
Assessing the Exposure of Software Changes:
The DiPiDi Approach

Mehran Meidani
University of Waterloo

Waterloo, Canada
mehran.meidani@uwaterloo.ca

Maxime Lamothe
University of Waterloo

Waterloo, Canada
maxime.lamothe@uwaterloo.ca

Shane McIntosh
University of Waterloo

Waterloo, Canada
shane.mcintosh@uwaterloo.ca

Abstract—Context: Changing a software application with many
build-time configuration settings may introduce unexpected side-
effects. For example, a change intended to be specific to a
platform (e.g., Windows) or product configuration (e.g., commu-
nity editions) might impact other platforms or configurations.
Moreover, a change intended to apply to a set of platforms
or configurations may be unintentionally limited to a subset.
Indeed, understanding the exposure of source code changes is
an important risk mitigation step in change-based development
approaches.
Objective: In this experiment, we seek to evaluate DiPiDi, a
prototype implementation of our approach to assess the exposure
of source code changes by statically analyzing build specifications.
We focus our evaluation on the effectiveness and efficiency of
developers when assessing the exposure of source code changes.
Method: We will measure the effectiveness and efficiency of
developers when performing five tasks in which they must identify
the deliverable(s) and conditions under which a change will
propagate. We will assign participants into three groups: without
explicit tool support, supported by existing impact analysis tools,
and supported by DiPiDi.

Index Terms—build systems, exposure of a change, build
dependency graph

I. INTRODUCTION

Complex software programs employ many compile-time
configuration settings to build different software products
(a.k.a., variants) from the same artifacts (i.e., source files) [1].
For example, the Linux kernel has more than 10,000 compile-
time configuration settings [2]. These systems have multiple
dependency paths from their deliverables (i.e., executables and
libraries) to their source files. Under some conditions, a source
file may play a role in one compiled deliverable without affect-
ing others. For example, in the Linux kernel, the source files
written specifically for the ARM architecture will be excluded
from the x86 version of the kernel [3]. In these complex
systems, a change in a source-file may have unexpected side-
effects on deliverables outside of the current compilation path.
Software systems that support multiple variants can therefore
create complex arrangements of effects and side-effects, where
the deliverables exposed to a code-change can be unclear [4].

Software engineering practices that assess source code
changes, like code review, are expensive and time-
consuming [5], [6]. Extra time and effort must be spent by
developers on activities like finding which deliverables are
exposed to a change. In this paper, we define the exposure of a

etl

Files

SELECT
FEATURE_CURL

dl_main_curl.c

CONCAT

True

 ${CLIENT_SRC}

CONCAT

False

dl_main_stubs.c

Fig. 1: A real-world example of a build dependency graph

change as the set of deliverables affected by a change, includ-
ing executables and libraries, as well as the different build-
time configuration and environment settings under which the
changes propagate. Changes that impact critical deliverables
or configurations may require more quality assurance effort
than others to mitigate their exposure risk [7].

When modifying complex software programs, source code
changes may be localized or broad. Figure 1 shows an example
of a dependency graph for the ET: Legacy project1. A change
to the dl_main_curl.c file impacts the deliverable etl if
the FEATURE_CURL option is ON. On the other hand, changes
to files represented by $CLIENT_SRC will always impact the
deliverable. A change that only impacts one variant of a system
may not be as important as a change that affects all variants.
Exposing the effect of a change under different configuration
settings can help developers assess the impact of that change.

Despite its importance, assessing which deliverables are
impacted by a change, and the conditions under which they are
impacted, is not well supported by current software tools [8].
Change Impact Analysis (CIA) is one way to determine the
consequences of a change on a software application [9]. Many
CIA techniques have been proposed [10]–[15]. However, to the
best of our knowledge, none of them consider environment or
build-time configuration settings. While build impact analysis

1https://github.com/etlegacy/etlegacy

CMake
Build

Description
Files

Parse and Build
Abstract Syntax Tree

Construct
Dependency Graph

Version
Control
System

File
Names

Patch
Change Set

Exposure Analyzer

Compilation Paths

Flatten Variables

Traverse
Compilation Paths

Create
PathObjects

Impacted
Deliverables

Under Different
Configuration

Settings
Create

PathObjects

Fig. 2: An overview of the DiPiDi approach

has been shown to be effective [7], [14], current techniques
rely on a dynamic analysis of build execution, which cannot
expose the impact of a change on different environmental and
configuration settings.

Therefore, we propose DiPiDi, an approach to assess the
exposure of changes to the source code of systems that are
built using CMake. One of the key roles of the build system
is finding and selecting files based on build scripts, build-
time configurations, and environmental variables [16]–[18]. By
statically analyzing the build scripts and constructing the Build
Dependency Graph (BDG), we can assess the exposure of a
change on all software variants.

This paper presents our plan to experimentally evaluate
the effect of DiPiDi on the effectiveness and efficiency of
determining the exposure of source code changes. To that
end, we form three participant groups – those with no tool
assistance, those with the assistance of a commercial CIA
tool, and those with the assistance of DiPiDi– and compare
their efficiency and effectiveness on prescribed tasks. The
participants are asked to identify the impacted deliverables and
variants for given source code changes while we monitor their
performance. A tool that could significantly improve effective-
ness and efficiency for these tasks could be useful in many
applications both for researchers who design experiments
based on source code change (e.g., mutation testing) [19] and
practitioners in the allocation of quality assurance resources.

II. RESEARCH QUESTIONS

In this study, we aim to determine whether a static analysis
of build systems can improve the effectiveness and efficiency
of software developers striving to assess the exposure of a
source code change. A source code change, or patch, that
impacts an application under a specific and rare configuration
would likely not merit as much developer attention as a source
code change that always impacts the application. A change
that impacts more deliverables and/or configurations (high-
exposure) has a broader “surface area” and a greater potential
to impact users, should a defect be introduced, than a change
with low-exposure. Despite the importance of understanding
exposure, it is difficult to assess without tool support. To this
end, we propose DiPiDi to improve awareness of the exposure

of changes. We hypothesise that DiPiDi will allow developers
to more efficiently and effectively determine the exposure of
source code changes.

To test our hypothesis, we pose the following research
questions (RQs):

RQ1: Does DiPiDi help developers assess the exposure of
source code changes more effectively?

We address RQ1 by testing the following hypotheses:
H1.1: DiPiDi significantly affects the effectiveness of
developers in assessing the exposure of a patch.
H01.1: DiPiDi does not significantly affect the effectiveness
of developers in assessing the exposure of a patch.

Additionally, we ask:

RQ2: Does DiPiDi help developers to assess the exposure
of source code changes more efficiently?

We formalize RQ2 in the following hypotheses:
H2.1: DiPiDi significantly affects the efficiency of developers
in assessing the exposure of a patch.
H02.2: DiPiDi does not significantly affect the efficiency of
developers in assessing the exposure of a patch.

III. DIPIDI

Our proposed solution to raise developer awareness of the
exposure of changes, DiPiDi, works on projects that use the
CMake build system. CMake is a cross-platform build system
that builds deliverables from artifacts, like source files [20].
CMake has two distinct phases. First, it generates platform-
based low-level build specifications (e.g., Makefiles, Visual
Studio #.sln files, or Ninja files [21]). Then, CMake invokes
the low-level build tool to build the project.

An overview of the approach used by DiPiDi can be found
in Figure 2. DiPiDi first parses the CMake specifications
starting with the CMakeLists.txt file in the project root
directory (i.e., the entry point for the CMake build system).
We use ANTLR [22] to parse and build the Abstract Syntax
Tree (AST) from the CMake file. At this level, we may need

to include and parse other CMake files as instructed in the
CMakeLists.txt file.

Next, we traverse the AST to create the Build Dependency
Graph, which represents the relationship between the deliv-
erables, source files, and the conditions in each path. Using
the graph, we resolve variables to their values under different
build-time configuration settings (i.e., flatten the variables). By
flattening the variables, we obtain all of the possible values for
each variable for all configuration settings. This information
is then saved and can be accessed through an API when
attempting to determine the exposure of a source code change.

Given a list of changed file names, the flattened vari-
ables can be used to traverse dependency paths to create
a list of exposed PathObjects, the output of DiPiDi. A
PathObject contains all the possible dependency paths
from deliverables to the changed source files. Often in large
software applications, there are build-time configuration and
environmental settings that help the build system to reason
about different variants of the system [23], [24]. These settings
create different dependency paths from the deliverable to the
source files. An example of the output of DiPiDi is shown
in Figure 3. This output can then be used by developers to
identify which deliverables and variants are exposed by source-
code changes.

IV. RESEARCH PROTOCOL

To test our hypotheses, we will conduct randomized con-
trolled experiments with three groups. Study participants will
be asked to perform a set of prescribed tasks with their usual
development setup without additional help (control group),
with a baseline change impact analysis tool (positive control
group), and with DiPiDi (treatment group). We measure the
effectiveness of our tool by comparing the responses of the
participants with an established ground truth. We will measure
the efficiency of our participants by comparing the duration of
each task across the groups.

A. Variables

Table I provides an overview of the study variables, which
we describe below.

1) Independent Variable: In our study design, the tool
support provided to the participants varies (No Tool, With
Existing Tool, and With DiPiDi). We use the following groups
(Tooling level) to evaluate our hypotheses:
No Tool. This group has access to the code change and other
files in the project, including the build specifications. They
can use their preferred development environment to perform
the tasks. This group is a control group and represents the
current practices used by software developers attempting to
determine which deliverables are affected by a source code
change.
Existing Tool. This group has access to the same environment
as the No Tool group, as well as a state-of-the-art change
impact analysis tool [25]. This group is a positive control
group and represents the current approaches used by software
engineering research to aid software developers attempting to

1 {
2 "dl_main_curl.c": {
3 "FEATURE_CURL": ["etl"]
4 },
5 "dl_main_stubs.c":{
6 "NOT FEATURE_CURL": ["etl"]
7 },
8 "common.c": {
9 "": ["etl"]

10 }
11 }

1

Fig. 3: An example of output of the tool based on the given
graph in Figure 1

determine which deliverables are affected by a source code
change.
DiPiDi: This group–the treatment group–will have access
to DiPiDi. For each changed file, the tool will print a
PathObject. Our tool will print the impacted deliverables
at the file level. Although the file granularity may overestimate
the true impact of a change, it is the granularity at which the
build system operates.

2) Dependent Variables: Our dependent variables are out-
lined in Table I. We discuss our reasoning for these variables
below.
Exposure analysis effectiveness: The score from each task
indicates how close the answers of the participants are to the
ground truth. We could alternatively determine if a participant
provides fully correct answers for each task and consider the
ratio of correct answers to total tasks. However, we believe
that our approach, which indicates how close participants are
to fully correct answers, allows us to obtain a finer grained
insight into how participants complete their tasks. Thus, we
consider our task scores (i.e., Number of correctly identified
deliverables & Relative rate of correctly identified deliver-
ables) to be good proxies for exposure analysis effectiveness.
Exposure analysis efficiency: We define exposure analysis
efficiency as the scores the participant get for tasks for a given
time (in minutes) spent for the tasks. As a result, getting higher
score in a shorter time will result in a higher efficiency. This
way, we consider both the fully correct answers and the partial
ones, especially in the rank based tasks.

3) Confounding Variables: Because different code changes
might affect the results of our participants, we control the code
changes made available to them. We present patches from three
different projects to ensure our results are not biased towards
any single project. We also control build-time configuration
settings to evaluate Tooling level with multiple build configura-
tions without introducing confounding factors. We gather some
demographic information like the Development experience in
order to control their correlation with the dependent variables.
We also use these variables to inform our data preprocessing
(e.g., get some context to determine why a participant might
not have finished a task) and for further analysis.

TABLE I: The variables of the study

Name Description Scale Operationalization
Independent variables:
Tooling level The tools available to the participants: no tool, existing tool,

DiPiDi
nominal See Section IV-A; randomized.

Dependent variables:
Number of correctly
identified deliverables

Ratio of the impacted deliverables correctly identified by the
participants under a specific build-time configuration over the
known impacted deliverables (RQ1)

ratio Computed at the end using the harmonic
mean (F-measure) for task types A & C.
See Sections IV-C & IV-F2

Relative rate of correctly
identified deliverables

Normalized pairwise disagreements between participant rankings
of patches in terms of the number of impacted deliverables, and
known correct rankings (RQ1)

ratio Calculated at the end for tasks of type B.
See Section IV-F2

Exposure analysis
effectiveness

The sum of the number of correctly identified deliverables and
relative rate of correctly identified deliverables (RQ1)

ratio Computed at the end using the number of
correctly identified deliverables and the rel-
ative rate of correctly identified deliverables.

Task time The time needed for each participant to complete a task subtract-
ing pauses (RQ2)

ratio Measured by our web-based application.
The participant can pause a task and resume
manually. see Section IV-B4

Exposure analysis
efficiency

Ratio of the total score of the participant over the sum of all Task
times (RQ2)

ratio Total score is the sum of the scores of all
of the individual tasks. see Section IV-F2

Confounding/Measured variables:
CMake experience Participant’s experience in working with CMake build system ordinal Measured: 3-point scale (“none”, “tried”,

“used in professional development”); ques-
tionnaire

Code changes Changed code in diff format along with the other source files of
the project

nominal Design: each participant gets patches from
three real-world projects

Configuration settings Environmental and build configuration settings of the build sys-
tem: default configuration, custom

nominal Design: for applicable tasks, each partici-
pant gets two configurations for build set-
tings.

Current programming
practice

How often the participant currently programs ordinal Measured: 3-point scale (“not”, “some-
times”, “often”); questionnaire

Development experience Participant’s software development experience in years ordinal Measured: 5-point scale (“less than a year”
... “10 years or more”); questionnaire

Fitness Physical fitness of the participant, like tiredness, during the
experiment

ordinal Measured: 5-point scale (“very tired” ...
“very fit”); questionnaire

Understandability Participant’s overall understanding of the code provided during
the experiment

ordinal Measured: 3-point scale (“nothing”, “some-
what”, “fully understand”); questionnaire at
the end

B. Materials

In this section, we describe the materials that we use in this
study.

1) DiPiDi: We developed DiPiDi to reveal the exposure
of a change in a structured manner. In a nutshell, DiPiDi
processes build specifications statically to produce a Build De-
pendency Graph (BDG), which we traverse to assess exposure.
Before conducting the experiments, we will run the DiPiDi
BDG generation step on the projects that will be presented to
our participants and save the output. Participants in the DiPiDi
tooling level of the experiment will use DiPiDi’s querying
features to perform the assigned tasks.

2) Existing tool: To assess whether the improvements in
the DiPiDi tooling level (treatment) group are related to the
approach implemented by our tool, we select a recent and
available impact analysis tool to employ in the Existing tool
(positive control) group. Unfortunately, most of the proposed
impact analysis tools are prototypes [10]. Additionally, due
to our project selection and since our implementation of
the DiPiDi approach supports CMake build specifications,
the impact analysis tool must support the C++ programming
language. We have selected Frama-C; a tool proposed by
Kirchner et al. [25]. Frama-C is an industrial grade static
analysis tool, which can perform impact analysis on C and

C++ projects. Moreover, Frama-C is open-source and can
therefore be customized if needed.

3) Studied projects: To allow for realistic evaluations, all of
the patches that form the basis for the tasks in this experiment
are sampled from real-world projects. Since our tool currently
supports the CMake build system, we limit our selection to
large and successful projects that use CMake. We select three
projects from the Qt and KDE open-source communities as
the scope from which to sample tasks to conduct our study.
KDE is a collection of projects comprising an open-source
desktop environment. Qt is an open-source toolkit for creating
Graphical User Interfaces (GUI). Both of these communities
use C/C++ as their programming languages and CMake as
their build technology.

To select our projects, we first start with all of the projects
available on the GitHub organization pages for KDE and Qt
and filter out projects that do not use CMake. We then filter
out projects that have not had commits in the last 6 months
to guarantee that we are looking at active projects. Finally we
select the top three projects by number of forks, a proxy that
allows us to gauge developer interest. With these criteria in
mind, we select Kdenlive, Qt Base, and Krita.

For each studied project, we will select three patches that
impact a different number of deliverables under different

configuration settings. To identify the impacted deliverables,
we manually inspect the source files and find the deliverables
that are impacted by the changed code. We use this as our
ground truth. While DiPiDi reports changes at file level, in
this study we ask participants to report impacted deliverables
at the code level, a sub-set of reported deliverables by the tool.

4) Experiment UI: To conduct our experiment with a
diverse range of participants and allow our participants to
rely on their own development environments, we develop
a Web based application with which our participants will
interact. The application will retain a log of answers and the
duration of each task. The logic behind the experiment UI will
randomly assign each participant to a Tooling level group and
randomly assign tasks to the participants, all the while logging
which project and tasks are assigned to whom. Participant
information will only be made available to the researchers after
all results have been scored to reduce experimenter bias [26].

C. Tasks

We ask our participants to complete five tasks, one Type
A task, two Type B tasks, and two Type C tasks. After a
participant initiates our experiment through our experiment
UI, they are randomly assigned to a Tooling level and the
tasks are randomly ordered and logged. The order of the
tasks is randomized to account for learning effects that could
occur if developers improve by learning from previous tasks.
Furthermore, we construct each task using three different
open-source projects, and randomly assign each task to each
participant. Therefore, participants cannot share answers with
each other and tasks are less biased towards a specific project
or task. Participants must obtain the data and files required to
complete each task through our experiment UI, and must also
provide their answers through it.

Our tasks are constructed to answer both RQ1 and RQ2.
The results obtained for each task can be used to answer our
first research question (i.e., RQ1), while the duration of the
tasks can be compared for each group to answer RQ2. The
three task types are as follows.

Task Type A: The purpose of this task is to compare
the exposure assessment effectiveness and efficiency of the
participants in different Tooling levels. The participant is
provided with the names of changed files and a set of build
specifications. The participant is then asked to list impacted
deliverables (without having the source code). The experiment
UI provides a text input field for the participant to identify
those deliverables.

Task Type B: The purpose of these tasks is to determine
the effect of presenting exposure reports on the effectiveness
and efficiency of developers assessing the relative exposure
of patches. The participant is assigned three patches and a
set of build specifications. We ask the participant to rank the
patches listed in the experiment UI based on (a) the number
of impacted deliverables; and (b) the number of impacted
application variants (e.g., number of affected OS). We ensure
that the patches do not affect the same number of deliverables

and application variants. Furthermore, the patches are sampled
from a different project than the ones studied for other tasks.

Task Type C: The purpose of these tasks is to determine the
impact of DiPiDi when participants are particularly interested
in the exposure in a given setting. Participants are presented
with three patches and asked to identify those that (a) affect
a specified set of deliverables; (b) affect a specific variant of
the software; and (c) identify the configuration settings under
which the changes will propagate. For this task type, we use
a different project than for tasks of types A and B.

D. Participants

Since our tasks are centered around specific software engi-
neering practices, our participants should have the program-
ming experience necessary to allow them to find the deliver-
ables impacted by a source code change. We therefore seek to
populate our pool of participants with software developers, or
individuals with programming experience.

We calculated the required size of our pool of participants
using the standard settings for uncovering a medium effect
size (0.25) when applying a one-way ANOVA (i.e., α = 0.05,
β = 0.8, three levels) [27]. The results require us to recruit 159
participants. Since recruiting such a large pool of participants
is unlikely, we relax our effect size target to large effect size
(0.40), giving a more achievable pool of 66 participants.

We will recruit our participants for our study from the
development teams of our industrial partners, which include
large multinationals like Huawei and Dell EMC, as well
as start-ups like YourBase. We strive to recruit at least 50
professional software developers from these organizations.

We will also seek to recruit software developers through
personal and professional contacts, e.g., on social media
platforms like LinkedIn and Twitter. We expect to recruit at
least ten software developers from these sources. Finally, we
will also post open calls for participants in various schools
of computer science and software engineering. We expect to
recruit at least ten more participants through these sources.

E. Execution Plan

We will provide our participants with access to our web-
based application in batches of five. This staged approach will
allow us to fix any potential problems without invalidating too
large of a subset of our participant data. The application will
have the following procedure for each participant:

1) Welcome Page: We first provide our participants with
an outline of the tasks and an estimate of the time required to
complete the tasks. In addition, we will request the requisite
consent of participants to participate in the experiment. The
participants are asked to refrain from sharing task information
with other participants. For ethical compliance reasons, par-
ticipants are also informed that they may stop the experiment
at any time for any reason.

2) Onboarding: After obtaining consent from the partici-
pants, we provide an explanation of the tasks to be completed
during the experiment. We inform participants that they may
use their preferred development tools (e.g., CLI tools, IDE).

Participants are also informed that each task is timed, that
their responses will remain anonymous unless they explicitly
request otherwise, and they may skip individual tasks.

3) Tasks: We present our participants with the tasks out-
lined in Section IV-C in a random order. For each task, our
application will provide a hyperlink to download the source
code. A timer will begin as soon as the task page is loaded.
The page will describe the task, and show the configuration
settings that the participant should consider. We present the
results of the tools in the experiment UI for participants in
the ‘Existing Tool’ and ‘DiPiDi’ tooling level, in a form that
emulates supplementary code review information that would
be available if the tools were part of a CI/CD pipeline. The
application will provide input spaces for the participant to
enter their responses. The application will log the time that
the participant spent on each task. The participant may click
a pause button to pause the timer if a distraction of any kind
interrupts their focus. A skip button allows the participant to
move on if they feel that they cannot complete a task.

4) Questionnaire: After a participant completes their five
tasks, we will follow up with a questionnaire, which collects
demographics questions about their background and program-
ming experience, as well as tool usage questions about the
CLI tools, IDEs, and/or other tools that used to complete the
tasks. We also ask participants to comment on any problems
that they may have encountered during the experiment. Finally,
we will thank the participants and invite them to provide other
feedback if they desire. This questionnaire will take fewer than
five minutes to complete.

F. Analysis Plan

1) Data Cleaning: We assign each participant five tasks to
complete. However, it is possible for a participant to exit the
application before completing all of their assigned tasks. Since
the experiment UI accepts input from participants in any text
format, we will manually check that answers are sane before
analyzing them. Finally, we will review the participant’s ques-
tionnaire submission and feedback for mentions of problems
that may (partially) invalidate their submission, removing their
invalid answers when appropriate.

2) Measuring Effectiveness: For rank-based tasks, i.e., task
type B, we will use Kendall’s tau ranking distance formula [28]
to compute the distance between participant answers and the
ground-truth. We report that number as the score between
zero and one for those tasks. For list-based tasks, i.e., task
types A and C, like previous studies, we compute precision
and recall [29]. As discussed, the goal of this study is to
expose the change under different configuration settings and
help developers to identify impacted deliverables for a specific
configuration setting. To compute the correctness and com-
pleteness of the participant’s Estimated Impacted Deliverables
(EID), we compare them to Actual Impacted Deliverables
(AID) using the following precision (correctness) and recall
(completeness) formulas:

Precision =
EID ∩AID

EID
;Recall =

EID ∩AID
AID

Due to the natural trade-off between precision and recall, we
calculate the F-measure (i.e, the harmonic mean of precision
and recall) to get an overall impression of task effectiveness.

3) Descriptive Statistics: For each group, we will provide
the mean, standard deviation, and relevant quantile values for
our dependent variables and participant demographics. We
will also include Spearman’s ρ pairwise correlation values to
measure the strength of relations between the variables.

4) Inferential Statistics: We will first use the Shapiro–Wilk
test, along with a visual analysis, to determine if our data is
normally distributed. If our data follows non-normal distribu-
tions, we will use non-parametric statistical tests to answer
RQ1 & RQ2 because they impose fewer constraints on the
distributions of analyzed data. In this case, we will use
the Kruskal–Wallis test (i.e., One-way ANOVA on ranks)
statistical hypothesis testing technique to identify whether the
difference between the results in treatment group and the
control groups are statistically significant. We will then apply
the Cliff’s Delta non-parametric effect size measure to assess
the magnitude of the difference between each pair of groups. If
our data does follow a normal distribution, we will use a one-
way ANOVA technique to compare our treatment and control
groups, and Cohen’s d for effect size calculations.

V. THREATS TO VALIDITY

Threats to internal validity: Participants may vary in their
capacity to estimate exposure. We strive to mitigate this
by randomly assigning tasks to participants and by recruit-
ing participants with varying levels of experience. Due to
the challenges associated with obtaining a large sample of
software developers, this study will focus on a statistically
valid, but non-maximal number of participants. The pool of
participants will retain enough statistical power to reject our
null hypotheses. We are aware that the statistical power of
the effect sizes of our findings is dependent on our final
sample size and shall therefore endeavor to recruit as many
participants as possible.
Threats to external validity: We anticipate that most of our
participants will volunteer from our three partner organiza-
tions. As such, they will likely have similar technological
backgrounds. This might reduce the generalizability of our
findings. To mitigate this effect, we also endeavor to obtain
participants from other backgrounds.
Threats to construct validity: Due to the Hawthorne effect, our
participants are likely to behave differently in our experimental
setting because they are aware that they are being monitored.
We attempt to mitigate this threat by giving developers realistic
tasks, letting them work on their own computers at a time
and place of their choosing. Furthermore, we will not discuss
the hypotheses of the study with the participants until after
they completed their tasks. We are aware that our selected
measurements do not fully capture the phenomena that we set
out to measure (i.e., effectiveness and efficiency of assessing
patch exposure). Nonetheless, we select a broad range of
measurements and tasks that we believe to be meaningfully
representative of the underlying phenomena of interest.

REFERENCES

[1] Q. Tu and M. W. Godfrey, “The build-time software architecture view,”
in Proceedings IEEE International Conference on Software Mainte-
nance. ICSM 2001. IEEE, 2001, pp. 398–407.

[2] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk, “Is
the linux kernel a software product line,” in Proc. SPLC Workshop on
Open Source Software and Product Lines, 2007.

[3] S. Nadi and R. Holt, “The linux kernel: A case study of build system
variability,” Journal of Software: Evolution and Process, vol. 26, no. 8,
pp. 730–746, 2014.

[4] C.-P. Bezemer, S. McIntosh, B. Adams, D. M. German, and A. E.
Hassan, “An empirical study of unspecified dependencies in make-based
build systems,” Empirical Software Engineering, vol. 22, no. 6, pp.
3117–3148, 2017.

[5] J. Cohen, “Modern code review,” Making Software: What Really Works,
and Why We Believe It, pp. 329–336, 2010.

[6] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study at microsoft,” in Proceedings of the 12th
Working Conference on Mining Software Repositories, ser. MSR ’15.
IEEE Press, 2015, p. 146–156.

[7] R. Wen, D. Gilbert, M. G. Roche, and S. McIntosh, “Blimp tracer:
integrating build impact analysis with code review,” in 2018 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2018, pp. 685–694.

[8] F. Hassan and X. Wang, “Hirebuild: An automatic approach to history-
driven repair of build scripts,” in 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE). IEEE, 2018, pp. 1078–
1089.

[9] R. S. Arnold and S. A. Bohner, “Impact analysis-towards a framework
for comparison,” in 1993 Conference on Software Maintenance. IEEE,
1993, pp. 292–301.

[10] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based
change impact analysis techniques,” Software Testing, Verification and
Reliability, vol. 23, no. 8, pp. 613–646, 2013.

[11] S. N. Ahsan and F. Wotawa, “Impact analysis of scrs using single and
multi-label machine learning classification,” in Proceedings of the 2010
ACM-IEEE international symposium on empirical software engineering
and measurement, 2010, pp. 1–4.

[12] M. Gethers and D. Poshyvanyk, “Using relational topic models to
capture coupling among classes in object-oriented software systems,” in
2010 IEEE International Conference on Software Maintenance. IEEE,
2010, pp. 1–10.

[13] A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen, “Build
code analysis with symbolic evaluation,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, 2012, pp. 650–
660.

[21] K. Martin and B. Hoffman, Mastering CMake: a cross-platform build
system. Kitware, 2010.

[14] B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design
recovery and maintenance of build systems,” in 2007 IEEE International
Conference on Software Maintenance. IEEE, 2007, pp. 114–123.

[15] A. Gyori, S. K. Lahiri, and N. Partush, “Refining interprocedural
change-impact analysis using equivalence relations,” in Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 318–328. [Online]. Available:
https://doi.org/10.1145/3092703.3092719

[16] B. Zhou, X. Xia, D. Lo, and X. Wang, “Build predictor: More accurate
missed dependency prediction in build configuration files,” in 2014 IEEE
38th Annual Computer Software and Applications Conference, 2014, pp.
53–58.

[17] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge,
“Programmers’ build errors: A case study (at google),” ser. ICSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
724–734. [Online]. Available: https://doi.org/10.1145/2568225.2568255

[18] J. M. Al-Kofahi, H. V. Nguyen, A. T. Nguyen, T. T. Nguyen, and T. N.
Nguyen, “Detecting semantic changes in makefile build code,” in 2012
28th IEEE International Conference on Software Maintenance (ICSM),
2012, pp. 150–159.

[19] P. Rovegård, L. Angelis, and C. Wohlin, “An empirical study on views
of importance of change impact analysis issues,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 516–530, 2008.

[20] Kitware, CMake, 2020, https://cmake.org.
[22] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll (k) parser generator,”

Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.
[23] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis

of the variability in forty preprocessor-based software product lines,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, 2010, pp. 105–114.

[24] L. Hochstein and Y. Jiao, “The cost of the build tax in scientific
software,” in 2011 International Symposium on Empirical Software
Engineering and Measurement. IEEE, 2011, pp. 384–387.

[25] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski,
“Frama-c: A software analysis perspective,” Formal Aspects of Comput-
ing, vol. 27, no. 3, pp. 573–609, 2015.

[26] R. Rosenthal, “Experimenter effects in behavioral research,” 1976.
[27] J. Cohen, “Statistical power analysis,” Current directions in psycholog-

ical science, vol. 1, no. 3, pp. 98–101, 1992.
[28] M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,

no. 1/2, pp. 81–93, 1938.
[29] L. Hattori, D. Guerrero, J. Figueiredo, J. Brunet, and J. Damásio, “On

the precision and accuracy of impact analysis techniques,” in Seventh
IEEE/ACIS International Conference on Computer and Information
Science (icis 2008). IEEE, 2008, pp. 513–518.

