
(EMSE), vol. 20, no. 6, pp. 1587–1633, 2015.

[3] N. Nagappan and T. Ball, “Using Software Dependencies and Churn
Metrics to Predict Field Failures: An Empirical Case Study,” in the
Proceedings of the International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2007, pp. 364–373.

[4] Y. Zhang, Y. Jiang, C. Xu, X. Ma, and P. Yu, “ABC: Accelerated
Building of C/C++ Projects,” in the Proceedings of the Asia-Pacific
Software Engineering Conference (APSEC), 2015, pp. 182–189.

[5] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge, “Pro-
grammers’ Build Errors: A Case Study (at Google),” in the Proceedings
of the International Conference on Software Engineering (ICSE), 2014,
pp. 724–734.

[6] S. Nadi and R. Holt, “Make It or Break It: Mining Anomalies from
Linux Kbuild,” in the Proceedings of the Working Conference on Reverse
Engineering (WCRE), 2011, pp. 315–324.

[7] C. Macho, F. Oraze, and M. Pinzger, “DValidator: An Approach for
Validating Dependencies in Build Configurations,” Journal of Systems
and Software (JSS), vol. 209, p. 111916, 2024.

[8] T. Sotiropoulos, S. Chaliasos, D. Mitropoulos, and D. Spinellis, “A
Model for Detecting Faults in Build Specifications,” the Proceedings of
the ACM on Programming Languages, vol. 4, no. OOPSLA, pp. 1–30,
2020.

[9] C.-P. Bezemer, S. McIntosh, B. Adams, D. M. German, and A. E.
Hassan, “An Empirical Study of Unspecified Dependencies in Make-
based Build Systems,” Empirical Software Engineering (EMSE), vol. 22,
no. 6, pp. 3117–3148, 2017.

[10] A. Bacchelli and C. Bird, “Expectations, Outcomes, and Challenges
of Modern Code Review,” in the Proceedings of the International
Conference on Software Engineering (ICSE), 2013, pp. 712–721.

[11] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey,
“Investigating Code Review Quality: Do People and Participation Mat-
ter?” in the Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), 2015, pp. 111–120.

[12] D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli,
“When Testing Meets Code Review: Why and How Developers Review
Tests,” in the Proceedings of the International Conference on Software
Engineering (ICSE), 2018, pp. 677–687.

[13] M. Nejati, M. Alfadel, and S. McIntosh, “Code Review of Build System
Specifications: Prevalence, Purposes, Patterns, and Perceptions,” in the
Proceedings of the International Conference on Software Engineering
(ICSE), 2023, pp. 1213–1224.

[14] S. Phillips, T. Zimmermann, and C. Bird, “Understanding and Improving
Software Build Teams,” in the Proceedings of the International Confer-
ence on Software Engineering (ICSE), 2014, pp. 735–744.

[15] Q. Hanam, A. Mesbah, and R. Holmes, “Aiding Code Change Under-
standing with Semantic Change Impact Analysis,” in the Proceedings of
the International Conference on Software Maintenance and Evolution
(ICSME), 2019, pp. 202–212.

[16] S. Jiang, C. McMillan, and R. Santelices, “Do Programmers Do
Change Impact Analysis in Debugging?” Empirical Software Engineer-
ing (EMSE), no. 2, pp. 631–669, 2017.

[17] M. Nejati, M. Alfadel, and S. McIntosh, “Understanding the Implications
of Changes to Build Systems,” in the Proceedings of the International
Conference on Automated Software Engineering (ASE), 2024.

[18] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen, “Build
Code Analysis with Symbolic Evaluation,” in the Proceedings of the
International Conference on Software Engineering (ICSE), 2012, pp.
650–660.

[19] C. Macho, S. McIntosh, and M. Pinzger, “Automatically Repairing
Dependency-related Build Breakage,” in the Proceedings of the Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2018, pp. 106–117.

[20] F. Hassan and X. Wang, “Hirebuild: An Automatic Approach to History-
Driven Repair of Build Scripts,” in the Proceedings of the International
Conference on Software Engineering (ICSE), 2018, pp. 1078–1089.

[21] Y. Lou, J. Chen, L. Zhang, D. Hao, and L. Zhang, “History-Driven
Build Failure Fixing: How Far Are We?” in the Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA),
2019, pp. 43–54.

[22] G. Fan, C. Wang, R. Wu, X. Xiao, Q. Shi, and C. Zhang, “Escaping
Dependency Hell: Finding Build Dependency Errors with the Unified
Dependency Graph,” in the Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), 2020, pp. 463–474.

[23] C. Lebeuf, E. Voyloshnikova, K. Herzig, and M.-A. Storey, “Understand-
ing, Debugging, and Optimizing Distributed Software Builds: A Design
Study,” in the Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), 2018, pp. 496–507.

[24] R. Hardt and E. V. Munson, “An Empirical Evaluation of Ant Build
Maintenance Using Formiga,” in the Proceedings of the International
Conference on Software Maintenance and Evolution (ICSME), 2015,
pp. 201–210.

[25] C. Vassallo, S. Proksch, T. Zemp, and H. C. Gall, “Every Build You
Break: Developer-Oriented Assistance for Build Failure Resolution,”
Empirical Software Engineering (EMSE), vol. 25, no. 3, pp. 2218–2257,
2020.

[26] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern Code
Reviews in Open-source Projects: Which Problems Do They Fix?” in the
Proceedings of the Working Conference on Mining Software Repositories
(MSR), 2014, pp. 202–211.

[27] M. V. Mäntylä and C. Lassenius, “What Types of Defects are Really
Discovered in Code Reviews?” IEEE Transactions on Software Engi-
neering (TSE), vol. 35, no. 3, pp. 430–448, 2008.

[28] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol, “Would
Static Analysis Tools Help Developers with Code Reviews?” in the
Proceedings of the International Conference on Software Analysis,
Evolution, and Reengineering (SANER), 2015, pp. 161–170.

[29] Bohner, “Impact analysis in the software change process: a year 2000
perspective,” in the Proceedings of the International Conference on
Software Maintenance (ICSM), 1996, pp. 42–51.

[30] Z. Jiang, H. Zhong, and N. Meng, “Investigating and Recommending
Co-Changed Entities for JavaScript Programs,” Journal of Systems and
Software (JSS), vol. 180, p. 111027, 2021.

[31] Y. Huang, N. Jia, X. Chen, K. Hong, and Z. Zheng, “Salient-Class
Location: Help Developers Understand Code Change in Code Review,”
in the Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2018, pp. 770–774.

[32] C. Macho, S. McIntosh, and M. Pinzger, “Predicting Build Co-changes
with Source Code Change and Commit Categories,” in the Proceedings
of the International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 2016, pp. 541–551.

[33] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan, “Cross-
Project Build Co-Change Prediction,” in the Proceedings of the Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2015, pp. 311–320.

[34] R. Wen, D. Gilbert, M. G. Roche, and S. McIntosh, “BLIMP Tracer: In-
tegrating Build Impact Analysis with Code Review,” in the Proceedings
of the International Conference on Software Maintenance and Evolution
(ICSME), 2018, pp. 685–694.

[35] M. Meidani, M. Lamothe, and S. McIntosh, “Assessing the Exposure
of Software Changes: The DiPiDi Approach,” Empirical Software En-
gineering (EMSE), vol. 28, no. 2, p. 41, 2023.

[36] J. M. Al-Kofahi, H. V. Nguyen, A. T. Nguyen, T. T. Nguyen, and T. N.
Nguyen, “Detecting Semantic Changes in Makefile Build Code,” in The
Proceedings of the International Conference on Software Maintenance
(ICSM), 2012, pp. 150–159.

[37] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Review
Participation in Modern Code Review,” Empirical Software Engineering
(EMSE), vol. 22, no. 2, pp. 768–817, 2017.

[38] P. Dai, Y. Wang, D. Jin, Y. Gong, and W. Yang, “An improving approach
to analyzing change impact of C programs,” Journal of Computer
Communications (ComputCommun), vol. 182, pp. 60–71, 2022.

[39] N. Parasaram, E. T. Barr, and S. Mechtaev, “Rete: Learning Namespace
Representation for Program Repair,” in the Proceedings of the Inter-
national Conference on Software Engineering (ICSE), 2023, pp. 1264–
1276.

5


	Introduction
	Related Work
	Maintenance of Build Systems
	Code Review
	Change Impact Analysis

	Research Hypothesis
	Understanding the Code Review of Changes in Build Systems
	Improving the Code Review of Changes inBuild Systems
	Applicability of Build Change Impact Analysis
	Effectiveness of Build Change Impact Analysis

	Conclusion
	References

