
Exploring the Notion of Risk in Code Reviewer

Recommendation

Farshad Kazemi∗, Maxime Lamothe†, Shane McIntosh∗

∗University of Waterloo, Canada, †Polytechnique Montréal, Canada

E-mail: {given_name}.{family_name}@{∗uwaterloo.ca||†polymtl.ca}

AbstractÐReviewing code changes allows stakeholders to
improve the premise, content, and structure of changes prior
to or after integration. However, assigning reviewing tasks to
team members is challenging, particularly in large projects.
Code reviewer recommendation has been proposed to assist
with this challenge. Traditionally, the performance of reviewer
recommenders has been derived based on historical data, where
better solutions are those that recommend exactly which reviewers
actually performed tasks in the past. More recent work expands
the goals of recommenders to include mitigating turnover-
based knowledge loss and avoiding overburdening the core
development team. In this paper, we set out to explore how
reviewer recommendation can incorporate the risk of defect
proneness. To this end, we propose the Changeset Safety Ratio
(CSR) ± an evaluation measurement designed to capture the risk
of defect proneness. Through an empirical study of three open
source projects, we observe that: (1) existing approaches tend to
improve one or two quantities of interest, such as core developers
workload while degrading others (especially the CSR); (2) Risk
Aware Recommender (RAR) ± our proposed enhancement to
multi-objective reviewer recommendation ± achieves a 12.48%
increase in expertise of review assignees and a 80% increase
in CSR with respect to historical assignees, all while reducing
the files at risk of knowledge loss by 19.39% and imposing a
negligible 0.93% increase in workload for the core team; and
(3) our dynamic method outperforms static and normalization-
based tuning methods in adapting RAR to suit risk-averse and
balanced risk usage scenarios to a significant degree (Conover’s
test, α < 0.05; small to large Kendall’s W).

Index TermsÐCode Review Recommendation, Mining Software
Repositories, Software Quality

I. INTRODUCTION

Code review is the process by which developers assess each

other’s code changes [1]. This process can help to prevent

bugs in their early stages before they are merged into the

code base [2]. The tool-based code review process is known to

provide stakeholders with technical [3±5] and non-technical [6]

benefits. A popular form of code review, which often involves

a tool-based procedure, is called modern code review [7].

Finding reviewers with the time to review a code change and

familiarity with the modified subsystems has been a challenge

in organizations who adopt code review [8, 9]. This is especially

the case for large organizations with hundreds of developers.

In such organizations, the author of a contribution may not yet

have a professional relationship with the team responsible for

overseeing the development of all of the components that they

have changed. Code Reviewer Recommendation (CRR) aims

to help stakeholders to find suitable reviewers [10].

While early reviewer recommendation studies were evaluated

against historical records, i.e., who performed each task in the

past [11], more recent work explores how recommendation

approaches can be used to balance quantities of interest

[12, 13]. These approaches consider previous interactions

of the candidates with the modified files, the workload of

the candidates at the time of the code review, and previous

interactions between the developers in the project. Candidate

reviewers are then ranked based on these metrics, and top-

ranked candidates are suggested to decision-makers.

The results from previous studies suggest reviewers who

share properties with those who performed similar reviews

in the past and improve evaluation metrics such as files at

risk. While the measures that have been proposed by previous

studies align with important dimensions, the risk of defect

proneness has not been explored. The risk of defect proneness

of a code change indicates how probable it is for the change

to induce fixes in the future. As an intervention, changes with

a high risk of inducing future fixes may be assigned to subject

matter experts for review. Prior work suggests that subject

matter experts may be more adept at identifying problems

during the review process [14, 15]. However, this intervention

is likely to impose a greater burden on key team members.

In this paper, we take the position that an ideal recom-

mendation approach should balance the trade-off between the

burden on expert reviewers and the risk of defect proneness.

Therefore, we set out to incorporate defect proneness in the

reviewer recommendation process. More specifically, we set

out to address the following research questions:

RQ1 How do existing code reviewer recommenders per-

form with respect to the risk of inducing future fixes?

Motivation: Every code change induces some degree of

risk. The degree of risk varies based on the change and

its domain [16]. A key goal of the code review process is

assessing and mitigating the risk of introducing defects

during or shortly after the code integration process [17].

It is crucial to involve subject matter experts in the review

process to achieve that goal. Otherwise, if non-experts

review high-risk tasks, defects may slip through the

integration process. Thus, we first set out to understand

how well existing reviewing assignments and CRR-based

reassignments perform in terms of risk mitigation.

Results: We observe an inherent trade-off between our

studied quantities of interest. For instance, the Reten-

tionRec recommender ± a reviewer recommendation

approach proposed to minimize the risk of developer

turnover-based knowledge loss while ignoring other

quantities of interest ± reduces files at risk by up to

23.89% with respect to the reviewers who have already

performed the review. On the other hand, RetentionRec

underperforms in terms of the Changeset Safety Ratio

(CSR) ± a measure that we propose to indicate the

performance of a recommendation approach concerning

the safety of the code change process ± by 4.56% to

37.07%.

RQ2 How can the risk of fix-inducing code changes be

effectively balanced with other quantities of interest?

Motivation: Optimizing for other quantities of interests,

such as files at risk of turnover, without considering

defect proneness is unlikely to perform well due to

the inherent trade-offs discovered in RQ1. Therefore,

an approach is needed to incorporate defect proneness

in recommendation decisions without overly disrupting

other quantities of interest. To that end, we propose

RAR ± a reviewer recommendation approach that aims

to incorporate defect risk into recommendations ± and

set out to evaluate how well it performs.

Results: Our experiments indicate that RAR increases

the expertise of reviewers assigned to reviews by 12.48%

and the CSR by 80.00% while reducing files at risk

of turnover by -19.39% and only increasing the core

development team workload by 0.93%. Moreover, we

find that project or team-specific tolerance of risk can

be incorporated by adjusting the threshold PD, which

is the threshold of the likelihood of fix-inducing PRs

at which changes are deemed risky enough to require

intervention. The effective PD interval is defined as the

change interval for which the performance of the RAR is

impacted. For instance, in Roslyn, the effective interval

of PD is 0 - 1; however, the effective interval of PD is

0 - 0.3 and 0 - 0.1 for the Kubernetes and Rust projects,

respectively. Thus, PD must be calibrated to its effective

range for RAR to achieve optimal results.

RQ3 How can we identify an effective fix-inducing likeli-

hood threshold (PD) interval for a given project?

Motivation: The performance of RAR depends on the

PD setting. PD itself is dependent on a project’s past

defect proneness. Moreover, different projects may assign

different weights to the importance of defect proneness.

Therefore, we set out to propose approaches to support

stakeholders in tuning PD to an appropriate value for

their development context.

Results: We propose static, normalization, and dynamic

approaches to tune the value of PD. Results that

explore PD settings in risk-averse, risk-tolerant, and

balanced contexts indicate that the proposed methods

affect the performance of RAR significantly. Moreover,

the dynamic method outperforms the others in risk-

averse and balanced contexts to a statistically significant

(Conover’s Test, α < 0.05) and practically significant

degree (Kendall’s W = 0.0727 - 0.543, small - large).

II. RELATED WORK

In this section, we describe related studies on defect

proneness prediction and reviewer recommendation approaches.

Reviewer Recommendation. The main task of a reviewer

recommender is to suggest suitable reviewers for reviewing

tasks. Reviewer recommenders often leverage historical data

to make recommendations [18, 19]. Other approaches aim

to optimize other characteristics, such as workload balance

[12, 20] or distributing knowledge [13]. Regardless of the

optimization method, when a new Pull Request (PR) is created,

the recommender ranks potential candidates based on the score

that has been calculated by its objective function.

Recently, however, early work has explored a change in

perspective of the goal of the reviewer recommendation process.

Kovalenko et al. [21] observed that developers are often aware

of the top recommendations of CRR approaches, suggesting

that other goals, such as workload balancing, might be more

appropriate. Gauthier et al. [22] found that history-based evalua-

tions of reviewer recommenders are often more pessimistic than

optimistic since the proposed reviewers who did not perform

a review (i.e., incorrect recommendations) often reported high

comfort levels with those review tasks. Mirsaeedi and Rigby

[13] proposed Sofia, a multi-objective recommendation system

that tries to maximize reviewer expertise and minimize the

risk of turnover-based knowledge loss, as well as the workload

on the core development team. In this paper, we set out to

complement the prior work by also incorporating estimates of

the risk of inducing future fixes in the recommendation process.

To this end, we evaluate three different projects using seven

different approaches. We use cHRev [19] as a conventional

recommender to suggest reviewers. In addition, we consider

greedy recommendation strategies like LearnRec [13], which

tries to maximize the learning from a PR. We also evaluated

Sofia [13] as a state-of-the-art recommender.

Defect Prediction. Defect prediction models are used to help

the stakeholders of a project focus their limited resources

on bug-prone modules [23]. Practitioners have used defect

prediction systems to find bugs in their early stages, reducing

technical debt [24] and the effort required to fix them. These

models can also help teams identify buggy changes before

they are merged into the repository. These defect prediction

models are often trained using historical data and then used

to assess new code changes by estimating the likelihood that

a given code change will induce a future fix (i.e., estimating

the fix-inducing likelihood). There have been a plethora of

contributions on defect prediction, but we focus below on two

lines of work that are most relevant, i.e., (1) approaches to

more accurately identify fix-inducing changes and (2) proposed

indicators of fix-inducing commits. Just-In-Time (JIT) defect

prediction models Ð like any prediction model Ð will only

be as good as their training data. Since the true set of fix-

inducing changes is not clearly labelled in historical software

data, heuristic approaches are used to recover that signal.

The SZZ algorithm [25] first identifies bug-fixing commits

by mining for keywords such as ªfix" or ªbug" in commit

messages. Next, potential fix-inducing commits are associated

with these fixes by tracing lines that were removed or modified

back to the commit(s) that introduced them. Finally, filters

are applied to remove potential fix-inducing changes that are

unlikely to have caused the bug (e.g., potentially fix-inducing

commits that were recorded after the bug was created in the

issue tracker). The SZZ algorithm has seen several revisions

in the literature [26, 27]. Since improving SZZ is beyond the

scope of this paper, we use the off-the-shelf implementation

of SZZ available in the Commit Guru tool [28].

The set of indicators that are used to predict fix-inducing

changes are derived from the change itself, historical tendencies

of the modified areas of code, and characterization of the

personnel involved with the change [23]. For example, Kamei

et al. [29] used measures of the size, purpose, and diffusion of

a change, as well as the historical tendencies of the modified

modules and the experience of change authors to estimate the

likelihood of a change to induce future fixes. Hoang et al.

[30] and McIntosh et al. [31] expanded the set of measures to

include review metrics such as iterations, number of reviewers,

and comments. Pascarella et al. [32] added more detailed

measures such as owner’s contribution lines, and change code

scattering. In this paper, we use the set of measures that have

been provided by Commit Guru to calculate the 13 metrics

similar to Kamei et al. ’s set of measures for various Pull

Requests (PR) based on PR’s Commits.

Different variables are used as defect prediction model input,

usually based on the change, source code metrics and historical

data [23]. However, some studies have used code change chunks

as well as metrics such as developer networks to determine

the buggy commits [33]. In this study, we use the output of

Commit Guru to identify commit features. The tool needs a

GitHub repository address to perform the SZZ analysis on the

repository. Given a specific Git branch, Commit Guru starts

analyzing the desired Git branch and identifies the fix-inducing

commits using the SZZ algorithm. The implementation details

of the Commit Guru tool can be found in a study by Kamei

et al. [29]. Commit Guru extracts thirteen metrics for each

commit (Table 2 in supporting materials [34]) and a flag that

indicates whether the commit is suspected to be fix-inducing.

We use these metrics and the fix-inducing flag to predict the

defect proneness of code changes.

III. STUDIED DATASETS

In this section, we present the sources of data and the projects

used to conduct our study and the rationale for their selection.

Data Source. To evaluate RAR, we seek to ground our

analysis in a comparison to previous multi-objective reviewer

recommenders [13]. Therefore, to obtain a fair comparison,

we begin with the same subject systems that Mirsaeedi and

Rigby studied [13]. However, two of these projects, CoreFx

and CoreCLR have been since merged with the .Net Runtime

project. Due to this migration, Commit Guru was unable to

obtain the necessary information for the prediction model and

rendered us unable to process the master branch for possible fix-

inducing commits. As a result, we omit CoreFx and CoreCLR,

focusing our analysis on Rust, Kubernetes, and Roslyn. Rust

and Kubernetes are community-driven projects, and Roslyn

is an industry project developed openly on GitHub. These

projects are well-established (more than four years old) with

more than 10K PRs. Kubernetes has had a significant impact on

cloud computing platforms with more than 3.1K contributors.

Roslyn, with 524 contributors, is an open source .NET compiler

platform for languages such as C# and VB. Finally, Rust,

with 3.8K contributors, is a multi-paradigm, general-purpose

programming language. Further details of these projects are

listed in Table 1 of our supporting materials [34].

Data Collection. We begin our data collection process by

downloading the relevant details from the replication package

provided by Mirsaeedi and Rigby [35]. The shared data

includes commits, files that have been modified in each commit,

developers involved in a PR, a list of developers and reviewers

of each PR, and developers’ interaction with the PR. To perform

defect analysis, our approach requires a list of the commits that

comprise each of the PRs. Moreover, we need to compute the

measures listed in Table 2 in supporting materials [34] to train

our defect prediction model. We use the GitHub API to gather

the additional data for each PR in the data set. We did not use

the commits of a PR to calculate additions and deletions since

they might have cancelled each other out (e.g., one line added

in one commit could be removed in the next commit of the

same PR). Instead, we calculate the net number of additions

and deletions extracted directly for each of the PRs.

IV. STUDY DESIGN

This study is comprised of two parts: (1) identifying fix-

inducing PRs and (2) evaluating reviewer recommendation

approaches. This section describes each part of our study and

explains the rationale behind our design decisions.

A. Identifying and Predicting Fix-Inducing PRs

Because our approach aims to incorporate the notion of risk

in the recommendation process, identifying fix-inducing PRs

with which to evaluate our approach is an important part of

the study. In this study, we operationalize risk by mining the

repositories of the studied projects for defect-fixing, and fix-

inducing commits using Commit Guru [28]. Figure 1 provides

an overview of our discovery process for risky PRs.

Step1: Extract defect prediction data: We first apply Commit

Guru [28] to the studied repositories in order to produce

data sets of fix-inducing commits, as well as a popular

set of measures for their prediction. Commit Guru clones

each repository, computes commit-level measures that share a

relationship with risk (e.g. patch size, diffusion), and applies

the SZZ algorithm [25] to identify which historical commits

have induced future fixes. Finally, a logistic regression model

is fit to estimate the riskiness of code changes. Table 2 in

supporting materials [34] shows the set of used risk measures.

Although studies by Quach et al. showed some of the

limitations of SZZ ([36, 37]), its output is still an indicator

of bug-inducing probability. Moreover, we decided not to use

Step 1: Identify the buggy commits and their metrics

Commit data from
previous periods

Create a logistic
regression model

Commit data from
current period

Evaluate the model
performance

Step 2: Train defect prediction model and test it

Normalize
Omit highly
 correlated

metrics

Preprocessing

Commit Guru
Analyzes

the Commits

Determine commit
metrics and fix-
inducing commits Commit

Guru
Analyzed

result

Prediction Model

Is change fix-
inducing?

Historical data

Selected
Projects

Have more
than 10K

Pull-
Request

Have review
rate more
than 0.25

Have a life
more than 4

years

Have more
than 10K

files.

Project Filters

GitHub
Projects

Figure 1: The simplified overall architecture of the project selection filters and the defect prediction process.

manually verified bug datasets such as the one by Rodriguez-

Perez et al. [38] as we wanted to view the effects of the

recommendation approaches in their natural habitat, which

would normally be automated and include tools such as SZZ.
Step2: Train and test PR-level risk model: We use the risk

measures extracted by Commit Guru to train defect prediction

models. A logistic regression method is used to train the

model for each quarter (three months). The three-month time

interval is based on similar studies, like Mirsaeedi and Rigby

[13], and retraining this period length setting allows us to

extend reviewer recommendation approaches to incorporate

risk and more directly compare results. Moreover, updating

the prediction model in short (three months) intervals has been

recommended to counteract concept drift [39]. This step is

decomposed into the following tasks:

1) Data preprocessing. Before training the models, data must

be preprocessed to counteract biases. First, we standardize

the risk measures since their magnitudes vary broadly. We

use Scikit StandardScaler1 to transpose all risk measures’

values to have zero mean and unit variance. Then, we

identify highly correlated measures, as they affect the

model’s performance. To this end, we calculate pairwise

Pearson correlation (ρ) between each pair of risk measures.

As suggested by Tay [40], any pair of risk measures with

|ρ| > 0.6 is considered to have too much similarity to

include in the same model fit. In such cases, we remove all

the measures but one (Based on their order of appearance

as listed in Table 2 in supporting online materials [34]).

2) Fit defect prediction model. Once the data has been

preprocessed, we use the data to fit a logistic regression

model for every quarter using the previous quarters’ data.

The model then estimates the likelihood that each code

change will be fix-inducing in the following quarters.

3) Aggregate risk estimates to the level of PRs. Using

the trained models, we estimate the riskiness of each

PR by aggregating the risk measures across all of the

PR changes. We use the PR’s commits risk measures

to calculate the risk measures for a PR. Table 2 in the

supporting online materials [34] has a brief explanation

of how each of these risk measures is calculated from

the set of commits belonging to a PR. Using the PR

risk measures, the model estimates the PR’s likelihood

of inducing a future fix. We use the balanced accuracy

performance measure to evaluate the performance of our

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing
.StandardScaler.html

models since our datasets are inherently imbalanced, i.e.

there are more non-fix-inducing PRs than fix-inducing

PRs. The median balanced accuracy over different periods

for Roslyn, Rust, and Kubernetes projects are 75.9%, 50%,

and 97.5%, respectively.

B. Ranking potential reviewers of a PR

As the next step, we use the fix-inducing likelihood of

the PR and its risk measures to suggest reviewers for each

PR. We evaluate seven baseline approaches (RQ1) as well as

our proposed method, RAR (RQ2). We describe the baseline

approaches below, and describe RAR in Section VI.

1) AuthorshipRec: Suggested by Mockus and Herbsleb [41],

the authorship of a file is an important factor when assigning

software experts to (reviewing) tasks. Bird et al. [42] formulated

the AuthorshipRec in their paper based on the proportion of

the files that a developer modified prior to the PR.

2) RevOwnRec: Thongtanunam et al. [4] suggested a new re-

viewer recommender based on the developers’ previous review

history. The rationale was that the project code reviewers for

each project subsystem are constant most of the time. Similarly

to AuthorshipRec, RevOwnRec considers the proportion of

a developer’s reviews or modifications relative to all of the

reviews and modifications in a PR.

3) cHRev Recommender: The cHRev recommender [19] is

a popular conventional reviewer recommender. When ranking

developers as potential candidates of a code change, cHRev

considers the developer’s expertise from previous reviews as

well as the recency of the contributions. To rate the fit of a

developer D for reviewing a file F, the xFactor was used:

xFactor(D,F) =
Cf

C ′

f

+
Wf

W ′

f

+
1

|Tf − T ′

f |+ 1
(1)

Where Cf , Wf , and Tf represent the number of review

comments, the number of workdays that D commented on

the file’s reviews, and the most recent day that D worked

on F, respectively. The prime versions of the variables in the

denominator represent the total number used to normalize the

output. Then, the fit for each developer is estimated using the

summation of the xFactor for all the files in the code change.

4) LearnRec: The LearnRec recommender is designed to

distribute knowledge among team members. LearnRec suggests

developers who are poised to learn the most from reviewing a

PR. ReviewerKnows has been suggested as a way to measure

how knowledgeable a potential reviewer is about a review

request [13]. The ReviewerKnows estimates how familiar a

developer would be with the modified files of a review request.

It is usually favourable to distribute the knowledge among

developers in repositories to mitigate any loss of knowledge

if any developer leaves the project. To this end, LearnRec is

formulated by subtracting ReviewerKnows from one, which

estimates how much a developer can learn by reviewing a PR.

This metric can be used to create a reviewer recommender

that distributes the knowledge among the project developers by

assigning the review to the developer with the largest LearnRec.

5) RetentionRec: Although LearnRec seems like a rea-

sonable choice to prevent knowledge loss, in reality, many

developers do not contribute to a project over a long time

[43]. Those who stand to learn the most may leave the project

before that knowledge can be put to use. To mitigate this issue,

contribution ratio and consistency ratio have been proposed.

The contribution ratio for a developer is the proportion of

contributions during the previous particular period of time

(e.g., one year) for which the contributor is responsible.

The consistency ratio is the proportion of sub-periods (e.g.,

months) that the developer was actively contributing to the

project throughout a study period (e.g., year). As developers

become more consistent or more (proportionally) active, the

RetentionRec increases, suggesting that it is less likely that

they will leave the project.

6) TurnoverRec: Mirsaeedi and Rigby [13] multiplied

RetentionRec and LearnRec and created TurnoverRec. This

recommender helps with distributing knowledge among the

more active members of the development team. Recommending

reviewers based on this measure minimizes the risk of turnover-

induced knowledge loss caused by developers leaving the

company by distributing knowledge among active members.

7) Sofia: Sofia [13] is a combination of TurnoverRec and

cHRev whose objective is to distribute knowledge among the

more active team members whenever files with a large risk of

knowledge loss are present in a PR. The scoring function used

for the developer (D) and the code change R is:
{

cHRev(D,R), if |knowledgeable(f)| ≤ d, anyf |f ∈ R

TurnoverRec(D,R), otherwise
(2)

We consider d=2 in this equation, similar to the original work

by Mirsaeedi and Rigby [13], to prevent any knowledge loss

by leaving one developer from the team.

C. Recommendation Component

We apply these reviewer recommender to our datasets and

calculate the recommenders’ scores for all the candidate re-

viewers. We then rank potential candidates based on the scores.

Configurable parameters include the number of reviewers per

PR and the maximum number of files per PR for the reviewer’s

knowledge. For the purposes of this paper, we choose only the

top suggested candidate per PR and randomly replace it with

one of the actual reviewers (to match prior work [13]). We only

consider PRs with less than 100 files and do not associate the

PR with developers’ knowledge otherwise regarding maximum

files per PR. It is because one developer cannot perceive large

code changes as argued by Bird et al. [44].

V. EVALUATION SETUP

In this section, we describe the evaluation metrics used

to assess the performance of reviewer recommenders and

our rationale for selecting those metrics. As explained in

Section II, conventional recommendation approaches aim to

recommend the reviewers who performed the task [19, 45±47].

However, Kovalenko et al. [21], suggest that recommending

the reviewer who reviewed a PR provides little value to the

project. Furthermore, there exist many qualified developers who

may not have reviewed PR but would have been comfortable

doing so [22]. Conventional evaluation methods consider these

recommendations incorrect and penalize the recommenders for

making such suggestions.

To assess the effect of a recommendation approach on the

mitigation of the risk of fix-inducing PRs, we leverage the

simulation approach presented by Mirsaeedi and Rigby [13].

These measures quantify previously discussed aspects of the

reviewer recommendation process and estimate the performance

of a reviewer recommender through history-based simulation.

We run simulations for the selected projects and compare

the outcome of the recommenders with one another with

respect to the evaluation measures. We expand the set of

evaluation measures proposed by Mirsaeedi and Rigby [13] to

incorporate the CSR Ð a cumulative measure of the risk

of fix-inducing changes in a given period of time. These

measures originated from the challenges and expectations

of the researchers who studied the code review process and

recommendation approaches prior to this study [1].

In the remainder of this section, we explain each of the

recommendation evaluation measures we employ in this study.

Expertise. Expertise of the reviewers assesses the recom-

mended reviewers by the expertise that they have in the PRs

they have been tasked to review. It is the primary evaluation

criterion used in past studies [48, 49]. Past work has indicated

the important role that involving subject matter experts has on

the review process [6, 14]. To quantify this measure, Mirsaeedi

and Rigby [13] proposed the following measure:

Expertise(Q) =

Reviews(Q)
∑

R

FileReviewersKnow(R)

FileUnderReview(R)
(3)

Where Q is the quarter in which this metric is calculated. A

developer is assumed to know a file if they have modified or

reviewed the file prior to the PR reviewing task.

CoreWorkload. Having all PRs reviewed by experts is ideal,

but there is an inherent trade-off between the time that experts

invest in reviewing PRs and the amount of time they have

for other development tasks [14]. The problem amplifies as

projects grow if the core developer teams do not grow as well.

Mirsaeedi and Rigby [13] proposed a static core team size of

the top 10 reviewers and using the following equation, estimate

the reviewing workload that the core team is coping with:

CoreWorkload(Q) =

Top10Reviewers(Q)
∑

D

NumReviews(D) (4)

Files at Risk of turnover (FaR). The loss of knowledge

caused by knowledgeable developers leaving a project may

consume resources and even stall its progress. The File at Risk

of turnover (FaR) measures the number of files known by zero

or one developer in a period of one quarter. The formula [44]

to calculate this measure is:

FaR(Q) =
{

f |f ∈ Files, |ActiveDevs(Q,F)| ≤ 1
}

(5)

Where ActiveDevs represent the developers who are familiar

with the set of files F and are still actively contributing to the

project by the end of quarter Q.

Changeset Safety Ratio (CSR). The replacement of reviewers

does not affect the incidences of bugs in our simulation.

Instead, to assess the impact of replacing reviewers on risk,

we assume that having an expert, preferably one who has

recently interacted with files in the code change, will reduce

the likelihood of merging fix-inducing code changes [42]. To

this end, we formulate the Changeset Safety Ratio(CSR) as a

measure of how well the review assignments have mitigated

the fix-inducing likelihood of a set of PRs:

CSR(Q) =

Reviews(Q)
∑

R

(1− DefectProb(R))× MaxXFactor(R) (6)

The DefectProb is the risk estimate of a PR being fix-inducing,

and the MaxXFactor is the maximum score of the xFactor

(equation 1) among all the suggested reviewers of a PR.

The xFactor incorporates both the recency and quantity of

contributions in assessing reviewer expertise and is at the core

of the cHRev recommender [19]. If the risk of inducing a future

fix that a PR presents is small, we may assign developers with

less expertise to that code change without impacting the CSR

disproportionately. Increases in CSR indicate that the code

change is less likely to be fix-inducing or that the developer’s

maximum expertise has increased. In either case, increases to

CSR suggest that the review process is performing well in

terms of risk mitigation.

VI. EXPERIMENTAL RESULTS

In this section, we describe our experiments, the results and

the analysis of the results. We use the percentage of change to

evaluate different reviewer recommenders’ performance:

∆MeasureChange(Q) = (SimulatedMeasure(Q)
ActualMeasure(Q) − 1)× 100 (7)

The ActualMeasure and SimulatedMeasure refer to the

calculated evaluation metric for the historical data and a

simulation run, respectively.

RQ1: How do existing code reviewer recommenders perform

with respect to the risk of inducing future fixes?

In this experiment, we seek to determine whether reviewer

recommenders mitigate the risk of inducing future fixes by

introducing an evaluation measure (CSR).

Approach. For each studied system, we analyze the historical

data and fit one model per quarter to estimate the likelihood that

a PR is fix-inducing. Then, starting from the second quarter,

Table I: Recommender performance vs. reality. Up and down

arrows indicate improvement and degradation, respectively.

CRR Project Expertise Workload FaR CSR

A
u
th

o
rs

h
ip

R
ec

Roslyn 15.52% ↑ -7.045% ↑ 34.91% ↓ 17.50% ↑

Rust 10.64% ↑ 4.09% ↓ 42.58% ↓ 16.66% ↑

Kubernetes 12.87% ↑ -2.07% ↑ 18.60% ↓ 18.36% ↑

R
ev

O
w

n
R

ec Roslyn 21.82% ↑ 1.83% ↓ 17.5% ↓ 2.76% ↑

Rust 12.72% ↑ 8.16% ↓ 98.62% ↓ -9.57% ↓

Kubernetes 18.56% ↑ 3.89% ↓ -4.05% ↑ 1.08% ↑

cH
R

ev

Roslyn 12.35% ↑ -1.52% ↑ 0% − 75.06% ↑

Rust 7.72% ↑ -2.11% ↑ 11.84% ↓ 92.09% ↑

Kubernetes 13.97% ↑ -3.06% ↑ -11.27% ↑ 104.31% ↑

L
ea

rn
R

ec Roslyn -23.85% ↓ -34.77% ↑ 138.84% ↓ -36.20% ↓

Rust -50.27% ↓ -50.26% ↑ 122.63% ↓ -61.44% ↓

Kubernetes -34.98% ↓ -34.55% ↑ 49.1% ↓ -46.38% ↓

R
et

en
ti

o
n
R

ec

Roslyn 22.92% ↑ 20.36% ↓ -23.89% ↑ -27.22% ↓

Rust 13.38% ↑ 15.70% ↓ -16.86% ↑ -4.56% ↓

Kubernetes 19.75% ↑ 47.78% ↓ -20.94% ↑ -37.07% ↓
T

u
rn

o
v
er

R
ec

Roslyn -14.66% ↓ 0.67% ↓ -38.33% ↑ -33.51% ↓

Rust -34.21% ↓ -4.38% ↑ -23.66% ↑ -53.43% ↓

Kubernetes -25.72% ↓ -0.09% ↑ -30.32% ↑ -44.49% ↓

S
o
fi

a

Roslyn 7.38% ↑ 4.03% ↓ -34.9% ↑ 55.22% ↑

Rust 4.97% ↑ 0% - -25.42% ↑ 73.09% ↑

Kubernetes 9.42% ↑ 1.70% ↓ -28.67% ↑ 96.74% ↑

we use a model fit of the previous quarter to estimate the

fix-inducing likelihood of each PR. We use PR metrics listed

in table 2 in the supporting online materials [34] as the model’s

input. We then rank potential reviewers for each PR using the

seven baseline recommendation approaches. For every PR in

each studied system, we swap one of the actual reviewers with

our top candidate and evaluate the performance of this change

by calculating the MeasureChange according to Equation 7.

Results. Table I presents the results of this experiment. The

up and down arrows next to the numbers indicate performance

improvement and degradation, respectively.

Analysis. For AuthorshipRec, code owners are predominantly

assigned to reviews. Thus, increases to CSR are not unexpected,

since coders owners are among the most knowledgeable contrib-

utors to whom reviewing tasks may be assigned. However, this

assignment prevents others from learning about files they have

not developed, which causes the files at risk of turnover measure

to degrade. For RevOwnRec, each studied system has a trusted

developer circle for the reviews; hence this recommender fails

to optimally distribute knowledge and improve files at risk of

turnover. Since these reviewers may not be the file owners,

the CSR also tends to decrease or not to change considerably.

Figure 2: Relation analysis of CSR and Files at Risk of turnover.

For cHRev, the score function is based on xFactor. Hence,

the CSR is consistently improved, notably at the cost of limiting

the improvement of workload for the core development team

in comparison to other recommendation approaches.

For LearnRec, there is no consideration for the retention

of recommended candidates, so the files at risk of turnover

measure tends to increase because many reviewers leave the

project. The suggested reviewers by this recommendation

system are not experts, but seek to learn by reviewing the

PR, so the CSR measure tends to decrease.

For RetentionRec, the recommender suggests candidates with

the most knowledge about the project, not a specific PR. As

a result, undesirably, the core developers’ workload increases

because they are mostly permanent developers of a project.

However, their knowledge causes CSR and expertise to improve.

For TurnoverRec, the recommender favours the most per-

manent candidates, regardless of the degree of knowledge

that they have about the code being modified by a PR. This

bias leads to knowledge retention, thus improving files at risk

of turnover. However, since distributing knowledge among

developers is an important risk mitigation measure, the choice

of less knowledgeable candidates causes the CSR to decrease.

For Sofia, when none of the changed files are at risk of

turnover, cHRev is used. This compensates for expertise and

CSR measures that are lost due to knowledge distribution caused

by TurnoverRec. However, most of the time, this is at the cost

of increasing the workload for the core development team.

Sofia uses TurnoverRec for changesets with files at risk of

knowledge loss, which has a favourable effect and causes the

files at risk of turnover measure to improve.

Figure 2 shows the relation between CSR and files at risk of

turnover in our experiments. The bottom-left quadrant shows

evidence of a trade-off between CSR and Files at Risk for

approaches that optimize only one characteristic. Meanwhile,

cHRev and Sofia mostly present results in the top-left quadrant.

This indicates that they are generally robust to the trade-off

between CSR and files at risk of turnover, and can broadly

optimize both the risk of knowledge turnover and CSR. Finally,

the bottom-right quadrant shows that optimizing for learning

opportunities (e.g., using LearnRec) negatively impacts both

files at risk of turnover and CSR.

These observations indicate that if there is no deliberate

effort to distribute knowledge, as the files at risk of turnover

improves, unless the necessary restrictions are put in place,

such as a limitation on the most knowledgeable reviewers,

the CSR degrade. This decrease, in turn, increases the chance

of merging a fix-inducing PR into the project. This suggests

that there is an inherent trade-off between the files at risk of

turnover and CSR evaluation measures. This does not hold

in all cases. For example, in LearnRec, both files at risk

of turnover and CSR decreases which is likely because the

recommended candidates leave the project as retention is not

considered in the score function. Since leavers may leave a

gap in the team understanding of an area of the codebase, the

files at risk of turnover and CSR measures tend to degrade. For

Sofia, the recommender’s candidate scoring function maximizes

the expertise of the reviewers unless there is a file with few

knowledgeable developers in the changeset. In these cases Sofia

tries to distribute knowledge which lessens the core workload

and improves the files at risk of turnover. This active effort

cancels out the native trade-off and improves both files at

risk of turnover and CSR.Sofia works better in terms of fix-

inducing code changes, but like other approaches, it does not

have any parameter to control the sensitivity to these changes.

The inflexibility may become a barrier to adoption for this

recommender as it cannot be tuned to suit the needs of users.

The evaluation results indicate that unless active effort is put

into knowledge distribution while keeping the expertise high,

the CSR and files at risk of turnover have an innate trade-off.

In cases where both CSR and files at risk of turnover are

maximized, other measures such as core developer workload

suffer. Hence, one cannot simultaneously optimize suggested

reviewers with respect to the risks of knowledge loss and

fix-inducing changes.

RQ2: How can the risk of fix-inducing code changes be

effectively balanced with other quantities of interest?

To balance the innate trade-off between files at risk of

turnover and CSR, we suggest using a hybrid reviewer

recommendation approach to optimize the recommendation

process based on the PR fix-inducing likelihood. We propose a

recommender to improve the CSR when a PR has a high risk

of being fix-inducing. The objective function for the proposed

Risk Aware Recommender (RAR) is formulated as:

RAR(D,R) =

{

Sofia(D,R), DefectProb(R) ≤ PD

cHRev(D,R), otherwise
(8)

In this formula, the PD represents the threshold for the

likelihood of PRs to be fix-inducing. If the PD threshold is

exceeded, cHRev is used to suggest experts. Otherwise, Sofia

will suggest reviewers for the PR. The cHRev ranks candidate

reviewers based on their familiarity with the changed files

while Sofia opportunistically distributes knowledge when the

modified files are not at risk of turnover.

Approach. We study the performance of RAR in terms of

the coreWorkload, files at risk of turnover, expertise, and

CSR measures. We also study the impact that varying the

PD threshold from 0.1 to 0.9 has on RAR performance.

(a) Roslyn (b) Rust (c) Kubernetes

Figure 3: The effect of PD on the performance of RAR for each evaluation metric, on different projects over different quarters.

Results. Figure 3 shows the evaluation measures as the PD

changes for the studied systems.

Analysis. Figure 3 shows that as the value of PD increases,

the tolerance of RAR for fix-inducing PR grows. As a result,

we expect more knowledge distribution leading to a decrease

in CSR. As fewer experts are assigned to the tasks, the overall

expertise also diminishes, which is not an unexpected outcome.

However, there are project-specific trends that are worth

noting. For example, Figure 3a shows that the evaluation

measures for the Roslyn project are steadily declining as PD

increases, whereas Figure 3c shows that the majority of the

impact of varying PD in the Kubernetes project takes place

between PD = 0.1 and PD = 0.3. Moreover, Figure 3b shows

that for Rust, the impact of varying PD is relatively small.

Overall, the Risk Aware Recommender (RAR) yields an average

change of 12.48%, 0.93%, -19.39% and 80.00% over different

quarters for evaluation measures of Expertise, Core workload,

files at risk of turnover and CSR, respectively.

A closer look at the model estimates of the likelihood of fix-

inducing changes helps to explain these project-specific trends.

Figure 4 shows the distributions of the estimated likelihood

of changes being fix inducing stratified by project and quarter

for four quarters (The complete distribution can be found in

our supporting material’s Figure 1 [34]) . We observe that,

unsurprisingly, larger performance fluctuations in Figure 3

are associated with the PD values where the majority of the

estimated likelihoods lie in Figure 4. Moreover, despite an

overall decreasing trend in terms of the likelihood of fix-

inducing changes over time, the trend of each quarter is

similar to its adjacent quarters. This local similarity may help

stakeholders to effectively tune PD values (see RQ3 for a more

detailed analysis).

The RAR settings can be tuned to balance the risks of

knowledge loss and fix-inducing changes. Indeed, as the

threshold for indicating tolerance of the risk of fix-inducing

changes increases, the risk of knowledge loss impacts fewer

files. However, identifying the optimal threshold setting

requires an awareness of project-specific trends in the model

estimates of the likelihood of fix-inducing changes.

Figure 4: Distributions of pre-

dicted defect probabilities.

R
is

k
−

a
ve

rs
e

R
is

k
−

b
a
la

n
c
e
d

R
is

k
−

to
le

ra
n
t

dynamic
vs norm

dynamic
vs static

norm
vs static

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

Method Pairs

P
−

V
a

lu
e

s

Roslyn Rust Kubernetes

Figure 5: Conover Test

results.

RQ3: How can we identify an effective fix-inducing likelihood

threshold (PD) interval for a given project?

Our analysis from RQ2 indicates that the performance of the

RAR is sensitive to the PD setting. The effective range of PD

is dependent on the past likelihood of fix-inducing changes. In

this question, we seek to propose an approach to help project

stakeholders in the selection of effective PD settings based on

their tolerance for the risk of fix-inducing changes.

Approach. We explore the following three approaches to

identify effective periods:

• Static method: This baseline considers the effective period

spans the entire range between 0 and 1.

• Normalization method: The effective range spans be-

tween upper and lower extremes of the distribution of

likelihoods from the prior periods. To match common

outlier definitions, we set out lower and upper extremes to

Q1−1.5× IQR and Q3 + 1.5× IQR, respectively, where

Qi is the ith Quartile, and IQR is the Interquartile range

between Q1 and Q3. All examples within the range are

normalized by the maximum value.

• Dynamic method: A selective variant of the normalization

method. Instead of considering all previous periods, we

only consider the last six months. This allows the model

to focus on the current part of the project life cycle.

For each of these three methods, we simulate three different

thresholds: 25% (risk-averse recommendation), 50% (balanced

recommendation), and 75% (risk-tolerant recommendation) of

the effective period for our three projects in the dataset.

Results. Figure 6 shows distributions of relative improvement

in CSR that are achieved for different time periods (points) of

the studied systems (plot columns) of our approaches (y-axes)

in different configurations (plot rows).

Analysis. We use the Friedman test (two-tailed, paired, α =
0.05) [50] and apply it to the CSR performance data (Table II).

We observe significant differences between the investigated

methods in all configurations except for Roslyn in the risk

tolerant setting. Next, we use Kendall’s W to determine the

magnitude of this effect [51] (Table III). Large and small effects

are observed in 55% and 22% of the cases, respectively.

We apply the Conover test to discern which pairs cause this

significant difference [52]. Figure 5 shows p-values for different

thresholds with red lines indicating the 0.05 confidence interval.

The results imply that the dynamic method significantly affects

risk-averse (PD = 25%) and risk-balanced (PD = 50%)

recommendations in all studied systems. For the normalization

method, the effect on the results is inconsistent. The dynamic

method considers the pivot of the project in various periods,

which affects the CSR. In contrast, the normalization method

considers the entire history and may not be sensitive enough

to react to risk fluctuations as projects age [53].

On the other hand, for risk-tolerant recommendations (PD =
75%), none of the methods have a consistent effect on the

results due to the difference in the distribution of defect

proneness for various periods. Roslyn has a high rate of fix-

inducing PRs (PD > 0.5) in all the periods, so the approach

does not affect the results. However, Kubernetes, which has

more fix-inducing PRs in the earlier periods than more recent

ones, is affected mainly through a dynamic method.

For risk-averse (PD = 25%) and risk-balanced (PD = 50%)

recommendations, the dynamic method tends to provide the

most value by recommending an effective period while for risk-

tolerant recommendation (PD = 75%), none of the methods

outperform others significantly.

VII. PRACTICAL IMPLICATIONS

Below, we summarize what we believe are the practical

implications of greatest value for practitioners and researchers.

RQ1) Practitioners can use code review to balance files at

risk of abandonment with the risk of fix-inducing changes.

Our observations in RQ1 show that if the likelihood of a PR

inducing a fix is not considered explicitly as a parameter in the

recommenders’ objective function, the recommended reviewers

may lack the subject matter expertise to prevent future fixes,

and in turn, increase the risk of merging fix-inducing PRs.

The results also show an inherent trade-off between some of

the evaluation measures, such as files at risk of turnover, and

the risk of merging fix-inducing PRs. We propose CSR as

a heuristic to assess the degree to which a (recommended)

reviewer assignment mitigates the risk of fix-inducing changes.

RQ2,RQ3) RAR can be tuned according to the tolerance

of the risk of fix-inducing changes without drastically

impacting other properties of interest of the recommended

reviewing assignment. Our observations in the first research

Kubernetes Roslyn Rust
R

is
k
−

a
v
e

rs
e

R
is

k
−

b
a

la
n

c
e

d
R

is
k
−

to
le

ra
n

t

50 100 0 50 100 150 0 200 400

dynamic

norm

static

dynamic

norm

static

dynamic

norm

static

Performance Improvement (%)

M
e

th
o

d
s

Figure 6: The distribution of performance improvement for

CSR for different project over time.

question indicate that active effort should be made to mitigate

the inherent trade-off between CSR and files at risk of turnover.

To this end, RAR is proposed, which uses the PD setting, as

the threshold for the likelihood of a PR being fix inducing,

to influence the suggested set of reviewers. The results of the

second research question illustrate that RAR prevents other

evaluation measures from being drastically impacted. The PD

setting can be tuned using a combination of our proposed

dynamic method (see RQ3) and input from stakeholders about

their tolerance of risk for fix-inducing changes. While project-

specific characteristics (e.g., the incidence rate of fix-inducing

changes) impact the sensitivity of the approach to the PD

setting, our dynamic approach can be scaled to apply well in

different risk tolerance settings.

VIII. THREATS TO VALIDITY

Below, we discuss the threats to the validity of our study.

Construct Validity. Our implementations may contain errors.

To mitigate this risk, we augment an existing data set and

vetted code from prior work [13] rather than producing our

own from scratch. We share our implementation openly to

enable the community to audit and build upon our code [54].

It is also possible that CSR does not truly reflect how well fix-

inducing code changes are mitigated when assigning reviewers

in reality. Because we cannot go back in time and change

existing assignments to observe how well CSR truly performs,

we evaluate its performance using historical data. We mitigate

the chances of CSR being a poor refection of reality by basing

it on proven measurements such as the fix-inducing likelihood

and the xFactor [19]. Furthermore, the main idea behind CSR,

that experts that have recently interacted with files in a code

Table II: The χ2 and p-value results (two degrees of freedom) of the Friedman test applied to the RQ3 values.

❵
❵
❵
❵
❵

❵
❵

❵
❵

Project
Threshold 25% 50% 75%

Chi-Square p-value Chi-Square p-value Chi-Square p-value

Roslyn 10.7 0.00473 12.8 0.00164 2.47 0.291

Rust 41.7 < 0.001 38.6 < 0.001 15.8 < 0.001

Kubernetes 23.1 < 0.001 16.5 < 0.001 20.6 < 0.001

Table III: Effect size and magnitude for Kendall’s W (RQ3).

❵
❵
❵
❵
❵
❵
❵
❵
❵

Project
Threshold 25% 50% 75%

Effsize magnitude Effsize magnitude Effsize magnitude

Roslyn 0.315 moderate 0.377 moderate 0.0727 small

Rust 0.695 large 0.643 large 0.264 small

Kubernetes 0.607 large 0.435 moderate 0.543 large

change reduce the likelihood of merging fix-inducing code

changes, has been shown to reflect reality in prior studies [42].

To obtain data at a scale required for this study we

must use automated tools. However, such approaches are not

perfect and may induce errors in our results. To prevent any

implementation errors, we use an existing tool (Commit Guru).

We sampled the tool’s output and manually verified the results.

The resulting precision (i.e., 43.9% with confidence=95% and

margin=±5%), aligns with prior works [36, 37]. While SZZ

may introduce errors into our dataset, our results show that

reviewer recommendations can still suggest the most relevant

reviewer to reduce fix inducing changes, even when trained

on noisy data. Future tools could be used to improve the

performance of the approach.

Internal Validity. In this study, we consider the effect of

assigning experts to review PRs that are potentially fix-inducing

using measures, such as CSR. While assigning experts rather

than novices to review PRs may change such measures, it

does not guarantee that they will actually spot more defects.

It is possible that other factors, that do not reflect a reduction

in defects, are influencing the changes in CSR. However,

prior studies have shown that experts increase the possibility

of detecting fix-inducing PRs before merging, we therefore

believe that similar outcomes should hold for our study. Further

studies might help to clearly identify the impact of reviewers’

experience and CSR on catching bugs during the PR process.

The defect prediction in Rust presents a low balanced

accuracy. However, the other two projects yield similar results

in different experiments, which we believe voids the possibility

of the effect of this low accuracy in our experiments.

External Validity. While we apply eight different approaches to

three systems, it is possible that our results might not generalize

to other approaches or systems. We mitigate this threat by using

a large number of approaches and systems with many files

and a high volume of PRs. We target such systems because

reviewer recommenders are most beneficial in big repositories

with many developers. Through this selection we aim to make

our findings applicable to the most pertinent systems.

IX. CONCLUSIONS

In this study, we set out to explore how using a code reviewer

recommender to suggest reviewers can affect the risk of defect

proneness. To this end, we introduce a new evaluation measure,

CSR, and assess seven existing reviewer recommenders against

this new measure. Three other measures previously used in the

literature are also compared. The results show an inherent trade-

off between files at risk of turnover and CSR ± improvements

to one measure often degrade the performance of the other.

To balance this trade-off, an adjustable multi-objective code

reviewer recommender, RAR is proposed. We analyze how RAR

can be used to tune the recommendations with respect to the

tolerance of the risks of fix-inducing PRs and files at risk of

knowledge loss. Our findings suggest that:

• There is a trade-off between knowledge distribution

and the likelihood of merged PRs being fix-inducing.

However, this trade-off may be resolved by simultaneously

optimizing recommendation strategies for both measures.

This optimization, in turn, may lead to a decrease of other

evaluation measures like core developers’ workload.

• RAR can be tuned to balance the risk of knowledge loss

and fix-inducing changes by tuning the PD setting. How-

ever, identifying the optimal threshold setting requires an

awareness of project-specific trends in the model estimates

of the likelihood of fix-inducing changes. The results

yield the average change of 12.48%, 0.93%, -19.39% and

80.00% over different quarters for evaluation measures

Expertise, Core workload, files at risk of turnover and CSR,

respectively. For the proposed measure, CSR, the average

change is 73.80%-102.04% for various PD settings.

• Project stakeholders can use RAR with a dynamic method

for identifying effective range for the PD setting. The dy-

namic method provides better performance for risk-averse

and risk-balanced reviewer recommendation strategies

while not hurting the risk-tolerant strategy’s performance.

In future work, we plan to build an application on top of

reviewer recommendation approaches such as RAR to study

their effect of various in a live environment (e.g., Github).

Moreover, we believe that investigating other measurements

that estimate the risk of fix-inducing PRs could yield even

more suitable candidates for CSR. Future work should also

investigate the effects of using inaccurate bug detection methods

on the results of reviewer recommenders such as RAR. To allow

continued progress in this line of inquiry, we have made our

code and dataset available online [54].

REFERENCES

[1] A. Bacchelli and C. Bird, ªExpectations, outcomes,

and challenges of modern code review,º in 2013 35th

International Conference on Software Engineering (ICSE).

IEEE, 2013, pp. 712±721.

[2] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and

M. W. Godfrey, ªInvestigating code review quality: Do

people and participation matter?º in 2015 IEEE international

conference on software maintenance and evolution (ICSME).

IEEE, 2015, pp. 111±120.

[3] M. di Biase, M. Bruntink, and A. Bacchelli, ªA security

perspective on code review: The case of chromium,º in

16th International Working Conference on Source Code Analysis

and Manipulation (SCAM). IEEE, 2016, pp. 21±30.

[4] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida,

ªRevisiting code ownership and its relationship with

software quality in the scope of modern code review,º

in Proceedings of the 38th international conference on software

engineering, 2016, pp. 1039±1050.

[5] H. Bodner, ª10 reasons why code reviews

make better code and better teams,º May 2018.

[Online]. Available: https://simpleprogrammer.com/

why-code-reviews-make-better-code-teams/

[6] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley,

ªProcess aspects and social dynamics of contemporary

code review: Insights from open source development

and industrial practice at microsoft,º IEEE Transactions on

Software Engineering, pp. 56±75, 2016.

[7] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and J. Cz-

erwonka, ªCode reviewing in the trenches: Challenges

and best practices,º IEEE Software, pp. 34±42, 2017.

[8] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and

A. Bacchelli, ªModern code review: a case study at

google,º in Proceedings of the 40th International Conference

on Software Engineering: Software Engineering in Practice,

2018, pp. 181±190.

[9] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida,

and H. Iida, ªImproving code review effectiveness through

reviewer recommendations,º in Proceedings of the 7th

International Workshop on Cooperative and Human Aspects of

Software Engineering, 2014, pp. 119±122.

[10] M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, and

M. A. Gerosa, ªEffects of adopting code review bots on

pull requests to oss projects,º in 2020 IEEE International

Conference on Software Maintenance and Evolution (ICSME).

IEEE, 2020, pp. 1±11.

[11] K.-H. Yang, T.-L. Kuo, H.-M. Lee, and J.-M. Ho, ªA

reviewer recommendation system based on collaborative

intelligence,º in 2009 IEEE/WIC/ACM International Joint Con-

ference on Web Intelligence and Intelligent Agent Technology.

IEEE, 2009, pp. 564±567.

[12] S. Rebai, A. Amich, S. Molaei, M. Kessentini, and

R. Kazman, ªMulti-objective code reviewer recommenda-

tions: balancing expertise, availability and collaborations,º

Automated Software Engineering, pp. 301±328, 2020.

[13] E. Mirsaeedi and P. C. Rigby, ªMitigating turnover

with code review recommendation: Balancing expertise,

workload, and knowledge distribution,º in Proceedings

of the ACM/IEEE 42nd International Conference on Software

Engineering, 2020, pp. 1183±1195.

[14] O. Kononenko, O. Baysal, and M. W. Godfrey, ªCode

review quality: how developers see it,º in Proceedings of

the 38th International Conference on Software Engineering,

2016, pp. 1028±1038.

[15] Y. Yu, H. Wang, G. Yin, and T. Wang, ªReviewer

recommendation for pull-requests in github: What can we

learn from code review and bug assignment?º Information

and Software Technology, pp. 204±218, 2016.

[16] M. Torchiano, F. Ricca, and A. Marchetto, ªAre web

applications more defect-prone than desktop applications?º

International journal on software tools for technology transfer,

pp. 151±166, 2011.

[17] N. U. Eisty and J. C. Carver, ªDevelopers perception

of peer code review in research software development,º

Empirical Software Engineering, pp. 1±26, 2022.

[18] X. Ye, Y. Zheng, W. Aljedaani, and M. W. Mkaouer,

ªRecommending pull request reviewers based on code

changes,º Soft Computing, pp. 5619±5632, 2021.

[19] M. B. Zanjani, H. Kagdi, and C. Bird, ªAutomatically

recommending peer reviewers in modern code review,º

IEEE Transactions on Software Engineering, pp. 530±543,

2015.

[20] W. H. A. Al-Zubaidi, P. Thongtanunam, H. K. Dam,

C. Tantithamthavorn, and A. Ghose, ªWorkload-aware

reviewer recommendation using a multi-objective search-

based approach,º in Proceedings of the 16th ACM Interna-

tional Conference on Predictive Models and Data Analytics in

Software Engineering, 2020, pp. 21±30.

[21] V. Kovalenko, N. Tintarev, E. Pasynkov, C. Bird, and

A. Bacchelli, ªDoes reviewer recommendation help de-

velopers?º IEEE Transactions on Software Engineering, pp.

710±731, 2018.

[22] I. X. Gauthier, M. Lamothe, G. Mussbacher, and S. McIn-

tosh, ªIs Historical Data an Appropriate Benchmark for

Reviewer Recommendation Systems? A Case Study of the

Gerrit Community,º in Proc. of the International Conference

on Automated Software Engineering (ASE), 2021, p. To appear.

[23] J. Nam, ªSurvey on software defect prediction,º Depart-

ment of Compter Science and Engineerning, The Hong Kong

University of Science and Technology, Tech. Rep, 2014.

[24] J. Xuan, Y. Hu, and H. Jiang, ªDebt-prone bugs:

technical debt in software maintenance,º arXiv preprint

arXiv:1704.04766, 2017.

[25] J. ÂSliwerski, T. Zimmermann, and A. Zeller, ªWhen do

changes induce fixes?º ACM sigsoft software engineering

notes, pp. 1±5, 2005.

[26] E. C. Neto, D. A. Da Costa, and U. Kulesza, ªThe

impact of refactoring changes on the szz algorithm: An

empirical study,º in 2018 IEEE 25th International Conference

on Software Analysis, Evolution and Reengineering (SANER).

IEEE, 2018, pp. 380±390.

https://simpleprogrammer.com/why-code-reviews-make-better-code-teams/
https://simpleprogrammer.com/why-code-reviews-make-better-code-teams/

[27] S. Davies, M. Roper, and M. Wood, ªComparing text-

based and dependence-based approaches for determining

the origins of bugs,º Journal of Software: Evolution and

Process, pp. 107±139, 2014.

[28] C. Rosen, B. Grawi, and E. Shihab, ªCommit guru:

Analytics and risk prediction of software commits,º in

Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering, ser. ESEC/FSE 2015. ACM, 2015,

pp. 966±969.

[29] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus,

A. Sinha, and N. Ubayashi, ªA large-scale empirical study

of just-in-time quality assurance,º IEEE Trans. Softw. Eng.,

pp. 757±773, Jun. 2013.

[30] T. Hoang, H. K. Dam, Y. Kamei, D. Lo, and N. Ubayashi,

ªDeepjit: an end-to-end deep learning framework for

just-in-time defect prediction,º in 2019 IEEE/ACM 16th

International Conference on Mining Software Repositories

(MSR). IEEE, 2019, pp. 34±45.

[31] S. McIntosh and Y. Kamei, ªAre fix-inducing changes

a moving target? a longitudinal case study of just-in-

time defect prediction,º IEEE Transactions on Software

Engineering, pp. 412±428, 2017.

[32] L. Pascarella, F. Palomba, and A. Bacchelli, ªFine-grained

just-in-time defect prediction,º Journal of Systems and

Software, pp. 22±36, 2019.

[33] M. K. Thota, F. H. Shajin, and P. Rajesh, ªSurvey

on software defect prediction techniques,º International

Journal of Applied Science and Engineering, pp. 331±344,

2020.

[34] anonymous, 2022, supporting online materials.

[Online]. Available: https://zenodo.org/record/6727155#

.YrYCtejMI2w

[35] E. Mirsaeedi and P. C. Peter, 2020, relationalGit. [Online].

Available: https://github.com/cesel/relationalgit

[36] S. Quach, M. Lamothe, Y. Kamei, and W. Shang, ªAn

empirical study on the use of szz for identifying induc-

ing changes of non-functional bugs,º Empirical Software

Engineering, pp. 1±25, 2021.

[37] S. Quach, M. Lamothe, B. Adams, Y. Kamei, and

W. Shang, ªEvaluating the impact of falsely detected

performance bug-inducing changes in jit models,º Empiri-

cal Software Engineering, pp. 1±32, 2021.

[38] G. Rodríguez-Pérez, G. Robles, A. Serebrenik, A. Zaid-

man, D. M. Germán, and J. M. Gonzalez-Barahona, ªHow

bugs are born: a model to identify how bugs are introduced

in software components,º Empirical Software Engineering,

pp. 1294±1340, 2020.

[39] J. Ekanayake, J. Tappolet, H. C. Gall, and A. Bernstein,

ªTracking concept drift of software projects using defect

prediction quality,º in International Working Conference on

Mining Software Repositories. IEEE, 2009, pp. 51±60.

[40] R. TAY, ªCorrelation, variance inflation and multicollinear-

ity in regression model,º Journal of the Eastern Asia Society

for Transportation Studies, pp. 2006±2015, 2017.

[41] A. Mockus and J. D. Herbsleb, ªExpertise browser:

a quantitative approach to identifying expertise,º in

Proceedings of the 24th international conference on software

engineering. icse 2002. IEEE, 2002, pp. 503±512.

[42] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. De-

vanbu, ªDon’t touch my code! examining the effects of

ownership on software quality,º in Proceedings of the 19th

ACM SIGSOFT symposium and the 13th European conference

on Foundations of software engineering, 2011, pp. 4±14.

[43] M. Zhou and A. Mockus, ªWhat make long term contrib-

utors: Willingness and opportunity in oss community,º in

2012 34th International Conference on Software Engineering

(ICSE). IEEE, 2012, pp. 518±528.

[44] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus,

ªQuantifying and mitigating turnover-induced knowledge

loss: case studies of chrome and a project at avaya,º in

2016 IEEE/ACM 38th International Conference on Software

Engineering (ICSE). IEEE, 2016, pp. 1006±1016.

[45] V. Balachandran, ªReducing human effort and improving

quality in peer code reviews using automatic static

analysis and reviewer recommendation,º in 2013 35th

International Conference on Software Engineering (ICSE).

IEEE, 2013, pp. 931±940.

[46] C. Hannebauer, M. Patalas, S. Stünkel, and V. Gruhn,

ªAutomatically recommending code reviewers based on

their expertise: An empirical comparison,º in Proceedings

of the 31st IEEE/ACM International Conference on Automated

Software Engineering, 2016, pp. 99±110.

[47] M. M. Rahman, C. K. Roy, and J. A. Collins, ªCorrect:

code reviewer recommendation in github based on cross-

project and technology experience,º in Proceedings of

the 38th international conference on software engineering

companion, 2016, pp. 222±231.

[48] J. Kim and E. Lee, ªUnderstanding review expertise of

developers: A reviewer recommendation approach based

on latent dirichlet allocation,º Symmetry, p. 114, 2018.

[49] M. Chouchen, A. Ouni, M. W. Mkaouer, R. G. Kula,

and K. Inoue, ªRecommending peer reviewers in modern

code review: a multi-objective search-based approach,º in

Proceedings of the 2020 Genetic and Evolutionary Computation

Conference Companion, 2020, pp. 307±308.

[50] M. Friedman, ªA comparison of alternative tests of

significance for the problem of m rankings,º The Annals

of Mathematical Statistics, pp. 86±92, 1940.

[51] M. G. Kendall et al., ªThe advanced theory of statistics.

vols. 1.º The advanced theory of statistics. Vols. 1., 1948.

[52] W. Conover and R. L. Iman, ªOn some alternative

procedures using ranks for the analysis of experimental

designs,º Communications in Statistics-Theory and Methods,

pp. 1349±1368, 1976.

[53] S. McIntosh and Y. Kamei, ªAre Fix-Inducing Changes

a Moving Target? A Longitudinal Case Study of Just-

In-Time Defect Prediction,º IEEE Transactions on Software

Engineering, p. 412±428, 2018.

[54] anonymous, 2022, replication package for this paper.

[Online]. Available: https://github.com/software-rebels/

RAR_Recommender

https://zenodo.org/record/6727155#.YrYCtejMI2w
https://zenodo.org/record/6727155#.YrYCtejMI2w
https://github.com/cesel/relationalgit
https://github.com/software-rebels/RAR_Recommender
https://github.com/software-rebels/RAR_Recommender

	Introduction
	Related Work
	Studied Datasets
	Study Design
	Identifying and Predicting Fix-Inducing PRs
	Ranking potential reviewers of a PR
	AuthorshipRec
	RevOwnRec
	cHRev Recommender
	LearnRec
	RetentionRec
	TurnoverRec
	Sofia

	Recommendation Component

	Evaluation Setup
	Experimental Results
	Practical Implications
	Threats to Validity
	Conclusions

