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addressed issues are integrated immediately, while others are
delayed. In this paper, we empirically study the integration of
20,995 addressed issues from the ArgoUML, Eclipse, and Firefox
projects. Our results indicate that: (i) despite being addressed
well before the release date, the integration of 34% to 60% of
addressed issues in systems with traditional release cycle, and
98% of addressed issues in systems with rapid release cycle were
delayed by one or more releases; (ii) using information derived
from the addressed issues, we are able to accurately predict the
release in which an addressed issue will be integrated, achieving
a Receiver Operator Curve (ROC) area of above 0.74; and (iii)
the workload of integrators is the most influential factor in our
integration delay models. Our results indicate that integration
can introduce non-negligible delays that prevent addressed issues
from being delivered to users. Thus, solely focusing on the time
to address an issue is not enough to truly assess how long it takes
for users to see that the issue has been addressed in the software
system.

I. INTRODUCTION

Prior studies have explored several approaches to help

developers to estimate the time needed to address issues

(features, enhancements, and bug fixes) [1–7]. Such studies are

useful for project managers who need to allocate development

resources effectively in order to deliver releases on time

without exceeding budgets.

On the other hand, users and contributors care most about

when an official release of a software system will include an

addressed issue. Although an issue may have been addressed,

it may not be integrated into an official release for some time.

Jiang et al. find that after a change has taken 1-3 months

to complete the code review process, it takes an additional

1-3 months for that change to be integrated into the Linux

kernel [8]. In this paper, we refer to the time between when

an issue is addressed and when it is integrated into an official

release as integration delay.

Although one can often speculate, it is not always clear why

an addressed issue would not be integrated into an upcoming

release. When the reasons for these integration delays are

unclear, users and contributors may become frustrated. For

example, on a recent Firefox issue, a stakeholder asked: “So
when does this stuff get added? Will it be applied to the next
FF23 beta? A 22.01 release? Otherwise?” [9].

To investigate why the integration of some addressed issues

is delayed, we perform an empirical study of 20,995 issues

collected from the ArgoUML, Eclipse, and Firefox projects.

We investigate how much delay addressed issues typically

have before integration. Furthermore, we investigate how often

RQ2: Can we accurately predict when an addressed issue
will be integrated?

Yes, our models achieve a weighted average precision of
0.59 to 0.88 and a recall of 0.62 to 0.88, with Receiver
Operator Curve (ROC) areas above 0.74.

RQ3: What are the most influential attributes for estimating
integration delay?

Our models derived more of their explanatory power
from attributes that estimate the workload of the integra-
tion team at the time when an issue was addressed, rather
than from attributes such as the priority or severity of the
addressed issues.
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TABLE I: The dates and versions of the first and last releases

considered in the study, along with the total number of

addressed issues and releases.

System First release Last release No. of No. of
Date version Date Version issues releases

ArgoUML 18-08-2003 0.14 15-12-2011 0.34 3121 17
Eclipse (JDT) 03-11-2003 2.1.2 12-02-2007 3.2.2 3344 11

Firefox 05-06-2012 13 04-02-2014 27 14530 15

Paper organization. The remainder of the paper is organized

as follows. Section II describes the issue lifecycle. Section III

presents our empirical study by describing the studied systems,

research questions, and results. Section IV discusses the threats

to the validity of our conclusions. Section V positions our work

with respect to previous studies. Section VI draws conclusions

and proposes avenues for future work.

II. BACKGROUND & DEFINITIONS

One of the main factors that drives software evolution

are the issues that is filed by users, developers, and quality

assurance personnel. Below we describe what issues are and

the major steps involved in addressing and integrating them.

We use the term issue to broadly refer to bug reports,

enhancements, and feature requests. Issues can be filed by

users, developers, or quality assurance personnel. To track

development progress, software teams use an Issue Tracking

System, such as Bugzilla or JIRA to describe the status of

issues.

Each issue in an ITS has a unique identifier, a brief

description of the nature of the issue, and a variety of other

metadata. Large software projects receive a plenty of issue

reports everyday. For example, Mozilla and Eclipse received

an average of 170 and 120 new issue reports daily from

January to July 2009, respectively [10]. The number of filed

issues is usually greater than the size of the development

team. After an issue has been filed, project managers and team

leaders triage them, i.e., assign them to developers, denoting

the urgency of the issue using priority and severity fields [11].

After being triaged, issues are then addressed, i.e., solutions

to the described issues are provided by developers. Generally

speaking, an issue may be in an open or closed status.

An issue is marked as open when a solution has not yet

been found. We consider UNCONFIRMED, CONFIRMED

and IN PROGRESS as open statuses. An issue is considered

closed when a solution has been found. Usually, a resolution is

provided with a closed issue. For instance, if a developer made

code changes to address an issue, the status and resolution

combination should be RESOLVED-FIXED. However, if the

developer was not able to reproduce the bug, then the status

and resolution may be RESOLVED-WORKSFORME [12].

The lifecycle of the issues is available on the Bugzilla website

[13].

Finally, addressed issues must be integrated into an official

release in order to make them available to users. The releases

that contain such addressed issues could be made available

every few weeks or months, depending on the project release

Fig. 1: Database construction overview. First, the issue IDs and

releases information are extracted from release notes. Then,

the issues are extracted from ITSs. The extracted issues and

releases are matched, and the respective information are stored

into a relational database.

policy. Releasing every few weeks is typically referred to as

a rapid release cycle, while releasing monthly or yearly is

typically referred to as a traditional release cycle [14].

III. EMPIRICAL STUDY

In this section, we describe the studied systems, explain how

the data was collected, and present the results of our empirical

study with respect to our three research questions.

A. Studied Systems

To study when addressed issues are integrated into re-

leases, we analyze one rapidly-releasing (Firefox) and two

traditionally-releasing open source systems (ArgoUML and

Eclipse). ArgoUML [15] is a UML modeling tool that includes

support for all standard UML 1.4 diagrams. Eclipse [16] is a

popular open-source IDE, of which we study the JDT core

subsystem. Firefox is a popular web browser [17].

Table I shows the total number of collected issues and the

considered releases in our empirical study. We focus our study

on the releases for which we could recover a list of issue

IDs from the release notes. We collected a total of 20,995

issue reports from the three studied systems. Each issue report

corresponds to an issue that was addressed and could be

mapped directly to a release.

In addition, we wish to compare a rapidly-releasing system

to traditionally-releasing systems. Hence, we study Firefox,

which has followed a rapid, 6-week release cycle since March

2011. Although ArgoUML and Eclipse both follow traditional

release cycles, there is a longer interval between ArgoUML

releases (median of 26 weeks) than Eclipse releases (median

of 16 weeks).

B. Database Construction

Figure 1 provides an overview of our database construction

approach. We create a relational database describing the inte-

gration of addressed issues in the studied systems. To do so,

we collect data from two sources. We briefly describe each

source, and the data that we collect from it below.
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Fig. 3: Integration delay is computed by counting the re-

leases that occur between when an issue status changes to

RESOLVED-FIXED and the the date of the release note that

lists that issue.

Fig. 4: Delays in days between releases of ArgoUML, Eclipse,

and Firefox. The number shown over each boxplot is the

median interval

project. For example, Figure 4, shows that Firefox releases

consistently every 42 days (six weeks), whereas the times

between ArgoUML releases vary from 50 to 220 days. The

consistency of Firefox releases may lead to more delayed

issues, since they rigidly adhere to a six-week release schedule

despite accumulating issues that could not be integrated.

34% to 60% of addressed issues in the traditional
release cycle systems were delayed by one or more releases.
Figure 2 shows that 98% of the addressed issues in Firefox

are delayed by one or more releases. Firefox is expected to

have delayed issues due its rapid release cycles. However,

98% is still a considerably large percentage. Furthermore, even

for the systems that adopt a more traditional release cycle,

34% (ArgoUML) to 60% (Eclipse) of the addressed issues are

delayed by one or more releases. This result indicates that even

though an issue is addressed, integration could be delayed by

one or more releases.

Many delayed issues were addressed well before releases
from which they were omitted. Addressed issues could be

delayed from integration because they were addressed late

in the release cycle, e.g., one day or one week before the

upcoming release date. In order to compare the rapid and

traditional release cycles regarding whether delayed issues

are addressed late in the release schedule, we computed the

Fig. 5: Distribution of days between when an issue was

addressed and the next missed release divided by the release

window time.

Addressing Stage metric (AS) for each issue. The AS metric

is calculated using the following equation: days to next release
release window ,

where days to next release is the number of days when an issue

is addressed before the next release (e.g., the time between t3
to t4 in Figure 3), and the release window is the time in days

between the next upcoming release and the respective previous

release (e.g., t4 to t2). An AS value close to 1 means that an

issue was addressed too close to the next release, whereas a

value close to 0 means that an issue was addressed at the

beginning of a release cycle. Figure 5 shows the distribution

of the AS metric for each project. The smallest AS median

is observed for Eclipse, which is 0.45. For ArgoUML and

Firefox, the median is 0.52 and 0.53, respectively. The AS
medians are roughly in the middle of the release. Moreover,

the boxes extend to cover between 0.25 and 0.75. The result

suggests that, in the studied projects, delayed issues are usually

addressed 1
4 to 3

4 of the way through a release. Hence, it is

unlikely that most addressed issues miss the next release solely

because they were addressed too close to an upcoming release

date.

The integration of 34% to 60% of the addressed issues
in the traditionally releasing systems and 98% in the
rapidly releasing system were delayed by one or more
releases. Furthermore, we find that many delayed issues
were addressed well before releases from which they were
omitted from.

RQ2: Can we accurately predict when an addressed issue
will be integrated?
Motivation. Several studies proposed approaches to inves-

tigate the time required to address an issue [2–7]. These

studies could help to estimate when an issue will be addressed.

However, we find that integration delays when an addressed

issue will be delivered to users. Even though several issues are

addressed well before the next release date, their integration is

delayed. For users and contributors, however, knowing the re-

lease in which an addressed issue will be integrated is of great
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dimension. Henceforth, we refer to the collected information

as attributes. For each attribute, Table II presents the type and

the rationale behind its use in our models.

Prediction technique. We train our models using the random
forest technique [26], which is known to have a good overall

prediction accuracy and to be robust to outliers as well as noisy

data. Model robustness is important for our study because the

data in the ITSs are filed with subjective criteria and tend

to be noisy [27]. In our study, we use the random forest
implementation provided by the bigrf R package [28]. To build

and test the prediction model, we use a 10-fold cross-validation

and 100 trees in each forest.

Evaluation metrics. We use precision, recall, F-measure, and

ROC area to evaluate our models. We describe each metric

below.

Precision (P) measures the correctness of our models in

predicting the release delay of an addressed issue. A prediction

is considered correct if the predicted integration delay is

the same as the actual integration delay it had. Precision is

computed as the proportion of correctly predicted integration

delays for each class (e.g., next, after-1).

Recall (R) measures the completeness of a model. A model

is considered complete if all of the addressed issues that were

integrated in a given release r are predicted to appear in r.

Recall is computed as the proportion of issues that actually

appear in a release r that were correctly predicted as such.

F-measure (F) is the harmonic mean of precision and

recall, i.e., ( 2×P×R
P+R ). F-measure combines the inversely related

precision and recall values into a single descriptive statistic.

ROC area is used to evaluate the degree of discrimination

achieved by the model. The ROC area is the area below the

curve plotting the true positive rate against false positive rate.

The value of ROC area ranges between 0 (worst) and 1 (best).

An area greater than 0.5 indicates that the prediction model

outperforms a random predictor. We computed the ROC area

for a given class c (e.g., next) on a binary basis. In other words,

the probabilities of the instances were analyzed as pertaining

to a given class c or not for each class. Therefore, each class

has its own ROC area value.

Results. Our prediction models achieve a weighted average
precision between 0.59 to 0.88 and a recall between 0.62
to 0.88, with ROC areas of above 0.74. Figure 6 shows the

precision, recall, F-measure, and ROC area of the prediction

models. The boxplots represent the distributions of the 10 folds

that were run for each class. Note that the highest precisions

for ArgoUML and Eclipse were for next class (median of

0.97 and 0.69 respectively), whereas after-2 had the highest

precision in Firefox (median of 0.99). The classes with the

highest precision values are also the ones with the majority

of instances. In Firefox, the vast majority of the instances are

in the after-2 class, which may explain the low precisions for

the other classes. On the other hand, recall values are higher

for classes whose instances are a minority. For example, the

highest medians for recall in ArgoUML are for after-2 and

after-3-or-more, whereas in Firefox the highest medians are for

next and after-3-or-more. Eclipse models also have a relatively

high recall for next (0.66). ROC area weighted averages are

above 0.74 in all of the studied systems, which indicate that

our model predictions are better than random guessing (ROC

of 0.5). In summary, the models obtained a weighted average

precision of 0.59 to 0.88 and a recall of 0.62 to 0.88. Although

there is a room for improvement, our models provide a sound

starting point for predicting the release that an addressed issue

will be integrated into.

Our models achieve better F-measure values than Zero-
R. We compared our models to Zero-R models as a baseline.

For all test instances, Zero-R selects the class that contains

the majority of the instances. Hence, the recall for the class

containing the majority of instances is 1.0. We compared the F-

measure of our models to the F-measure of Zero-R models. We

chose to compare to the F-measure values because precision

and recall are very skewed for Zero-R. For Firefox, Zero-R has

an F-measure of 0.95 for the class after-2, which was equal

to our model. For Eclipse, Zero-R always selects next and

achieves an F-measure of 0.58 while our model achieves 0.68.

Finally, for ArgoUML, Zero-R selects always next with 0.84,

whereas our model achieves 0.91. The results show that our

models yield better F-measure values than naive techniques

like Zero-R or random prediction (ROC = 0.5) in the majority

of cases.

Our models outperform naive techniques such as Zero-
R and random prediction, achieving an ROC area of at
least 0.74.

RQ3: What are the most influential attributes for estimating
integration delay?
Motivation. In RQ2, we found that our models can accurately

predict the integration delay of addressed issues. To build the

models, we use attributes collected from ITSs and VCSs. As

described in Table II, the attributes measure different dimen-

sions related to the addressed issues. In RQ3, we investigate

which attributes are influential in determining whether the

integration of an addressed issue will be delayed.

Approach. To identify the most influential attributes that

estimate integration delay of an addressed issue, we compute

variable importance for each attribute in our models. The

variable importance implementation we use in our study is

from the bigrf package available in R [28]. This implemen-

tation computes the importance of an attribute based on Out

Of the Bag (OOB) estimates. Each attribute of the dataset is

randomly permuted in the OOB data. Then, the average a of

the differences between the votes for the correct class in the

permuted OOB and the original OOB is computed. The result

of a is the importance of an attribute. The final output of the

variable importance is a rank of the attributes indicating their

importance for the model. Hence, if a specific attribute has the

highest rank, then it is the most influential attribute that the

prediction model is using to model integration delay.

Results. The integrator workload has a bigger influence on
integrator delay than the other attributes. By integrators we

refer to team members that are responsible for integration tasks

[8, 29, 30]. Figure 7 shows the distribution of the variable
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(a) ArgoUML (b) Eclipse (c) FireFox

Fig. 6: The performance of our random forest classifiers.

(a) ArgoUML (b) Eclipse (c) Firefox

Fig. 7: Distributions of variable importance values computed for the 10 folds that were run to train the models.

Fig. 8: The spread of issues among Firefox components. The

darker the colors, the smaller the proportion of issues that

impact that component.

importance values computed for the 10-folds of our models.

The result shows that workload is one of the most influential

attributes for estimating the integration delay of an addressed

issue. This finding holds for both the rapid and the traditional

release cycles. This result confirms the intuition that issues

that were addressed during periods of high integration activity

are more likely to be delayed.

In Firefox, component is the most influential attribute. To

better understand why component is considered influential,

we counted how many addressed issues that are in each

component. Figure 8 shows the top 7 Firefox components,

each having more than 400 addressed issues. We analyzed the

proportion of delayed integration in these top 7 components.

Figure 8 shows that, for classes next and after-1 the majority of

issues are related to the General component, whereas for after-
2 and after-3-or-more the majority are related to the Javascript
engine component. Addressed issues related to the General
component may be easy to integrate, whereas issues related

to the Javascript Engine may require more careful analysis

before integration.

Severity and priority have little influence on issue in-
tegration delay. Users and contributors of software projects

can denote the importance of an issue using the priority and

severity fields. Previous studies have shown that priority and

severity have little influence on bug fixing time [27, 31]. For

example, while an issue might be severe or of high priority, it

might be complex and would take a long time to fix. However,

in the integration context, we expect that priority and severity

would play a bigger role, since the issue has already been

addressed. One would expect that integrators would try to

287287287



address such issues is approximately two years. Our work

complements these prior studies by investigating the time to

integrate issues once they are addressed.

B. Addressing Issues

Once an issue is properly triaged, the assigned developer

starts to address it. To estimate the time required to address

issues, some approaches used the similarity of an issue to

existing issues [6, 7], while others built prediction models

using different machine learning techniques [2, 3, 5, 23]. Kim

and Whitehead [4] computed the time taken to address issues

in ArgoUML and PostgreSQL. They found that the median

issue-fix time is about 200 days. Guo et al. [10] used logistic

regression model to predict the probability that an new issue

will be fixed. The authors trained the model on Windows Vista

issues and achieved a precision of 0.68 and recall of 0.64 when

predicting Windows 7 issue reports. These approaches focus

on estimating the time required to address an issue. In our

study, however, we investigated in which release an addressed

issue will be integrated.

Recent empirical studies assess the relationship between

the attributes used to build models for estimating bug fix

time. Bhattacharya and Neamtiu [35] performed univariate and

multivariate regression analyses to capture the significance of

four features in issue reports. Their results indicate that more

independent variables are required to build better prediction

models. Herraiz et al. [27] studied the mean time to close

issues reported in Eclipse, and how the severity and priority

levels of the issues affect this time. In their study, the authors

used one way analysis of variance to group the different

priority and severity levels used in Eclipse. Based on their

result, the authors suggest to reduce the severity and priority

options to three levels. Zhang et al. [36] investigated the delays

incurred by developers in the issue addressing process. To

do such analyses, they extract the beginning and ending time

of an issue addressing activity from interaction logs. Using

the collected information they analyzed delays in the issue

addressing process. In their analysis, they investigated the

impact of three dimensions related to issues: issue reports,

source code involved in the issue, and code changes that are

required to address the bug. They found that metrics such

as severity, operating system, description of the issue, and

comments are likely to impact the delays in starting to address

the issue and changing the status to RESOLVED. Similar to

Zhang et al. [36], we used attributes related to issue reports to

build prediction models in order to understand which attributes

play an important role in the prediction. In addition, we

investigate why severity and priority levels are not relevant

to distinguish issue reports that are addressed and integrated

in a release prior to others.

C. Integrating Issues

Jiang et al. [8] studied attributes that could determine the

acceptance and integration of a patch into the Linux kernel. A

patch is a record of changes that is applied to a software system

to address an issue. To identify such attributes, the authors built

decision tree models and conducted top node analysis. Among

the attributes studied, developer experience, patch maturity,

and prior subsystem are found to play a major role in patch

acceptance and integration time. Similar to Jiang et al. [8], we

also investigate the integration of addressed issues. However,

we focus on the integration delay of issues that have been

addressed.

VI. CONCLUSION AND FUTURE WORKS

Once an issue is addressed, what users and code contributors

most care about is when the software is going to reflect the

addressed issue, i.e., when the integration occurs. However,

we observed that the integration of several addressed issues

was delayed for several releases. In this context, it is not clear

why certain addressed issues take longer to be integrated than

others. Hence, we performed an empirical study of 20,995

issues from the ArgoUML, Eclipse and Firefox projects. In

our study, we:

• found that despite being addressed well before of an

upcoming release, 34% to 60% of the addressed issues

were delayed by more than one release in ArgoUML and

Eclipse. Furthermore, 98% of Firefox issues were delayed

by at least one release.

• built models to predict the integration delay of an ad-

dressed issue. Our models achieved a weighted average

ROC area of at least 0.74. Our models outperform base-

line random and Zero-R models.

• computed the variable importance to understand what

attributes are the most important in our models of in-

tegration delay. The integrator workload is found to be

the most important attribute when estimating integration

delay. Surprisingly, we found that Priority and severity
have little impact on our models. Indeed, 36% to 97% of

priority P1 addressed issues were delayed by at least one

release.

Our work provides some initial insight as to why some

addressed issues are integrated prior to others. Our results

suggest that more work is needed to understand and facilitate

the activities of integration teams. For instance, the workload

of the integrators is an important indicator of integration delay.

It is important to improve the integration step of a release

cycle, since the availability of an addressed issue in a release is

what users and contributors care most about. Our models could

also be used to give an estimation for users and contributors

about when an addressed issue will be integrated from the

time when it is addressed.
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