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Abstract—Although decentralized Version Control Systems
(VCSs) like Git support several organizational structures, a
central copy of the repository is typically where development
activity is coalesced and where official software releases are cut.
Popular practices like trunk-based development and monolithic
repositories (a.k.a., “monorepos”) that span entire organizations
strain central repositories. Remedial actions, such as performing
garbage collection routines, can backfire because they are com-
putationally expensive and if run at an inopportune moment,
may degrade repository performance or cause the host to crash.

In this paper, we propose a reinforcement learning agent
that can take remedial actions to sustain VCS performance.
Since volumes of VCS activity are needed to train the agent,
we first augment the VCS to enable a greater throughput,
observing that the augmented VCS outperforms the stock VCS
to a large, statistically significant degree. Then, we compare the
performance that a VCS can sustain when the agent is applied
against a schedule-based garbage collection policy and a no-
action baseline, observing 64 to 82-fold improvements in the Area
Under the Curve (AUC) that plots repository performance over
time. This paper takes a promising first step towards automati-
cally sustaining VCS performance under heavy workloads.

I. INTRODUCTION

In most development settings, the Version Control System

(VCS)—the system that tracks changes to source code and

accompanying artifacts—invisibly provides powerful features.

Software organizations rely on the VCS to track the state of

their software, with it serving as a hub for and an archive of

development activity. Decentralized VCSs (e.g., Git) provide

users with powerful branch and commit manipulation features.

Although DVCSs support several organizational structures,

it is typical for teams to anoint a centralized copy of the VCS

as the official repository from which releases are cut. This

central repository and the infrastructure on which it is hosted

needs to scale to meet the needs of software organizations.

The pace at which the central repository can process read and

write requests constrains the agility of a software oganization.

The central repository is strained when entire organizations

host all software in a monolithic repository (“monorepo”).

While a monorepo provides benefits [1, 4], it stresses devel-

opment tools to new limits [2]. For example, each revision of

a code change hosted by Gerrit amends a commit record in

a central repository. These amendments continuously change

paths within the VCS history graph, making the repository

organization suboptimal and degrading protocol efficiency.

To cope with these production workloads, experts, such

as build, release, or devops engineers [6], monitor repository

performance and react to degradation by performing remedial

actions. For example, performing a garbage collection routine

will reduce the disk footprint of the repository and increase

performance, by traversing the VCS history graph, removing

unreachable records, and consolidating loose records into

larger files that are less expensive to navigate and transfer over

the network; however, the remedial actions further strain the

system on which the repository is hosted. If remedial actions

are poorly timed, they may degrade the performance of the

repository or even crash a repository host, leading to downtime

that likely coincides with periods of urgent development.

In this paper, we propose an autonomous agent that can

automatically sustain the performance of VCS repositories

under production workloads—a problem especially acute for

(but not limited to) monorepos. More specifically, we address

the following two Research Questions (RQs):

(RQ1) To what degree can we accelerate the accrual of

repository activity?

Motivation: To effectively train our agent, we must

expose it to a large amount of development activity.

Hence, we set out to accelerate the rate at which the

VCS can process development activity by altering its

workflow for write operations.

Results: When under a simulated workload of 25,000

write operations—50 parallel clients each performing

500 write operations—we find that our improvements

to the VCS yield large (Cliff’s δ > 0.474), statis-

tically significant improvements in processing speed

(Wilcoxon signed rank test, one-tailed, paired, α =

0.05), which grow increasingly larger over time.

(RQ2) How well does our agent sustain repository perfor-

mance under a production workload?

Motivation: Since contextual decision making is criti-

cal for our solution, we explore reinforcement learning

for selecting when and which remedial actions to

apply. As recommended by Shrikanth and Menzies [9],

before rushing to adopt complex methods, we study

whether a simple approach (i.e., the Q-learning ap-

proach [3], which learns to rank actions based on

stochastic states and rewards) can provide value.

Results: The agent outperforms scheduled garbage

collection and no-action baselines by factors of 64-

and 82-fold on an Area Under the Curve (AUC) scale

that plots repository performance over time.



II. AGENT-BASED APPROACH

To sustain the performance of VCSs, we train an au-

tonomous agent to take remedial action. To train the agent,

we apply Q-learning [3]. Below, we describe the set of agent

actions (Section II-A) and the reward function (Section II-B).

A. Agent Actions

When prompted, the agent assesses the state of the repos-

itory, e.g., recent miss rates for lookup optimizations and

the quantity of loose repository records (i.e., those stored

individually rather than in consolidated files) and then selects

from a set of five actions.1 First, the agent may determine that

no action is needed. Second, the agent may create a bitmap,

i.e., a map indicating whether each repository record can be

reached from the other records stored within a subset of the

repository. An up-to-date bitmap minimizes the lookup time

for missing content when a read operation (e.g., fetch) is

being performed. Third, the agent may repack refs, i.e., create

an index where loose objects can be looked up. Fourth, the

agent may remove .keep files, which prevent the premature

removal of temporary files that are actively being used. Fi-

nally, the agent may perform a full Garbage Collection (GC)

routine (the most expensive operation), which compresses file

revisions, removes unreachable records, and (re)packs refs.

B. Reward Calculation

After the agent selects an action, its database of rewards is

updated based on the reward calculated for the most recent

action. In a nutshell, the agent selects actions that have

provided the maximum reward when the agent has observed

the same repository state in its past. Agent behaviour is

encouraged (discouraged) by providing large (small) rewards.

Agent performance depends on the definition of its reward

function. Our reward comprises components that estimate the

cost of the remedial action that was performed and the benefit

that the action has provided. For the cost component, we use a

relative scale, with a full GC routine generating no reward, no

action producing the full reward, and other remedial actions

providing a reward proportional to their cost with respect to

a full GC routine. For the benefits component, we measure

the impact of the action on the staleness of the repository

bitmaps (i.e., the miss rate) and the time that is spent during

the dominant (search for reuse) phase of read operations.

III. ACCELERATED PROCESSING OF VCS REQUESTS

To accelerate the accrual of repository activity, we make

performance improvements to VCS tools. This is especially

important for our Q-learning approach, which is known to

converge slowly. We focus on GERRIT—a popular code

review platform based on Git that is integral to the ver-

sion control workflows of many software organizations—and

JGIT—a pure Java implementation of Git that is used by

GERRIT. Our improvements accelerate the receive-pack

and upload-pack commands, whose efficiency impacts the

1Selected based on our professional experience in sustaining the perfor-
mance of repositories under production workloads

responsiveness and scalability of VCSs. The improvements

have been uploaded to JGIT,2 GERRIT,3 and the CACHED-

REFDB plugin of GERRIT.4

In JGIT, we improve the routines for encoding in-memory

buffers into a binary-stream (e.g., UTF-8 to binary), the I/O

locking subsystem, and the concurrent usage of resources for

processing packfiles and indices. Additionally, we fine-tune

GC routines to enable greater use of concurrency. Similarly, in

GERRIT, we enhance the performance of receive-pack in

high-concurrency scenarios. Below, we describe the evaluation

of these improvements, which we perform on a server with a

Intel Xeon Gold 6438Y+ processor and 128 GB of RAM.

(RQ1) To what degree can we accelerate the accrual of

repository activity?

RQ1: Approach: To address RQ1, we compare the perfor-

mance of the improved and stock VCS when they are placed

under a simulated load of 25,000 change operations that write

to the repository. We distribute the load across 50 clients that

each submit 500 change operations to a central VCS. The

50 clients perform change operations concurrently. For each

change operation, we measure the duration of the operation

and its exit code (i.e., whether the operation succeeded or

failed). To account for uncertainty in performance measure-

ments, we repeat the experiment three times. We perform

the entire experiment in the two settings—once with the

improvements applied and once with a stock VCS. These runs

produce two sets of 75,000 rows (25, 000 rows × 3 repetitions,

each with an associated duration and exit code.

To investigate whether the differences are significant, we ap-

ply Wilcoxon signed rank tests (one-tailed, paired, α = 0.05)

to the median cross-run duration values across the improved

and stock VCS samples. Moreover, we measure the effect size

using Cliff’s Delta (δ), which is considered negligible when

δ < 0.147, small when 0.147 ≤ δ < 0.33, medium when

0.33 ≤ δ < 0.474, and large otherwise.

RQ1: Results: Figure 1 plots the median duration of the

change operations across repetitions using line plots. The black

line plots the improved VCS setting and the grey line plots the

stock VCS setting. The lighter-shaded bands surrounding the

trend lines indicate the standard deviation across the execution

repetitions. The entire experiment is repeated with a sleep

duration between client operations of one second (leftmost

plot) and one minute (rightmost plot).

The leftmost plot of Figure 1 shows that the stock VCS

struggles to handle the load generated when the sleep duration

is one second. The trend for the stock VCS shows a super-

linearly increasing tendency as the experiment proceeds. The

shaded band around the plot also tends to expand over time,

indicating that the variance in performance tends to increase

as well. The trend sharply decreases as we approach the end

of the experiment due to a release of concurrency pressure

as client task queues empty. By comparison, the improved

2https://eclipse.gerrithub.io/c/eclipse-jgit/jgit/+/1195454
3https://gerrit-review.googlesource.com/c/gerrit/+/428537
4https://gerrit-review.googlesource.com/c/modules/cached-refdb/+/428378

https://eclipse.gerrithub.io/c/eclipse-jgit/jgit/+/1195454
https://gerrit-review.googlesource.com/c/gerrit/+/428537
https://gerrit-review.googlesource.com/c/modules/cached-refdb/+/428378


One second delay One minute delay

0 100 200 300 400 500 0 100 200 300 400 500

0

10

20

30

40

Operation Number

E
la

p
s
e

d
 T

im
e

 (
s
)

Environment

Improved VCS

Stock VCS

Fig. 1. The duration of change operations (in seconds) as our simulated load
of 25,000 writes to the repository, i.e., 50 concurrently running clients each
performing 500 serially queued write operations. The trends suggest that the
improved VCS handles the simulated load substantially faster than the stock
VCS, even when a delay of one minute is introduced between write operations.

VCS processes the workload efficiently, as indicated by the

smooth linear trend line and tight shaded band. A Wilcoxon

signed rank test comparing the median trends indicates that

the differences are statistically significant (p < 2.2 × 10
−16)

and the effect size is large (δ = 0.9229).

Since the confounding factor of concurrency pressure is at

play, we investigate whether a longer sleep duration will im-

pact the results by increasing the sleep duration to one minute.

Comparing the stock VCS trends of the left and right plots of

Figure 1, it is clear that the longer sleep duration eases the

concurrency pressure. The magnitude of the stock VCS trend

decreases and the breadth of the shaded band tightens when

the sleep duration is set to one minute. The increased sleep

duration also increases the overall duration of the experiment,

which runs counter to our goal of accelerating the accrual

of VCS activity. Moreover, even in this slower setting, the

performance of the improved VCS remains significantly faster

(p = 2.2× 10
−16) with a large effect size (δ = 0.8432).

Figure 1 also shows that, in both sleep duration settings,

the gap between the stock and improved VCS performance

grows larger as time passes. Indeed, the stock VCS trends

take a superlinear shape, whereas the the improved VCS trends

remain consistently linear. It is possible that the improved VCS

trend will curve superlinearly in a longer running experiment;

however, the current results show great promise for accelerat-

ing the accrual of VCS activity for training our agent.

We do not observe any non-zero exit codes (i.e., processes

that terminated erroneously) in any of the runs. This suggests

that our accelerations do not introduce any obvious sources of

new errors in the modified routines.

Conclusion for RQ1

Extending the sleep duration between operations

avoids overburdening the test environment, but the

VCS improvements still yield large, statistically signif-

icant improvements in processing speed, which grow

larger at an accelerating pace as time passes.
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Fig. 2. A comparative overview of the performance (Y axis, lower search for
reuse scores indicate better performance) of the proposed agent (black circles),
schedule-based maintenance (dark grey triangles), and a baseline approach that
takes no maintenance action during the experiment (light grey squares). As
time progresses (X axis), the gap between the baseline and agent approaches
grows, indicating that the benefits of the agent solution increases over time.

IV. THE EFFECTIVENESS OF THE APPROACH

(RQ2) How well does our agent sustain repository perfor-

mance under a production workload?

RQ2: Approach: We evaluate the effectiveness of our pro-

posed agent using lift charts (a.k.a., Alberg diagrams) [5].

First, we train our agent for two months while the target

repository is under a simulated load of ten concurrent clients,

which are each performing receive-pack (write) and

upload-pack (read) operations. Next, we place our target

repository under a similar load for the evaluation phase. For

each read activity of the evaluation phase, we record: (a) the

timestamp when the event occurred; and (b) a performance

score. We plot each activity in the unit square space by

normalizing the timestamp (X axis) by the earliest (0) and

latest (1) observations, and by normalizing the performance

score (Y axis) by its minimum (0) and maximum (1) values.

We plot curves for three operational scenarios. First, we

plot a curve representing what happens if no maintenance

is performed during the simulation (i.e., the “No Action”

approach). The second curve plots what happens when we per-

form a garbage collection routine every five minutes (i.e., the

“scheduled-based” approach). The final curve shows how our

proposed learner performs (i.e., the “Agent” approach). The

same (improved) VCS variant is used in all three scenarios.

To quantitatively compare the approaches, we compute the

areas under their curves (AUCs). Since the plot is in the unit-

square space, AUC values will range between zero and one.

The smaller the AUC value, the better the performance.

RQ2: Results: Figure 2 shows the lift charts from our experi-

ment. For the performance score, we use the time spent during

the search for reuse phase of the read operation. We select this

measure rather than more natural measures of performance,

such as the total duration because the search for reuse phase is

not influenced by external factors, such as network congestion.



Figure 2 shows that when no repository maintenance is

performed or when performance is performed on a scheduled

basis, read performance rapidly degrades. The no action base-

line has a superlinearly growing search for reuse score until it

reaches its maximum (worst) score just before the experiment

has reached the halfway point. At this point, the repository

host could not complete any further read operations within

the experiment timeframe. Therefore, we extrapolate the no

action trend to the end of the experiment.

The schedule-based solution fares substantially better than

the no action approach. We observe a similar expontential

growth as the no action baseline until the first garbage col-

lection routine completes. This results in the drop in search

for reuse that we observe just before the 0.25 mark of the

experiment timeframe. Yet the performance again quickly

begins to degrade until the next garbage collection routine

completes. This time, the impact is smaller, simply slowing the

growth just before the halfway mark of the experiment. The

growth accelerates again before reaching its peak at around

the 0.8 mark of the experiment timeframe. This marks the last

read operation that could be completed within the timeframe,

so we extrapolate the curve out to the end of the experiment.

Figure 2 also shows that the agent solution vastly outper-

forms the other approaches. First, the black trend is stable and

without superlinear growth. Moreover, the normalized search

for reuse score remains under 0.05. Second, a substantially

larger number of read operations complete within the exper-

iment timeframe, as can be observed by the more frequent

and steady occurrence of points on the trend (circles) than the

schedule-based (triangles) and no action (squares) trends.

To quantitatively compare the trends, we compute and

compare the AUC values for each approach. We find that the

AUC for the agent approach is 0.0088, whereas the AUC for

the schedule-based and no action approaches are 0.5630 and

0.7251, respectively. On the relative scale, the agent approach

is performing 64 to 82 times better on this AUC scale.

Conclusion for RQ2

The agent vastly outperforms the schedule-based main-

tenance and no action approaches, suggesting that it

can sustain repository performance when repositories

are put under heavy production loads.

V. RELATED WORK

Prior work has explored the feasibility of monolithic repos-

itory management for large software organizations. For exam-

ple, Potvin and Levenberg [7] articulate the case for choosing

a monolithic repository in the development setting at Google.

As of 2016, the repository contained 86 TB of data spanning

one billion files and 35 million commits, demonstrating that

single-source model can scale to serve the needs of a large

development organization. Keeping a VCS functioning under

such a workload requires operators with deep expertise. Our

agent-based approach aims to reduce that barrier to entry for

monorepo management.

The benefits and challenges of adopting monorepos has also

been studied. Through triangulation of developer perceptions

with quantitative data, Jaspan et al. [4] observe that codebase

transparency is a key benefit because it helps Google staff to

discover APIs and patterns of their usage, and to propagate

API changes directly to client code. Toolchain standardization

was perceived as both a benefit and a challenge, since teams

whose desired tools are not supported are forced to use an

alternative. Brito et al. [1] found that research on monorepos

was sparse, but through a survey of the grey literature, arrive

at a list of benefits, such as improvements to work culture,

and challenges, such as the required investments in tooling.

The choice of repository organization style is not a simple

one. Brosse [2] shows that the tradeoffs of repository orga-

nization styles are not one that can be universally optimized.

He argues that context should be considered to select well for

each organization, but also argues that the primary benefit of

a monorepo is likely cultural. Klein argues the case against

the monorepo, explaining that for a monorepo to “pay off”,

the organization must combat the tendency to tightly couple

components and must account for the additional “herculean”

effort required to scale a VCS.?? In this paper, we strive to

reduce that VCS scalability burden by training an agent to

intervene automatically when remedial actions are needed.

VI. THREATS TO VALIDITY

Construct validity is threatened by the measures we select

for repository performance. Although incomplete, our mea-

sures dominate (read) operation duration (e.g., search for reuse

time), and would provide performance uplift if improved.

Internal validity is threatened by the fluctuating compute

load on our experimental machines. To counteract this threat,

we repeat our RQ1 analysis three times (with minimal cross-

run variation). Moreover, the performance gap between the

agent-based approach and others in RQ2 is so large that such

fluctuations are unlikely to explain the differences.

The external validity of our study is threatened by the

simulated workload that we generate. Our results may not

generalize to real-world workloads if they differ substantially.

We are actively performing a more comprehensive study to

evaluate the generalizability of the approach.

VII. FUTURE PLANS

In this paper, we propose an agent-based approach to sustain

VCS performance autonomously (Section II). To do so, we

make improvements to VCS internals to accelerate the accrual

of repository operations (Section III). We train and evaluate

our agent-based solution, demonstrating its superiority with

respect to naı̈ve and state-of-the-art baselines (Section IV).

In future work, we are expanding the set of remedial actions

that the agent can take (e.g., geometric repacking5), conducting

a broader evaluation of the agent under real-world workloads,

and training the agent using deep reinforcement learning [8].

Replication: Our data and scripts are publicly available.6

5https://github.blog/open-source/git/highlights-from-git-2-33/
6https://doi.org/10.5281/zenodo.13917389

https://github.blog/open-source/git/highlights-from-git-2-33/
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