
Crash Report Prioritization for Large-Scale
Scheduled Launches

Nimmi Rashinika Weeraddana
University of Waterloo, Canada

nrweeraddana@uwaterloo.ca

Sarra Habchi
Ubisoft La Forge, Canada
sarra.habchi@ubisoft.com

Shane McIntosh
University of Waterloo, Canada

shane.mcintosh@uwaterloo.ca

Abstract—Software crashes are high-impact bugs that cause
applications to terminate unexpectedly. Crash prioritization fo-
cuses the attention of maintenance teams on incoming types of
crashes that are likely to have a large impact. Prior approaches
have been applied to software that is continuously released,
whereas, in the context of video game development, large releases
are often rolled out following a schedule. A game studio will
work for months or years on a new title before releasing it on a
scheduled date. In that context, crash data from live players is
not available until after release, which is often too late to react.

In this study, we analyze post-release game crashes to identify
temporal patterns that can inform strategies for prioritization
at Ubisoft—a multinational video game publisher. Our analysis
shows that most types of post-release crashes impact few players;
however, a subset goes “viral,” quickly impacting many players.
Those viral crashes may escalate immediately (i.e., outbreaks)
or lie dormant before propagating to many players (i.e., time
bombs). We use data from a previously released title to detect
such viral crashes in a new title by leveraging stack trace similar-
ity and Machine Learning (ML). We found that prioritizing crash
types based on stack trace similarity outperforms prioritization
using ML models, successfully identifying over half of the viral
crash types in the new title. Moreover, the crash types detected
by our similarity-based prioritization account for a significantly
larger number of crash occurrences than the viral crash types
that are misclassified as non-viral. The findings of our study
inform game development teams about proactive monitoring of
mild crash types that can potentially impact many players, as well
as approaches for early detection of potential viral crash types.

Index Terms—crash prioritization, viral crashes

I. INTRODUCTION

Software crashes are disruptive faults [42] that abruptly
terminate software applications.1 Crashes cause user frustra-
tion and system outages [35]. A crash may occur due to a
variety of root causes. For example, a specific combination
of untested user actions may cause software crashes [1].
Software may also crash due to bugs and/or constraints in
external resources [27]. For example, millions of systems
running Microsoft Windows crashed due to a defective patch
in an external dependency.2

In large-scale software systems, where thousands of crashes
are reported daily, critical crashes are often addressed [24], but
crashes that are deemed less important remain unresolved due

1https://support.mozilla.org/en-US/kb/troubleshoot-firefox-crashes-
closing-or-quitting

2https://www.bnnbloomberg.ca/business/company-news/2024/07/20/
crowdstrike-crash-affected-85-million-microsoft-windows-devices/

to constraints on developer time or an inability to reproduce
the crash in-house. In response to this, previous studies have
proposed approaches to prioritize crashes. For example, Kim et
al. [14] used a dataset of crashes reported by Mozilla’s Crash
Reporter3 to predict the most frequent crash types by training
Machine Learning (ML) models. This approach enables faster
resolution of the potentially prevalent crash types in Mozilla
Firefox with 68–80% accuracy. One limitation of this method
is that it relies on historical data from previous releases to
predict prevalent crash types in new releases.

Unlike software such as Mozilla Firefox, which follows
a frequent release schedule (e.g., every six weeks4), video
games are often released in large-scale, singular launches after
months or years of development. These launches are followed
by patch releases to fix bugs or introduce new content, such as
seasonal updates. In a large-scale video game launch, it is not
always possible to learn from previous releases to anticipate
prevalent crash types. The popularity of a game also varies
over time, with a majority of players being active during
the initial launch period. Thus, the initial launch period is
both the most active and the riskiest, as live player data is
only beginning to accrue.

In this paper, we analyze temporal patterns of crash occur-
rences to inform approaches to prioritize crash types that are
likely to propagate virally and impact many players. Moreover,
we propose a similarity-based prioritization and an ML-based
prioritization to leverage crash data from previously published
titles to anticipate prevalent crash types in a new title. We
structure the paper along reporting on these two analyses:
Patterns of crash occurrences (Sec. IV). Understanding how
crash occurrences accumulate for each crash type is crucial for
identifying the crash types that require immediate attention,
particularly those with the potential to impact a large segment
of the player base. To detect such temporal patterns, we apply
clustering approaches to the time series of crash occurrences
of crash types in Project G1—a high-budget (a.k.a., triple-A)
title produced by Ubisoft.
Results. Three temporal patterns dominate in the Title G1
dataset. First, we observe mild crash types that impact a few
players; indeed, the majority of crashes follow this mild pat-
tern. Second, we observe outbreaks, which rapidly proliferate

3https://crash-stats.mozilla.org/
4https://blog.mozilla.org/futurereleases/2011/07/19/every-six-weeks/

https://support.mozilla.org/en-US/kb/troubleshoot-firefox-crashes-closing-or-quitting
https://support.mozilla.org/en-US/kb/troubleshoot-firefox-crashes-closing-or-quitting
https://www.bnnbloomberg.ca/business/company-news/2024/07/20/crowdstrike-crash-affected-85-million-microsoft-windows-devices/
https://www.bnnbloomberg.ca/business/company-news/2024/07/20/crowdstrike-crash-affected-85-million-microsoft-windows-devices/
https://crash-stats.mozilla.org/
https://blog.mozilla.org/futurereleases/2011/07/19/every-six-weeks/

shortly after the launch of the title, impacting many players.
Third, we observe time bombs, which remain dormant for
a period after a release before propagating to impact many
players. Based on these patterns, we collectively refer to
outbreaks and time bombs as “viral” crash types, and strive to
help in prioritizing them before a title is released.
Crash type prioritization (Sec. V). Fixes for crash types that
are likely to be viral should be prioritized because they have a
disruptive impact on the player experience that also propagates
to many players. To detect such crash types using stack trace
similarity, we obtain Large Language Model (LLM)-based
embeddings of stack traces and compute the similarity between
crash types from a previous title and a new title. Any crash
type from the new title that has a similar crash type that was
viral in a previous title is flagged using this similarity-based
prioritization. We also train ML models on crash data from
previous titles to detect crash types in a new title that are
likely to grow virally in the initial release period.
Results. Our similarity-based prioritization outperforms the
ML-based prioritization in detecting viral crash types in
the new title. For instance, the Area Under the Receiver
Operating Characteristics (AUROC) for our similarity-based
prioritization is 0.76, outperforming our ML-based prioriti-
zation by 17 percentage points. Moreover, our similarity-
based prioritization detects 53% of the pre-release crash
types that grow virally shortly after the launch of the new
title. Combining similarity-based and ML-based prioritization
approaches does not show a substantial improvement. For
instance, we introduce a combined approach where a crash
type is classified as viral only if both the similarity-based
and ML-based prioritization approaches agree. Otherwise, it
is classified as non-viral; this combined approach achieves an
AUROC of 0.57, which is 19 percentage points lower than
the performance of the similarity-based prioritization alone.
An inspection of the false positives (i.e., the crash types that
are predicted to be viral but are non-viral in reality) that are
produced by our similarity-based prioritization reveals that
11% of them accrue at least half of the threshold of total
crash occurrences for viral crashes. An inspection of the false
negatives (i.e., the crash types predicted to be non-viral but are
viral in reality) suggests that the crash types classified as true
positives accrue a significantly larger number of occurrences
than those classified as false negatives (Mann-Whitney U test,
unpaired, one-tailed, α = 0.05).

II. CRASH REPORTING AND CHALLENGES

Crash reporting systems help organizations to track crashes
that occur in the field [15], [21], [45]. Several organizations
have developed their own crash reporting tools, e.g., Mozilla’s
Crash Reporter3 and Microsoft’s Windows Error Reporting
(WER) tool.5 A crash report contains a stack detailing where
program execution halted, as well as metadata about the timing
of the crash and the environment in which it occurred. Crash

5https://learn.microsoft.com/en-us/troubleshoot/
windows-client/system-management-components/
windows-error-reporting-diagnostics-enablement-guidance

10 3 10 2 10 1 100

Normalized count

Pre-release
Post-release

Fig. 1: Violin plot showing the distribution of the normalized
number of crash occurrences per crash type reported in pre-
release and post-release. X-axis is in a log scale. The solid
lines represent the medians, while the dotted lines represent
the first and third quartiles.

reporting systems use such data to group crash reports into
distinct crash types [3], [28], [29], [32]. For example, Mozilla’s
Crash Reporter groups crash reports based on the method
signatures of the top frames in their stack traces.3

A. The Crash Reporting System at Ubisoft

Ubisoft operates a proprietary crash reporting system de-
signed to capture and analyze exceptions that cause the game
to terminate unexpectedly. These exceptions arise from various
issues, such as deadlocks and out-of-memory errors. The
system records critical information about each crash event,
including the type of the exception raised, the associated stack
trace, and contextual metadata. This metadata encompasses
details about the platform on which the crash occurred, the
date and time of the event, the reporter type (e.g., live players,
internal staff, or bots), and other relevant attributes.

Based on the stack trace, this system groups crashes
into crash types. A new crash type is created each time
a crash report cannot be categorized under any existing
crash type. Each crash type can encompass multiple crash
reports—some occurring during the pre-release phase (before
a title’s official launch) and others during the post-release
phase (after a title has been officially launched). Crash types
may span both phases.

B. The Crash Prioritization Problem in Large-Scale Sched-
uled Launches

While crash reporting systems group crash reports, to the
best of our knowledge, built-in support for prioritization of
crash types is not yet available. Approaches have been pro-
posed in the literature, but most organizations build their own
solution for crash prioritization. For example, Kim et al. [14]
proposed a method to predict crashes based on previous
versions of the same software. This approach is not directly ap-
plicable in the context of game development, where often only
one large-scale scheduled release is produced for each title.

While prioritizing crash types that are prevalent among
developers and testers during the pre-release phase is ben-
eficial, the distribution of crash occurrences by crash type
in the pre-release phase differs from that of the post-release
phase [14]. To assess the difference in the number of crash
occurrences between the pre- and post-release phases, we

2

https://learn.microsoft.com/en-us/troubleshoot/windows-client/system-management-components/windows-error-reporting-diagnostics-enablement-guidance
https://learn.microsoft.com/en-us/troubleshoot/windows-client/system-management-components/windows-error-reporting-diagnostics-enablement-guidance
https://learn.microsoft.com/en-us/troubleshoot/windows-client/system-management-components/windows-error-reporting-diagnostics-enablement-guidance

(DC) Data Collection

Game
crash

reporter
(SC-3)

Select pairs
of similar

crash types

Dataset of metadata

Dataset of components

Dataset of similar
crash types

(SC) Similarity Computation

Patterns of crash
occurrences

Prioritized list
of crash types

(DC-1)
Compute daily

counts

(DC-2)
Retrieve
metadata
features

G1 G2

G11 G21

… …

G1 G2 Similarity

G11 G21 0.999971

G12 G21 0.843125

… … …

Crash Type Embedding

G11 [0.23, 0.45, 0.64]

G12 [0.00, 0.01, 0.08]

G21 [0.23, 0.45, 0.63]

… …

(SC-2)
Compute similarity
between pairs of

crash types

(SC-1)
Compute LLM

embeddings for
stack traces

Dataset of stack traces

(DC-3)
Retrieve stack

traces
(DC-4)
Extract

stack-trace
component
features.Crash

Type
Frame Order

G11 C1::m2 1

G11 C2:: m4 2

G11 C10::m20 3

… … …

Crash
Type

Components

C1 C3 C5

G11 1 0 0

G12 0 0 0

G21 0 0 1

… … … …

Dataset of counts
Dataset of

embeddings
Dataset of similarity
among crash types

Crash
Type

Reporter Date Pre or
post

release

Count

G11 Ubi 22/01/01 pre 7

G11 Ubi 22/01/02 pre 2

G21 Live 22/01/01 post 4

… … …

Crash
Type

Platform …

PS5 Xbox

G11 1 0 …

G12 0 1 …

G21 0 1 …

… … …

Fig. 2: An overview of our study design.

present an analysis based on data from Title G1—a triple-A
game published by Ubisoft.

We first obtain the total number of crash occurrences for
each crash type from the crash reporting system that were
reported by developers and testers before the release. We apply
min-max normalization to the number of pre-release crash
occurrences across different crash types. Then, we compute
the min-max normalized counts of crash occurrences for those
same crash types reported by players after the release. Then,
we perform a Wilcoxon rank-sum test (paired, two-tailed, α =
0.05) to test the following hypothesis.

Null hypothesis for pre- and post-release crash counts

The normalized number of crash occurrences reported
in the pre-release phase is sampled from the same pop-
ulation as the normalized number of crash occurrences
reported by live players.

Our statistical test yields a p-value of less than 0.05 with a
large effect size (Cliff’s |δ| = 0.93), allowing us to reject the
null hypothesis. This indicates that the normalized distribution
of crash occurrences in the pre-release phase, reported by
developers and testers, is significantly different from the post-
release crash occurrences reported by live players. This result
is further supported by a violin plot shown in Fig. 1. Both
the first quartile and the median of the normalized number
of crash occurrences in the pre-release period is 1.6 ×10−4,
while the third quartile is 6.4 ×10−4. On the other hand,
the normalized number of post-release crash occurrences have
the first quartile, median, and third quartile all substantially
less than 10−4. Due to this significant difference between
the distributions of pre- and post-release crash occurrences of
crash types, it is challenging to identify potential viral crash
types before a title is released.

III. STUDY DESIGN

In this section, we describe our procedures for Data Collec-
tion (DC) and Similarity Computation (SC) to analyze patterns
of crash occurrences and prioritize crash types. Fig. 2 provides
an overview of the process, which is detailed below.
(DC) Data Collection

To perform our study, we extract data from triple-A titles
G1 and G2 published by Ubisoft. These titles were developed
using the same game engine, and thus share commonalities.
As G1 was released three years prior to G2, we strive to
leverage insights from G1 to predict high-impact crashes in
G2. The organization’s crash reporting system collects both
pre- and post-release crashes for both G1 and G2. Fig. 2 (DC)
shows an overview of our data collection procedure. Below,
we describe each step.

(DC-1) Compute daily counts. For each crash type reported
in the pre-release phase, we calculate the number of daily crash
occurrences reported by the internal staff and bots. For each
crash type reported in the post-release phase, we calculate the
number of daily crash occurrences reported by live players.

(DC-2) Retrieve metadata features. From the crash reporter,
we extract detailed metadata for each crash type, such as the
platform on which the crash occurred (e.g., Microsoft Xbox)
and the operation that caused the crash (e.g., dereferencing a
null pointer). We use the data from the first occurrence for
each crash type because we strive to predict whether a crash
type is likely to go viral after its first occurrence.

All of our metadata features are categorical in nature. Thus,
we perform a one-hot vector encoding for each metadata
feature.6 Suppose the crash occurrences in our dataset come
from either the Sony PlayStation 5 (PS5) or the Microsoft
Xbox (Xbox) platform. In this case, for a crash type G11 in

6https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
OneHotEncoder.html

3

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html

G1, in which the first occurrence in the post-release period
occurred on PS5, our one-hot vector representation of the
platform would be [1,0]. On the other hand, for a crash
type G21, which first occurred on Xbox, our one-hot vector
representation of the platform would be [0,1].

(DC-3) Retrieve stack traces. The Ubisoft crash reporting
system stores the stack trace for each crash occurrence, with
each stack trace comprising multiple frames. Since the stack
trace is identical for all occurrences of the same crash type,
we use the stack trace from the first occurrence of each crash
type as its representative. Then, we filter out the frames related
to the crash reporting system itself, as these are not relevant
to the underlying causes. The operations team at Ubisoft has
found that the top three frames (i.e., order ∈ [1, 2, 3]) in a
stack trace are most often responsible for crashes. Hence, we
extract the top three frames from each stack trace for further
investigation. Focusing on the top three frames was informed
by an analysis of common crash points in the projects under
study. Other organizations may need to adjust the frame filter
to align with the characteristics of their systems.

(DC-4) Extract stack trace component features. For each
procedure present in the frame, we extract the associated
component. For instance, if the procedure is represented as
C1::m2, we identify C1 as the component and m2 as the
method name. For procedures outside of the scope of a
class, and without an explicitly defined component, we set its
component to global. This distinction enables a component-
level analysis of the crash origin. Below, we describe how
component features are extracted for the two titles G1 and G2.

For G1, we select the top n components that appear most
frequently across crash types and perform a bag-of-words
encoding [13]. Suppose n = 3 and that C1, C3, and C5
are the three components that appear most frequently in the
crash types of G1. For each crash type in G1, we check
if it implicates C1, C3, and/or C5. Suppose that the stack
trace for a crash type G11 comprises the following three
frames: C1::m2, C2::m4, and C10::m20. The bag-of-
words encoding of G11 would be [1,0,0].

For G2, we use the same set of top components that we
extract from G1 to obtain bag-of-words encodings of compo-
nents. For example, suppose G21 is a crash type with stack
trace frames C1::m3, C7::m7, and C5::m21. The bag-of-
words encoding for G21 components would be [1,0,1].

For our study, we use n = 400 to cover a wide range of
components while keeping the number of degrees of freedom
spent under the recommended budget approximation of Lak-
shmanan et al. [16]. According to Lakshmanan et al., given
f input features and C classes to classify, f should contain
fewer than |crash types|

10×C degrees of freedom to mitigate the risk of
overfitting, i.e., producing a model too specific to the training
data to provide meaningful recommendations in production.
For heavily imbalanced classes, as in our case, this budget
should be further constrained, and is approximately 600.

(SC) Similarity Computation
To find similar crash types across the two titles, we compute

stack trace similarity. Fig. 2 (SC) shows an overview of this
procedure, which we detail below.

(SC-1) Compute LLM embeddings for stack traces. We
use CodeLlama-7b [31]—an LLM specifically designed for
code tasks—to extract embeddings for each crash type in
G1 and G2. Each embedding is a 4096-dimensional vector,
representing the stack trace of a crash type.

(SC-2) Compute similarity between pairs of crash types.
For each pair of crash types in our dataset across the two titles,
we compute the cosine similarity of CodeLlama embeddings
of the stack traces. The cosine similarity between two crash
types with embeddings A and B is A·B

∥A∥∥B∥ . We conjecture
that this embeddings-based similarity measure provides a
more effective measure of similarity between crash types
than more naı̈ve approaches that capture similarities in flat
sequences, such as Hamming [11] and Levenshtein distance
measures [37], which are likely to overlook semantic and
structural similarities that exist among stack traces.

Suppose there are crash types G11, G12, and G21 with
embeddings [0.23, 0.45, 0.64], [0.00, 0.01,
0.08], and [0.23, 0.45, 0.63], respectively. We
compute the pairwise similarity between crash types in G1
and G2, i.e., similarity for (G11, G21) is 0.99, and the
similarity for (G12, G21) is 0.84. In this example, we use
3-dimensional embeddings, whereas in the actual dataset, we
use 4096-dimensional embeddings.

(SC-3) Select pairs of similar crash types. To identify pairs
of similar crash types, we must first select an appropriate
similarity threshold t. To do so, we inspect 400 pairs of
crash types with similarity scores above 0.95. In particular, for
each pair of crash types, we examine whether the stack traces
contain procedures from similar components and whether the
method names are similar (though not necessarily identical).
We find that pairs with similarity scores exceeding 0.99 exhibit
the most similarity compared to those with lower thresholds.
Therefore, we set t = 0.99 for further analysis. Following the
example in Sec. III (SC-2), the pair of crash types (G21, G11)
has a similarity score ≥ t, and thus, we identify it as a pair
of similar crash types.

IV. PATTERNS OF CRASH OCCURRENCES

In this section, we explore the temporal patterns of crash
occurrences by applying time-series clustering on crash data.

A. Approach

We apply TIMESERIESKMEANS algorithm7 to the time
series of the cumulative count of post-release crash occur-
rences (as reported by live players) of crash types in G1.
This algorithm requires a K setting to indicate the number
of clusters. To tune the K setting, we compute the silhouette
score [30], where scores above zero (ideally close to one)
indicate well-defined clusters. The setting of K that maximizes

7https://tslearn.readthedocs.io/en/stable/gen modules/clustering/tslearn.
clustering.TimeSeriesKMeans.html

4

https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html
https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html

5 10 15 20 25 30 35 40
K

0.74

0.76

0.78
Si

lh
ou

et
te

Sc
or

e

Fig. 3: Silhouette scores against a range of K settings.

the silhouette score is considered optimal. We explore settings
of K that range between two and 40, and observe silhouette
scores between 0.73–0.78. Fig. 3 shows the variation of the
silhouette score for different K settings. From the figure, we
observe that K = 2 and K = 11 settings have the highest
silhouette scores [4]. For this study, we select K = 11 for a
finer-grained analysis of crash patterns than K = 2. We obtain
clusters for setting K = 11± 2, and observe similar patterns.

B. Results

Fig. 4 shows the three most prevalent patterns among the
generated time-series clusters. We include the rest of the
patterns in our online appendix.8 The Y-axis in the figure
is scaled logarithmically. For each pattern, the black line
represents the centroid or the mean shape of the group, while
the shaded area indicates the 95% confidence interval.

Observation 1: Most types of post-release crashes impact
only a few players (P1), whereas crash types that affect
many players either escalate immediately after the release
(P2) or remain dormant before propagating to many
players (P3). Below, we discuss these three patterns in detail.

(P1) Mild crash types. These crash types accumulate a few
occurrences over time. The time-series pattern P1 shown in
Fig. 4 illustrates the mean shape of crash types that do not
exhibit substantial growth in frequency after the release. These
crash types are considered mild because they are encountered
by only a small proportion of live players.

(P2) Outbreaks. These crash types rapidly increase in
frequency shortly after release. The time series pattern P2 in
Fig. 4 tends to grow quickly shortly after release. We refer
to such crash types as outbreaks, and such rapid growth in
frequency makes these crash types noticeable within days after
the release, drawing the urgent attention of development teams
to prevent further propagation.

(P3) Time bombs. These crash types initially grow slowly
after the release but rapidly escalate later. The pattern P3 in
Fig. 4 depicts the behavior of such crash types over time.
During the first days after a release, these crash types typically
accrue few occurrences, deceptively mimicking the behavior
of P1. Yet, within a few days after the release, the number
of occurrences can escalate quickly. We refer to such crash
types as time bombs because they remain dormant during

8https://github.com/Ubisoft-LaForge/ubisoft-laforge-
CrashReportPriorizationForLargeScaleScheduledLaunches

0 10 20 30 40 50 60
Days

Ac
cu

m
ul

at
ed

Oc
cu

rre
nc

es

(P1) Mild crashes

(P3) Time bombs

(P2) Outbreaks

Fig. 4: Patterns of crash types. The Y-axis is logarithmi-
cally scaled.

the initial days after the release before they propagate to a
broad set of players.

The emergence of these time-series patterns indicates that
the importance of a crash type substantially varies over time.
This leads us to conclude that viral crash types should be
determined not only by the total number of occurrences but
also by the timing and pattern of sudden surges in frequency.

V. CRASH TYPE PRIORITIZATION

In this section, we explore approaches to prioritize crash
types that are likely to be viral in the post-release phase.
Specifically, we leverage data from Title G1 to prioritize crash
types in Title G2 with the goal of ranking as many viral crash
types in G2 as possible without overwhelming developers.
Therefore, our objective is to achieve a balance between recall
and precision.

A. Approach

Fig. 5 provides an overview of our approach to prioritizing
viral crash types. Specifically, we present our approaches to
Labeling Ground Truth (LG), Prioritization Based on Simi-
larity (PS), and Prioritization Based on ML (PM). We then
describe our Evaluation (E) of these approaches.
(LG) Labeling Ground Truth

In this step, we retrieve ground-truth labels, i.e., whether
crash types are considered viral in the post-release phase.
Fig. 5 (LG) shows an overview of this phase.

Viral crash types can be determined by the total number of
occurrences or by sudden surges in frequency (Sec. IV). Thus,
for a crash type c of either G1 or G2, we compute the total
number of crash occurrences of c reported in the post-release
phase by live players (i.e., ctotal), and the maximum number
of occurrences reported in a day by live players (cdaily).

For G1, we set a threshold tG1
total such that a crash type

cG1 is considered viral if cG1
total ≥ tG1

total. Similarly, we set a
threshold tG1

daily such that crash type cG1 is considered viral if
cG1

daily ≥ tG1
daily. The crash type is considered viral if either or

both conditions are met.
We follow a similar approach to label viral crash types of

G2. In particular, we select total and daily threshold values
and label the crash types in G2 that exceed either or both
of these thresholds. Note that the chosen thresholds differ
between the two titles due to substantial differences in the
number of live players.

5

https://github.com/Ubisoft-LaForge/ubisoft-laforge-CrashReportPriorizationForLargeScaleScheduledLaunches
https://github.com/Ubisoft-LaForge/ubisoft-laforge-CrashReportPriorizationForLargeScaleScheduledLaunches

(LG) Labeling Ground Truth

Label viral
crash types

(PM) Prioritization Based on ML

Dataset of
metadata and
components

Dataset
of

counts

Candidate
models

G1 crash type data G2 crash type data

Ensembled
prediction for G2

(PS) Prioritization Based on Similarity
Dataset of similar

crash types

Dataset of features and ground truth

Viral G1
crash types

G2 crash types similar to
G1 viral crash types

G1 train data G1 test data

G1 viral crash type

G11

G13

…

(PM-1)
Split G1 train/test data

(PM-3)
Select

candidate
models

ML
models

(PM-4)
Infer predictions

for G2 crash types

(E) Evaluation

G1
crash
type

Platform … Viral
GT

G11 … … True

G12 … … False

(PM-2)
Train ML
models

(PS-2)
Retrieve similar
G2 crash types

G1
crash
type

Platform … Viral
GT

G13 XBox … True

(PS-1)
Select viral

crash types of
G1

G1
crash
type

Platform … Components Viral
GT

PS5 XBox C1 C2 C5

G11 1 0 … 1 0 0 True

G12 0 1 … 0 0 0 False

G13 0 1 … 0 1 1 True

… … … … … …

G2
crash
type

Platform … Components Viral
GT

PS5 XBox C1 C2 C5

G21 0 1 … 0 0 1 True

G22 1 0 … 1 0 1 False

G23 1 0 … 0 0 0 True

… … … … …

(E-1)
Compute

evaluation metrics

(E-2)
Analyze false

positives

(E-3)
Analyze false

negatives

G1 viral crash type

G21

…

G2
crash
type

Viral
GT

Final
predi
ction

G21 True True

G22 False True

G23 True False

… … …

Fig. 5: An overview of the process of obtaining suggestions for G2.

We select threshold values in collaboration with the opera-
tions team at Ubisoft. After labeling the viral crash types in the
two titles, we include these labels in our dataset of metadata
and component features.
(PS) Prioritization Based on Similarity

In this phase, we use the similarity between G1 and G2
crash types to predict potential viral crash types of G2.
Fig. 5 (PS) shows an overview of this similarity-based pri-
oritization, which we detail below.

(PS-1) Select viral crash types of G1. Using the viral-
ity labels of Sec. V-A (LG), we select all the viral crash
types in the G1 dataset.

(PS-2) Retrieve similar G2 crash types. For each viral
crash type in G1, we obtain the similar crash types in G2
from our dataset of similar crash types that we obtained in
Sec. III (SC). We consider these matches to be our similarity-
based suggestions, which are likely to go viral in the post-
release phase of G2. Suppose that the viral crash types in G1
are G11 and G13, and we find that G11 has a similar G2
crash type, which is G21. In this case, prioritization based
on similarity, i.e., our similarity-based approach, recommends
prioritizing G21, since it is likely a viral crash type of G2.
(PM) Prioritization Based on ML

In this phase, we use crash types of G1 to train ML models
to predict viral crash types of G2 as shown in Fig. 5 (PM).

(PM-1) Split G1 post-release train/test data. We begin by
randomly splitting the dataset of G1 into training (80%) and

test (20%) corpora. We use the training corpus to train ML
models in Sec. V-A (PM-2), and the test corpus to select
candidate ML models in Sec. V-A (PM-3) for evaluation on
the G2 dataset in our Evaluation (E) phase.

(PM-2) Train ML models. We use our training corpus of
G1 crash types to train ML models under various settings:

1) Class-balancing settings. Our dataset is highly imbal-
anced, with the viral crash types in G1 constituting only
0.6% of the crash types in G1. To address this, we apply
random oversampling and Synthetic Minority Oversam-
pling Technique (SMOTE) [6] to the training corpus. For
each technique, we explore various sampling strategies
by oversampling the records from the minority class to
proportion p ∈ {0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}
of the number of crash types in the majority class. Doing
so results in 16 (eight p settings and two oversampling
techniques) variants of our training corpus.

2) Machine-learners and hyperparameter settings. For
each oversampled variant of our training corpus, we train
logistic regression, neural network, gradient boosting,
random forest, and K-nearest neighbor classifiers. For
each classifier, we explore multiple hyperparameter set-
tings. A detailed list of these settings is provided in
Table B.1 in our online appendix.8 This step produces
576 classifier variants.

(PM-3) Select candidate models. Classifiers may have poor
fitness. Such poor classifiers should not be making predictions

6

for G2. Thus, we apply each classifier to our test corpus
of G1 and compute the precision and recall. We then select
the models that achieve non-zero precision and recall values.
We purposefully select a lenient lower bound to retain as
many models as possible to maximize the overall recall of our
approach. Doing so results in 384 candidate models selected
for making recommendations for G2.

(PM-4) Predict viral crash types in G2. We feed the features
of crash types in G2 to each candidate model, and use a voting-
based ensemble recommendation. Our approach considers a
crash type cG2 to be viral if the majority of candidate models
predict cG2 to be viral.

(E) Evaluation
In this phase, we evaluate our approaches to predict viral

crash types in G2. Besides our similarity-based approach and
ML-based approach, we introduce combined approaches for
evaluation, which label a crash type cG2 as viral if:

1) (CA1) both similarity-based and ML-based approaches
predict cG2 as viral.

2) (CA2) either the similarity-based or ML-based approach
predicts cG2 as viral.

(E-1) Compute evaluation metrics. To evaluate our ap-
proaches, we use precision, recall, and the following metrics:

1) Area Under the Receiver Operating Characteristics
Curve (AUROC) [12]. This metric estimates the dis-
criminatory power of a classifier; AUROC values of 0,
0.5, and 1 represent the worst discrimination, random
guessing (i.e., baseline performance), and perfect discrim-
ination, respectively.

2) Area Under the Precision and Recall Curve (AUPRC).
This measures the classifier’s effectiveness in handling
the minority class (i.e., viral crash types). The AUPRC is
also a value between 0–1. The baseline performance of
AUPRC is determined by the prevalence of the positive
class, i.e., number of viral crash types

number of all crash types [33]. While the baseline
appropriate for a balanced-class distribution is 0.5, the
baseline for our dataset of G2 crash types is 0.02.

3) Matthew’s Correlation Coefficient (MCC) [23]. This
metric evaluates classifier performance to balance preci-
sion and recall. An MCC value of 1 indicates perfect
classification, 0 indicates random guessing, and values
below 0 reflect misclassification, with -1 representing
total misclassification.

(E-2) Analyze false positives. Minimizing the number of
false alarms is essential to effectively prioritize developer
time for fixing the most impactful crash types. To assess
the impact of false alarms, we focus on the prioritization
approach that outperforms the others in evaluation metrics
discussed in Sec. V-A (E-1), and examine the extent to
which the total number of crash occurrences reported as false
alarms deviates from the threshold (tG2

total).
(E-3) Analyze false negatives. Our approaches can misclas-

sify viral crash types as non-viral, resulting in false negatives.
To understand the implications of any missed viral crash types,

we compare the impact of correctly classified and misclassified
crash types using statistical analysis.

We first determine whether the viral crash types of G2
that are misclassified are more impactful than those that are
detected. To do so, we conduct a Mann-Whitney U test [22],
comparing the total number of crash occurrences (cG2

total) per
crash type c between the two groups. Mann-Whitney U test
is a non-parametric test that is used to assess the likelihood
of two samples being drawn from the same distribution. Our
null hypothesis Htotal for the Mann-Whitney U test (unpaired,
one-tailed, α = 0.05) is as follows:

(Htotal) Null hypothesis for total number of crash
occurrences

The total number of crash occurrences of correctly
classified viral crash types is less than or equal to those
of misclassified viral crash types.

Next, we use the Mann-Whitney U test (unpaired, one-
tailed, α = 0.05) to compare the maximum number of daily oc-
currences (i.e., cG2

daily), with the following null hypothesis Hdaily:

(Hdaily) Null hypothesis for maximum daily crash
occurrences

The maximum number of daily crash occurrences of
correctly classified viral crash types is less than or
equal to those of misclassified viral crash types.

B. Results
Table I shows an overview of the evaluation of the predic-

tions for G2, and below, we discuss our observations.
Observation 2: Our prioritization approaches outper-

form AUROC, AUPRC, and MCC baselines. Table I
shows that the AUROC values for all four prioritization
approaches exceed the baseline performance of the random
guesser, which has an AUROC of 0.5. Similarly, the AUPRC
for our similarity-based prioritization approach and combined
prioritization approaches (CA1 and CA2) substantially surpass
the baseline AUPRC of 0.02, showing that our approaches
are effective at prioritizing viral crash types. However, the
ML-based prioritization narrowly outperforms the baseline.
Besides, the MCC values for all approaches are substantially
greater than those of a random guessing model with an MCC
value of zero, indicating that our prioritization approaches have
a better overall performance in handling the imbalanced data.

Observation 3: Our similarity-based prioritization ap-
proach outperforms other approaches. Table I shows that
our similarity-based prioritization achieves the highest MCC
value among the studied approaches, indicating an effective
balance between precision and recall. This similarity-based
prioritization also ranks second in terms of recall (0.53) and
precision (0.44). Although the highest recall (0.54) is achieved
by the combined approach CA2, its precision (0.29) is sub-
stantially lower than that of the similarity-based approach.

7

TABLE I: Evaluation of our predictions for G2 crash types.

Prioritization
Approach

Precision Recall AUROC AUPRC MCC Occurrences of vi-
ral crash types (%)

Similarity-based 0.44 0.53 0.76 0.24 0.47 40.37%
ML-based 0.20 0.19 0.59 0.05 0.17 14.95%
CA1 0.55 0.18 0.57 0.11 0.30 14.70%
CA2 0.29 0.54 0.76 0.17 0.38 40.62%

10 3 10 2 10 1 100

Normalized count

Total count

Daily max count

FNs
TPs

Fig. 6: Violin plot showing the distribution of the normalized
number of (1) crash occurrences per G2 crash type and
(2) maximum crash occurrences reported in a day per G2 crash
type. X-axis is in a log scale. The solid lines represent the
medians; the dotted lines represent the first and third quartiles.

Conversely, the highest precision (0.55) is achieved by our
combined approach CA1, but it only achieves one-third of the
recall of that of our similarity-based prioritization. Overall,
similarity-based approach offers the best performance, striking
a good balance between precision and recall in compari-
son to the others.

Observation 4: Our similarity-based prioritization iden-
tifies more than half of the crash types that grow virally
in the post-release phase. Table I shows that our similarity-
based prioritization successfully detects 53% of the viral crash
types of G2 (recall = 0.53), demonstrating its effectiveness in
identifying high-impact crash types. Furthermore, it captures
40.37% of the total crash occurrences attributed to viral crash
types, indicating that this prioritization approach not only iden-
tifies a large number of individual viral crash types but also
covers a substantial portion of the total volume of occurrences
caused by viral crash types. This percentage of total crash
occurrences attributed to viral crash types (40.37%) is less than
the percentage of viral crash types that our similarity-based
prioritization detects (53%) due to a false positive, which is
an outlier crash type with a substantial number of occurrences.
Note that our combined approach CA2 covers more crash
occurrences than our similarity-based prioritization approach,
but with considerably lower precision.

Observation 5: Although false positives of our similarity-
based approach do not meet virality thresholds, 11% of
them contribute over half the total occurrence threshold.
Our similarity-based approach for detecting viral crash types
achieves the lowest false alarm rate (0.56, i.e., 1− precision).
However, our analysis of false positives reveals that 11% of
the false alarms produced by our similarity-based approach
accrue at least half of tG2

total. Although they do not reach the
threshold, their proximity to this threshold suggests that they
are still worthy of prioritization.

Observation 6: Viral crash types that are detected by
our similarity-based approach are more impactful than
those that are missed as false negatives. Our statistical
test to observe any differences between the total number of
crash occurrences (cG2

total) of correctly classified viral crash
types and those of misclassified ones yields a p-value less
than 0.05 with a non-negligible effect size (Cliff’s |δ| = 0.29),
indicating that the null hypothesis Htotal can be rejected. Thus,
the viral crash types of G2 that are correctly classified tend to
have significantly more crash occurrences than the viral crash
types that are misclassified.

Similarly, our statistical test for peak daily crash occur-
rences (cG2

daily) of correctly classified viral crash types and those
of misclassified ones yields in a p-value less than 0.05 with
a non-negligible effect size (Cliff’s |δ| = 0.22). Thus, we can
reject the null hypothesis Hdaily, and conclude that the viral
crash types that are correctly classified in G2 tend to have
significantly larger peak numbers of daily crash occurrences
than the viral crash types that are misclassified.

Fig. 6 shows the normalized distribution of total crash occur-
rence counts and the maximum number of daily crash occur-
rences for correctly and incorrectly classified viral crash types.
The median total crash occurrences for correctly classified vi-
ral crash types is nearly twice that of the incorrectly classified
viral crash types. Moreover, the median of the peak daily crash
occurrences for correctly classified viral crash types is 32%
greater than that of the incorrectly classified viral crash types.

Our similarity-based prioritization (AUROC = 0.76)
outperforms the ML-based prioritization (AUROC =
0.59) in detecting viral crash types, successfully iden-
tifying 53% of the crash types that grow virally
during the post-release phase. Furthermore, the total
and maximum daily crash occurrences for viral crash
types that are correctly classified by our similarity-
based prioritization are significantly larger than those
of viral crash types that are misclassified.

VI. THREATS TO VALIDITY

In this section, we describe the threats to the construct,
internal, and external validity of our study.

A. Construct Validity

We rely on Ubisoft’s crash reporter for deduplication of
crash occurrences, forming crash types, and then use CodeL-
lama embeddings to compute the cosine similarity of the
frames in the stack traces of these crash types. While the
CodeLlama model may have been trained on general source
code datasets, stack traces generated from the game-specific
source code may contain game-specific nuances that the
CodeLlama embeddings might not fully capture. As a result,
crash types that appear similar based on the embeddings may
actually be different. Nonetheless, the goal of using CodeL-
lama embeddings is not for deduplication (which is already
handled by the organization’s crash reporter), but is instead to

8

find crash types with similar stack traces. We inspect a sample
of 400 crash-type pairs with 99% similar stack traces and find
them to be meaningfully similar, empirically strengthening
confidence in the effectiveness of the embeddings for this task.

B. Internal Validity

In this study, we obtain viral crash types of each title, G1
and G2, by using thresholds for the total occurrences accrued
over time (i.e., ttotal) and the maximum occurrences reported
per day (i.e., tdaily). The values set for these thresholds may
introduce selection bias. To mitigate such bias, we validate
these thresholds with Ubisoft’s operations team.

Our dataset is highly imbalanced, i.e., viral crash types
represent is 0.6% of the crash types reported in the post-
release period of G1. To balance the classes in our training
dataset, we use random oversampling and SMOTE methods.
We choose not to use standard class balancing proportion,
i.e., oversampling the minority class to match the number
of records from the majority class, because while doing so
decreases false negative rates, it also tends to increase false
positives rates. To mitigate the bias from the proportion we
choose for our oversampling methods, we train separate ML
models for a range of proportions.

The choice of hyperparameters in our ML models may have
an impact on our results. While we mitigate this by training
ML models under several hyperparameter settings, the possi-
bility remains that other hyperparameter configurations—that
are not explored in this study—could yield different results.
To promote replicability, we provide the hyperparameters used
in this study in our online appendix.8

C. External Validity

Our analysis is based on two titles published by Ubisoft. The
features extracted from crash types in these titles may differ
from those extracted from titles developed using different
game engines. Furthermore, the findings of this study may
not be generalizable to titles published by other organiza-
tions. Despite these limitations, we posit that the proposed
approach—leveraging crash reports from previous titles to pre-
dict high-impact crash types in new titles—could be adapted
to other organizations and settings. Nonetheless, replication
studies may strengthen the generalizations that can be drawn.

VII. RELATED WORK

In this section, we situate our work with respect to the
literature on software crashes and video game crashes.

A. Software Crashes

Several studies have proposed methods to warn users about
software crashes in advance [1], [40], [44]. For example, Adam
et al. [1] analyzed 5,598 user sessions of a medical application
to identify combinations of user actions that led to crashes of
a medical application. They used hierarchical clustering to de-
fine groups of sessions and computed the crashing probabilities
for each cluster. During a working session, a crash probability
was computed for each new user action based on the session

assignment to predefined clusters. This method resulted in a
specificity of 0.91 and a recall of 0.77.

Prior studies also analyzed software releases that crash
applications [17], [43]. For example, Xia et al. [43] trained ML
models on release-related data (e.g., number of file changes in
a release) of ten open-source mobile applications that produced
2,638 releases. Their ML models achieved, on average, F1 and
AUROC scores of 0.30, and 0.64, respectively.

Others proposed methods to localize crash-inducing defects
in source code [26], [38], [41], [42], [46]. For example, Wu et
al. [42] proposed CRASHLOCATOR—a method to locate faulty
methods using the stack traces attached to crash reports. This
tool ranks the methods in a stack trace by a suspiciousness
score, which measures how often methods appear in the stack
traces of crashes in comparison to other types of issues.
They evaluated this approach on Mozilla crash reports and
found that 50.6% of crashes are fixed by updating the top
method in the stack trace.

The sheer volume of crash reports and the velocity at which
they accumulate in popular software presents management
challenges and can overwhelm organizations [5], [8], [25].
To manage this, crash-report deduplication techniques have
been proposed to consolidate redundant crash reports [3], [7],
[15], [28], [29], [32]. For example, Rodrigues et al. [29]
introduced a crash report deduplication technique based on
stack traces. Their approach outperforms previous dedupli-
cation approaches for Ubuntu project by 4.20% in terms
of AUROC. Note that the in-house crash reporting system
at Ubisoft (Sec. II), from which the data for our study is
extracted, deduplicates crash reports for each title published by
the organization, and categorizes them into a set of crash types.
We also use CodeLlama embeddings [31] to find similar crash
types across titles that do not meet strict similarity criteria
(e.g., exact stack trace matches).

While much of the aforementioned research focused on
detecting the crash likelihood of software and investigating
crash root causes, a key unaddressed concern is the predic-
tion of crash impact. Understanding the impact is crucial
for prioritizing crash types, especially in large software sys-
tems with a large volume of crash reports that accrue at a high
velocity. Kim et al. [14] were the first to focus on prioritizing
debugging efforts by predicting potentially prevalent crash
types. They selected crash reports of the 20 most prevalent
crash types and crash reports of the 20 least prevalent crash
types in a Mozilla Firefox release. Then, they trained ML mod-
els on this dataset to predict whether a given crash report
from a new Firefox release is likely to come from a prevalent
crash type or not. Their models achieved an accuracy of
0.63–0.81. Then, they used their models trained on Mozilla
Firefox to predict prevalent crash types in a new release of
Mozilla Thunderbird, achieving an accuracy of 0.54–0.69.
Although Firefox and Thunderbird are two different software,
they share crash types.9

9https://support.mozilla.org/en-US/kb/thunderbird-crashes

9

https://support.mozilla.org/en-US/kb/thunderbird-crashes

Although the approach by Kim et al. [14] makes important
contributions, it cannot be directly applied to Ubisoft’s game
development context. First, unlike Firefox and Thunderbird,
the video games G1 and G2 that we study in this paper do
not share crash types detected by the crash reporter. Second,
the release cycles differ in that new versions of Firefox and
Thunderbird are released frequently, whereas triple-A video
games are released infrequently. In the video game industry,
developers often work on a title for months or years, and
release it as a large-scale scheduled launch, where the title
has one official release. For a completely new title, data from
live players is not available until the release of that title to
anticipate which crash types could be prevalent. Lastly, our
ML-based approach considers all crash types in the dataset
rather than restricting the analysis to the top 20 most prevalent
or least prevalent crash types. This approach enables the
detection and prioritization of a broader range of crash types,
including those that may not fall within the extreme tails of
the prevalence distribution.

B. Video Game Crashes

Prior work has proposed ML and reinforcement learn-
ing (RL) methods to automate gameplay testing to detect
bugs in games, such as crashes [2], [9], [20], [34], [47].
For example, Zheng et al. [47] proposed WUJI, a testing
framework that uses RL to automate gameplay testing. Wuji
aims to strike a balance between winning the game and
exploring the space of the game. Winning the game allows
the agent to progress through the game events, while space
exploration increases the coverage of the test, and in turn, the
likelihood of discovering crashes and other types of bugs.

Other studies [10], [19] proposed methods to detect bugs
(including crashes) from gameplay videos. For example,
Guglielmi et al. [10] proposed GELID, an automated approach
to extract segments from gameplay videos that contain bugs
and crashes. In particular, GELID uses video-based features,
such as the Structural Similarity Index Measure (SSIM) [39],
to detect frame anomalies that occur during a crash.

Others adopted the game developers’ perspective on video
game crashes [18], [36]. For example, Truelove et al. [36]
surveyed game developers about their experience with dif-
ferent types of bugs. They found that game crashes are the
most frequently occurring bugs and are often treated as more
severe than other types of bugs. They also found that game
developers face challenges in detecting root causes of game
crashes. Moreover, they found that certain change sets that
are applied to the source code of a video game can cause
previously fixed crashes to reappear in the game, which is a
common problem in software bugs [48].

Much of the previous research on video game crashes has
focused on their detection. To the best of our knowledge,
the prioritization of crash types based on the breadth of their
anticipated impact on players has not yet been explored. Our
study strives to fill this gap by examining patterns in the
accrual of crash occurrences of crash types and proposing
approaches to prioritize crash types.

VIII. CONCLUSION AND IMPLICATIONS

In this paper, we analyze crash types in video games.
We find that while the majority of crash types induce few
occurrences, a subset are viral crash types that propagate
broadly across a large number of players. Leveraging these
insights, we propose approaches to prioritize crash types based
on their likelihood of being viral. Below, we outline the
implications of our study.

Teams can anticipate viral crash types in a new title by
leveraging data from crash types observed in previously
released titles. We find that the prioritization approaches pro-
posed in our study outperform the baseline models in detecting
viral crash types. Depending on the context of the titles and the
specific metrics that need to be optimized (e.g., precision or
recall), teams can select an approach from the four approaches
proposed in this study. For example, if a team seeks to achieve
a balance between precision and recall, the similarity-based
approach tends to perform best. Conversely, if the goal is
to maximize precision, the combined approach CA1 would
be a better choice. These prioritization approaches would not
only enhance the gaming experience for players, but would
also reduce the workload of operations teams by potentially
preventing occurrences of crashes in the post-release phase.

Teams may use stack trace similarity to target faulty
components for long-term improvement. We find that pri-
oritizing crash types in a new title based on stack trace
similarity outperforms ML approaches, successfully detecting
over half of the viral crash types. These findings highlight the
potential of using stack trace similarity not only for prioritizing
crash types, but also for other applications. For instance, by
grouping crash types based on stack trace similarity, teams
can identify components implicated by the largest propor-
tion of crash types. Targeting such faulty components for
further improvement could enhance the resilience of both
games and game engines.

Promising directions for future work include the formu-
lation of additional features of crash types, such as in-game
state. Such features may highlight patterns that lead to crash
types that become prevalent after the release. In this paper,
our ML-based prioritization uses metadata and stack traces to
predict viral crash types, and it yields a precision of 0.20 and a
recall of 0.19. Incorporating other factors, such as the in-game
state and player actions at the time of the crash, may improve
the precision and recall. This paper lays the groundwork for
using stack trace similarity and ML to predict viral crash types,
and we encourage researchers who have access to additional
data to build on our work to improve the prioritization of crash
types in video games and other contexts. We have made the
scripts used to perform the analyses of this study available in
our replication package.8

ACKNOWLEDGMENTS

This work was supported by Mitacs and the Natural Sci-
ences and Engineering Research Council (NSERC) of Canada.

10

REFERENCES

[1] C. Adam, A. Aliotti, and P.-H. Cournède, “Learning from user work-
flows for the characterization and prediction of software crashes,” in
2016 IEEE 16th International Conference on Data Mining Workshops
(ICDMW). IEEE, 2016, pp. 1023–1030.

[2] S. Agarwal, C. Herrmann, G. Wallner, and F. Beck, “Visualizing ai
playtesting data of 2d side-scrolling games,” in 2020 IEEE Conference
on Games (CoG). IEEE, 2020, pp. 572–575.

[3] A. Alipour, A. Hindle, and E. Stroulia, “A contextual approach towards
more accurate duplicate bug report detection,” in 2013 10th Working
Conference on Mining Software Repositories (MSR). IEEE, 2013, pp.
183–192.

[4] I. F. Ashari, E. D. Nugroho, R. Baraku, I. N. Yanda, R. Liwardana
et al., “Analysis of elbow, silhouette, davies-bouldin, calinski-harabasz,
and rand-index evaluation on k-means algorithm for classifying flood-
affected areas in jakarta,” Journal of Applied Informatics and Comput-
ing, vol. 7, no. 1, pp. 95–103, 2023.

[5] J. C. Campbell, E. A. Santos, and A. Hindle, “The unreasonable
effectiveness of traditional information retrieval in crash report dedupli-
cation,” in Proceedings of the 13th International Conference on Mining
Software Repositories, 2016, pp. 269–280.

[6] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[7] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “Rebucket: A
method for clustering duplicate crash reports based on call stack simi-
larity,” in 2012 34th International Conference on Software Engineering
(ICSE). IEEE, 2012, pp. 1084–1093.

[8] T. Dhaliwal, F. Khomh, and Y. Zou, “Classifying field crash reports
for fixing bugs: A case study of mozilla firefox,” in 2011 27th IEEE
International Conference on Software Maintenance (ICSM). IEEE,
2011, pp. 333–342.

[9] C. Gordillo, J. Bergdahl, K. Tollmar, and L. Gisslén, “Improving
playtesting coverage via curiosity driven reinforcement learning agents,”
in 2021 IEEE Conference on Games (CoG). IEEE, 2021, pp. 1–8.

[10] E. Guglielmi, S. Scalabrino, G. Bavota, and R. Oliveto, “Using game-
play videos for detecting issues in video games,” Empirical Software
Engineering, vol. 28, no. 6, p. 136, 2023.

[11] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
system technical journal, vol. 29, no. 2, pp. 147–160, 1950.

[12] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a
receiver operating characteristic (roc) curve.” Radiology, vol. 143, 1982.

[13] Z. Harris, “Distributional structure,” 1954.
[14] D. Kim, X. Wang, S. Kim, A. Zeller, S.-C. Cheung, and S. Park,

“Which crashes should i fix first?: Predicting top crashes at an early
stage to prioritize debugging efforts,” IEEE Transactions on Software
Engineering, vol. 37, no. 3, pp. 430–447, 2011.

[15] S. Kim, T. Zimmermann, and N. Nagappan, “Crash graphs: An ag-
gregated view of multiple crashes to improve crash triage,” in 2011
IEEE/IFIP 41st International Conference on Dependable Systems &
Networks (DSN). IEEE, 2011, pp. 486–493.

[16] V. Lakshmanan, S. Robinson, and M. Munn, Machine learning design
patterns. O’Reilly Media, 2020.

[17] P. L. Li, R. Kivett, Z. Zhan, S.-e. Jeon, N. Nagappan, B. Murphy,
and A. J. Ko, “Characterizing the differences between pre-and post-
release versions of software,” in Proceedings of the 33rd International
Conference on Software Engineering, 2011, pp. 716–725.

[18] D. Lin, C.-P. Bezemer, and A. E. Hassan, “Studying the urgent updates of
popular games on the steam platform,” Empirical Software Engineering,
vol. 22, pp. 2095–2126, 2017.

[19] ——, “Identifying gameplay videos that exhibit bugs in computer
games,” Empirical Software Engineering, vol. 24, pp. 4006–4033, 2019.

[20] G. Liu, M. Cai, L. Zhao, T. Qin, A. Brown, J. Bischoff, and T.-Y.
Liu, “Inspector: Pixel-based automated game testing via exploration,
detection, and investigation,” in 2022 IEEE Conference on Games
(CoG). IEEE, 2022, pp. 237–244.

[21] A. Maiga, A. Hamou-Lhadj, M. Nayrolles, K. K. Sabor, and A. Larsson,
“An empirical study on the handling of crash reports in a large software
company: An experience report,” in 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 2015, pp.
342–351.

[22] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[23] B. W. Matthews, “Comparison of the predicted and observed secondary
structure of t4 phage lysozyme,” Biochimica et Biophysica Acta (BBA)-
Protein Structure, vol. 405, no. 2, pp. 442–451, 1975.

[24] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two Case Studies of
Open Source Software Development: Apache and Mozilla,” Transactions
On Software Engineering and Methodology (TOSEM), vol. 11, 2002.

[25] N. K. Nagwani, “Identification of duplicate bug reports in software bug
repositories: a systematic review, challenges, and future scope,” Data
Deduplication Approaches, pp. 183–201, 2021.

[26] R. L. Nord, I. Ozkaya, E. J. Schwartz, F. Shull, and R. Kazman, “Can
knowledge of technical debt help identify software vulnerabilities?” in
9th Workshop on Cyber Security Experimentation and Test (CSET 16),
2016.

[27] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross, “Statically checking
api protocol conformance with mined multi-object specifications,” in
2012 34th International Conference on Software Engineering (ICSE).
IEEE, 2012, pp. 925–935.

[28] Y. Remil, A. Bendimerad, R. Mathonat, C. Raı̈ssi, and M. Kaytoue,
“Deeplsh: Deep locality-sensitive hash learning for fast and efficient
near-duplicate crash report detection,” in Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, 2024, pp. 1–12.

[29] I. M. Rodrigues, D. Aloise, and E. R. Fernandes, “Fast: A linear
time stack trace alignment heuristic for crash report deduplication,” in
Proceedings of the 19th International Conference on Mining Software
Repositories, 2022, pp. 549–560.

[30] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[31] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez et al., “Code llama: Open foundation
models for code,” arXiv preprint arXiv:2308.12950, 2023.

[32] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in 29th International
Conference on Software Engineering (ICSE’07). IEEE, 2007, pp. 499–
510.

[33] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informa-
tive than the roc plot when evaluating binary classifiers on imbalanced
datasets,” PloS one, vol. 10, 2015.

[34] A. Sestini, L. Gisslén, J. Bergdahl, K. Tollmar, and A. D. Bagdanov,
“Automated gameplay testing and validation with curiosity-conditioned
proximal trajectories,” IEEE Transactions on Games, vol. 16, no. 1, pp.
113–126, 2022.

[35] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing crashes
in android apps,” in Proceedings of the 40th International Conference
on Software Engineering, 2018, pp. 187–198.

[36] A. Truelove, E. S. de Almeida, and I. Ahmed, “We’ll fix it in post: What
do bug fixes in video game update notes tell us?” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 736–747.

[37] L. VI., “Binary codes capable of correcting deletions, insertions, and
reversals,” InSoviet physics doklady 1966 Feb 10 (Vol. 10, No, vol. 10,
no. 8, pp. 707–710, 1966.

[38] S. Wang, F. Khomh, and Y. Zou, “Improving bug localization using
correlations in crash reports,” in 2013 10th Working Conference on
Mining Software Repositories (MSR). IEEE, 2013, pp. 247–256.

[39] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[40] C. Wimalasooriya, S. A. Licorish, D. A. da Costa, and S. G. MacDonell,
“Just-in-time crash prediction for mobile apps,” Empirical Software
Engineering, vol. 29, no. 3, pp. 1–62, 2024.

[41] R. Wu, M. Wen, S.-C. Cheung, and H. Zhang, “Changelocator: locate
crash-inducing changes based on crash reports,” Empirical Software
Engineering, vol. 23, pp. 2866–2900, 2018.

[42] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim, “Crashlocator: Locating
crashing faults based on crash stacks,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, 2014, pp.
204–214.

[43] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting
crashing releases of mobile applications,” in Proceedings of the 10th

11

ACM/IEEE international symposium on empirical software engineering
and measurement, 2016, pp. 1–10.

[44] M. Yakhchi, J. Alonso, M. Fazeli, A. A. Bitaraf, and A. Patooqhy,
“Neural network based approach for time to crash prediction to cope
with software aging,” Journal of Systems Engineering and Electronics,
vol. 26, no. 2, pp. 407–414, 2015.

[45] D. Zagieboylo and K. A. Zaman, “Cost-efficient and reliable reporting
of highly bursty video game crash data,” in Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering,
2017, pp. 201–212.

[46] K. Zhao, Z. Xu, M. Yan, T. Zhang, L. Xue, M. Fan, and J. Keung,
“The impact of class imbalance techniques on crashing fault residence

prediction models,” Empirical Software Engineering, vol. 28, no. 2,
p. 49, 2023.

[47] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen,
Y. Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 772–784.

[48] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy, “Characteriz-
ing and predicting which bugs get reopened,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, 2012, pp. 1074–
1083.

12

	Introduction
	Crash Reporting and Challenges
	The Crash Reporting System at Ubisoft
	The Crash Prioritization Problem in Large-Scale Scheduled Launches

	Study Design
	Patterns of Crash Occurrences
	Approach
	Results

	Crash Type Prioritization
	Approach
	Results

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Software Crashes
	Video Game Crashes

	Conclusion and Implications
	References

