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Abstract—Fuzz testing (or fuzzing) is a software testing tech-
nique aimed at identifying software vulnerabilities. Recently, the
Go community added native support for fuzz testing into their
standard library. Using that feature, developers can write unit
tests to perform deterministic and fuzz testing of their software
systems against unexpected inputs. Although the availability of
support makes fuzz testing more accessible for the Go community
at large, little is known about the degree to which Go developers
adopt fuzz testing during software development. Therefore, in
this paper, we set out to study the evolution of fuzz testing
practices in open-source Go projects. More specifically, we strive
to understand whether the introduction of support for fuzz testing
in the Go standard library has led to the adoption of fuzz testing
as part of the standard testing processes of Go projects. To
achieve our goal, we study 1) to what extent fuzz tests are used
in open-source Go projects, 2) who writes and maintains fuzz
tests in Go projects, and finally, 3) how tightly coupled are fuzz
tests with source code (as compared to non-fuzz tests). We find
that fuzz testing only represents 3.15% of testing functions in
open-source projects. Our results also suggest that fuzz testing
development is not being conducted as part of standard testing
activities. For developers contributing to fuzzing, we find that a
median of only 12.50% of their testing-related commits contain
fuzz tests. Finally, we perform a qualitative analysis and find
that fuzz testing is mostly used by critical software systems, such
as blockchain technologies or network infrastructure projects,
to test the most critical features of their systems (e.g., data
processing functions, database endpoints). Our results lead us
to conclude that fuzz testing is best used in combination with
deterministic testing (e.g., unit testing) where fuzzing is used to
thoroughly test important features, and deterministic testing is
used to test other features.

I. INTRODUCTION

Anaconda’s 2022 yearly survey on the state of data sci-
ence [1] showed that the fear of vulnerabilities (such as
the Log4j vulnerability1) in open-source software has caused
private companies to start scaling back their use of open-source
software. To address the issue of vulnerabilities in open-
source software systems, developers are increasingly turning
to automated testing strategies, such as fuzzing [2, 3]. Fuzzing
is a software testing technique where a large number of inputs
are sent to a software system with the goal of triggering un-
expected behaviors. While unit tests allow developers to test a
software system against expected inputs, fuzzing complements
unit tests by testing against unexpected or abnormal inputs.

1https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance

Using fuzzing, developers have been able to detect multiple
software vulnerabilities and fix them before an attacker can
exploit them (e.g., CVE-2016-6978,2 CVE-2017-3732,3 CVE-
2019-164114).

As of 2024, fuzzing is mostly conducted using specialized
external tools called “fuzzers” that generate inputs and send
them to a target software system. Since the launch of OSS-
Fuzz in 2016 [4, 5], a substantial portion of fuzzing activities
in the open-source software ecosystem has been conducted via
external services. These external services allow open-source
projects to benefit from continuous fuzzing without carrying
the heavy computational costs of fuzzing.

Due to growing interest in fuzzing [2, 3] within the open-
source community, other initiatives aimed at making fuzzing
more accessible have also been launched. For instance, in
2021, the Go community decided to integrate fuzzing (is-
sue #44551)5 within the Go programming language itself to
empower developers to write fuzz tests just as easily as unit
tests. Additionally, the efforts of the open-source community
to make the adoption of fuzzing easier have motivated the
addition of Go features to facilitate the adoption of OSS-Fuzz
(issue #50192)6 and have also led OSS-Fuzz developers to add
native Go fuzzing support [6].

Since unit tests do not scale well to test against large
amounts of abnormal inputs, the increased accessibility of
fuzzing now provides developers with the opportunity to
adopt fuzz testing as part of their standard software testing
practices. With the considerable security benefits provided by
combining deterministic testing, such as unit testing, with
scalable approaches, such as fuzzing, we believe that the
research community has an important role to play in making
the adoption of fuzzing as easy as possible.

As of 2024 (two years after the introduction of fuzz tests
into the Go standard library), we still do not know if open-
source communities have started using fuzzing to make
their open-source projects more secure and avoid the
spread of vulnerabilities throughout the ecosystem. We
therefore set out to study the co-evolution of fuzz testing

2https://nvd.nist.gov/vuln/detail/CVE-2019-16411
3https://nvd.nist.gov/vuln/detail/CVE-2017-3732
4https://nvd.nist.gov/vuln/detail/CVE-2016-6978
5https://github.com/golang/go/issues/44551
6https://github.com/golang/go/issues/50192
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alongside standard testing activities in open-source projects
hosted on GitHub. To provide an overview of the state of fuzz
testing in OSS projects, we conduct a conceptual replication
of McIntosh et al.’s analysis of build maintenance effort [7]
and aim to answer the following preliminary questions:
(PQ1) Do developers use fuzz testing?
(PQ2) Is fuzzing test code more prone to change than non-

fuzzing test code?
Building upon the results of these preliminary results, we

further investigate to answer the following research questions:
(RQ1) Is fuzz testing development conducted as part of the

standard testing process?
(RQ2) Who conducts fuzz testing in open-source projects?

Based on the preliminary and research questions mentioned
above, we summarize the findings of this paper as follows:

• (PQ1) We find that Go fuzz tests are rarely added by
developers two years after their introduction into the
standard Go library. Our analysis reveals that only 3.58%
of the studied projects contain any fuzz tests and those
fuzz tests only account for 1.35% (on median) of all test
functions.

• (PQ2) We observe significantly more commits contribut-
ing to non-fuzz test code than fuzz test code. Changes to
non-fuzzing test code also tend to be larger than changes
to fuzz tests.

• (RQ1) We find that neither non-fuzzing test code changes
nor source code changes are tightly coupled with fuzz test
changes. Our results suggest that fuzz test development
is not being conducted alongside other types of test
development, such as unit tests.

• (RQ2) We find that most projects rely on few contributors
to contribute most of the testing code (both fuzzing test
code and non-fuzzing test code). Conversely, we find that
significantly more developers have contributed to non-
fuzzing test code, whereas most developers have not made
any contribution towards fuzzing activities.

Our results lead us to conclude that non-fuzz testing is still
the backbone of testing activities in OSS projects. From our
investigation, we also believe that fuzzing might be best used
on parts of a codebase that require rigorous testing. From the
number of developers that have contributed to the development
of fuzz tests, we also conclude that more work needs to be
done to lower the barrier of entry to fuzz testing.

II. BACKGROUND AND RELATED WORK

In this section, we define key concepts and then situate our
work with respect to the literature.

A. Background

Challenges in the adoption of fuzzing. Every activity
related to software development and maintenance brings its
own set of challenges. Kim et al. conducted a field study and
a series of interviews with refactoring experts at Microsoft
to study the challenges of refactoring [8]. They find that
refactoring activities are both risky and costly with developers

spending on average 10% of their work hours refactoring code.
Similarly, Greiler et al. interviewed 25 senior practitioners to
learn more about the challenges of testing plug-in-based sys-
tems [9]. Their study reveals that even experienced developers
face difficulties writing tests for their software systems.

As the adoption of fuzzing into the software testing pro-
cess increases over time [10, 11, 12], software testers and
developers will need to manage the challenges incurred by
fuzz testing. In our prior work, we conducted a survey with
fuzzing experts that revealed over 22 distinct challenges of
conducting fuzzing activities [13]. We found that the usability
of fuzzers (i.e., setting up, building, or using a fuzzer) is
the key challenge that experts are facing when conducting
fuzz testing. Thus, making fuzzing more accessible could
lower barriers to the adoption of fuzzing into standard testing
activities.

Native Go fuzzing. Fuzz tests were integrated into the Go
language itself in release 1.18 on March 15th, 2022 [14].
To ease the adoption of this native fuzzing feature, the
Go language developers purposely designed fuzz tests to
be similar to unit tests to facilitate the conversion between
normal tests and fuzz tests.7 We surmise that this native
and straightforward feature could help address the usability
challenges of conducting fuzzing activities in OSS projects.
With this new feature simplifying the development of fuzz
tests, we set out to understand if open-source communities
are starting to use fuzz testing to make their projects more
secure. Thus, we analyze how frequently developers employ
fuzz tests and how they evolve alongside non-fuzzing tests.

Listing 1 shows an example of a fuzz test retrieved from the
babylonchain/babylon project. This target of the test is
the GenKeyPair function, which is designed to generate a
pair of encryption keys. As we can see, the structure to write
Go fuzz tests closely resembles Go unit tests.

Developers first define the seed values that will be sent to
the target function using f.Add. Then, developers must write
the code that will test the target function and wrap it with
the f.Fuzz function to make the test into a fuzz test. Unlike
unit testing, the initial values provided to fuzz tests will also
be used to generate new inputs for further testing.

B. Related work

The co-evolution of source code and non-source code.
McIntosh et al. investigated build maintenance efforts and
the logical coupling between source code, test files and
build files [7]. They find that build maintenance introduces
considerable overhead to software development (up to 27%
on source code development and 44% on test development).
Their results reveal that most developers are impacted by build
maintenance. Finally, they find that hiring build experts can
greatly reduce the number of developers impacted by build
maintenance.

7https://github.com/golang/go/issues/44551#issuecomment-785176317
8Retrieved from babylonchain/babylon: https://github.com/

babylonchain/babylon/blob/682c2d238ca305243d361a512bd0c401eedef1c6/
btctxformatter/formatter test.go#L96
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// This fuzzer checks if decoder won't panic with whatever

bytes we point it at↪→

func FuzzDecodingWontPanic(f *testing.F) {

f.Add(randNBytes(firstPartLength),

uint8(rand.Intn(99)))↪→

f.Add(randNBytes(secondPartLength),

uint8(rand.Intn(99)))↪→

f.Fuzz(func(t *testing.T, bytes []byte, tagIdx

uint8) {↪→

tag := []byte{0, 1, 2, 3}

decoded, err :=

IsBabylonCheckpointData(tag,

CurrentVersion, bytes)

↪→

↪→

if err == nil {

if decoded.Index != 0 &&

decoded.Index != 1 {↪→

t.Errorf("With correct

decoding index should

be either 0 or 1")

↪→

↪→

}

}

})

}

Listing 1: Fuzz test example8

Zaidman et al. studied the co-evolution of production and
test code in both industrial and open source projects [15]. They
find that projects do not increase their testing activity as they
get closer to a new release. They also find that an increase in
test code is often linked with an increase in coverage. Jiang
and Adams studied the co-evolution of infrastructure code
and source code in 265 OpenStack projects [16]. They find
that infrastructure files are frequently modified and are tightly
coupled with test files.

In this study, we examine the co-evolution of fuzzing code
and non-fuzzing testing code. Thus, our work aligns with
previous research that investigates the co-evolution of source
and non-source code. Our work differs from past studies by
investigating developer usage of standard test code and fuzzing
code when testing open-source projects.

The usage of new language features. The adoption and usage
of new language features has been a recurring topic of research
in software engineering studies. Dyer et al. investigated the
use of new Java features in over 31,000 open-source Java
projects [17]. They find several areas where developers could
use new Java features but do not. Their investigation also
shows that the adoption of a new language feature is likely
to be driven by compiler support. Moreover, they find that
contributors increasingly start using a feature once the feature
is used for the first time in the codebase.

The reluctance of developers to adopt new language features
seems to be a common pattern in studies investigating the
evolution of a programming language. Mazinanian et al. [18]
studied the use of lambda expressions in Java and surveyed 97
developers that adopted the lambda expression feature. Their
investigation shows that the use of a new feature can take some

time before it is widely adopted. They also find that developers
tend to use built-in features inefficiently by using general
features over specialized ones. Similarly, Scarsbrook et al.
studied the adoption of TypeScript features over time [19].
Their observations align with the results of Mazinanian et al.
where they find that the Typescript community tends not to
use new language features.

Similar to these studies, our study provides better insights
into how developers are adopting fuzz testing as a new feature.
Our preliminary analysis (described in Section IV-A) shows
that fuzz testing is still not widely adopted with only 3.58%
of projects having fuzz tests. Furthermore, fuzz tests make up
just 1.35% of testing functions. Our observations align with
the conclusions of the previous studies, i.e., we also find that
new features are not always adopted by developers.
Empirical studies on fuzzing. With the increased availability

of open-source empirical data brought by the release of OSS-
Fuzz, researchers have been able to conduct more empirical
studies on fuzzing in recent years. Ding et al. conducted a
large-scale empirical study of over 23,000 OSS-Fuzz bugs
spanning over 316 projects [20]. Their results show that
fuzzing is an effective technique to find bugs and that develop-
ers typically fix detected bugs quickly. Yet they also find that
some flaky bugs detected by fuzzing are problematic to address
or reproduce. Moreover, they find that fuzzing campaigns tend
to find large numbers of bugs in short timeframes requiring
developers to deal with high numbers of bug reports at once.

Böhme et al. conducted a four cpu year-long fuzz campaign
to study the increasing cost of fuzzing over time [21]. Their
study shows that the computational cost of fuzzing gets expo-
nentially more expensive over time in order to find bugs. Their
results prove that improving fuzzers yields more potential
improvements to the efficiency of a fuzzing campaign than
adding more computational power.

The challenges of adopting fuzzing were also studied in
both an industrial and an academic setting. Our prior work
mined fuzzing-related GitHub issues of open-source software
repositories [13]. After manually labeling these issues, we
created a taxonomy of 22 challenges related to conducting
fuzzing activities and validated their results by surveying
fuzzing practitioners. Some of the challenges described in our
prior work had previously been highlighted in an industrial
setting by Liang et al., where a team of developers at Huawei
tried to start fuzzing one of their libraries [22].

This paper makes the following contributions: (1) we con-
duct a large-scale empirical study on 11,341 projects to study
the usage and adoption of native Go fuzzing, (2) we shed light
on how open-source communities conduct testing activities,
and (3) we propose a list of candidate functions for developers
to fuzz based on our investigation of how fuzz testing is being
applied in practice.

III. STUDIED DATA

Since the goal of our study is to investigate the usage and
evolution of fuzz testing in OSS projects, we first need to find
projects that contain fuzz tests. In this section, we describe our
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approach for selecting projects and locating code and commits
to be analyzed within the studied projects. Figure 1 provides
an overview of the data collection process.

A. Selection of Target Projects

We begin with the GitHub search tool [23] to find projects.
To collect all projects, we apply the language filter, where
we specify that the projects must be written in Go (i.e., the
primary language of the project is Go). This produces a list of
62,702 projects (as of March 2024). We then filter out projects
that are forks, which reduced the list to 60,982 projects.

Next, since we are interested in how open-source projects
use fuzzing, we need to mitigate the likelihood of toy projects
being included in our dataset. Therefore, we select only
those projects within the top 20% (12,120 projects) in terms
of number of commits (x > 246 commits). Because larger
projects tend to have larger communities, we also assume that
large projects are more likely to have open-source contributors
conducting fuzz testing within their development team. By
selecting only the large projects, we therefore increase our
odds of finding fuzz tests within the studied projects.

While inspecting our data for inconsistencies, we observe
duplicated projects due to project renaming. For these cases,
although two projects have different URLs, clicking the
GitHub URL would redirect to the most up-to-date GitHub
repository with the correct URL. To find these cases, we there-
fore used the python requests package to automatically verify
the redirecting URL. To deduplicate our data, we therefore
remove any project in our dataset whose URL redirects to the
latest up-to-date repository. This process further reduces the
number of projects to 11,341. We then clone these repositories
and proceed with the code parsing process.

B. Locating Code to be Analyzed

Finding test files. When programming using the Go lan-
guage, developers must follow specific rules in order to write
test code. As described in the official Go documentation [24],
all test code must be located in a file with the “ test.go” suffix.
To find test code in our studied projects, we therefore search
for all files ending in “ test.go”. In total, we detect 636,532
test files in our dataset.

Parsing the code. After locating the test files, we use the
parser package of the Go standard library9 to parse all Go test
files in our dataset. The parser produces Abstract Syntax Trees
(ASTs) in JSON format, which show all test function names
along with their return and parameter types. Additionally, the
parser logs the first and last line numbers of each function in
the test files. The parsing process is applied to all test files for
every revision in the history of our studied projects.

Locating test functions. Next, we set out to detect test
functions (both non-fuzzing and fuzzing test functions) within
the test files. To write a fuzz test, developers must follow
the naming conventions that is specified in the official Go
documentation [25], i.e., the function name of a fuzz test must
start with the word “Fuzz (e.g., FuzzTestOne)”. Moreover, the
fuzz target must be a function call to the (*testing.F).Fuzz
function with *testing.T being the type of the first parameter.

To locate fuzz tests, we traverse the ASTs that we obtain
from parsing the test files in search of functions that satisfied
the naming constraints. Since the parser logs the name of all
functions in the test files, we also search for functions that
satisfy the naming constraints for non-fuzzing tests, such as
unit tests (the function name starts with the word “Test”).

Labeling commits. After locating fuzzing tests/code, we
extract the starting and end lines of each test function for
every revision from the ASTs. For each commit, we then use
git to extract the names of the changed files along with the
line numbers where the changes are recorded. From there, we
match the line numbers from the AST output and the “diff”
output to label all commits as “non-fuzzing”, “fuzzing”, or
“source” according to whether the changes modify fuzzing
code, non-fuzzing test code, or code outside of test files.
Note that these categories are not mutually exclusive, and one
commit may have multiple labels.

IV. PRELIMINARY ANALYSIS

A. Do Developers Use Fuzz Testing? (PQ1)

Motivation. Fuzz tests were only added officially to the
Go language in 2022. Because this feature is so recent, we
still do not know to what extent native Go fuzzing is used by
developers to uncover software vulnerabilities. We therefore
aim to know what ratio of test files contain fuzz tests and
how many fuzz tests projects tend to have.

Approach. From the process described in Section III-B,
we were able to find the number of test files, non-fuzz test
functions, and fuzz test functions in our studied projects. In

9https://pkg.go.dev/go/parser

https://pkg.go.dev/go/parser


this first preliminary analysis, we therefore aim to report how
much fuzz testing was being conducted in open-source projects
at the time of data collection (March 2024).

To get an overview of how much fuzz testing is used in
practice, we first calculate the ratio of projects that contain
at least one fuzz test. From this subset of projects, we then
calculate what percentage of test files contain fuzz tests. Using
the percentage of test files that contain fuzz tests in each
project, we also calculate the median percentage of test files
that contain fuzz tests across all projects.

From the file level, we then dig deeper to the function level
to calculate the proportion of test functions that are fuzz tests.
To do so, we divide the number of fuzzing test functions over
the overall number of test functions in a given project. We then
repeat the same aggregation process we did for the file-level
analysis to calculate the median percentage of fuzz functions
over all test functions across all projects.

Results. We find that most projects still do not make
use of native Go fuzzing features with only 406 projects
(3.58%) out of 11,341 projects containing fuzz tests. When
looking at the 406 projects that contain fuzzing code, we find
that the median ratio of test files that contain fuzz tests is
only 3.15%. Figure 2 shows the distribution for the number of
non-fuzz test functions and the number of fuzz test functions
in projects that contain at least one fuzz test. As shown in
the figure, non-fuzzing tests are still far more common than
fuzz tests with a median number of 207 non-fuzzing tests per
project versus only 2 fuzz tests per project.

Continuing with our subset projects that contain fuzzing
code, we then calculate what percentage of test functions are
fuzz functions in each project. Using the ratio of fuzz functions
in each project, we then calculate the median ratio of fuzz tests
across all projects and find that fuzz tests only account for
1.35% of testing functions. Overall, our results indicate that
two years after being introduced, fuzz tests only account for
a small percentage of testing activities in our studied projects.

100
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Fig. 2. Number of non-fuzz tests (left) and fuzz tests (right) per project
containing at least one fuzz test (log scaled)

We find that most projects do not conduct fuzz testing
to uncover software vulnerabilities. For projects that
do fuzz their software system, fuzz tests only account
for a small percentage of total testing functions. These
results indicate that more work needs to be done to
spread the adoption of fuzzing among open-source
communities.

B. Is Fuzzing Test Code More Prone to Change Than Non-
Fuzzing Test Code? (PQ2)

Motivation. While the results of PQ1 reveal the extent to
which developers use fuzz testing, these results do not provide
insights into how frequently developers develop fuzz tests or
the amount of effort required to maintain fuzzing activities.
To get a basic idea of the amount of effort that developers
put into fuzzing their software systems, we investigate the
monthly commit activity of fuzz tests and the rate of change
of fuzzing test code per commit (churn). We then calculate the
same metrics for standard test code (i.e., non-fuzzing test code)
to compare the rate of development of standard tests and fuzz
tests. We hypothesize that non-fuzzing test code requires more
maintenance efforts than fuzzing test code because it requires
developers to manually write code to test against new inputs.
Fuzz tests, however, use the fuzzing engine to automatically
generate new inputs and may therefore not require as many
interventions from developers.

Approach. Starting from the filtered dataset described in
Section III-B, we further filter out commits dating before the
integration of fuzz tests into the official Go standard library.

To determine if a commit changed fuzzing test code or
standard test code, we first used the starting and ending
line numbers of each test function obtained from the parsing
process described in Section III-B. Next, we used git’s diff
feature to find out what lines were changed in each commit
in our dataset. By matching the line numbers of test functions
with the output of the diff command, we were able to find all
changes that happened in either fuzz test functions or non-fuzz
test functions. From there, we further filtered our dataset to
remove all commits that did not modify a test function.

For the remaining commits, we calculated the testing code
churn in each commit by summing up the number of lines
added, deleted, or modified in test functions. Using the number
of lines changed (i.e., added, deleted, or modified) in fuzzing
test code and non-fuzzing test code, we then calculated the me-
dian number of lines changed per commit across all projects.
To get an overview of testing activities since the introduction
of fuzz tests into the standard library, we then plotted the
monthly number of commits involving fuzzing test code and
non-fuzzing test code across all projects.

Results. We find that non-fuzzing test functions tend
to have larger changes than fuzz test code changes. From
the filtering process described in Section III-B, the removal
of commits predating the introduction of fuzz tests into the
standard library, and the removal of commits that do not target
test functions, we end up with a dataset of 125,927 commits.
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Using the number of fuzz test code lines impacted in each
commit in our dataset, we first calculate the median number of
lines impacted inside fuzz test functions per “fuzzing commit”.
We then repeat the same process for non-fuzzing test functions
and find a median of 17 lines of code changed per fuzzing
commits and 33 lines of code changed per non-fuzzing test
functions. Our results indicate that fuzz tests might require less
development efforts to maintain than non-fuzzing tests. This
could be due in part to fuzz tests not requiring developers to
manually write each input used during testing.

We find that open-source communities commit signifi-
cantly more non-fuzzing test code than fuzzing test code
on a monthly basis. We continue our preliminary analysis by
investigating the monthly number of commits involved with
test code modifications. Figure 3 shows the monthly number of
commits modifying non-fuzzing test functions and the monthly
number of commits modifying fuzzing test functions between
the introduction of fuzz tests into the standard library in March
2022 and the time of data collection in March 2024. During
this period, we calculate 102 median number of commits
per month that change fuzz test code across our studied
projects. This is a stark contrast to non-fuzzing test code where
the median monthly number of commits that modify non-
fuzzing test functions is 4,535. Overall, our results indicate
that developers still see non-fuzzing tests such as unit tests as
the main avenue to test a software system. Consequently, it is
likely that most of the testing efforts in open-source projects
are dedicated to deterministic testing over fuzz testing.

We find that open-source software projects both com-
mit significantly more often and commit larger changes
to non-fuzzing test code over fuzzing test code. Our
results suggest that open-source communities tend to
spend more development efforts on non-fuzz testing
than fuzz testing.

V. IS FUZZ TESTING DEVELOPMENT CONDUCTED AS
PART OF THE STANDARD TESTING PROCESS? (RQ1)

Motivation. In Section IV-B, we found that non-fuzzing
test code is committed at a much higher rate than fuzzing test
code. In this section, we aim to get a better understanding of
how open-source communities conduct their testing activities.
Specifically, we investigate if changes to fuzzing test code and
standard test code are typically done at the same time. From
this analysis, we aim to find out if fuzzing development is
conducted as part of standard test development or not.

Approach. After removing commits older than the introduc-
tion of native Go fuzzing, we use association rules [26, 27,
28, 29] to measure the coupling between source code changes,
non-fuzzing test code changes, and fuzz testing code changes.
In formal terms, association rules are defined as statistical
descriptions of the co-occurrence of elements in a dataset [26].
In other words, they are rules used to find associations and
relationships between different types of data points. Table I
shows how we calculated the association rules used in this
paper.

TABLE I
ASSOCIATION RULE CALCULATIONS

Rule Calculation

Support(X)
# type X revisions

# total revisions

Conf(X –>Y)
Support(X,Y)
Support(X)

Lift(X–>Y)
Conf(X–>Y)
Support(Y)

For our use case, we first use the support rule to know the
proportion of commits that contain a specific type of change
(source, non-fuzzing test, fuzz test). To measure the coupling
relationship between our studied changes (source, non-fuzzing
test code, fuzzing test code), we then use the confidence rule
which measures the strength of the implication that a change to
X will be accompanied by a change to Y. For example, let’s
assume our dataset contains 9 commits in total (5 commits
that modify the source code, and 4 commits that change non-
fuzzing test code). If one of these commits changes both the
source code and non-fuzzing test code, then the Conf (Source
→ Test) would be measured as (1/5) = 0.2 and the Conf (Test
→ Source) would be measured as (1/4) = 0.25. Note that the
confidence value is not symmetrical as shown in the example
above (Conf (Source → Test) ̸= Conf (Test → Source)).

The last rule we use is the Lift association rule. The lift
value represents the ratio between the observed rate of co-
occurrence and the rate of co-occurrence that would have
been expected due to random chance. A lift value of 1
indicates that two variables are independent of each other. A
positive lift value greater than 1 means that we are observing
more instances of an event than we would expect from a
random distribution, and a value lower than 1 indicates that
we are observing fewer instances than we would expect from



TABLE II
MEDIAN ASSOCIATION RULE VALUES CALCULATED ACROSS OUR DATASET

.

Association Median
Source 0.667
Test 0.309
Fuzz 0.009

Support Source/Test 0.249
Source/Fuzz 0.005
Fuzz/Test 0.004
Source → Test 0.369
Source → Fuzz 0.007

Confidence Test → Source 0.861
Test → Fuzz 0.015
Fuzz → Source 0.909
Fuzz → Test 0.750
Source → Test 1.239

Lift Source → Fuzz 1.204
Test → Fuzz 2.393

a random distribution. For our use case, we use the lift value
to know if our distributions are likely obtained due to chance
or not. Note, the lift value is symmetrical (Lift(X →Y) =
Lift(Y→X))

Results. Table II shows the median association rule values
across all projects. Looking at the support metrics, we find
that source code changes occur at a 2:1 rate when compared
with test changes (0.667 and 0.309 respectively). The median
support value for fuzz tests (0.009) further indicates that most
commits do not contain changes to fuzz test code. This is
in line with our preliminary results where we found that
developers do not use fuzz tests as much as non-fuzzing tests.

Source code changes are much more likely to be accom-
panied by non-fuzzing test code changes than fuzzing test
code changes. The median Conf(Source → Test) value reveals
that almost 37% of source code changes are accompanied by
non-fuzzing test code changes. This result shows that testing
activities are well integrated within the software develop-
ment process in our studied projects. However, the median
Conf(Source → Fuzz) value shows that fuzz testing is not a
consistent part of software development two years after fuzz
tests were added to the standard library. From the lift values,
we observe a small positive relationship between changes for
files involving source code changes. For standard test and fuzz
test changes, however, the higher lift value indicates that the
coupling values we calculated are unlikely to be due to chance.

Fuzz tests do not seem to be conducted as part of
regular testing activities. With the Conf(Test → Fuzz) value
being twice as large as the Conf(Source → Fuzz) value,
we find that fuzz tests are more likely to be added during
testing activities than source code development. However, with
only 1.5% of testing commits containing fuzzing test code
changes, our results indicate that fuzz testing is not a common
testing activity in our studied projects. This pattern is further
highlighted by the Conf(Fuzz → Source) and Conf(Fuzz →
Test) values (0.909 and 0.750 respectively) and the distribution
of confidence values in Figure 4 which show that fuzz test
changes seem to be accompanied by both source code changes
and standard test code changes indiscriminately.
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Fig. 4. Distribution of confidence values across studied projects.

We find that source code changes are much more
likely to be accompanied by non-fuzzing test code
changes than fuzzing test code changes. We also find
that fuzzing test code changes are committed with both
source code changes and standard test code changes.
Our results indicate that fuzzing development is not
being done as part of regular testing activities.

VI. WHO CONDUCTS FUZZ TESTING IN OPEN-SOURCE
PROJECTS? (RQ2)

Motivation In PQ1, we found that fuzz testing is still
an underutilized feature by open-source contributors which
suggests that there is room to improve the security of open-
source software systems. While we cannot know the exact
reasons behind the low usage of fuzz testing, the testimonies
of fuzzing experts in Nourry et al.’s 2023 survey revealed that
fuzzing has a high barrier of entry [13].

In this section, we aim to find out if fuzzing is mostly
conducted by projects that have fuzzing or security experts
within their contributors. Moreover, we want to know if the
average open-source contributor contributes to fuzz testing
activities. Finding out empirically if projects distribute the
fuzzing workload among contributors will also help us un-
derstand if the barrier of entry to fuzzing is still too high after
introducing fuzz tests into the standard library.

Approach As we did in Section V, we first removed
commits older than the introduction of native Go fuzzing.
From the mining process described in Section III-B, we also
extracted the author of every commit. To find out if an average
open-source developer is likely to work on non-fuzzing test
code but not fuzzing test code, we first find out the number of
developers conducting testing activities in each project. Thus,
we sum up the number of unique developers that deleted,
modified, or added fuzzing test code during the lifetime of a
project. We then perform the same calculation for non-fuzzing
test code in order to compare the involvement of open-source
contributors with standard testing activities (e.g., writing unit
tests) versus fuzzing activities.



To get a better understanding of the workload distribution of
software testing activities in open-source projects, we analyzed
the distribution of testing commits in our studied projects.
Thus, we first grouped together all commits belonging to each
project. Then, for each developer, we calculated the number
of commits that modified non-fuzzing test functions and the
number of commits that modified fuzz test functions.

Once we knew how many non-fuzz test commits and how
many fuzz commits each developer contributed to a project,
we sorted the developers based on their number of commits in
each project. Starting from the contributors with the most com-
mits, we then calculated the cumulative distribution of non-
fuzz test commits and fuzz commits in each project. Finally,
we calculated how many developers are required to achieve
80% of the fuzz testing workload in each project and then
calculated the median number of developers required across
all projects. We repeated the same process for non-fuzzing test
code in order to compare how developers distribute the testing
workload for fuzz testing versus standard testing.

Lastly, we aimed to determine if developers contributing
to fuzz testing are “fuzzing experts” that focus most of their
open-source contributions toward fuzzing activities. To find
out, we sampled developers that had at least one fuzz commit
(i.e., a commit with fuzz test code changes). We then counted
how many testing commits each developer contributed in
each project. In this context, we define “testing commits”
as a commit where the developer adds, deletes, or modifies
a non-fuzzing test function or a fuzz test function. Any
change in test a file that does not modify a test function is
not considered as a testing commit. For each developer, we
therefore calculated what percentage of testing commits are
changing fuzz functions to find out if fuzzing developers are
focusing specifically on fuzzing activities or not.

Results. We find that only a small number of contrib-
utors have contributed to fuzz testing activities whereas
a significant portion of contributors have written non-
fuzz tests. Table III shows the median number of developers
across projects that participate to standard testing activities,
fuzz testing activities and the median number of developers
that participate to both. Our results show that almost 24% of
open-source contributors (median of 32 developers per project)
contributed to standard test code for our selected projects. This
indicates that open-source communities view software testing
(specifically non-fuzz testing) as a shared effort to achieve
better code quality and security. Conversely, we find that only
1.31% (median of 2 developers per project) of developers have
contributed fuzz testing code development.

These results show that large open-source projects mostly
rely on a few contributors knowledgeable about fuzzing among
their community to conduct fuzzing activities. Additionally,
these results also indicate that most developers do not feel
comfortable writing fuzz test code even though Go developers
purposefully designed fuzz tests to be similar to unit tests.10

10https://github.com/golang/go/issues/44551#issuecomment-785176317

TABLE III
MEDIAN NUMBER OF DEVELOPERS PARTICIPATING TO STANDARD

TESTING ACTIVITIES, FUZZING ACTIVITIES, AND BOTH TYPES OF TESTING
ACTIVITIES ACROSS ALL PROJECTS.

# of developers % of developers # of developers responsible
for 80% of changes

Test 32 23.96% 2
Fuzz 2 1.31% 1
Test + Fuzz 1 0.50% X

We find that both standard testing and fuzz testing
rely on a few contributors to take on most of the testing
workload. Table III shows the number of developers required
to cover 80% of normal test changes and fuzz test changes.
Since only a handful of developers contribute to writing fuzz
test code, it is not surprising that a few developers can account
for a large portion of fuzz test code changes. For standard
testing, however, we previously found a 32 median number
of developers that have written non-fuzz test code across
projects which initially indicated that the testing workload
might be shared among the contributors. However, as we
can see in Table III, we find that the median number of
developers required to take on at least 80% of the non-fuzz
testing workload is only two. From our results, we therefore
find that open-source projects mostly rely on a few dedicated
contributors to conduct software testing activities (both fuzz
testing and standard testing).
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Fig. 5. Percentage of testing commits that modify fuzzing code for developers
conducting fuzzing activities.

We find that fuzzing developers primarily contribute
to standard testing activities over fuzzing activities. To
know if contributors contributing to fuzz testing in open-
source projects are mostly dedicated to fuzzing activities, we
calculated what percentage of testing commits (i.e., commits
that change either a non-fuzz test or a fuzz test.) contain
changes to fuzzing test code. Figure 5 shows what percentage
of testing commits modify a fuzz test function. With a median
percentage of 12.50% fuzz commits, we find that fuzzing
developers dedicate most of their contributions towards non-
fuzz testing rather than fuzz testing. These results indicate that
open-source contributors conducting fuzz testing are mostly
“testing experts” that use fuzzing alongside non-fuzz testing

https://github.com/golang/go/issues/44551#issuecomment-785176317


rather than “fuzzing experts” that focus solely on fuzzing.

We find that fewer contributors have contributed to
fuzz testing activities than non-fuzz testing activities.
We also find that most test code is developed by a
few contributors who focus on testing. Our results
suggest that fuzzing development is not conducted by
fuzzing specialists but rather by contributors dedicated
to testing activities in general.

VII. DISCUSSION

A. What Projects Are Making The Most Use of Fuzz Testing?

Our results in this study have shown that fuzz testing only
represents a small fraction of ongoing testing activities in
OSS projects. While it is surprising how little fuzz tests are
used in practice, there is a clear complexity and resource
cost gap between fuzz testing and standard testing that cannot
be ignored. The case study led by Liang et al. [22] on the
adoption of fuzzing at Huawei empirically showed that even
experienced developers can experience difficulties learning
fuzz testing. Computationally, Böhme et al.’s study on the
cost of fuzzing [21] has also shown that long fuzz sessions
are extremely inefficient to run. Due to these limitations, it
is possible that projects might not want to have most of their
testing infrastructure revolve around fuzzing.

While fuzz testing is more complex and more computation-
ally expensive than standard testing, it still has its place within
the realm of software testing. As of 2024, fuzz testing is one of
the best automated approach available to test at scale and find
vulnerabilities. However, due to their high cost, it is relevant
to find out in what context fuzz tests are suitable and which
functions warrant the high computational cost. For example,
unit tests might be better suited to test simple functions while
fuzz tests might be more suitable for critical features related
to security or data management.

Projects revolving around high-risk fields such as avionics,
finance, and networking might therefore be more comfortable
with the high cost of fuzzing in exchange for better security.
We therefore raise the question: What kind of projects use
fuzz testing the most as of 2024?

Table V shows the ten projects in our dataset that had the
highest number of fuzz test functions. From these top 10
projects, we find that seven of them are directly related to
different types of infrastructure systems such as blockchain
networks, cloud computing technologies, and networking in-
frastructure. In fact, we find that half of the top 10 projects
using fuzz testing the most are projects developing blockchain
networks where financial transactions must happen securely
over the network. The other three projects not related to
networking are comprised of custom libraries for software
development and a custom database driver.

TABLE V
TOP TEN PROJECTS WITH THE HIGHEST NUMBER OF FUZZ FUNCTIONS IN

OUR DATASET.

Project URL Fuzz functions Project description
babylonchain/babylon 160 Crypto/Blockchain network
lightningnetwork/lnd 104 Crypto/Blockchain network
spacemeshos/go-spacemesh 94 Crypto/Blockchain network

cncf/cncf-fuzzing 73
Repository used to fuzz
CNCF projects

ava-labs/avalanchego 65 Crypto/Blockchain network
luxdefi/node 59 Quantum crypto/blockchain network
thepudds/fzgen 59 Fuzz wrapper generator in Go
mtoohey31/iter 50 Go package for iterator functions
gravitational/teleport 50 Network infrastructure platform

scylladb/scylla-go-driver 47
Experimental, high performance
ScyllaDB driver

For most of the projects on the top 10 list, we observe
a clear pattern where projects using fuzz testing a lot are
dealing with some critical feature involving data integrity or
network security. A vulnerability in these kinds of systems can
result in catastrophic consequences costing billions of dollars,
widespread network security breaches, or large data breaches.

Interestingly, we also observe that the list of top 10 projects
is quite representative of the rest of our dataset of projects
that use fuzzing. After performing a quick manual check on
the rest of our dataset, we find that projects that fuzz are
overwhelmingly comprised of blockchain-related projects and
network/cloud infrastructure projects. The remaining projects
consist mostly of custom-made libraries and database-related
projects.

B. What Are the Main Uses of Fuzzing?

From our manual investigation, we were able to notice a
pattern in what types of projects use fuzzing the most. Since
most of these projects deal with high-risk or critical features,
we are interested to know what features these communities
deem worth fuzzing. To find out, two authors manually inves-
tigated the GitHub repositories of the projects listed in Table V
and inspected their fuzz tests.

Since large open-source communities usually have contri-
bution guidelines, test function names are typically descriptive
of the purpose of the test (e.g., FuzzParamsQuery, FuzzEncod-
ingDecoding, etc.).

By inspecting the name of the fuzz test functions and the
fuzzing test code, the authors were therefore able to determine
the purpose of each fuzz test and to make a list of reasons why
open-source communities fuzz their software systems.

Table IV shows the types of functions fuzzed by open-
source communities and gives examples found during the
manual review process. During the manual investigation, we
found that most projects tend to use fuzz testing to fuzz critical
functions. That is, functions that handle core features of a
system and where any bug or unusual behavior can bring down
the entire system or cause serious consequences. For example,
a function that rewards users with cryptocurrency coins while
mining cryptocurrency would be considered a critical feature.



TABLE IV
FUNCTIONS AND FUNCTIONALITIES THAT ARE BEING FUZZED IN OPEN-SOURCE GO PROJECTS.

Label Examples

Data
Data manipulation Data encoding/decoding, hashing, zipping/unzipping
Queries Request queries, message queue queries, db queries
Database Database endpoints, reads, storage

Features Project specific features Authentication functions, play/pause/stop functions
Networking features Packet fuzzing, request headers fuzzing

Internal Codebase

Generative functions Public key generations, token creation, uuid generations, etc.
Parsers Request parsers, query parser, packet parsers, data parsers
Storage Storing to a server, into memory or auth token storage
Setup functions Loading configs, database setup scripts, env setup

Utility code Compression, Remote Procedure Calls (RPC),
custom address iterators, file deletion functions, timestamp/dates.

From Table IV, we can see that several of these function-
alities such as data encoding/decoding or database queries are
used in projects that would not be considered as “high-risk”.
While it is logical to fuzz critical functions for projects in
sensitive fields (i.e., financial, networking, etc.), we are also
interested to know if projects not involved in such fields also
fuzz their critical features.

We therefore randomly sampled 5 projects from our dataset
that were not involved with blockchain technologies or did
not develop critical open-source infrastructure. We performed
the same process as before and investigated their usage of
fuzz testing. Interestingly, we find that these projects do
not fuzz their most important features as much as projects
developing critical software systems. For example, the source-
graph/zoekt11 project is a large open-source project providing
source code search functionalities. In this project, we find
many functions used to parse, query, and manipulate data
which are key features of the system but find very few fuzz
tests within their testing codebase.

C. Summary and Takeaway

We find that fuzz testing is mostly used by software systems
that require a higher level of security than most projects. Our
manual investigation reveals that projects use fuzz tests to test
functions that are critical for the system to run properly.

Our qualitative analysis’ results are consistent with our
quantitative results where we found that fuzz testing is not
used by most projects and only represents a small fraction of
test code for projects that do use them. From our qualitative
analysis, it seems more likely that fuzz tests are not ignored
by developers but rather only used for specific use cases where
fuzz testing excels over other types of testing.

For developers, we highly encourage every project to use
fuzz tests to detect vulnerabilities since the risk of spreading
vulnerabilities is always present due to the interdependent
nature of the open-source ecosystem [30, 31]. For those not
familiar with fuzz testing, we recommend fuzzing functions
such as the ones listed in Table IV.

11https://github.com/sourcegraph/zoekt

For researchers, our manual investigation can serve as
a starting point to explore the possibility of automatically
detecting important functions that should be fuzzed given a
codebase. If such a detection approach could be designed and
paired with automatic test generation tools, we could see a
significant increase in the number of developers that conduct
fuzz testing.

VIII. THREATS TO VALIDITY

Internal threats to validity concern factors internal to our
study that could affect or bias our results. In this study, we
used the top 20% largest open-source projects on GitHub to
conduct our analysis. This could bias our results by not being
representative of smaller projects. Using this process, however,
we reduce the risk of analyzing toy projects and increase the
chance that our studied projects are conducting real open-
source software development.

External threats to validity concern the ability to generalize
the result of this study. In this study, we only analyze the
evolution of fuzz testing in OSS projects. Our results may not
be generalizable to other languages that do not offer native
support for fuzzing testing. Because Go is one of the first
language to support native fuzz tests, we, however, believe that
our study is representative of the current use of fuzz testing
by the average developer (i.e., developers that are not fuzzing
experts like the ones working on OSS-Fuzz).

Construct threats to validity concern the relationship be-
tween theory and observation. To find and mine Go projects,
we used the GitHub search tool published by Dabic et al.
and specified “Go” as the main language in the search field.
While the projects returned by the tool all have Go as their
main language, the proportion of Go language over the entire
codebase may differ (e.g., some projects might be 100% in
Go while others only have 45% of their code in Go). It
is possible that the use of fuzz testing may differ between
projects developed purely in Go versus projects using Go for
specific parts of their codebase. Additionally, we identified
fuzz test functions based on their arguments as specified in
the official Go documentation. It is however possible that

https://github.com/sourcegraph/zoekt


developers might have used aliased imports which would cause
some of our identified functions

IX. CONCLUSION

In this study, we investigated the usage of native Go
fuzzing in open-source projects. Our results show that very
few contributors develop fuzz tests in open-source projects.
We also find that developers conducting fuzzing tend to
target specific functions rather than use fuzzing as a general
testing strategy. Our results also revealed that less than 4%
of our studied projects conduct fuzzing activities. Due to the
risk of spreading vulnerabilities throughout the open-source
ecosystem, we highly encourage projects to start adding some
fuzz tests to their testing codebase.

For developers, we recommend using fuzz tests in combina-
tion with unit tests to get the best balance between computation
cost and code robustness. For developers looking to start
fuzzing their software, we propose a list of functionalities that
are strong candidates for fuzz testing.

For researchers, we provide new empirical evidence of how
open-source communities conduct software testing activities.
Our results provide researchers and software engineers with
a better understanding of the factors limiting the adoption of
fuzz testing. From our results, we hope that better tools and
methodologies that help developers adopt fuzz testing can be
developed by the software engineering community.

X. REPLICATION PACKAGE

We provide all required scripts to replicate the data
mining process, the data filtering process, and the data
handling to obtain our results. The scripts can be found
at the following link: https://anonymous.4open.science/r/
ICSME2024-GoFuzzEvolutionReplication-64E8/README.
md
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