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ABSTRACT
The incremental build is a key feature of build automation tools.
It still plays a key role in the build systems that underpin DevOps
pipelines. Yet it is quite common for these “upper layer” automation
technologies to start from a clean copy of the codebase, rendering
the incremental builds inert. In this tutorial, we discuss why it is
desirable to restore the incremental build features of the past. We
also describe past and ongoing work that strives to make DevOps
pipelines operate incrementally again. Finally, we discuss perceived
barriers to adoption that our past solutions have faced.
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1 THE DEATH OF THE INCREMENTAL BUILD
Build systems transform sources into deliverables by orchestrating
commands (e.g., compilers, test harnesses). Build specifications (e.g.,
Makefiles, CMakeLists.txt) declare platform- and configuration-
sensitive dependencies, which specify whether and the order in
which commands are invoked by build tools (e.g., make, cmake).

Since their inception [10], a key feature of software build systems
has been the incremental build. Incremental builds traverse the
graph of specified and/or implied dependencies, and invoke the
subset of commands that have been directly or transitively impacted
by a change set. By relying on incremental (rather than full) builds,
stakeholders save time and computational resources that would
otherwise be wasted performing redundant and unnecessary work.

In the past, scheduled builds that were run nightly to integrate
daily activies, and personal builds that were run within IDEs or on
the command line, were the primary scenarios in which build sys-
tems were used. Nowadays, builds are often performed during Con-
tinuous Integration (CI) [6]. CI workflows (which in turn enable De-
vOps pipelines) typically invoke build tools to check whether a sub-
ject change set introduces integration issues when build-triggering
events occur (e.g., a pull request is created/updated).
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Cloud-based CI services tacitly encourage full builds. Since the
cloud-based machine instances (e.g., containers) that are used to
perform builds are often ephemeral, it is not uncommon for CI
workflows to begin by checking out a fresh copy of the code base,
rendering the incremental features of build systems effectively inert.
Indeed, since intermediate and output files produced by previous
jobs are being deleted, the build tool is forced to consider each build
within the CI context as a full (i.e., non-incremental) build.

2 THE BIRTH OF CI ACCELERATION
The literature describes several approaches that improve CI per-
formance, which we group according to those that do not consider
dependencies when making decisions and those that do.

Dependency-free solutions often make selection and/or pri-
oritization decisions to optimize a tradeoff between the cost
of CI execution and the (faster) discovery of failures. For
example, Jin and Servant [14] benchmarked selection and
prioritization techniques that skip or reorder entire CI jobs
(e.g., CI skip [1, 2, 13, 16]) or tasks within jobs (e.g., test selec-
tion [12] and prioritization [7]). Batched execution of CI jobs
has also been explored to reduce the cost of CI execution [9].

Dependency-aware solutions strive to restore incremental
build behaviour by caching the results of prior builds and/or
inferring dependencies. For example, organizations that can
leverage a fleet of developer machines may use a build tool
that leverages a shared cache of artifacts [8]. However, adop-
tion of such technologies is not always successful [3]. Gal-
laba et al. [11] propose Kotinos—a CI service that caches the
state of build containers after prior builds, and restores them
for future builds to effectively build incrementally again.
Approaches [4, 11] also infer dependencies by listening to
file system operations that occur during full (a.k.a., “cold”)
builds, and leverage them to skip unaffected or irrelevant CI
commands in subsequent (a.k.a., “warm”) builds.

3 PERSISTENT BARRIERS TO ADOPTION
Dependency-aware approaches have the advantage of (often) be-
having deterministically; however, they are not without limitations.
For example, our recent work shows that even deterministic CI ac-
celeration products can erroneously skip CI steps [18]. If an acceler-
ation approach allows failures to permeate without being detected,
stakeholders in settings where the cost of failures is high may not
perceive the acceleration as beneficial enough to justify the risk.

In addition, incremental builds are only as reliable as the depen-
dency graphs that they resolve. An underspecified build system, i.e.,
one that omits dependency expressions, may not respect an impor-
tant dependency when performing tasks (in parallel), and in turn,
can fail sporadically. We will discuss proposed solutions [5, 15, 17]
to help identify and fix such missing dependencies.
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