
BLIMP Tracer: Integrating Build Impact Analysis
with Code Review

Ruiyin Wen∗, David Gilbert†, Michael G. Roche†, Shane McIntosh∗
∗Software REBELs, McGill University, Canada; ruiyin.wen@mail.mcgill.ca, shane.mcintosh@mcgill.ca

†Dell EMC Corporation, Burlington, Canada; david.gilbert@dell.com, mike.roche@dell.com

Abstract—Code review is an integral part of modern software
development, where patch authors invite fellow developers to
inspect code changes. While code review boasts technical and
non-technical benefits, it is a costly use of developer time, who
need to switch contexts away from their current development
tasks. Since a careful code review requires even more time,
developers often make intuition-based decisions about the patches
that they will invest effort in carefully reviewing.

Our key intuition in this paper is that patches that impact
mission-critical project deliverables or deliverables that cover a
broad set of products may require more reviewing effort than
others. To help developers identify such patches, we introduce
BLIMP Tracer, a build impact analysis system that we developed
and integrated with the code review platform used by a globally
distributed product team at Dell EMC, a large multinational cor-
poration. BLIMP Tracer operates on a Build Dependency Graph
(BDG) that describes how each file in the system is processed to
produce the set of intermediate and output deliverables. For a
given patch, BLIMP Tracer then traverses the BDG to identify
the deliverables that are impacted by the change. Finally, the
results are reported directly within the code review interface.

To evaluate BLIMP Tracer, we conducted a qualitative study
with 45 developers, observing that BLIMP Tracer not only
improves the speed and accuracy of identifying the set of
deliverables that are impacted by a patch, but also helps the
community to better understand the project architecture.

I. INTRODUCTION

Code review refers to the practice where fellow developers
inspect code changes and provide feedback to the author.
Dedicated code review tools that manage the modern code
review process have become a commonplace in practice. These
tools allow developers to post patches and select relevant
reviewers to inspect their patches. The review process itself
is a valuable practice that development teams use to ensure
software quality [17], improve team communication [5], and
leverage team problem-solving capacity [24].

However, the mere existence of a code review does not
improve code quality. To truly improve the quality of a patch,
reviewers must consider the potential implications of the patch
and engage in a discussion with the author. Prior work shows
that a lack of reviewer participation is correlated with a drop
in software release quality [18], [29] and a drop in design
quality [20].

On the other hand, rigorous code review introduces over-
head on developers, whose time is a limited and valuable
commodity. Bosu and Carver [8] find that developers spend
an average of six hours per week reviewing code. The time
spent reviewing code is an expensive context switch from other

important development tasks (e.g. repairing and improving
code). Making matters worse, patch authors at Microsoft report
that an average of 35% of code review comments are not
useful [9], suggesting that a large proportion of reviewing time
may be misspent generating feedback that is not valuable.

Since some changes are of greater risk than others, some
patches will require a more rigorous review than others.
Czerwonka et al. [13] argue that spending an equal amount
of reviewing effort on all code patches is a suboptimal use
of development resources. Currently, to reduce waste in the
reviewing process, developers use their intuition and their past
experience to decide which patches require detailed feedback.
However, knowing which patches require more reviewing
attention than others is a difficult problem for code authors
and reviewers alike.

An understanding of the impact that a patch has on the
entire software system may help stakeholders to focus on
reviewing effort on patches that have a broader impact on
the project. More specifically, we believe that: Patches that
impact mission-critical project deliverables or deliverables that
cover a broad set of products should involve more reviewing
investment than others. However, such information is missing
from modern code reviewing interfaces.

To understand the impact that a patch will have on a system,
Change Impact Analysis (CIA) techniques have been pro-
posed [4]. However, recent work suggests that CIA techniques
are rarely adopted in practice [16]. To understand the state
of CIA within the studied product team at Dell EMC, we
conducted a preliminary survey of 45 developers. In the survey,
we ask developers how they assess the potential impact of
a patch. The results indicate that, despite their tendency to
produce fault prone and incomplete results, developers choose
to use command line tools, such as grep and find to
estimate the impact of changes (likely due to their ubiquity
and flexibility), to complement their intuition-based on prior
knowledge of the modified files. Indeed, as Li et al. [16]
reported, dedicated and commercialized use of CIA tools is
rare. Use of ad hoc and intuition based approaches may lead
to false positives (i.e. patches that did not need to be reviewed
rigorously, but were) or false negatives (i.e. patches that should
have been reviewed rigorously, but were not).

To help reviewers make deliverable-based decisions of
reviewing where to invest reviewing effort, we developed
Build Impact (BLIMP) Tracer, an impact analysis system that
we integrated with the code review platform of the studied

product team at Dell EMC. Unlike traditional change impact
analysis [4], BLIMP Tracer exposes the impact that a change
has on project deliverables rather than other areas of the
source code. This difference is of key importance in the
context of the studied Dell EMC team because the subject
system is comprised of several deliverables that belong to
several customer-facing products. In a nutshell, BLIMP Tracer
produces impact analysis reports by first extracting the Build
Dependency Graph (BDG) of the system, then recursively
traverses the graph starting from the changed files to identify
the (set of) impacted product deliverables.

To evaluate BLIMP Tracer, we deployed it within the pro-
duction reviewing environment at the studied Dell EMC team.
We conducted a comparative user study with five developers.
More specifically, we solicit feedback from participants during
their use of BLIMP Tracer, and compare it with current style
of conducting impact analysis. In all five cases, BLIMP Tracer
improves the speed and accuracy of locating impacted software
components of a code patch. In addition, we find that BLIMP
Tracer provides developers with a clearer understanding of
the project build-time architecture [30], which will likely help
when onboarding newcomers to the project.

A. Paper Organization

The remainder of this paper is organized as follows. Sec-
tion II describes the code review process at the studied Dell
EMC team and shows a motivational example. Section III
describes the design and results of the preliminary survey
distributed to the developers. Section IV describes the design
of BLIMP Tracer. Section V discusses the design of our user
study. Section VI presents the results with respect to our user
study. Section VII discusses the background of this study
and surveys related work. Section VIII describes the threats
to the validity of our study, and finally, Section IX draws
conclusions.

II. BACKGROUND

In this section, we present an overview of the code re-
viewing process of the studied product team at Dell EMC.
In addition, we present a motivating example to demonstrate
the value of BLIMP Tracer.

A. Code Review at Dell EMC

Code review is widely considered a best practice for soft-
ware quality assurance. The modern code review process–a
lightweight, tool-supported variant of the traditional code in-
spection process–allows developers to post patches for review.

The studied Dell EMC product team uses Review Board1—
a web-based code review platform that tightly integrates with
several version control systems. Figure 1 provides an overview
of how Review Board-supported code review process is im-
plemented at Dell EMC. We describe each step below.

1) Upload patch: When a developer has completed a patch,
they upload it to Review Board. During the upload,

1https://www.reviewboard.org/

5. Integrate into
VCS

1. Upload patch 3. Notify relevant
reviewers

4. Reviewers assess
the patch

2. Execute sanity
checks

Fail
Pass
Legend

Fig. 1: The code review process of the studied product team
at Dell EMC.

reviewers are recommended based on the areas of the
code base that were modified; however, Review Board
prompts the author to confirm or replace those reviewers.

2) Execute sanity checks: When a new patch (or revision)
appears on Review Board, it is scanned for simple errors
by a continuous integration bot. This bot automatically
checks whether the patch causes build breakage or has
blatant issues such as incorrectly formatted code.

3) Notify relevant reviewers: The selected reviewers re-
ceive notification and start reviewing the patch. At the
same time, they can decide to add other developers in
the code reviewing process.

4) Reviewers assess the patch: The reviewers provide
feedback to the author by commenting on the uploaded
patch. The team then renders a decision to either accept
or reject the code patch.

5) Integrate into VCS: If the patch receives ‘Ship it!’ labels
from two members of the core team, it will be approved
for integration into the main project repository.

If any of the steps 2–4 are not passed, the patch returns
to the author, who may revise the patch by addressing the
feedback, and then repeat the code review process.

B. A Motivational Example

Adam, a new developer who has just started working at Dell
EMC one week ago, is submitting his first patch on Review
Board. As is part of the Dell EMC code reviewing practice,
Adam has to indicate which team members to invite to review
his patch. Being a new team member, Adam does not yet know
which members of the team have the necessary expertise in
the areas of the code base that he modified. Thus, he relies on
the Review Board recommendations to select his team lead,
Becky, as a reviewer.

Being a team lead, Becky receives plenty of review requests.
In order to have time to complete her other tasks, she needs to
be selective where she focuses her reviewing effort. She needs
to decide whether to apply her full effort to the review (high
time cost) or perform a quick review (low time cost).

At the time when Becky is notified of Adam’s review
request, she already has a backlog of ten review requests.
All ten of the review requests are associated with issue
reports of equal severity and priority. Based on her intuition,

https://www.reviewboard.org/

Becky decides to prioritize the patches that are larger in size
because she believes that larger patches are inherently more
risky. However, Becky’s decision may not be optimal because
Adam’s patch involves a change to broadly adopted in-house
libraries. Changes to those libraries may be inherently more
risky than large changes because they impact a large amount
of customer-facing functionality, ending up being linked with
several project deliverables.

BLIMP Tracer is designed to provide decision support
for Becky. She can consult the results of BLIMP Tracer
for Adam’s patch, and determine which deliverables may be
impacted by his patch. By exposing the impacted deliverables
of a patch, Becky can reason about the impact of a change on
customer-facing products and functionality. Knowing which
products are impacted by a patch helps Becky make a more
informed decision about how to prioritize her backlog of
patches for reviewing.

III. PRELIMINARY SURVEY

In this section, we present the design of a developer survey
that we conducted at Dell EMC. Through the survey, we aim to
gain a better understanding of how developers conduct impact
analysis. The questions in the survey were intentionally open
ended to allow for developers to explain their current practices
in language that is natural to them.

A. Survey Design

At a high level, the survey is composed of three parts. The
first part focuses on information about the developer, with de-
mographic questions about their general software development
experience and their experience working on the product suite
at Dell EMC. The second part asks developers about their
prior knowledge in software change impact analysis. The third
part asks developers to reflect on their day-to-day procedures
for assessing the impact of patches. We also invite developers
who are interested in further discussing their experiences to
participate in follow-up interviews afterwards.

The survey was broadcasted to 45 on-site developers, 12 of
whom responded (27% response rate). The survey was also
broadcasted to off-site developers, four of whom responded.

B. Demographic Information

The 16 respondents of this survey work in development of-
fices in Canada and India. Figure 2 shows that the respondents
have a broad range of experience with the Dell EMC product
suite, ranging from one to 18 years, with a median of 6.5
years. Similarly, the respondents’ experience on the current
product varies from zero to 18 years, with a median of 6.5
years. On the other hand, the majority of the respondents are
senior software engineers, with general software development
experience ranging from one to 29 years, with a median
of 14 years. Indeed, twelve of the respondents have more
than five years of experience. The wide span of experience
of the responding developers within Dell EMC assures that
the observed results apply to a broad range of development
backgrounds. The large number of senior developers ensures

0

1

2

3

4

5

6

7

8

9

Years of Experience:
Current Product

Years of Experience:
Dell EMC

Years of Experience:
Developing

0–5 6–10 11–15 16–

8 8 12

Fig. 2: The survey respondents’ experience in software de-
velopment in multiple contexts. The veterans (with more than
five years of experience) are shadowed in gray.

0 2 4 6 8 10

Apply the patch and build the
product

Assess what other parts of the
product are impacted by the patch

Notify others

Fig. 3: The number of developers on what they would first do
when they start reviewing patches.

that our results are not biased towards new developers who
may not have formed impact analysis habits.

C. Change Impact Awareness

Figure 3 shows that although most (nine of the 16) respon-
dents claim they would first apply the code patch under review
and execute a project build job, build impact assessment is also
the first thing code reviewers do when they start reviewing a
code patch. The process of applying code patches under review
to software systems and building them can be automated.
In fact, the studied product team at Dell EMC employs an
automated tool that applies code patches, builds the project,
and reports whether the build breaks after applying the patch
(recall Step 2 from Section II-A). This tool is integrated with
the code review platform and posts a comment indicating
whether the patch introduces build problems once the result

0 2 4 6 8 10 12 14

Asking other experts

Check which binaries are built

Run a comprehensive set of unit tests

Understand from personal knowledge
in the software

Using tools to navigate the source code

Fig. 4: How developers analyze the impact of a patch.

is generated. However, this tool does not provide feedback on
the build impact of the code change, the other important step
that developers take into consideration before performing a
code review.

Meanwhile, we find that six of the 16 respondents acknowl-
edge that they would check what part of the software project
the code patch impacts as the first step of code review. Indeed,
one developer stated that understanding the impact of a code
patch is so important that 70–80% of his reviewing time is
spent performing impact analysis. He explained that “The
small chunk of code that an engineer author in a change
should already be examined before submitting (to Review
Board), so there should not be a problem there. The real
problems come with the files that depend on the change.”

Although a number of community members recognize the
importance of impact analysis, they do not use any specialized
tools for it and often resort back to using command line tools
to investigate the impact of a patch. In fact, only two out of 16
survey respondents declare that they have used impact analysis
tools. Without dedicated impact analysis tools, using other
methods for finding the impact of code patches are relatively
time-consuming.

Developers on the studied Dell EMC product team are aware
of the importance of impact analysis prior to code reviewing,
yet few of them use dedicated impact analysis tools.

D. Change Impact Practice

Developers tend to use command line tools and their back-
ground knowledge to understand the impact of a code change.
We asked developers to describe how they determine what
other parts of the system is impacted by a code patch. As
shown in Figure 4, a majority (ten of the 16 respondents) claim
they use tools, such as grep or find to navigate source
code to find the impact. In addition, twelve developers say
that the analysis is based on their understanding from prior
experience developing the software system. The respondents

also described some other ways that they would use to
help perform impact analysis, including asking other experts
(eleven of the 16), checking which binaries are built (one of
the 16), and running unit tests (one of the 16).

Although impact analysis is one of the most crucial tasks
in code review, the developers on the studied Dell EMC
product team often use general-purpose command line tools
to investigate the impact of patches.

IV. BLIMP TRACER DESIGN

To help developers conduct impact analysis accurately and
efficiently, we propose BLIMP Tracer, an impact analysis tool
that focuses on project deliverables. We focus on deliverable-
level impact because we believe it is the most useful gran-
ularity for the review understanding task that we aim to
support. In this section, we describe how BLIMP Tracer
performs impact analysis for the changes posted on Dell
EMC’s code review platform. Figure 5 provides an overview
of the approach, which contains changed file detection, build
dependency graph extraction, graph traversal and filtering, and
results presentation steps.

A. Changed File Detection

Using the Review Board API, we poll for newly posted
reviews and revisions periodically. For every new change, we
extract the names of the modified source code files. Those
files serve as the query that we will use in later steps to trace
through in order to detect the impacted deliverables.

B. Build Dependency Graph Extraction

The build system of the studied product team is imple-
mented using non-recursive make [19]. In make-based build
systems, developers specify targets, dependencies, and rules.
Targets specify an intermediate or a deliverable file. Depen-
dencies list other targets that must exist or be updated before
the target can be updated. Rules explain what command needs
to be run to create the targets. For example, in Listing 1,
line 6 specifies that all .o files (targets) depend on their
corresponding .c file, as well as the DEPS variable that
expands to the header file example.h (dependencies). Line
7 shows that to update the dependencies in line 6, a C compiler
(in this case, gcc) will run to create the targets. Similar
patterns can be seen in the following lines that specify rules
for the deliverables.

The targets and their dependencies form what is called a
Build Dependency Graph (BDG). This is a directed acyclic
graph that is at the heart of the incremental build—a com-
modity feature of the modern build system. After executing a
full build that executes all of the necessary build commands
to produce project deliverables, an incremental build will only
execute a subset of the full build commands that are required
by activities that have taken place after the previous full build.
For example, Figure 6 shows the BDG that corresponds to the
Makefile snippet from Listing 1. After executing a full build,
if a developer were only to update eg3.c, the build process
would only re-execute the rules to eg3.o and deliverable b.

Dell EMC Project
Review Board

Every 30 minutes

New Changes
Build

Dependency
Graph

Impacted Files
TraversePoll Impact

Analysis
Report

Filter

Dell EMC Project
Version Control

System

Every 12 hours

Code Copy
Poll

Use MAKAO
to generate

Post

Fig. 5: An illustration of the design of BLIMP Tracer.

eg1.o

all

deliverable_a

eg1.c eg2.c

eg2.o

example.h

eg3.o

deliverable_b

eg3.c

Fig. 6: A sample build dependency graph.

Listing 1: A sample Makefile
1 CC=gcc
2 DEPS=example.h
3
4 all: deliverable_a deliverable_b
5
6 %.o: %.c $(DEPS)
7 $(CC) -c -o $@ $< -I.
8
9 deliverable_a: eg1.o eg2.o

10 $(CC) -o $@ $ˆ
11
12 deliverable_b: eg3.o
13 $(CC) -o $@ $ˆ

In this paper, we query the BDG to understand which
deliverables are impacted by a set of modified files. Extraction
of the BDG from a make-based build system is a non-trivial
task.

We use MAKAO [1] to extract the build dependency graphs
from the Dell EMC project. Since MAKAO constructs the
BDG by parsing build trace logs, we fully build the project in
one of the supporting Linux platforms with GNU make tracing
enabled and extract the trace log.

The trace log contains a listing of commands and their
corresponding files that were executed during the build job,
which can be parsed by MAKAO to generate a BDG.

Extracting a BDG for the Dell EMC project requires build-
ing the software in full. At the same time, the Dell EMC
project we study is large and complex, and undergoes rapid
development. Indeed, conducting a full, tracing-enabled build
for each uploaded review revision is impractical. Moreover,
similar to prior work [12], we find that changes that modify
the BDG structure are relatively rare in practice. In order to
have an up-to-date BDG for accurate impact analysis results
while maintaining a low build load, BLIMP Tracer updates

the BDG twice daily. We discuss the potential ramifications
of this decision in Section VIII.

C. Graph Traversal and Filtering

Once we obtain a list of files within a change, we traverse
the BDG for each of the file in the list of changed files and
record every target that is impacted by the change. To keep
the report page readable, we filter out binary and archive files
that are directly impacted by a changed file,since the impact
of such files is already clear for the developers to recognize.

In addition, we identify whether the list of changed files
contains build specification files (e.g. *.mk or Makefile), or
newly added files that had never been shown in the repository.
Since a change in the build system or adding new files may
change the build dependency graph we extracted previously,
a traversal on the old BDG may not provide accurate impact
analysis information. In such cases, BLIMP Tracer will print a
warning message in the impact analysis report page, indicating
that the analysis may be incomplete. Again, in practice, BDG-
changing commits are rare. Additional computing power could
be used to solve this problem, but given the scarcity of the

issues, the warning message was deemed sufficient for the
time being.

D. Results Presentation

We generate a summary of the change impact analysis
report, and post it as a code review comment to the code review
platform as shown in Figure 7. Using an internal document that
maps the (non-intermediate) build targets to the names of the
deliverables of the studied project, we show the deliverables
that the code patch impacts on. The names of the deliverables
also correspond to internal teams that are responsible for them.
Therefore, the patch authors will know who may be interested
before deciding to which team this code review should be
assigned.

Moreover, the summary includes how broad the code change
will affect the system by displaying the number of high-level
deliverables each changed file impacts. If the impact on the
system is broad or affects a key customer-facing deliverable,
the report can alert reviewers to more carefully assess the
patch. To assist users in knowing what exactly is impacted, the
summary contains a URL that points to a full impact analysis
report page. The report page contains the full paths of the files
and components that each changed file in the patch impacts.

Once the comment containing the summary is posted, devel-
opers and code reviewers who are designated to assess the code
patch will receive a notification from the code review platform,
indicating that BLIMP Tracer has finished analyzing and
publishing the impact analysis of the patch. Developers and
reviewers can plan their code assessment activities accordingly
using the information provided by BLIMP Tracer. BLIMP
Tracer typically publishes reports for newly uploaded patches
within 30 minutes. Note that the speed of BLIMP Tracer is
not of concern because developers rarely react to a new review
request more quickly than that.

V. USER STUDY DESIGN

We now discuss the design and execution of our user study
with developers at Dell EMC. More specifically, we describe
how we conducted semi-structured interviews and plan for
future improvements.

A. An Overview of the Industrial System

BLIMP Tracer is deployed within a large, multinational
product team of Dell EMC. The product suite that this team
produces provides solutions for enterprise data backup and
recovery. This product itself dates back to early 1990s, and
has over ten million lines of code. Despite being implemented
in a variety of programming languages (C, C++, Java, and C#
to name a few), the product suite is highly portable, supporting
product variants that run on Windows, as well as various
flavours of UNIX, Linux, and macOS.

The complexity of the system and its build dependency
graph make it an ideal subject system to pilot BLIMP Tracer.
Indeed, understanding the large and complex build dependency
graph of this product suite is difficult, even for senior Dell
EMC developers.

TABLE I: An overview of the interviewed developers.

Name Dell EMC Exp. (Yrs) Studied Proj. Exp. (Yrs)
Developer A 2 0
Developer B 13 8
Developer C 11 11
Developer D 2 2
Developer E 11 11

B. Interview Design

Using the information that we gathered during the survey,
we designed semi-structured interviews [26] for developers
who expressed their interest in further discussing our proposed
solution and how it could be improved. Semi-structured inter-
views contain planned open and close-ended questions, but
the order is not necessarily the same as planned. In addition,
during a semi-structured interview, interviewers are free to
explore new findings and improvise the questions. We choose
to perform semi-structured interviews instead of a more rigidly
structured interview to allow for ideas that emerge during the
interview to be explored to some extent. The interview sessions
were recorded, transcribed, and coded.

In total, we conducted one-on-one interviews with five
developers. Table I provides an overview of the participant
experience levels. The participants have two to 13 years of
experience working at Dell EMC (median of eleven years),
and zero to eleven years of experience working on the subject
product suite (median of eight years).

The purpose of the interviews was to discern whether
BLIMP Tracer helps developers to perform impact analysis on
patches. During the interview, we asked participants to show
on screen how they assess the impacted deliverables of a code
patch (without the help of BLIMP Tracer) Developers were
asked to follow a think aloud protocol to enable us to gather
data about why they are performing the tasks that they are
performing. At the same time, we record how much time they
spend. We then invite the interviewee to use BLIMP Tracer
to assess the impact of the same patch, and determine if the
impacted deliverables computed by BLIMP Tracer match the
expected result.

VI. USER STUDY RESULTS

In this section, we present the results of the semi-structured
interviews with respect to effectiveness and additional benefits.

A. Effectiveness of BLIMP Tracer

One of the primary goals of BLIMP Tracer is to help
developers to better understand the impact of patches. During
the one-to-one interviews, we observe how developers cur-
rently conduct impact investigations for a given patch. More
specifically, we selected patches that include regular .c files,
as well as header .h files, to cover files that have both small
and large potential impact. We invite participants to estimate
the number of components and deliverables that are impacted
by the patch and name some of them, using methods that are
most comfortable to them. After that, we introduce BLIMP
Tracer and ask developers how they would use it during

Summary: Bug #12345 Fix compatibility problems

View Diff Ship It!

Review Request: 735, Created Jun 1, 2018

Submitter: Adam
Bugs: 12345

Reviewers
Groups: project_linux
People: Becky

12345: Fix compatibility problems
These are the changes for fixing the problems in bug 12345
Summary of changes:

Description:

…
Testing Done:
Manual testing and unit testing are done by the QA team.

Review request created Jun 1, 2018 10:42AM

BLIMP Tracer Jun 1, 2018 10:49AM
BLIMP Tracer: Impact Analysis Summary

Detailed report can be found at: https://secure.comp.com/blimp/735
 >> linux/app.c impacts on 10 deliverables
 >> linux/foo.c impacts on 2 deliverables
…

Impact analysis report for RR 735

BLIMP Tracer

Generated at Jun 1, 2018, 10:49:01 EDT

[1] linux/app.c impacts on 10 deliverables within 2 components

Original Review Request URL: https://reviews.secure.comp.com/735

[2] linux/foo.c impacts on 2 deliverables within 1 component

[Component] ProjectX.Foo

[Deliverable] linux/bar1

[Deliverable] linux/bar2

 https://secure.comp.com/blimp/735

Fig. 7: An illustration of the BLIMP Tracer interface, integrated with the code review platform. The bottom of the left image
resembles a sample comment posted by BLIMP Tracer.

code review. We record the interviews, transcribed and coded
the developers response. By analyzing the transcribed and
coded interview data, we identify three aspects that BLIMP
Tracer can improve in the impact analysis procedures for the
developers.

1) Using only command line tools for impact analysis
is inefficient: Echoing the responses from the survey, all
participants stated that when they investigate the impact of a
patch for code review purposes, they usually use command line
tools. However, using command line tools often does not give a
full picture of the deliverables that a patch impacts. Developers
B, C, and E state that if no dedicated tool for impact analysis
is provided, they would only check the components that are
immediately impacted by the changed file. In other words,
the manual impact analysis that they conduct does not trace
beyond one layer of impacted deliverables. Since these first-
layer deliverables often have several transitive dependencies,
the impact is likely being underestimated. Moreover, the
developers agree the impact analysis process using grep and
find is “slow”. Developer A commented that for a relatively
large file used by several components, “it is impossible to do
[impact analysis] by hand”.

2) BLIMP Tracer provides access to impact information
at the right time for developers: The participants agree that
integrating an impact analysis system with the code review
platform is beneficial for a more well-rounded understanding
of a code patch in a timely manner. Indeed, Developer C
commented that although there are tools that analyze the static
dependency structure of a system, he does not run the tool
every time when he is asked to review a patch. Integrating a
build-based impact analysis directly into the code reviewing

process shows plenty promise. Indeed, Developer D explains
that since doing an impact investigation of a patch takes time,
he only checks the impact for the patch that he authors. The
introduction of BLIMP Tracer will change the reviewing and
developing behaviour. Developer C stated that BLIMP Tracer
would likely help him to assess “a patch that has a lot of
impacted [deliverables]”.

3) BLIMP Tracer improves developers’ awareness of the
impact that patches have on system architecture: Participants
agree that integrating BLIMP Tracer with the code review
platform will accelerate and improve their workflows (Devel-
opers C, D and E). Since BLIMP Tracer automatically displays
impact analysis reports directly, no manual input is required for
developers to see the impacted deliverables. While Developer
D stated that he had used a dedicated impact assessment tool
during development, the others rely on command line tools to
get an approximate sense of the impact of a patch. Indeed,
Developer C commented that having BLIMP Tracer in the
code reviewing platform can help reviewers and patch authors
to “make sure the impacted deliverables [have been tested]”.

Developers on the studied product team at Dell EMC agree
that in addition to improving development workflow, BLIMP
Tracer has the potential to improve the breadth and depth of
impact analysis, as well as save developer time and effort.

B. Additional Benefits of BLIMP Tracer

In addition to making impact analysis easier and faster
for the developers, we wish to know how BLIMP Tracer
would benefit other aspects of development. In order to do
so, we asked survey participants open-ended questions after
they had the opportunity to try BLIMP Tracer. More specif-

ically, following the nature of semi-structured interview, the
questions are based on the participant’s comments on BLIMP
Tracer during the trials. For example, if the participant made
comments about the accuracy of the results of BLIMP Tracer,
we would follow up with questions asking what deliverables
were surprisingly included in or excluded from the impact
list. The follow-up questions unveil two types of benefits that
BLIMP Tracer may provide to improve understanding of the
dependency structure of the studied system.

1) BLIMP Tracer provides knowledge to developers to
reduce unnecessary dependencies in a system: First, using
BLIMP Tracer, developers are able to identify deliverables
that do not have a surface-visible, direct relationship with the
changed files. This may expose problematic or unnecessary
dependencies in the build dependency graph [7]. Removal
of these unnecessary dependencies may speed up incremen-
tal builds. One theme that Developer C and E raised after
examining the BLIMP Tracer report was that there were
some unexpected deliverables appearing in the report. For
example, Developer E commented that he found it “odd” that
a component may be impacted by some change in a function
in some other module. However, after some contemplation,
he commented that it is “understandable how the function is
used in that deliverable, but I need some time to understand
the logic behind it”. Knowing this dependency, he can decide
whether to note this dependency, or to notify the module
owners to remove the potentially unnecessary dependencies.

2) BLIMP Tracer helps accelerating newcomers’ onboard-
ing process: Moreover, BLIMP Tracer provides a resource
that can help new developers to improve their understanding
of the system architecture. A solid understanding of the project
structure will reduce the risk of “shotgun surgery” [22], which
would degrade the system architecture. Indeed, Developer D
mentioned that when he was a newcomer to the project,
the learning curve was steep to understand the connections
between different project components. Therefore, he said: “if
I were a newcomer, I would use BLIMP Tracer to learn the
dependency of files”.

BLIMP Tracer can help the community and developers in
improving and understanding the system architecture.

VII. RELATED WORK

In this section, we situate our work with respect to the
related work on code review and impact analysis.

A. Code Review

Defect hunting is not the only outcome of the code review
practice. Code review also serves as a platform for knowledge
transfer and building team awareness [5]. Rigby and Storey
[25] examined five open-source software projects and found
that developers discuss not only code defects, but also project
design, architecture, project scope, and process issues. Beller
et al. [6] found that for each functional issue in review dis-
cussion, three maintainability issues are fixed. BLIMP Tracer
aims to provide more information on the impact of code

patches under review, so that developers can have a clearer
understanding of the impact that patches have on the set of
(customer-facing) deliverables and products.

Understanding the architecture of the software system is
crucial as software defects may often be related to incorrect
dependencies. Seo et al. [27] studied 26.6 million builds
at Google and observe that most of the build failures are
associated with dependencies (i.e., design or architectural-level
component interactions). Indeed, Paixao et al. [21] found that
developers are generally not aware of architectural changes.
They analyzed code review data from four open source sys-
tems in conjunction with their commits, and found that only
38% of time do developers discuss the impact of their changes
on the architectural structure. To aid in exposing developers to
the higher level impact of their changes, we propose BLIMP
Tracer, a build impact analysis tool that plugs into the code
reviewing interface. The long term vision of BLIMP Tracer
is to improve software quality by more clearly explaining to
developers what the impact of their patches are. Armed with
that clearer understanding, reviewers and testers can focus their
effort more effectively.

B. Build Impact Analysis

We derive the definition of build impact analysis from that
of change impact analysis. Change Impact Analysis (CIA)
refers to the efforts to identify the potential consequences of
a change to a software system [4]. Similarly, build impact
analysis finds the consequence of a change with regard to build
system inputs (source code, data files) and outputs (project
deliverables, products).

Researchers have explored ways to conduct CIA for soft-
ware in different languages and at various granularity levels.
Ren et al. [23] designed Chianti, which uses the interdepen-
dent changes’ history to determine change impact for Java
programs. Apiwattanapong et al. [3] introduced an algorithm
that uses a small amount of dynamic information to efficiently
analyze change impact at the level of methods. Gyori et
al. [14] proposed an algorithm that uses equivalence relations
to discover change impact at the level of statements. Li et
al. [16] surveyed 30 academic publications and found that
although CIA is increasingly crucial in software maintenance,
most of the proposed tools in academia are yet to be applied
in industry. To bridge the gap, we introduce an impact analysis
tool (BLIMP Tracer) that we developed and integrated with a
production code reviewing environment in industry.

Researchers have proposed techniques to analyze data in
previous studies with respect to impact analysis and build
system analysis. Breech et al. [10] used static analysis to
estimate the influence of a change by considering scoping,
function signatures, and global variable accesses. Canfora and
Cerulo [11] used information retrieval algorithms to link the
text-based change request description and the code entities
impacted by the change. Jashki et al. [15] proposed an impact
analysis technique that creates clusters of closely associated
files by mining their co-modification history in version control
systems. Tamrawi et al. [28] proposed SYMake, an infrastruc-

ture and tool that evaluates Makefiles symbolically, and used it
to detect code smells and errors. Al-Kofahi et al. [2] developed
MkDiff to detect changes to a Makefile at the semantic level.
Adams et al. [1] designed MAKAO, a tool for visualizing,
querying, refactoring, and validating build dependency graphs
through parsing build logs. BLIMP Tracer combines impact
and build system analyses by providing build impact analysis
report based on information retrieved from build data in the
past.

VIII. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of our
study.

A. External Validity

Threats to external validity have to do with the generaliz-
ability of our results to other subject systems. BLIMP Tracer is
only integrated with the code review platform of the studied
product team at Dell EMC. The focus on one project may
affect the generalizability of the results. Although we have
reached out to developers with various years of development
and project experience, future study on other subjects may be
needed to arrive at more general conclusions.

Similar to other software engineering studies, we have a low
response rate with our surveys and interviews at Dell EMC. We
recognize that the general population of our studied projects
might have different characteristics and opinions than the ones
that we present. Nevertheless, the purpose of our survey and
interview is not to achieve generalizability, but rather to gather
feedback and insights from practitioners who will interact with
BLIMP Tracer on a daily basis.

B. Internal Validity

Threats to internal validity have to do with whether other
plausible hypotheses could explain our results. We conclude
that BLIMP Tracer shows promise due to our survey and
interview studies. It may be that the participants were biased
towards providing positive feedback to us due to social pres-
sure. To combat this, we explained to all participants that their
frank and honest feedback was what we needed to collect in
order to improve BLIMP Tracer. Nevertheless, the response
may still have been biased towards the positive.

C. Construct Validity

Threats to construct validity have to do with the alignment
of our choice of indicators with what we set out to measure.
Since we generate the build impact analysis report based on the
traversal of build dependency graphs, changes that modify the
BDG may result in inaccurate report. However, in the studied
system, changes that have the potential to change the BDG
are infrequent. In order to provide the most accurate BDG
for generating the reports, we extract the BDG frequently
(twice every day). In addition, BLIMP Tracer prints a warning
message when a change to a known build specification is
detected in the code patch under analysis.

BLIMP Tracer calculates the result of build impact analysis
using files as a unit. Because of that, some of the ‘impacted

modules’ in the report page may not be a direct result from
the code change. Rather, the ‘impacted modules’ could be
directly related to some other functions in the file. Our analysis
is at the file-level because this is the granularity at which
the Make build technology operates. Nonetheless, if a finer-
grained build dependency graph were to become available, the
impact analysis results would likely be even more useful for
developers.

IX. CONCLUSION

Code review is widely used in modern development process
to ensure software quality. However, the mere existence of
code review does not promise improvement in software qual-
ity. A key concern in code review is data-driven discussions
of patch implications. To accurately assign reviewers to assess
code patches and to pinpoint the potential issues that affect the
system, stakeholders need to know what areas of the software
will be impacted by the changes. We introduce BLIMP Tracer,
a build impact analysis system that integrates with the Review
Board code reviewing environment of a product team at Dell
EMC. We evaluate the effectiveness of BLIMP Tracer by
conducting a qualitative study. Through a study that involves
semi-structured interviews with Dell EMC developers, we
make the following conclusions:

• Before the introduction of BLIMP Tracer, developers
often use general-purpose command line tools to analyze
the build impact of a code patch.

• BLIMP Tracer not only made build impact analysis on
code patches faster, but also vastly improves the depth
and breath of impact analysis when compared to tradi-
tional methods.

• BLIMP Tracer can help to onboard new developers by
helping them to better understand the system architecture.

We acknowledge that the Dell EMC project is unique as it
uses a single build system (make). Because of that, future
work is needed to tackle more complex problems in the
presence of multiple build tools or a fractured build graph.
To serve as a transition between the existing technologies that
enable local dependency checks to BLIMP Tracer, it may also
be helpful to offer a service to query for dependencies that
offers information on the degree of dependency of an impacted
deliverable. In addition, future data on whether the developers
use other dimensions of code patches to determine the priority
of review requests may also be a useful extension to this work.

ACKNOWLEDGEMENTS

This research project was supported by Mitacs Canada.

REFERENCES

[1] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design
recovery and maintenance of build systems,” in Proceedings of the 23rd
International Conference on Software Maintenance (ICSM). IEEE,
2007, pp. 114–123.

[2] J. M. Al-Kofahi, H. V. Nguyen, A. T. Nguyen, T. T. Nguyen, and T. N.
Nguyen, “Detecting semantic changes in makefile build code,” in Pro-
ceedings of the 28th International Conference on Software Maintenance
(ICSM). IEEE, 2012, pp. 150–159.

[3] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise
dynamic impact analysis using execute-after sequences,” in Proceedings
of the 27th International Conference on Software Engineering. ACM,
2005, pp. 432–441.

[4] R. S. Arnold and S. A. Bohner, “Impact analysis-towards a framework
for comparison,” in Proceedings of the Conference on Software Main-
tenance. IEEE, 1993, pp. 292–301.

[5] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 35th International
Conference on Software Engineering (ICSE). IEEE Press, 2013, pp.
712–721.

[6] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?” in
Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR). ACM, 2014, pp. 202–211.

[7] C.-P. Bezemer, S. McIntosh, B. Adams, D. M. German, and A. E.
Hassan, “An empirical study of unspecified dependencies in make-based
build systems,” Empirical Software Engineering, vol. 22, no. 6, pp.
3117–3148, 2017.

[8] A. Bosu and J. C. Carver, “Impact of developer reputation on code
review outcomes in oss projects: An empirical investigation,” in Pro-
ceedings of the 8th International Symposium on Empirical Software
Engineering and Measurement (ESEM). ACM, 2014, p. 33.

[9] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study at microsoft,” in Proceedings of the 12th
Working Conference on Mining Software Repositories (MSR). IEEE,
2015, pp. 146–156.

[10] B. Breech, M. Tegtmeyer, and L. Pollock, “Integrating influence mech-
anisms into impact analysis for increased precision,” in Proceedings of
the 22nd International Conference on Software Maintenance (ICSM).
IEEE, 2006, pp. 55–65.

[11] G. Canfora and L. Cerulo, “Fine grained indexing of software reposito-
ries to support impact analysis,” in Proceedings of the 3rd International
Workshop on Mining Software Repositories (MSR). ACM, 2006, pp.
105–111.

[12] Q. Cao, R. Wen, and S. McIntosh, “Forecasting the duration of incre-
mental build jobs,” in Proceedings of the 33rd International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 2017, pp.
524–528.

[13] J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find
bugs: how the current code review best practice slows us down,” in Pro-
ceedings of the 37th International Conference on Software Engineering
(ICSE). IEEE Press, 2015, pp. 27–28.

[14] A. Gyori, S. K. Lahiri, and N. Partush, “Refining interprocedural change-
impact analysis using equivalence relations,” in Proceedings of the 26th
International Symposium on Software Testing and Analysis (ISSTA).
ACM, 2017, pp. 318–328.

[15] M.-A. Jashki, R. Zafarani, and E. Bagheri, “Towards a more efficient
static software change impact analysis method,” in Proceedings of the
8th Workshop on Program Analysis for Software Tools and Engineering.
ACM, 2008, pp. 84–90.

[16] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based

change impact analysis techniques,” Software Testing, Verification and
Reliability, vol. 23, no. 8, pp. 613–646, 2013.

[17] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories (MSR). ACM,
2014, pp. 192–201.

[18] ——, “An empirical study of the impact of modern code review practices
on software quality,” Empirical Software Engineering, vol. 21, no. 5, pp.
2146–2189, 2016.

[19] P. Miller, “Recursive make considered harmful,” AUUGN Journal of
AUUG Inc, vol. 19, no. 1, pp. 14–25, 1998.

[20] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,” in
Proceedings of the 22nd International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2015, pp. 171–180.

[21] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman,
“Are developers aware of the architectural impact of their changes?”
in Proceedings of the 32nd International Conference on Automated
Software Engineering (ICSE). IEEE Press, 2017, pp. 95–105.

[22] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053–1058,
1972.

[23] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: a tool
for change impact analysis of java programs,” in ACM Sigplan Notices,
vol. 39, no. 10. ACM, 2004, pp. 432–448.

[24] P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 9th Joint Meeting on Foundations of
Software Engineering (FSE). ACM, 2013, pp. 202–212.

[25] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in Proceedings of the 33rd
International Conference on Software Engineering (ICSE). ACM, 2011,
pp. 541–550.

[26] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, p. 131, 2009.

[27] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge,
“Programmers’ build errors: a case study (at google),” in Proceedings
of the 36th International Conference on Software Engineering (ICSE).
ACM, 2014, pp. 724–734.

[28] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen, “Build
code analysis with symbolic evaluation,” in Proceedings of the 34th
International Conference on Software Engineering (ICSE). IEEE Press,
2012, pp. 650–660.

[29] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for
imbalanced data,” in Proceedings of the 37th International Conference
on Software Engineering (ICSE). IEEE Press, 2015, pp. 99–108.

[30] Q. Tu and M. W. Godfrey, “An integrated approach for studying archi-
tectural evolution,” in Proceedings of the 10th International Workshop

on Program Comprehension. IEEE, 2002, pp. 127–136.

	Introduction
	Paper Organization

	Background
	Code Review at Dell EMC
	A Motivational Example

	Preliminary Survey
	Survey Design
	Demographic Information
	Change Impact Awareness
	Change Impact Practice

	BLIMP Tracer Design
	Changed File Detection
	Build Dependency Graph Extraction
	Graph Traversal and Filtering
	Results Presentation

	User Study Design
	An Overview of the Industrial System
	Interview Design

	User Study Results
	Effectiveness of BLIMP Tracer
	Using only command line tools for impact analysis is inefficient
	BLIMP Tracer provides access to impact information at the right time for developers
	BLIMP Tracer improves developers' awareness of the impact that patches have on system architecture

	Additional Benefits of BLIMP Tracer
	BLIMP Tracer provides knowledge to developers to reduce unnecessary dependencies in a system
	BLIMP Tracer helps accelerating newcomers' onboarding process

	Related Work
	Code Review
	Build Impact Analysis

	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Conclusion
	References

