
Why are Commits being Reverted?

A Comparative Study of Industrial and Open Source Projects

Junji Shimagaki∗, Yasutaka Kamei†, Shane McIntosh‡, David Pursehouse∗, Naoyasu Ubayashi†

∗Sony Mobile Communications Inc., Japan; {junji.shimagaki,david.pursehouse}@sonymobile.com
†Kyushu University, Japan; {kamei,ubayashi}@ait.kyushu-u.ac.jp

‡McGill University, Canada; shane.mcintosh@mcgill.ca

Abstract—Software development is a cyclic process of in-
tegrating new features while introducing and fixing defects.
During development, commits that modify source code files
are uploaded to version control systems. Occasionally, these
commits need to be reverted, i.e., the code changes need to be
completely backed out of the software project. While one can
often speculate about the purpose of reverted commits (e.g., the
commit may have caused integration or build problems), little
empirical evidence exists to substantiate such claims. The goal
of this paper is to better understand why commits are reverted
in large software systems. To that end, we quantitatively and
qualitatively study two proprietary and four open source projects
to measure: (1) the proportion of commits that are reverted, (2)
the amount of time that commits that are eventually reverted
linger within a codebase, and (3) the most frequent reasons
why commits are reverted. Our results show that 1%-5% of
the commits in the studied systems are reverted. Those commits
that are eventually reverted linger within the studied codebases
for 1-35 days (median). Furthermore, we identify 13 common
reasons for reverting commits, and observe that the frequency
of reverted commits of each reason varies broadly from project
to project. A complementary qualitative analysis suggests that
many reverted commits could have been avoided with better team
communication and change awareness. Our findings made Sony
Mobile’s stakeholders aware that internally reverted commits can
be reduced by paying more attention to their own changes. On the
other hand, externally reverted commits could be minimized only
if external stakeholders are involved to improve inter-company
communication or requirements elicitation.

I. INTRODUCTION

While code changes are developed with noble intentions

(e.g., to fix a defect or add a new feature), they often inadver-

tently introduce new defects in the process. Indeed, the mere

act of altering a codebase increases the risk of introducing

new defects. Case in point, Graves et al. [5] find that recently

modified code tends to be more defect-prone than older code.

Moreover, Nagappan et al. [13] find that the amount of change

that a component has undergone is a highly effective predictor

of where post-release defects will appear.

Since precise debugging is a difficult process, a popular

(albeit coarse-grained) approach to recovering from a defect-

introducing change is to revert it, i.e., undo the change that

introduced the defect. Code changes are typically reverted

using Version Control Systems (VCSs). For example, Git,

Mercurial, and Subversion provide a built-in revert sub-

command. Otherwise, the Unix patch utility, which is used

to apply a set of tracked changes to a set of directories or files,

offers a -R flag to reverse those changes.

Despite the pervasiveness of the revert command, little

is known about how it is used in practice. A preliminary study

by Yoon and Myers [20] shows that 75% of developers feel

that a backtracking tool is necessary. Moreover, Codoban et

al. [3] show that developers often use history tracking tools

(like VCSs) to back out problematic changes by reverting to

previous, known-to-be working system states.

In this paper, we set out to better understand why commits

are reverted in large software systems. First, we perform a

quantitative empirical analysis of 3,144 reverting commits

(i.e., commits that revert another commit) and 2,958 reverted

commits (i.e., commits that have been reverted by a reverting

commit) from two proprietary projects at Sony Mobile and

four open source projects.1 We complement our quantitative

analysis with a qualitative one to arrive at a deeper under-

standing of revert use at Sony Mobile. Overall, our empirical

analyses address the following three research questions:

RQ1: What percentage of commits are being reverted?

At most, 5% of commits are reverted in the studied

proprietary projects, while only 1% of commits are

reverted in the studied open source projects.

RQ2: How long do commits that are eventually reverted

linger within a codebase?

In the studied proprietary projects, reverted commits

linger for 24 - 35 days, while in the studied open source

projects, reverted commits linger for 1 - 12 days.

RQ3: Why are commits being reverted?

We observe 13 reasons for reverting a commit. The dis-

tribution of reverted commits per reason varies broadly

among the studied projects. For example, reasons in-

volving external parties (e.g., requirement change by

end-users, customers, or remote teams) are dominant in

the proprietary projects, whereas those involving only

internal parties (e.g., coding mistakes) are dominant in

the open source projects.

The main contributions of this paper are:

• An empirically-grounded insight into the nature of re-

verted commits in large software projects that we derive

from our quantitative analysis.

• The definition of a classification scheme that describes

the reasons for which commits are being reverted.

1Our results are shared in https://github.com/yiu31802/icsme2016.

2016 IEEE International Conference on Software Maintenance and Evolution

978-1-5090-3806-0/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSME.2016.83

301

Authorized licensed use limited to: University of Waterloo. Downloaded on December 05,2021 at 15:04:16 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUMMARY OF PROJECT DATA.

Project Name Software Length # Commits Tag from Tag to

Sony Mobile X Embedded software
for smartphones

6 months 17,537 N/A (*) N/A (*)
Sony Mobile Y 6 months 10,674 N/A (*) N/A (*)

Android L OS for mobile prod-
ucts

9 months 75,452 4.4.2 r2.0.1 5.0.2 r3
Android M 9 months 67,445 5.0.2 r3 6.0.1 r3

Gerrit Web based code re-
view tool

7 years 7,151 (initial) v2.11

git-repo Command-line
based git tool

6 years 677 (initial) v1.12.32

(*) Redacted for confidentiality reasons.

Our quantitative findings make the Sony Mobile stakehold-

ers aware that there are reverted commits that can be avoided

by more carefully verifying patches before integration. How-

ever, the majority of reverted commits are a symptom of mis-

communication in Sony Mobile’s development environment,

which involves internal and external stakeholders. Plans have

been laid out to improve internal and external communication,

which will likely yield a lower rate of problematic commits.

Paper organization. The remainder of the paper is organized

as follows. Section II describes the design of our empirical

study, while Sections III and IV present the results. Section V

presents the results of the complementary qualitative anal-

ysis that we performed with stakeholders at Sony Mobile.

Section VI discloses the threats to the validity of the study.

Section VII situates this paper with respect to the related work.

Finally, Section VIII draws conclusions.

II. EMPIRICAL STUDY SETUP

In this section, we describe the studied systems and explain

our approach to identifying reverted and reverting commits.

A. Studied Systems

Table I provides the overview of the studied systems. The

two proprietary software projects X and Y are developed

and maintained by Sony Mobile. These software systems

run on a mobile handset that is produced by Sony Mobile,

which contains a third-party chipset that is produced by

Qualcomm Inc. and is often embedded in Android devices.

The software systems consist of several components, which

are different from one another in terms of the extent of the

involvement of external stakeholders. For example, there are

original applications like Movie Creator,2 which are primarily

developed in-house by Sony Mobile. On the other hand,

there are Android components like frameworks/base,3 which

are primarily developed by the Android team (= Google

Inc.), and Qualcomm components like device/qcom/common,4

which are primarily developed by the Qualcomm team. Those

external components are also modified by the Sony Mobile’s

teams. Thus there is a challenge to produce new patches

there to minimize source code conflicts, as all parties make

development progress. Despite its relatively large number of

commits, the Sony Mobile development period is the shortest

2http://www.sonymobile.co.jp/myxperia/app/moviecreator/
3https://android.googlesource.com/platform/frameworks/base
4https://source.codeaurora.org/quic/la/device/qcom/common/

among the studied systems, mainly due to heavy market share

competition that has taken root in the mobile handset industry.

The studied Android projects are mainly developed by

Google, but also welcome contributions from the community-

at-large. Along with the recent popularity of the Android

platform (especially on mobile handset devices), each new

release provides plenty of new features, spanning from per-

formance improvement to new hardware support. For instance,

the Android Lollipop release added support for televisions.5

Therefore, the studied Android projects have the largest num-

bers of commits among the studied systems, despite from

relatively short analyzed timespans.

The Gerrit (a web-based code review tool6) and git-repo

(a tool to interface with projects that are composed of a

collection of Git repositories7) projects are mainly developed

by a community of open source contributors. Unlike the

other studied projects, these two projects have much smaller

development scale in terms of the numbers of commits. Thus,

we target the entire development history of these projects.

B. Identifying Reverting and Reverted Commits

In order to find reverting commits, we scan git log

messages with the following regular expression:

ˆRevert \".*This reverts commit ([0-9a-f]{40}).*

which searches for the fixed string pattern that Git uses to mark

revert commits. The pattern includes a reference to the SHA-1

ID of the commit that is being reverted ([0-9a-f]{40}).

After identifying reverting commits, we find the reverted

commits by searching for the SHA-1 IDs that are referenced

in the reverting commits.

A single reverted commit can be reverted by several re-

verting commits. Such a situation is often observed when a

software project follows a complex branching strategy. For

example, in the case of the Android project, the commit that

is associated with review 708508 was reverted by the commit

that is associated with review 738849 because of a software

defect: “... continued complaints about not being able to

generate bug reports and surfaceflinger crashes...” The same

commit was also reverted by the commit that is associated with

review 583270210 on the Android Lollipop release branch.

Eventually, when the two branches are merged into the master

branch, we observe both reverting commits. In our study, we

consider each commit independently, because the reasons for

reverting a commit depends on the content of each branch.

III. QUANTITATIVE STUDY RESULTS

In this section, we present the results of our first quantitative

study with respect to our two research questions. For each

research question, we discuss its motivation, present our

approach to addressing it, and present our observations.

5https://www.android.com/intl/en us/versions/lollipop-5-0/
6https://www.gerritcodereview.com/
7https://code.google.com/p/git-repo/
8https://android-review.googlesource.com/#/c/70850/
9https://android-review.googlesource.com/#/c/73884/
10https://android.googlesource.com/platform%2Fexternal%2Fsepolicy/+/5832702

302

Authorized licensed use limited to: University of Waterloo. Downloaded on December 05,2021 at 15:04:16 UTC from IEEE Xplore. Restrictions apply.

RQ1: What percentage of commits are being reverted?

Motivation. The development effort that was spent to pro-

duce commits that are reverted is wasted. As a first step toward

understanding the nature of reverted commits, we would like

to know: (1) what proportion of commits are reverted and

(2) whether there is a difference in the proportion of reverted

commits among the studied systems.

Approach. We calculate the percentage of reverted and

reverting commits in each studied system. To do so, we collect

the commit logs of the analyzed periods, i.e., between the ‘Tag

from’ and ‘Tag to’ columns in Table I. From the collected

commits, we identify the reverted and reverting commits using

the approach that we describe in Section II-B.

Results. Figure 1 shows the percentage of reverted and

reverting commits in each of the studied systems. Overall, 1%-

5% of the commits are reverted. The proportions of reverted

commits in the Sony Mobile projects are largest at 3% and 5%

among the studied systems. While the Android Marshmallow

project shows that 2% of commits are reverted, Android

Lollipop project has a slightly lower percentage of commits

that are reverted at 1%. Both the Gerrit and git-repo projects

have the lowest proportions at 0.6% and 1%, respectively.

We find that Sony Mobile projects have larger proportions

of reverted commits than the four studied OSS projects. We

suspect that the result is likely because Sony Mobile has

a heavy dependency on external components, as discussed

in Section II-A. For example, one might suspect that some

delivered commits from Android are not necessary for the

Sony Mobile product, or some built-in features delivered

from Qualcomm may be in conflict with Sony Mobile’s in-

house features. We will discuss what the case is for the Sony

Mobile’s context and will compare the proportions of such

reasons among the studied systems by identifying reasons for

reverting commits in Section V.

Overall, 1%-5% of the commits in the studied systems

are reverted. Larger proportions of Sony Mobile commits

are reverted than the four OSS projects.

RQ2: How long do commits that are eventually reverted linger

within a codebase?

Motivation. In RQ1, we find that up to 5% of commits

are reverting commits and up to 5% of commits are reverted

commits in the studied systems. Although those commits are

reversed, they exist for a time within the studied system.

Commits that are eventually reverted may cause problems

while they linger within the codebase, potentially impeding

development progress. A prior study also suggests that early

detection of problematic commits, e.g., build breaking com-

mits, can save developer’s time [18]. Hence, in this research

question, we study the amount of time that reverted commits

linger within a codebase.

Approach. We extract the commit date of both the reverted

and reverting commits. Then, we compute the number of days

between each pair of reverted and reverting commits.

7 7

42 41

1038 990

970 876

544 541

513 503

git−repo

gerrit

Android M

Android L

Sony Mobile Y

Sony Mobile X

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Reverting Reverted

Fig. 1. Percentages of reverting and reverted commits for each studied system
represented by the bar lengths. The numbers of reverting and reverted commits
are shown inside each bar.

TABLE II
STATISTICS FOR THE NUMBER OF DAYS UNTIL COMMITS WERE REVERTED.

Project 1st Qu. Med. Mean 3rd Qu. Max.

Sony Mobile X 9 35 62 91 769

Sony Mobile Y 10 24 46 55 834

Android L 0 1 17 5 1,190

Android M 0 2 18 8 1,180

Gerrit 2 8 72 103 811

git-repo 2 12 59 62 271

Results. Table II shows the number of days between the

reverted and reverting commits for each of the studied systems.

Reverted commits linger the largest in the Sony Mobile

projects, with projects X and Y having median values of 35

and 24 days respectively. On the other hand, the reverted

commits of the Android projects linger for the least time, with

median values of 1 and 2 days.

Figure 2 shows the overall distribution of the days between

reverted and reverting commits. While the distribution in the

Sony Mobile projects is relatively flat, the distribution in other

OSS projects (Android projects and Gerrit) is right-skewed.

Similar to RQ1, we find that Sony Mobile projects show

different trends with respect to the studied OSS projects. As

discussed in Section II-A, one might suspect that the results

are explained by Sony Mobile’s projects characteristics —

software development must be rapidly carried out; even if

some code is temporary-made or will be later replaced with

an official solution, possibly by partner companies, the entire

software operation at Sony Mobile cannot wait. Thus, such

temporary-made commits may remain in the software system

for a larger time depending on the date of officially-made fixes.

We elaborate on this further in Section V.

Commits that are eventually reverted linger within the

studied codebases for 1-35 days (median). Similar to

RQ1, Sony Mobile projects show different trends than the

OSS projects, having a wider distribution of days between

reverted and reverting commits.

IV. QUALITATIVE STUDY RESULTS

In this section, we present the results of our qualitative

research question (RQ3) to clarify why commits are reverted.

We manually classify the reverted commits of the six studied

systems. We further confirm our classification with the actual

303

Authorized licensed use limited to: University of Waterloo. Downloaded on December 05,2021 at 15:04:16 UTC from IEEE Xplore. Restrictions apply.

Sony Mobile X

Sony Mobile Y

Android L

Android M

gerrit

git−repo

0
10
20
30
40
50

0
10
20
30
40
50

0
50

100
150
200

0
50

100
150
200

0

2

4

6

8

0
1
2
3
4
5

0 10 20 30 40 50 60 70 80

Fig. 2. The number of days that reverted commits linger within the studied
systems. The vertical black line indicates the median value.

software engineers at Sony Mobile and by community respon-

sible members of the Gerrit and git-repo projects.

RQ3: Why are commits being reverted?

Motivation. Our analysis of reverting commits in Section III

shows that there are substantial differences among the studied

projects. We also would like to know if there are differences

in the reasons for reverting commits in the studied systems.

Approach. For each reverting commit in the studied Sony

Mobile projects, we manually inspect information that is re-

lated to it in several data sources (e.g., commit logs and review

comments). From this analysis, we arrive at a common set of

reasons that commits are reverted, which we use to produce

a reverting commit classification scheme (see Table IV). In

order to produce our classification scheme, we perform the

four iterations of classification that are described below. We

apply the scheme to the dataset of our 6 studied systems.

Classification method

Iteration 1. As a first step, we start the classification for

reverting commits in the X project of Sony Mobile. This

project was chosen because (1) the first author has first-hand

experience in its development and (2) the project has adopted

a process for carefully documenting reverting commits.

The first author manually inspects the commit messages of

all of the reverting commits of the X project and identifies

the reasons. While the message of many commits are well-

described, some commit messages cannot be classified due

to insufficient detail. We mark such reverting commits as the

unknown, and revisit them in later iterations.

We begin with the categories that were defined in Tao et

al.’s study of rejected patches [19]. We create a new category

when we encounter reverting commits that were motivated by

reasons that do not already appear in our classification scheme.

Iteration 2. We classify the data of the other studied systems

using the classification scheme that we produced during Iter-

ation 1. First, we use the classification scheme from project

X to classify reverting commits in project Y at Sony Mobile.

Then, we use the scheme to classify reverting commits in the

two Android projects. Finally, we use the scheme to classify

reverting commits in the Gerrit and the git-repo projects. Note

that this classification step is also performed by manually

inspecting all of the messages of reverting commits. The

first and fourth author’s first-hand knowledge of the studied

systems helped to effectively classify these reverting commits.

We then held a post-classification discussion to decide

whether the classification scheme needed to be altered. This

discussion focused on splitting up the categories that have

a very large or very small number of reverting commits.

Often, these categories were defined too broadly or precisely,

and needed to be redefined accordingly. In cases when the

classification scheme was altered, the first author updated the

classification for the two Sony Mobile projects and two An-

droid projects, and the fourth author updates the classification

for the Gerrit and git-repo projects.

Iteration 3. To verify our classification, we survey stakehold-

ers who were involved in the reverting/reverted commits in

the Sony Mobile Y project. We chose the Y project because

it is a more recent project than project X. Thus, development

decisions would still be relatively fresh in stakeholders’ minds.

By analyzing the commit logs, we identified 91 developers

as candidates for our survey. To minimize the impact on Sony

Mobile development, we randomly selected 30 candidates for

our survey. We asked each each candidate to answer the

following question: “Could you explain the background of the

reverting/reverted commit A?” The answers are used to verify

our interpretation and to update the classification scheme.

Iteration 4. Some reverting commits could not be classified

solely based on the commit message. For example, we cannot

classify the commits of which the author omits the reverting

rationale. In order to classify as many reverting commits as

possible, we analyze the code review history in the Gerrit

repositories of each project. This code review history is used

to provide additional context, which often helps us to identify

the revert rationale. In addition to enforcing code review

policies on software projects, Gerrit explicitly links code

review records to integrated commits in the project’s VCS.

304

Authorized licensed use limited to: University of Waterloo. Downloaded on December 05,2021 at 15:04:16 UTC from IEEE Xplore. Restrictions apply.

Results for Classification

Table III shows the commits we classify in each iteration.

Iteration 1. For the 513 reverting commits of the X

project of Sony Mobile, we begin our classification using

Tao et al.’s categories of rejected patches in open source

projects [19]. We adopt four of the reasons for patch rejec-

tion for our study, i.e., (I1) compilation error, (I2)

incomplete fix, (I3) introducing bugs, and (I4)

wrong direction. We extend the classification to include

eight additional reasons, i.e., (I5) mis-operation of

delivery, (I6) delivery process, (E1) temporary

workaround, requirement change, dependency,

(E3) refactoring, (E6) unmatched baseline, and

(E7) investigation.

Iteration 2. After applying the classification to the other

projects, the post-classification discussion identified two ad-

ditional reasons for reverting commits. First, we notice that

requirement change is too abstract and there are too

many reverting commits that fit its definition. When we ex-

amine the commits that were reverted due to requirement

change, we find that many of them should be classified as

dependency (e.g., due to the changes in external libraries).

Second, we notice that commits that were reverted because

of (I3) introducing bugs have a large variance in the

dates until commits are reverted. Most of such commits

are reverted within a few days whereas some are only re-

verted months later. We observe that the main reason is

caused by who discovers the issue(s). It takes a longer time

to propagate software defects to end-users and other team

members than to internal testing teams. Thus, we make a

reason (E5) user’s feedback to distinguish between (I3)

introducing defect depending on the distance between

the bug discovery and the change author.

Table III shows the outcome of iteration 2. 113 commits

in the Sony Mobile X project are updated. 98 commits that

were previously classified as requirement change are

reclassified to dependency, and 15 commits previously

classified as (I3) introducing bugs are reclassified to

(E5) user’s feedback. Commits in all other projects

are newly classified in iteration 2. Commit messages in the

Android projects tend lack lack detail. Thus, 762 and 766

commits classified as unknown in the Android Lollipop and

Marshmallow projects respectively. The Android developers

also find this problematic, as mentioned in one commit: “A: I

can’t remember what the original reason for the revert was...

— B: this is why you should add a comment on any revert ... :-

P”.11 All reverts in the Gerrit and git-repo projects are verified

by the fourth author, who has experience with the projects.

Iteration 3. We received survey responses from 20 of the 30

candidate stakeholders (67% response rate). These respondents

were involved with 81 of the reverting commits in project

Y (15% of the reverting commits). More specifically, the

11https://android-review.googlesource.com/#/c/99879/

TABLE III
CLASSIFICATION EVOLUTION OVER TIME.

Project Iter. 1 Iter. 2 Iter. 3 Iter. 4 ?
Clas.

/ Total

Sony +406 +113 +63 +0
107

406

Mobile X −0 −113 −63 −0 / 513

Sony
-

+405 +66 +9
130

414

Mobile Y −0 −66 −0 / 544

Android L -
+208 +7 +58

704
266

−0 −7 −0 / 970

Android M -
+272 +17 +66

700
338

−0 −17 −0 / 1038

gerrit -
+42 +14 +0

0
42

−0 −14 −0 / 42

git-repo -
+7 +3 +0

0
7

−0 −3 −0 / 7

maximum number of reverting commits that any one particular

developer was involved with is 20, while the median is 2.

The stakeholder responses match our interpretation of 71

reverting commits out of the total of 81 reverting commits. We

therefore believe that our classification is reliable for the Sony

Mobile projects. That said, for the other 10 reverting commits,

their answers provide even deeper insight into the commits

that were reverted because of a requirement change. For

example, we obtain the following comments in our survey:

A. “The requirements changed after discussion of the design

of other components with their teams. Our code needed

to adapt to reflect these requirement changes.”

B. “The feature [. . .] was dropped.”

Although responses A and B seem similar, the fundamental

reasons for reverting differ. Case A is caused by awareness of

the constraints that the design of other software component put

on project Y development. To account for this, we introduce

a new category (E3) obsolete solution. On the other

hand, case B does not contain any inconsistency in the

implementation. However, the previously required features are

no longer necessary. To account for such cases, we introduce

a new category (E2) unnecessary feature.

Due to a high degree of similarity, we merge the

dependency category with (E3) obsolete solution.

Furthermore, we remove the requirement change cate-

gory because it is covered by (E2) unnecessary feature

and (E3) obsolete solution.

In iteration 3, all commits that were previously classified

as requirement change are reclassified according to the

new scheme. Table III shows that the Sony Mobile X and Y

projects are the most impacted by iteration 3, with 63 and 66

commits being reclassified, respectively. Comparatively, only

3 to 17 commits are impacted in the other studied systems.

Iteration 4. To minimize the amount of reverted commits

that are classified as unknown, we analyze the code review

information. In the Sony Mobile projects, the code review in-

formation allows us to classify an additional 9 commits of the

Y project. On the other hand, no additional reverting commits

could be classified in project X. Many of the reverting commits

in the Android projects have transparent review discussions.12

12For example: http://android-review.googlesource.com/109372

305

Authorized licensed use limited to: University of Waterloo. Downloaded on December 05,2021 at 15:04:16 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
CLASSIFICATION SCHEME.

ID Reasons Characteristics Example of comments URL

In
te

rn
al

p
ar

ti
es

I1
Compilation
error

The original commit introduced compilation error of
the system.

Breaking some build... will look in to it later. ♦/96813
It breaks cross compilation with x86 64. ♦/100739

I2
Incomplete
fix

The original commit partially resolves the issue but
is imperfect.

Revert this patch to give us more time to investigate. ♦/78673
... more testing to make sure OTA updates aren’t broken... ♦/78634

I3
Introducing
bugs

The original commit introduced side-effect bugs
and/or failed in later performed test.

This is causing runtime restarts on flo/deb when uninstalling some APKs ♦/69276
This causes YouTube to crash on launch. ♦/81200

I4
Wrong direc-
tion

The committer misunderstood how to resolve the
issue.

This was a mistaken attempt to fix bug ♦/66024
The right resolution is to fix it in framework or HAL ♦/159751

I5
*Mis-operation
of delivery

Attributes of the commit contain incorrect informa-
tion, or fault in code submission processes.

Wrong bug id listed on comment �1
commit 467a680 is present in lollipop-cts-dev but not lollipop-release. ♦/160150

I6
*Delivery
process

The commit needs to move away for branching
strategies.

i plan on reverting this after cherrypicked it internally. ♦/110164
I think we can re-land this change. ♦/111254

E
x
te

rn
al

p
ar

ti
es

E1
*Temporary
workaround

Temporary and locally made fixes are reverted when
official fixes are made.

libvpx is now fixed. ♦/103509
The underlying issue has been fixed ♦/102618

E2
*Unnecessary
feature

The original commit was once valid but later become
unnecessary because of requirement change.

Feature no longer needed; �2
This CL did not ship with diamond-release, but diamond-mr1 �3

E3
*Obsolete so-
lution

The solution designed by and composed of the
original commit is no longer valid.

code needs re-implementation due to dependency N/A
We’ve committed a better fix �4

E4 *Refactor Restructuring involving other components. The users of public getSpi have been migrated to getCurrentSpi �5

E5
*User
feedback

A broad sense of users, including customers, live-
users find issues and submit an issue report.

The original fix seems to have led to boot failures in QA �6
some unexpected cellbroadcast message come in �7

E6
*Unmatched
baseline

Features in the external codebase which are harmful
are reverted.

We are not using this feature but it conflicts with our feature. N/A

E7 *Investigation
Limiting software features or printing debug log
to test focused feature is done in practice. Such
commits are unnecessary in the release software.

temporary revert while we investigate �8
Reverting debug message prints. �9

* Newly classified reasons in this study from the prior study by Tao et al [19] N/A Mainly observed in commits of Sony Mobile
♦ Link to corresponding Android commit by adding a prefix https://android-review.googlesource.com/ . E.g., https://android-review.googlesource.com/96813

� Link to corresponding Android commit by adding a prefix https://android.googlesource.com/ with corresponding suffix (1-9):
1. platform/frameworks/base/+/1a07846, 2. platform/frameworks/base/+/69e6501, 3. platform/frameworks/base/+/6c0b5b3, 4. platform/external/sqlite/+/0266b37, 5. platform/libcore/+/834660d,

6. platform/system/vold/+/223fd1c, 7. platform/packages//apps/CellBroadcastReceiver/+/08454ad, 8. platform/frameworks/av/+/5dcaebb, 9. platform/cts/+/950feb3

Thus, we were able to reclassify 58 and 66 commits of the

Lollipop and Marshmallow projects, respectively.

Summary. Table IV provides an overview of the 13 reasons

that make up our final classification scheme. 6 of the 13

reasons are due to internal parties (e.g., commit authors,

code reviewers). 7 of the 13 reasons are due to external

parties (e.g., other development teams, externally developed

codebases, clients).

Among the commits that were reverted due to internal

causes, most are assumed to have a large impact on soft-

ware quality and development efficiency. For example, (I1)

compilation error is crucial for developers because the

latest source code does not cleanly build. In the previous study,

many developers also mentioned that compilation error is a

decisive reason for rejecting a patch [19]. Except for I5 and

I6, which are caused by lack of negligence but do not really

impact software behavior, we believe commits due to internal

causes are in general having a large impact.

On the other hand, reverted commits that were reverted due

to external causes, by definition, do not directly introduce

problems per se. Instead, due to a change in dependent

components or software requirements, those reverted commits

should not persist in the system any longer, otherwise breaking

the coherency in the software implementation (i.e., E1, E3, E4

and E6 in Table IV) or in the software requirements (i.e., E2,

E5). Although this type of impact is not as direct as the impact

originated of internal causes, we argue that commits that were

reverted for external reasons indeed some impact, albeit but

from a higher level of software design.

Of the 3,104 extracted reverting commits from the studied

systems, 1,473 reverting commits (47%) could be classi-

fied according to our 13-reason classification scheme.

Results — Sony Mobile

Figure 3 shows the classification result for revert reasons

in the X and Y projects at Sony Mobile. From the category

perspective, internal reasons account for 20% and 14% in

the X and Y projects, respectively. Within the internal parties

category, (I3) Introducing bugs accounts for the largest

share, whereas (I2) Incomplete fix accounts for a smaller

share. This agrees with the intuition that revert operations

are used to quickly (but coarsely) fix defects. Note that (I5)

Mis-operation in delivery has the second largest

share, which implies that consistency in internal development

data, e.g., bug ticket status, is not only important for re-

searchers [1], but also for practitioners as well.

Within the external reasons, two categories share the

largest proportions: (E1) Temporary workaround and

(E3) Obsolete solution. E3 is quite an important ob-

servation because there are frequent Sony Mobile codebase

updates that are imported from upstream branches of Android

and Qualcomm. Our data shows that many developers often

need to redesign solutions due to API updates and architec-

tural restructuring on upstream branches. E1 also happens

frequently because of similar reasons as in E3—while internal

developers are waiting for an issue fix by the developers on the

upstream side, internal developers make temporary commits

to allow internal development to proceed. For instance, one

function call, which upstream developers are responsible for,

was inducing crashes of the Sony Mobile system. In this case,

306

Authorized licensed use limited to: University of Waterloo. Downloaded on December 05,2021 at 15:04:16 UTC from IEEE Xplore. Restrictions apply.

Sony Mobile X Sony Mobile Y Android L Android M gerrit git−repo

Investigation
Unmatched baseline

User's feedback
Refactor

Obsolete solution
Unnecessary feature

Temporary workaround
Delivery process

Mis−operation of delivery
Wrong direction

Defect introduced
Incomplete fix

Compilation error

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

category
Internal

External

Fig. 3. Distributions of revert reasons per studied systems.

an internal developer needed to temporarily revert the change

that introduced the function call until the issue was resolved.

(E2) Unnecessary feature accounts for the third-

most reverting commits. We observe that it is often due to

the fact that the studied system has customers that span the

globe. This leads to a turbulent set of requirements that can be

rapidly changed or suddenly dropped. On the other hand, (E6)

Unmatched baseline accounts for a large share. Even

though the studied system has a policy to retain the upstream

code as much as possible, some commits cannot co-exist

with internal commits. For instance, if the upstream commits

implement features that are harmful to Sony Mobile internal

features, such upstream features may need to be reverted.

In the Sony Mobile projects, due to dependencies on other

parties, 326 and 356 reverted commits (80% and 86%)

are due to external factors.

Results — Android

Figure 3 shows the classification result for reverting com-

mits in the studied Android projects. From the category

perspective, internal reasons account for 71% and 72% of the

reverting commits in the Lollipop and Marshmallow Android

projects, respectively. Since RQ2 shows that reverting commits

tend to appear within a few days for the Android project,

we suspect that internal reasons should dominate the reverting

rationale. The relatively low proportion of external reasons for

reverting commits is also expected due to the fact that most of

the commits in the Android project are developed within the

community, as opposed to the Sony Mobile projects, where

a large amount of the codebase is inherited from external

sources. The internal nature of development can also make

requirements elicitation and code design easier than involving

external vendors.

Among the internal reasons for reverting commits in An-

droid, the dominant reasons are (I1) Compilation error

and (I3) Introducing bugs. Interestingly, both top cate-

gories are also observed to be the most frequent reasons for

patch rejection in prior work [19].

Unlike the Sony Mobile projects, internal reasons for

reverting commits are more prevalent than external ones

in Android projects. This is likely because of the in-house

nature of the majority of Android development.

Results — Gerrit and git-repo

Figure 3 shows the classification result for reverting com-

mits in the studied OSS projects. Although reverting commits

are much less frequent in the OSS projects, there are still

interesting trends that occur. For example, similar to Android,

(I3) Introducing bugs accounts for the lion’s share of

the reverting commits in the studied OSS systems. Several

revert commits claim that the submitted code caused test

failures, e.g., “... Appears to have broken the acceptance test

suite...”13 implying that insufficient verification was not per-

formed before integration. The second-most prevalent reason

for reverting commits, (E3) Obsolete solution, is often

caused by removal of a feature that is no longer supported after

downgrading to an earlier version of a dependency library,

as mentioned in the commit message:14 “... This change is

not compatible with SSHD 0.9.0 which is being brought into

master by merges from stable-2.9 ...” This particular feature

removal was implicated in y of the 41 reverting commits.

Similar to the studied Android projects, internal reasons

for reverting are more prevalent than external ones.

V. DISCUSSION

In this section, we perform a qualitative analysis of the

results of our empirical study in Section III and IV. The main

aim of our qualitative analysis is to answer question: “Why

are our results from the Sony Mobile context so different from

the other studied projects?”

Approach. We issued a developer questionnaire at Sony

Mobile to identify the potential reasons for the discrepancies

between Sony Mobile and the other studied systems. The

questionnaire consists of the following open-ended questions

that roughly mirror our research questions:

• Why does Sony Mobile have more reverted commits?

(RQ1)

• Why do reverted commits persist longer at Sony Mobile?

(RQ2)

• Should Sony Mobile teams try to avoid reverting com-

mits? (RQ3)

13https://gerrit-review.googlesource.com/#/c/45911/
14https://gerrit-review.googlesource.com/#/c/62290/

307

Authorized licensed use limited to: University of Waterloo. Downloaded on December 05,2021 at 15:04:16 UTC from IEEE Xplore. Restrictions apply.

TABLE V
MEDIAN DAYS UNTIL COMMIT IS REVERTED.

I1 I2 I3 I4 I5 I6 E1 E2 E3 E4 E5 E6 E7

X 2 12 6 9 1 6 43 41 82 63 83 48 20

Y 1 8 4 11 2 17 21 50 35 90 37 29 7

L 0 1 1 3 0 1 7 1 67 - 32 - 19

M 1 1 1 5 1 4 6 28 28 56 22 117 26

We collect answers from the developers and triangulate our

findings with the results of Section III and IV to arrive at

concrete implications to each question.

A. Why does Sony Mobile have more reverted commits?

In RQ1, we observe that the proportions of reverting and

reverted commits in the Sony Mobile projects are substantially

higher than those of the other studied projects. In RQ3, on the

other hand, we clarified that the majority of reverting commits

at Sony Mobile are due to factors that are outside of the

control of the Sony Mobile team (i.e., external reasons). In

the following, we discuss two implicated causes, which are

indicated by the feedback of Sony Mobile developers, and

also supported by the quantitative data analysis of Section III.

(A-1) A strong dependency on an externally-developed code-

base increases the rate of reverted commits. This implication

is best depicted by the response of a software architect, whose

project relies on components that are developed by Qualcomm:

“Our codebase is built upon Google and Qualcomm code.

They often update their code in ways that impact our internal

code in unexpected ways. This often requires redesigning our

code, i.e., our initial commits must be reverted.”

Due to the fact that Sony Mobile’s code is built upon an

externally developed (and rapidly changing) stack, internally

developed code often ends up in conflict (or worse, incompati-

ble) with the underlying dependencies when the externally de-

veloped code is updated. This agrees with the implication from

our previous study showing that quality of the code is strongly

related with the existence of external code integration [17].

In such cases, the internal code needs to be redesigned to

resolve the conflict—the internal commits are reverted due to

E3. In the Sony Mobile X and Y projects, 89% and 78%

of reverted commits belonging to category E3 are caused by

incompatible updates to the externally maintained components

of the development stack. In the Android projects, on the other

hand, we did not find similar reasons for revert commits, likely

because of the project’s relative independence from external

dependencies (with the obvious exception of the Linux kernel).

Herbsleb and Grinter [6] found that face-to-face communica-

tion indeed helps to avoid mis-communications, which Sony

Mobile’s stakeholders may have lack of when working with

external organizations. Therefore, we suspect that other such

projects with dependencies on external codebases may also

suffer from high rates of reverted commits.

(A-2) Reverting commits is necessary part of the development

process for large systems with rapidly changing external

dependencies. One senior requirements analyst explains the

unique aspects of the development process at Sony Mobile:

“Even if a crash is due to a bug in a vendor’s proprietary

code, we need to manipulate our program flow to avoid using

that module, while still keeping the functionality. To do so,

we need to make temporary workarounds that are reverted

when a vendor fix is delivered.”

In our classification scheme, such temporary workarounds are

categorized as E1. As the requirements analyst states, there

is a development process to handle such urgent cases when

temporary fixes must be delivered quicker than the official fix

is made (e.g., when system testing is scheduled to occur before

the vendor delivers a fix). In the Sony Mobile projects, 76%-

96% of the revert commits due to E1 involve external parties.

Considering that E1 accounts for most reverting commits in

projects X and Y, this unique development process is likely a

factor that increases the number of reverted commits.

Workarounds for problems in external components of the

Sony Mobile development stack account for 17% to 31%

of the reverted commits.

B. Why do reverted commits persist longer at Sony Mobile?

In RQ2, we observe that reverting a commit in Sony Mobile

tends to take a longer time than in the other studied software

projects. Table V shows the median days until commits are

reverted according to our classification scheme. We find that

reverted commits that are due to external factors linger within

the codebase for longer than reverted commits that are due to

internal factors. Below, we discuss why this might be the case.

(B-1) Requirement change in a later phase is expected in new

product development. A software developer explains why his

enhancement code recently needed to be reverted:

“Some features are dropped as per the request of customers

or product managers.”

As the studied project is a software project for a new smart-

phone product, new features and applications are developed

based on volatile requirements that product managers and

other stakeholders collect from end-users. These features need

live-testing to make sure that their performance and quality

is sufficient for all devices. In other words, there are features

which do not meet the quality criteria for the new product, e.g.,

a feature negatively affects memory usage, CPU utilization, or

energy consumption, which have a direct impact on customer

satisfaction. In such cases, these corresponding commits may

be reverted (categorized as E2), but this kind of decision

normally takes time. Considering that E2 accounts for 9% and

11% of the reverting commits of projects X and Y, respectively,

E2 is likely to raise the total amount of time that reverted

commits linger in the Sony Mobile codebase.

(B-2) Temporary workarounds live longer than anticipated if

the partner organization needs time to address the underlying

cause. As discussed in A-2, Sony Mobile has a development

process that relies heavily on external parties. The same re-

quirements analyst addresses the question about why reverting

commits at Sony Mobile tend to take a long time:

“We request the external parties to fix bugs. Their delivery

generally takes time because they have their own triage,

308

Authorized licensed use limited to: University of Waterloo. Downloaded on December 05,2021 at 15:04:16 UTC from IEEE Xplore. Restrictions apply.

QA, and development processes before they can release the

official fix to us.”

Naturally, inter-organizational communication is slow for

many reasons, e.g., time zone difference [6, 7]. On top of

that, even after the official fix is delivered, the Sony Mobile

quality assurance and development teams need to be very

careful when replacing the temporary workaround with the

official one, because such software defects can have a serious

impact the customer experience. As a consequence, temporary

workarounds can take a long time to be reverted.

Risk of severe regression causes temporary workarounds

to linger for a long time before being reverted.

C. Should Sony Mobile teams try to avoid reverting commits?

In RQ3, we classify reverting commits into two broad

categories: those related to internal factors and those related

to external factors. The stakeholder questionnaire reveals ad-

ditional information about each type of reverting commit.

(C-1) Revert commits that are related to internal factors

can be avoided by being more careful. There are indeed

commits that are caused by developer mistakes. For example,

a developer mentions why he failed to find a compilation error

before integrating changes:

“Increasing supported devices makes it hard for developers

to verify that a code change will work in all product variants.

Occasionally, insufficient testing and incomplete commits slip

through verification and need to be reverted.”

According to Table V, commits that are reverted due to internal

factors are often addressed quickly. It is an indication that

developers might have submitted commits without complete

testing, as expressed by the developer above. A similar situ-

ation is also observed among software engineers at Mozilla,

where growth of the codebase inflated conflict [18]. Although

all of the studied systems employ the code review practices

using Gerrit [14], it does not mandate minimum review quality

criteria. Previous studies showed that lax code review practices

can impact software quality [9, 10, 17] and design quality [11].

With the help of thorough code review process and more

complete pre-integration automated testing, these problematic

commits can be detected and fixed before they land on official

development and release branches.

(C-2) Reverting commits are a symptom of the development

process. Several developers mention that reverting commits

are not all always a bad thing:

“Reverting commits is often unexpected. However, it is

beyond our scope to avoid such reverting commits due to

requirements or external component changes. Our current

development process, which results in some amount of revert

commits, is not all bad.”

We find that the majority of reverted commits at Sony Mobile

are due to external factors. It is rarely possible to avoid these

reverting commits.

Commit that are reverted for internal reasons can be

addressed by adding more complete automated tests.

On the other hand, commits that are reverted due to

external factors may just be the “cost of entry” for

projects with rapidly evolving external dependencies in

their development stack.

VI. THREATS TO VALIDITY

Construct validity. We used two data sources to classify

reasons for reverting commits: commit log and code review

discussion. Although the sources that we used are described

well enough to understand the context behind them, there is no

guarantee of the correctness of the information. To minimize

the risk in the Sony Mobile dataset, we conducted an e-mail

survey and interviews. We made sure that the stakeholder

responses matched our interpretation of 71 reverting commits.

We also exclude commits with a lack of information from the

Android projects and leveraged the expert knowledge of the

fourth author, who is a maintainer of the other two projects.

Internal validity. We manually inspected revert commits to

build a classification scheme for the reasons for reverting a

commit. The process of building this classification scheme

may be subjective. To minimize this threat, we surveyed the

previous studies [12, 19] and bootstrapped the process using

the schemes provided by them. Furthermore, two authors

discussed the resulted scheme and surveyed 20 stakeholders

who were involved in either the reverting or reverted commits.

External validity. We analyze two proprietary projects at

Sony Mobile and four open source projects. Our selection of

subjects may introduce bias. To mitigate the risk, we select

projects of various size, with different development cultures.

VII. RELATED WORK

In this section, we discuss the related work with respect to

patch rework and qualitative analysis of software repositories.

Patch rework. In software development, rework takes var-

ious forms. For example, before a patch is checked into the

main software repository, patches can be rejected in the code

review. Both Beller et al. [2] and Mäntylä and Lassenius [12]

investigated for what reasons commits are encouraged to

be reworked in the code review process. Counter-intuitively,

they found that indeed functional defects are found but more

evolvable defects that worsen the maintainability of the code

are found. Tao et al. [19] manually inspected 300 rejected

patches to investigate reasons for their rejections in Eclipse

and Mozilla projects. They produced a comprehensive list

of reasons for patch rejection. Their results suggest that the

most decisive reasons for patch rejection are patches being

incomplete, or the existence of a preferred alternative imple-

mentation. These reasons for rejection can be used to rework

the patch to produce one that will be deemed acceptable. In

this study, we find that temporary workarounds, which are

intentionally reworked later, are common at Sony Mobile.

After the code is committed to the main software repository,

there are cases where rework is still needed. Shihab et al. [16]

309

Authorized licensed use limited to: University of Waterloo. Downloaded on December 05,2021 at 15:04:16 UTC from IEEE Xplore. Restrictions apply.

studied the characteristics of software defects that are re-

opened after being fixed. Based on software metrics that

capture the likelihood of being re-opened in the future, they

showed that prediction of re-opened bugs can be achieved

while the best indicators vary depending on the studied project.

Souza et al. [18] studied how the backout rate changes over

time during a large change to the software development pro-

cess at Mozilla. They found that the rate of reverted commits

(i.e., the backout rate) increases after employing rapid release

scheduling, i.e., shortening the software release cycle. In our

study, we find that development context impacts the rate of

reverted commits, with external factors leading to the majority

of reverted commits at Sony Mobile.

Qualitative analysis of software repositories. In this paper,

we set out to better understand why commits are reverted in

various development settings. To do so, we qualitatively ana-

lyze commits using manual classification of reverted commits

and surveying software engineers at Sony Mobile. There are

many other studies with the similar approaches to classify soft-

ware repository data, which is otherwise hard to characterize

quantitatively. For example, Gousios et al. [4] surveyed 749

developers in GitHub community to understand the GitHub

pull-based development model from the integrator’s perspec-

tive. According to their study, most of the pull requests that

system integrators receive are bug fixes. Also, pull requests of

bug fixes are more easily accepted than those of other types,

e.g., refactorings or enhancements.

Hindle et al. [8] manually classify large commits. They

compared ordinary (i.e., ‘small’) commits with large commits,

and found that small commits are primarily bug fixes, whereas

large commits tend to involve broad architectural changes.

Saha et al. [15] studied how long-lived bugs are different

from short-lived bugs. Through quantitative and qualitative

analyses on large open source systems, they observe that long-

lived do not always imply large-scale software fixes.

Aranda and Venolia [1] surveyed developers at Microsoft

to study different scenarios of the life of software bugs. They

interviewed 26 engineers at Microsoft. Their results suggest

that even small bugs are accompanied by many non-technical

factors, which do not appear in bug repositories, e.g., social

relationships and organizational matters.

Table VI provides an overview of the related work in terms

of three dimensions that are within the scope of this paper. In

addition to the target phenomenon, Table VI shows: (1) the

proportion of events that are targeted by the paper (Prop.),

(2) how long do the events start and end (Time), and (3)

the reasons why the events happen (Clas.). For example,

Shihab et al. [16] contrasts the number of re-opened bugs

with the number of bug reports. Therefore, the column Prop.

is checked. However, Shihab et al. do not study how this

proportion changes over time nor why certain bug reports are

re-opened. Thus, the Time and Clas. columns are not checked.

In short, while previous work studies several phenomena in

software repositories, this paper focuses on reverted (and

reverting) commits, covering three dimensions that provide

TABLE VI
SYNTHESIS OF RELATED WORK.

Paper Prop. Time Clas. Target phenomenon

Beller et al. [2] � Defects in code review
Mäntylä and Lassenius [12] � Defects in code review
Tao et al. [19] � Rejected patches
Shihab et al. [16] � Re-opened bugs
Souza et al. [18] � � Early and late backouts
Gousios et al. [4] � � GitHub pull requests
Hindle et al. [8] � � Large commits
Saha et al. [15] � � � Long lived bugs
Aranda and Venolia [1] � Bug fixing coordinations

Our study � � � Reverted commits

Abbreviation: Prop. = Proportion, Clas. = Classification

insights for better understanding why commits are reverted

in large systems.

VIII. CONCLUSION

In this paper, we analyze the proportion of commits that

are reverted and the amount of time that such commits linger

within a codebase. We find that reverted commits are most

prominent in the Sony Mobile projects, with revert rates of

3%-5%. By way of comparison, the studied open source

projects have revert rates of roughly 1%. These reverted

commits linger within the studied codebases for 1-35 days.

We also qualitatively study the reasons for why commits

are reverted. We manually inspect 3,144 reverting commits

and identify 13 common reasons for reverting commits. The

frequency of reverted commits of each reason varies depending

on the studied project. For example, in the Sony Mobile

setting, the most prominent reasons for reverting commits

involve external stakeholders, e.g., features being dropped due

to volatile customer requirements. On the other hand, in the

other studied projects, the most prominent reasons for revert-

ing commits involve internal stakeholders, e.g., introducing

defects due to insufficient testing.

Our findings have made Sony Mobile stakeholders aware

that more testing before integration can yield a lower rate

of problematic commits. However, the unique development

processes involving external stakeholders poses unique chal-

lenges for Sony Mobile stakeholders, who must avoid external

miscommunication. Our findings have inspired stakeholders at

Sony Mobile to improve the development process involving

the external parties.

Repeatability. To foster replication and extension of our

work, we share our final classification results for 4 OSS

projects at https://github.com/yiu31802/icsme2016.

Acknowledgment. This research was partially supported

by JSPS KAKENHI Grant Numbers 15H05306. The authors

would like to thank anonymous stakeholders at Sony Mobile

for participating in the survey. The findings and opinions

expressed in this paper are those of the authors and do not

necessarily represent or reflect those of Sony Mobile and/or

its subsidiaries and affiliates. Moreover, our results do not in

any way reflect the quality of Sony Mobile’s products.

310

Authorized licensed use limited to: University of Waterloo. Downloaded on December 05,2021 at 15:04:16 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Aranda and G. Venolia, “The secret life of bugs: Going past
the errors and omissions in software repositories,” in Proc. of
the Int’l Conf. on Software Engineering (ICSE), 2009, pp. 298–
308.

[2] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern
code reviews in open-source projects: Which problems do
they fix?” in Proc. of the Working Conf. on Mining Software
Repositories (MSR), 2014, pp. 202–211.

[3] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software
history under the lens: A study on why and how developers
examine it,” in Proc. of the Int’l Conf. on Software Maint. and
Evolution, 2015, pp. 1–10.

[4] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen,
“Work practices and challenges in pull-based development: The
integrator’s perspective,” in Proc. of the Int’l Conf. on Software
Engineering (ICSE), 2015, pp. 358–368.

[5] T. Graves, A. Karr, J. Marron, and H. Siy, “Predicting fault
incidence using software change history,” IEEE Trans. Software
Engineering, vol. 26, no. 7, pp. 653–661, 2000.

[6] J. D. Herbsleb and R. E. Grinter, “Architectures, coordination,
and distance: Conway’s law and beyond,” IEEE Software, pp.
63–70, 1999.

[7] J. Herbsleb and R. Grinter, “Splitting the organization and
integrating the code: Conway’s law revisited,” in Proc. of the
Int’l Conf. on Software Engineering (ICSE), 1999, pp. 85–95.

[8] A. Hindle, D. M. German, and R. Holt, “What do large commits
tell us?: A taxonomical study of large commits,” in Proc. of the
Working Conf. on Mining Software Repositories (MSR), 2008,
pp. 99–108.

[9] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The
impact of code review coverage and code review participation
on software quality: A case study of the Qt, VTK, and ITK
projects,” in Proc. of the Working Conf. on Mining Software
Repositories (MSR), 2013, pp. 192–201.

[10] S. McIntosh, Y. Kamei, B. Adams, and A. Hassan, “An empir-
ical study of the impact of modern code review practices on
software quality,” Empirical Software Engineering, pp. 1–44,
2015.

[11] R. Morales, S. McIntosh, and F. Khomh, “Do code review
practices impact design quality? A case study of the Qt, VTK,
and ITK projects,” in Proc. of the Int’l Conf. on Software
Analysis, Evolution and Reengineering (SANER), 2015, pp.
171–180.

[12] M. V. Mäntylä and C. Lassenius, “What types of defects
are really discovered in code reviews?” IEEE Trans. Software
Engineering, pp. 430–448, 2009.

[13] N. Nagappan and T. Ball, “Use of relative code churn measures
to predict system defect density,” in Proc. of the Int’l Conf. on
Software Engineering (ICSE), 2005, pp. 284–292.

[14] G. C. R. O. S. Project, “Gerrit code review - a quick intro-
duction,” https://gerrit-documentation.storage.googleapis.com/
Documentation/2.12/intro-quick.html.

[15] R. K. Saha, S. Khurshid, and D. E. Perry, “An empirical study
of long lived bugs,” in Proc. of the Int’l Conf. on Software
Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), 2014, pp. 144–153.

[16] E. Shihab, A. Ihara, Y. Kamei, W. Ibrahim, M. Ohira, B. Adams,
A. Hassan, and K. Matsumoto, “Predicting re-opened bugs: A
case study on the Eclipse project,” in Proc. of the Working Conf.
on Reverse Engineering (WCRE), 2010, pp. 249–258.

[17] J. Shimagaki, Y. Kamei, S. McIntosh, A. E. Hassan, and
N. Ubayashi, “A study of the quality-impacting practices of
modern code review at Sony Mobile,” in Proc. of the Int’l
Conf. on Software Engineering (ICSE), Software Engineering
in Practice (SEIP), 2016, pp. 212–221.

[18] R. Souza, C. Chavez, and R. A. Bittencourt, “Rapid releases and
patch backouts: A software analytics approach,” IEEE Software,
vol. 32, no. 2, pp. 89–96, Mar 2015.

[19] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An
empirical study of open source project patches,” in Proc. of the
Int’l Conf. on Software Maintenance and Evolution (ICSME),
2014, pp. 271–280.

[20] Y. Yoon and B. A. Myers, “An exploratory study of backtracking
strategies used by developers,” in Proc. of the Int’l Workshop
on Cooperative and Human Aspects of Software Engineering
(CHASE), 2012, pp. 138–144.

311

Authorized licensed use limited to: University of Waterloo. Downloaded on December 05,2021 at 15:04:16 UTC from IEEE Xplore. Restrictions apply.

