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ABSTRACT
It is often observed that the majority of the development work
of an Open Source Software (OSS) project is contributed by
a core team, i.e., a small subset of the pool of active devel-
opers. In fact, recent work has found that core development
teams follow the Pareto principle — roughly 80% of the code
contributions are produced by 20% of the active developers.
However, those findings are based on samples of between
one and nine studied systems. In this paper, we revisit prior
studies about core developers using 2,496 projects hosted on
GitHub. We find that even when we vary the heuristic for
detecting core developers, and when we control for system
size, team size, and project age: (1) the Pareto principle does
not seem to apply for 40%-87% of GitHub projects; and (2)
more than 88% of GitHub projects have fewer than 16 core
developers. Moreover, we find that when we control for the
quantity of contributions, bug fixing accounts for a similar
proportion of the contributions of both core (18%-20%) and
non-core developers (21%-22%). Our findings suggest that
the Pareto principle is not compatible with the core teams of
many GitHub projects. In fact, several of the studied GitHub
projects are susceptible to the “bus factor,” where the impact
of a core developer leaving would be quite harmful.
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1. INTRODUCTION
Understanding open source software (OSS) communities,

i.e., the groups that are responsible for developing and main-
taining an OSS system, is as important as understanding
OSS systems themselves. By studying OSS communities, we
accumulate knowledge about how these communities man-
age highly distributed development teams [18, 21]. Such
knowledge enables the OSS development model to augment
or replace development models in proprietary settings.

At the heart of OSS communities are core developers, i.e.,
the developers who take a leading role in the development and
maintenance of a software project. For instance, Nakakoji et
al. [19] state that core developers are responsible for guiding
and coordinating the development of an OSS project. Core
Members are those people who have been involved with the
project for a relative long time and have made significant
contributions to the development and evolution of the sys-
tem. Mockus et al. [18] define core developers as the most
productive developers who have made roughly 80% of the
total contributions. Although these heuristics slightly differ,
researchers agree that the impact that core developers have
on a project is large.

Recent studies have shown that a small number of develop-
ers make a large proportion of the code contributions [5, 6, 18].
Moreover, it has been shown that the number of core devel-
opers follows the Pareto principle (a.k.a., the 80-20 rule), i.e.,
80% of the contributions are produced by roughly 20% of
the contributors [8, 17, 24].

Although the prior work makes important strides towards
understanding core teams in OSS, the conclusions are drawn
based on a small sample size (i.e., 1-9 studied systems).
Therefore, in this paper, we set out to revisit how the Pareto
principle applies to core teams in a large sample of 2,496
GitHub projects. We study GitHub projects because GitHub
is one of the most popular social coding platforms, and
many successful OSS systems are developed on GitHub (e.g.,
Rails1). Through analysis of the 2,496 GitHub projects, we
address the following two research questions:

(RQ1) Does the proportion of core developers of GitHub
projects follow the Pareto principle?
While the actual proportion of core developers varies
depending on the heuristic of core developers that we

1https://github.com/rails/rails

https://github.com/rails/rails


Table 1: An overview of the results of prior work.
Paper Dataset Result
Mockus et al. [18] Apache and Mozilla 10 to 15 developers performed 80% of the contributions.
Dinh-Trong and Bieman [5] FreeBSD 28 to 42 developers performed 80% of the contributions.
Koch and Shneider [17] GNOME 52 developers (out of 301 developers) performed 80% of the

contributions.
Goeminne and Mens [8] Brasero, Evince and Wine 20% of developers performed 85%, 80% and more than 90%

of the contributions in each project.
Robles et al. [24] GNOME The core group has been identified as the 20% most contribut-

ing committers.
Geldenhuys [6] 9 OSS projects 3%-9% of developers performed 80% of the contributions.

use, 26%-58% of projects have core teams that are
too small (≤ 10% of active contributors) or 5%-28%
have core teams that are too large (≥ 30% of active
contributors) to be considered compliant with the
Pareto principle.

(RQ2) Is there any difference between the contributions of
core and non-core developers?
Surprisingly, we find that the proportions of core and
non-core developer activity are very similar when
we normalize them by their contribution rates. For
example, bug fixing activity accounts for 18%-20%
of core developer contributions and 21%-22% of non-
core developer contributions.

The main contributions of this paper are:

• A large-scale analysis of the core teams of 2,496 GitHub
projects.

• A comparative analysis of three heuristics for identify-
ing core developers.

Paper organization. The remainder of the paper is or-
ganized as follows. Section 2 surveys related work. Section 3
describes our heuristics for identifying core developers in
more detail. Section 4 provides an overview of the studied
GitHub projects. Section 5 describes the design and results
of our case study. Section 6 discusses findings from our study.
Section 7 discloses the threats to the validity of our study.
Finally, Section 8 draws conclusions.

2. RELATED WORK

2.1 Proportion of Core Developers
Prior work has also analyzed the proportion of core de-

velopers in OSS projects. Table 1 provides an overview of
the results of the prior work and the datasets that were ana-
lyzed. Mockus et al. [18] hypothesize that the open source
development model would rely on a team of core developers
who control the code base and that these core developers
would create 80% or more of the new functionality. Fur-
thermore, Mockus et al. argue that the core team would
be no large than 10 to 15 people based on analysis of the
Apache and Mozilla projects. Crowston et al. [3] compared
three approaches to identify the core developers within 116
SourceForge projects using bug fixing activity. Although the
results differ among the three studied approaches, all of the
approaches indicate that the core developers make up a small
fraction of the total number of contributors. Goeminne and

Mens [8] found evidence for the Pareto principle in three
activities (development, email discussion and bug tracker
activity) in three OSS projects. Robles et al. [24] arrived at
similar conclusions — the core team makes up roughly 20%
of the contributing committers.

On the other hand, other studies arrive at contradictory
conclusions. For example, Dinh-Trong and Bieman [5] repli-
cated Mockus et al.’s work using data from the FreeBSD
project, finding that 28-42 out of 161-265 developers perform
80% of the contributions. Koch and Shneider [17] find that
52 out of 301 developers make 80% of the contributions in
the GNOME project. Through analysis of nine systems,
Geldenhuys [6] find that the proportion of core developers
does not comply with the Pareto principle.

Much of the prior work analyzes a small number of sub-
ject systems. Hence, we set out to analyze core teams in a
large number of systems. More specifically, we formulate the
following research question:

(RQ1) Does the proportion of core developers of GitHub
projects follow the Pareto principle?

In addition to the size of core teams, Mockus et al. [18]
hypothesized that a group, which is larger by an order of
magnitude than the core team, will repair defects. From this
hypothesis, we derive that non-core developers focus more on
maintenance activity (e.g., bug fixing) than implementation
activity. Goeminne and Bieman [8] showed that 2-6 out of
the top 20 developers also contributed to plenty of the bug
report and email discussions. However, to the best of our
knowledge, the contribution activity of core and non-core
developers have not been quantitatively compared. Hence,
we formulate the following research question:

(RQ2) Is there any difference between the contribution
activity of core and non-core developers?

2.2 Studies on GitHub
In recent years, GitHub has become a popular source of

data for SE researches. Gousios et al. [10, 11] focus on the
pull-based development process. They first answer basic
questions about what the life cycle of a pull request is, and
how prevalent the pull-based development process is [10]. In
more recent work, Gousios et al. also study the impact that
the pull-based development process has on integrators, who
manage code contributions [11].

Dabbish et al. [4] conducted an interview with GitHub
users to find out what inferences people make from GitHub
transparency, and what the value of transparency for soft-
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Figure 1: Identifying core developers using an exam-
ple project.

ware development is. Their work reveals that four types of
transparency-related and social inferences feed into three
types of collaborative activities, such as project manage-
ment. In the project management activities, the visibility
of GitHub public repositories shifts development processes
from being repository-focused to being owner-focused and
contributor-focused.

Previous studies focused on the GitHub features. On the
other hand, we focus on the proportion of core developers in
GitHub projects.

3. HEURISTICS TO IDENTIFY CORE DE-
VELOPERS

In order to perform our study, we need to define heuristics
to identify core developers. Inspired by previous studies,
this paper explores three heuristics to identify core developer
from the perspective of contributions as described below.

3.1 Commit-Based Heuristic
Several previous papers that have studied core develop-

ers [8, 18, 24] use the heuristic that defines core developers
as those who produce roughly 80% of the total contributions.
In this paper, we adopt this heuristic — after sorting the
developers by their number of contributions in descending
order, the core developers are those who have produced 80%
of the project contributions, cumulatively.

For instance, Figure 1 shows an example project with four
developers: A, B, C, and D. In order to determine core
developers, we first sort the developers by the number of
commits in descending order (A: 6, C: 2, B: 1 and D: 1).
Next, we calculate the percentage of total commits that each
developer has produced (A: 60%, C: 20%, B: 10%, and D:
10%). Then, we calculate the cumulative percentage (A:
60%, C: 80%, B: 90%, and D: 100%). Finally, we select core
developers, one at a time, moving left to right, until we reach
a cumulative percentage of 80%. In this example, A and C
are identified as core developers.

In our algorithm, we do not handle the special case where
there are some developers who have same number of commits
on the border of core and non-core developers. We do not
suspect that who we select to be a member of the core
team should have a significant impact on the results, since:
(a) these developers have produced the same number of
contributions and (b) they are at the tail end of the core
team contributions.

Table 2: Finding self-identified mirror projects.
Category Used regular expression [16] #Projects
Mirror Of mirror of . ∗ repo|git repo of 10
Sourceforge sourceforge|sf\.net 6
Bitbucket bitbucket 2
Subversion \W (svn|subversion)\W 4
Mercurial \W (mercurial|hg)\W 0
CVS \Wcvs\W 0
Total - 23

3.2 LOC-Based Heuristic
Similar to the commit-based heuristic, the LOC-based

heuristic defines core developers according to the size of the
contributions that they make [17, 18]. While we conduct
our experiments using three size metrics, i.e., the number
of added lines, the number of deleted lines and the churn
(the sum of the number of added and deleted lines), we
find that the results are similar across the three metrics.
Therefore, to conserve space, we show only the results for
churn in the remainder of the paper. Similar to commit-
based heuristic, we identify core developers as those who
cumulatively contribute 80% of the churn.

3.3 Access-Based Heuristic
Core developers can also be defined as those who have be

given direct write access to the main VCS repository. For
example, in projects like PostgreSQL, only core members
can record changes directly in the main VCS repository —
other contributors must convince core developers to record
their changes on their behalf [7]. Hence, we can also identify
core developers from a VCS access perspective.

In GitHub, project owners can grant write access to the
project’s main repository to other contributors. GHTorrent
collects this information using the collaborators API and
stores it in the project members column [9]. According to
the description of the collaborators API, the list includes all
organization owners and users with access rights.2 Since this
list may include users who are members of an organization,
but who did not contribute to a project, we define the access-
based core developers as those who appear in the access list
and have also made at least one commit.

Unfortunately, we find that roughly half of the studied
projects do not use the access-based feature of GitHub. These
projects are filtered out of our analysis when we use the
access-based heuristic.

4. DATASET
In this section, we describe how we prepare the dataset of

GitHub projects for our study. Figure 2 provides an overview
of our dataset preparation steps.

We begin our study with the collection of GitHub project
data that is available via GHTorrent [9]. However, GitHub
hosts a large number of repositories, many of which are
not software projects. Hence, we filter the GHTorrent data
according to the suggestions of Kalliamvakou et al. [16]. We
take three steps to create our dataset from the available
GitHub projects. Initially, GHTorrent includes 8,510,504
repositories.

2https://developer.github.com/v3/repos/
collaborators/

https://developer.github.com/v3/repos/collaborators/
https://developer.github.com/v3/repos/collaborators/
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Figure 2: An overview of our data extraction approach.

(1) Filter Projects by GHTorrent Data
(1a) Type of Repository. In GitHub, there are two types
of repositories: main repositories and fork repositories. A fork
is a working copy of a main repository. Forking a repository
allows developers to freely experiment with changes without
interfering with the ongoing development of the original
project.3 In GitHub, fork repositories can contribute changes
back upstream to the main repositories that they are forked
from by issuing pull requests. If the maintainers of the
upstream repository agree with the changes that are proposed
by a pull request, the request is accepted, and the changes
are integrated into the main repository. As all accepted
pull requests are stored in main repository, we only extract
commits from the main repository, ignoring commits that
only appear in forks.

(1b) Number of Developers. Two types of authorship
data are recorded in Git repositories. The committer is
the team member who recorded the changes in the repos-
itory using the git commit command. The author is the
team member who produced the code change itself. In this
study, we focus on the authors of the changes, ignoring the
committer data, since the author is the team member who
actually produced the changes, while the committer is the
team member responsible for the integration work.

Furthermore, since projects with a small number of devel-
opers can easily achieve extreme core team proportions, we
filter away projects that have too few developers (number of
developers < 10).

(1c) Development Environments. In this study, we
would like to investigate core developers especially in projects
that are developed on GitHub. Kalliamvakou et al. [16] find
that GitHub is not only a popular social coding platform, it
also serves as a popular host for mirrored repositories.4 Since
such mirrored projects may not be developed in the same
manner as projects on GitHub, we need to filter them out of
our dataset. To do so, we heed the advice of Kalliamvakou et
al. [16]:

1. Avoid projects that have a large number of committers
who are not registered GitHub users.

2. Avoid projects that explicitly state that they are mir-
rors in their description.

To address item 1), we filter away projects where less
than 90% of the committers are registered GitHub users. To
3https://help.github.com/articles/fork-a-repo/
4e.g., https://github.com/apache

address item 2), we filter away projects with descriptions that
match the regular expressions listed in Table 2, as proposed
by the prior work [16].

After applying the filters of steps (1a)-(1c), 4,618 projects
remain in our dataset.

(2) Clone Projects
Now that the number of projects has become manageable,
we clone the selected repositories into our local environment
to calculate the metrics that we use for our case study. Un-
fortunately, some of the projects that we select from the
GHTorrent dataset are no longer available to be cloned (e.g.,
deleted repositories). Thus, we cannot include such projects
in our dataset. Nonetheless, we could clone 4,154 projects.

(3) Filter Duplicated Projects
Even after handling explicitly forked repositories, there are
still some duplicate repositories hosted on GitHub (i.e.,
cloned and registered repositories that were not created using
the GitHub fork feature). Such projects do not count as fork
projects, but those projects have largely the same history as
their originals. Since such projects will introduce noise in
our dataset, we first detect them using the steps below, and
then filter them out of our dataset.

We use the hashes of commits (SHAs) recorded in the Git
repositories to identify duplicated projects. We consider any
repositories that shares more than 70% of the same commit
SHAs as a copied repository. We remove both repositories
from our dataset because it is often difficult to determine
which repository is the original one and which one is the
copy.

After removing these repositories, 3,533 projects remain
in our dataset.

(4) Calculate Metrics from Repositories
For the remaining projects, we calculate the metrics that are
listed below in order to perform our case study.

LOC. We use cloc5 to calculate LOC. Our LOC count does
not include code comments or blank lines.

Total Commits. We count the number of commits by
using the git log command with the --no-merges option.

Total Authors. We identify the unique authors by author
name and email address, which we are able to extract from
the commit logs. We use a tool6 to disambiguate author

5http://cloc.sourceforge.net/
6https://github.com/bvasiles/ght_unmasking_aliases

https://help.github.com/articles/fork-a-repo/
https://github.com/apache
http://cloc.sourceforge.net/
https://github.com/bvasiles/ght_unmasking_aliases
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Figure 3: Distribution of Projects of Each Size Categories

names and email addresses. We disambiguate names and
email addresses of authors because some developers appear
with slightly different forms [6].

Age. We calculate the age of a project (in days) by sub-
tracting the time of the latest commit from the time of the
initial commit.

(5) Filter Projects by Metrics
We not only filter projects that have fewer than 10 developers,
but similar to Bissyande et al. [1], we also filter projects that
have fewer than 1,000 LOC.

Finally, we obtain a dataset that includes 2,496 GitHub
projects for the commit-based and LOC-based core developer
heuristic. Since 1,284 of these projects do not have the
information that is needed to detect contributors with write
access (cf. Section 3), only the remaining 1,212 projects are
studied using the access-based heuristic.

5. STUDY RESULTS
In this section, we present the results of our study with

respect to our two research questions. For each research
question, we present our approach and our results.

(RQ1) Does the proportion of core developers
of GitHub projects follow the Pareto principle?
We begin our study by measuring the proportion of developers
who are active enough to be considered core developers.

Approach. To address our first research question, we
calculate the proportion of the development team that is
considered to be part of the core team (cf. Section 3) of
each studied project. Then, we use histograms to study the
distribution of core team sizes in the studied projects.

The Pareto principle or the so-called“80-20 rule”states that
80% of the contributions are performed by roughly 20% of
the contributors. In this study, similar to prior work [18, 23],
we add a window of flexibility, considering projects where the
core team proportion is 20%± 10% as being compliant with
the Pareto principle. Indeed, Mockus et al. [18] showed that
the core team proportions of modules in the Mozilla project
are roughly 19%-25%. Moreover, Robles et al. showed that
10%-20% of developers produced more than 50% activities
(in many cases as much as 90% or 95%).

We address RQ1 using two analyses. First, we analyze the
distributions of proportions of core developers. Then, we
split up the projects according to three confounding factors.
Since the core team characteristics of smaller projects likely
differs from those of larger projects, we divide the dataset
into three strata (small, medium, and large) along three
confounding factors (system size, team size and project age).
We evenly divide the dataset accordingly, i.e., each stratum
includes 832 projects for the commit-based and LOC-based
heuristics, and each stratum includes 404 projects in the
access-based heuristic. We then plot histograms of the core
team proportions of projects in each of these nine strata. In
this paper, we do not show the plots of overall distribution



Table 3: The spread of projects among strata of project size and age.

Heuristic Size Metrics Stratum
Proportion of Core Developers

0%-10% 10%-30% 30%-100%

Commit-Based

Small 143 (17%) 411 (49%) 278 (33%)
LOC Medium 264 (32%) 389 (47%) 179 (22%)

Large 242 (29%) 368 (44%) 222 (27%)
Small 94 (11%) 359 (43%) 379 (46%)

Age Medium 203 (24%) 447 (54%) 182 (22%)
Large 352 (42%) 362 (44%) 118 (14%)
Small 80 (10%) 365 (44%) 387 (47%)

Total Authors Medium 224 (27%) 449 (54%) 159 (19%)
Large 345 (41%) 354 (43%) 133 (16%)

General 649 (26%) 1,168 (47%) 679 (27%)
Small 403 (48%) 367 (44%) 62 (7%)

LOC Medium 487 (59%) 304 (37%) 41 (5%)
Large 557 (67%) 253 (30%) 22 (3%)
Small 354 (42%) 376 (45%) 102 (12%)

LOC-Based Age Medium 501 (60%) 316 (38%) 15 (2%)
Large 592 (71%) 232 (28%) 8 (1%)
Small 227 (27%) 497 (60%) 108 (13%)

Total Authors Medium 502 (60%) 315 (38%) 15 (2%)
Large 718 (86%) 112 (13%) 2 (0.2%)

General 1,447 (58%) 924 (37%) 125 (5%)
Small 192 (48%) 100 (25%) 112 (28%)

LOC Medium 211 (52%) 92 (23%) 101 (25%)
Large 177 (44%) 98 (24%) 129 (32%)
Small 115 (28%) 94 (23%) 195 (48%)

Access-Based Age Medium 202 (50%) 107 (26%) 95 (24%)
Large 263 (65%) 89 (22%) 52 (13%)
Small 60 (15%) 87 (22%) 257 (64%)

Total Authors Medium 191 (47%) 143 (35%) 70 (17%)
Large 329 (81%) 60 (15%) 15 (4%)

General 580 (48%) 290 (24%) 342 (28%)

Table 4: Distributions of projects according to the number of core developers.
Number of Core Developers 1-9 10-15 16-20 21-50 51-100 101-
Commit-Based 1,924 (77%) 273 (11%) 98 (4%) 137 (5%) 17 (0.7%) 47 (2%)
LOC-Based 2,397 (96%) 57 (2%) 15 (0.6%) 13 (0.5%) 4 (0.1%) 10 (0.5%)
Access-Based 1,036 (85%) 128 (11%) 24 (2%) 24 (2%) 0 (0%) 0 (0%)

to conserve space because we find that the distributions of
the medium strata follow the same trends as the overall
distributions.

Results. Figure 3 shows the core team distributions of
the studied projects. Table 3 shows the exact numbers of
projects of each category and percentile. In Table 3, the gray
colored columns show the Pareto-compliant range.

Contrary to prior results, we find that the core
team size of projects distributes broadly. Figure 3 and
Table 3 show that the distributions are different according to
the heuristic. Indeed, unlike prior work [8, 17, 24], we find
that there are many projects that fall outside of our range
of Pareto compliance (10%-30%).

When we focus on each heuristic and confounding factor,
we observe the following trends.
Commit-Based: Table 3 shows that, irrespective of the stra-
tum, 43%-54% of the studied projects are Pareto compliant.
When controlling for project age and team size, we find that
the number of projects with the smallest core team size (i.e.,
0%-10%) increases as we shift from the smallest to largest

strata. On the other hand, this trend is not as extreme in
the system size strata. Therefore, we conclude that project
age and team size have a larger impact on the core team
proportion than system size does.
LOC-Based: The LOC-based heuristic is more right skewed
than the commit-based heuristic. Similar to the commit-
based heuristic, Table 3 shows that the right skew increases
as the system size increases. Moreover, the total number of
authors seems to impact to the core team proportion because
the difference between small and large stratum is the largest
among the three studied metrics.
Access-Based: Figure 3 shows that the distributions of the
access-based heuristic are similar to those of the LOC-based
heuristic. However, there are more projects that fall in
the 30%-100% range for the access-based heuristic than the
LOC-based heuristic. Similar to the commit-based heuristic
(Table 3), age and team size also appear to have an impact
on the core team proportion of the access-based heuristic.

Figure 4 shows the number of core developers. In Figure 4,
the x-axis shows the number of core developers and the y-axis
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Figure 4: The distribution of projects according to the number of core developers.

shows the number of projects. Table 4 shows the breakdown
of projects stratified by the number of core developers.

From the perspective of core team size, we find support for
the findings of prior studies [5, 17, 18]. Mockus et al. argue
that if the core team uses only an informal means of coor-
dinating, the group will be no larger than 10-15 people [18].
Conversely, Dinh-Trong and Bieman [5] find that 28-42 de-
velopers provide 80% of the contributions in the FreeBSD
project. Koch and Schneider [17] find that 52 developers
provide 80% of the contributions in GNOME project.

88%-98% of projects have fewer than 16 core de-
velopers. Unlike the proportion of core developers, the
distributions of the number of core developers are similar
across the studied heuristics. Indeed, Table 4 shows that
88%-98% of the studied GitHub projects have fewer than 16
core developers.

We further analyze the 2%-12% of projects that have more
than 15 core developers to find out what kind of projects have
larger core teams. When using the commit-based heuristic,
275 out of the 299 projects that have more than 15 core
developers are categorized in large stratum of total authors
and the remaining 24 projects are in medium stratum. When
using the LOC-based heuristic, 41 of the 42 projects are in
large stratum of total authors and the remaining one project
is in medium stratum. When using the access-based heuristic,
27 of the 48 projects are in large stratum of total authors,
and 20 of the remaining 21 projects are in medium stratum.
These observations indicate that most of the projects that
have many core developers also tend to a larger pool of
contributors than the other projects.

Contrary to prior work, we find that there are several
projects that have larger or smaller core team proportion
than we consider to be compliant with the Pareto principle.
Moreover, we find that most projects have 15 or fewer
members of the core team.

(RQ2) Is there any difference between the con-
tribution activity of core and non-core develop-
ers?
To address this RQ, we compare the types of contributions
that are performed by core and non-core developers.

Table 5: Keywords used to classify commits [12].
Development
Activity Type Keywords
Forward Engineering implement, add, request, new,

test,start, includ, initial, intro-
duc, creat, increas

Maintenance
Activity Type Keywords
Reengineering optimiz, adjust, update, delet,

remov, chang, refactor, re-
plac, modif, (is, are) now, en-
hance, improv, design change,
renam, eliminat, duplicat, re-
structur, simplif, obsolete, re-
arrang, miss, enhanc

Corrective Engineering bug, fix, issue, error, correct,
proper, deprecat, broke

Management clean, license, merge, re-
lease, structure, integrat, copy-
right, documentation, man-
ual, javadoc, comment, migrat,
repository, code review, polish,
upgrade, style, formatting, or-
ganiz, TODO

Approach. Previous studies have explored the purposes
of changes [12, 14, 20]. In this study, we adopt Hattori and
Lanza’s approach to identify the purpose of changes. Hattori
and Lanza [12] proposed a lightweight approach to classify
each commit into development or maintenance activities
based on the accompanying commit messages. They defined
four main activities: forward engineering as development
activity; and reengineering, corrective engineering and man-
agement as maintenance activity. They also provide keywords
that are indicative of the type of activity (Table 5). Forward
engineering activities implement new requests and add new
features. Reengineering activities are related to refactoring,
redesign and other actions to enhance the quality of the code.
Corrective engineering activities fix defects. Management
activities are other general maintenance activities that are
not related to system functionality, such as code reformatting
and documentation.

To ensure that the classification provided by Hattori and



Table 6: Developer Activity

Type of Activity
Commit-Based LOC-Based Access-Based

Core Non-Core Core Non-Core Core Non-Core
Forward Engineering 15% 18% 16% 18% 17% 16%
Reengineering 29% 30% 29% 30% 24% 30%
Corrective Engineering 20% 21% 20% 22% 18% 21%
Management 14% 13% 14% 13% 12% 15%
Empty 0.1% 0.1% 0.1% 0.1% 0.3% 0.1%
Unknown 22% 17% 22% 17% 30% 19%

Total #of Commits 4,692,063 1,054,460 4,739,121 1,007,402 931,265 1,934,196

Lanza is sufficient for our dataset, we manually analyze a
randomly selected sample of 384 commit comments. The
sample is selected such that it provides a confidence level of
95% with a confidence interval of ±5%. The manual analysis
reveals that some commits have an empty commit comment.
We classify such commits as empty.

Hattori and Lanza’s approach searches for keywords in
commit messages in the following order: empty comments,
management, reengineering, corrective engineering and for-
ward engineering. The commit comments of so-called tangled
changes [13] can match multiple purpose keyword types. For
example, a developer can clean up code and fix a bug within
one commit. For these commits, the approach classifies the
commit according to the keyword that is found first (e.g.,
the commit described above is classified into reengineering
activity). The commits that could not be classified into any
of the classes are marked as unknown.

Using Hattori and Lanza’s approach, we classify and com-
pare the distributions of activities of core and non-core devel-
opers. In total, our commit-based and LOC-based heuristic
datasets includes 5,746,523 commits, and our access-based
one contains 2,865,461 commits.

Results. Table 6 shows the distribution of activities of core
and non-core team members. Interestingly, the total number
of commits that are contributed by core and non-core team
members are very similar when we use either commit-based
and LOC-based heuristics. On the other hand, the access-
based heuristic shows that the number of commits of core
developers is less than that of non-core developers. In this
study, we only consider the authors of commits. Hence, this
discrepancy between core and non-core contributions might
show that many of the access-based core developers focus on
integration work rather than writing code.

The proportions of contribution activity of core
and non-core developers are similar. Irrespective of
the core team heuristic, we find that the distributions of
activities are very similar. Reengineering accounts for the
largest proportion of activity for both core and non-core de-
velopers, with proportions ranging between 24%-30%. In the
other type of activities, the difference between the proportion
of activity of core and non-core developers is at most 6 per-
centage points. Therefore, we conclude that the difference in
activity proportions between core and non-core is negligible.

The proportions of contribution activity of core and non-
core developers are similar.

6. DISCUSSION

6.1 The Bus Factor
We find that more than half of the studied projects have a

core team comprised of (at most) 20% of the pool of active
developers and more than 88% of the studied projects have a
core team of (at most) 15 developers. These results indicate
that many projects have a low bus factor [2, 22, 25], i.e.,
face the risk of key personnel leaving the project. Ye and
Kishida [26] find that development of GIMP was once halted
because a key core developer left the project. To avoid such
cases, projects must share knowledge among developers.

On the other hand, similar to the work of Dinh-Trong and
Bieman [5], we find that there are projects that have large
core teams. In this study, we just show the distribution and
do not investigate each of the projects deeply. In future work,
we plan to conduct a deeper analysis of projects with large
core teams. For example, investigating whether or not such
projects have well-defined mechanisms for developer promo-
tion rather than the informal arrangements that Mockus et
al. [18] hypothesized could yield fruitful results.

6.2 Core and Non-core Developer Activity
Prior work [18] hypothesized that a group larger by an

order of magnitude than the core team will repair defects. If
the hypothesis is true, we assumed that the proportion of
maintenance activity of non-core developers is large. How-
ever, our results show that both types of developers have
similar proportions of development activities. Furthermore,
when we consider the number of corrective engineering com-
mits, the number of the commits by core developers is much
larger than that by non-core developers.

Our results may be a characteristic of the GitHub devel-
opment environment. With the growth of social coding plat-
forms (e.g., GitHub), the nature of core teams in modern OSS
projects may have changed. For example, GitHub projects
boast a higher rate of acceptance for contributions than the
OSS projects of the past did. Indeed, while Jiang et al. [15]
find that only 33% of contributions are eventually integrated
into the Linux kernel (one of the largest OSS projects, which
mainly developed by outside of GitHub), Gousios et al. [10]
find that 84% of contributions are eventually integrated into
GitHub projects.

6.3 The Impact of Thresholds
In this study, we filter projects to remove immature soft-

ware projects by using some thresholds, i.e., the total authors
and LOC (cf. Section 4). As such, our results may be sensi-
tive to these thresholds. To check for threshold sensitivity,
we re-apply our analysis using other threshold values (total



Table 7: The proportion of projects that are Pareto
compliant when we use other threshold values.

Metric Threshold #ofProjects Proportion

Total Authors
5 2,526 46%
20 1,664 49%

LOC
500 2,685 46%
2,000 2,220 47%

authors = 5, 20 and LOC = 500, 2,000) and discuss changes
to our results below.

Table 7 shows the proportion of projects that are Pareto
compliant when we vary the thresholds. Irrespective of the
threshold, similar to our results in Section 5, we observe
that more than half of projects are not Pareto compliant.
These results suggest that while our results slightly vary
when the thresholds change, the main conclusions are not
heavily impacted.

7. THREATS TO VALIDITY

7.1 Construct Validity
In this paper, we adopt three heuristics to identify core

developers. The commit-based and LOC-based heuristics are
based on the amount of contribution to the product. Even
though there are a lot of metrics that can capture contribution
units, the amount of contribution is one of the most basic
metrics that is used to identify core developers. Moreover,
previous studies that focus on core contributors [5, 6, 8, 17,
18, 24] also conduct their analysis from the perspective of
the amount of contribution. Therefore, we feel that these
heuristics are appropriate for our context.

On the other hand, the access-based heuristic does not
depend on the amount of contribution. However, the access-
based definition is also one of the most basic indicators of
core developers. Indeed, the developers who have write access
to the main repository have enough knowledge about the
product to manage other developers’ contributions.

7.2 Internal Validity
Our results for RQ1 are dependent on our heuristics for

identifying core developers. In this study, we used 80% of
the total contributions as our threshold for identifying core
developers, since this threshold was also used by previous
studies [5, 6, 8, 17, 18, 24]. While we begin a threshold
sensitivity analysis in Section 6, we plan to perform a carefully
controlled sensitivity analysis in future work.

Furthermore, our analysis is time-agnostic. Since devel-
opment teams are changing over time, the number of core
developers may vary as well. We plan to conduct a temporal
analysis of core teams in future work.

7.3 External Validity
In this study, we filter away projects that have less than

10 developers or less than 1,000 LOC to remove projects
that are immature [1, 16]. Therefore, our results may not
generalize to legitimate software projects with a small number
of contributors.

8. CONCLUSION
Open Source Software (OSS) projects depend heavily on

core developers, i.e., team members that produce 80% of the

contributions to a project. Prior studies have found that core
development teams tend to follow the Pareto principle (a.k.a.,
the 80-20 rule), i.e., 80% of the contributions are produced
by roughly 20% of the contributors. However, these prior
studies were performed on small samples of systems. With
the recent growth in popularity of the social coding paradigm,
a plethora of data is becoming available for researchers to
explore core team dynamics within. Therefore, we revisit
the analyses of previous work on a large sample of GitHub
projects.

To that end, in this paper, we study core development
teams on GitHub. Through a case study of 2,496 GitHub
projects, we observe that:

• The core teams of many GitHub projects are not com-
pliant with the Pareto principle.
• While some GitHub projects have core teams that are

too large to be Pareto compliant, many more have very
small core teams, consisting of fewer than 10% of the
pool of contributors.
• Core and non-core developers participate in mainte-

nance and future development activities in similar pro-
portions.
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J. Carlos. Remote analysis and measurement of libre
software systems by means of the cvsanaly tool. In
Proc. the 2nd ICSE Workshop on Remote Analysis and
Measurement of Software Systems (RAMSS), pages 51–
55, 2004.

[25] M. Torchiano, F. Ricca, and A. Marchetto. Is my
project’s truck factor low?: Theoretical and empirical
considerations about the truck factor threshold. In Proc.
Int’l Workshop on Emerging Trends in Software Metrics
(WETSoM), pages 12–18, 2011.

[26] Y. Ye and K. Kishida. Toward an understanding of the
motivation open source software developers. In Proc.
Int’l Conf. on Software Engineering (ICSE), pages 419–
429, 2003.


	Introduction
	Related Work
	Proportion of Core Developers
	Studies on GitHub

	Heuristics to Identify Core Developers
	Commit-Based Heuristic
	LOC-Based Heuristic
	Access-Based Heuristic

	Dataset
	Study Results
	Discussion
	The Bus Factor
	Core and Non-core Developer Activity
	The Impact of Thresholds

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion
	Acknowledgements
	REFERENCES

