
Mining OurWay Back to Incremental Builds for DevOps Pipelines
Shane McIntosh
Software REBELs

University of Waterloo, Canada
shane.mcintosh@uwaterloo.ca

ABSTRACT
The incremental build is a key feature of build automation tools.
It still plays a key role in the build systems that underpin DevOps
pipelines. Yet it is quite common for these “upper layer” automation
technologies to start from a clean copy of the codebase, rendering
the incremental builds inert. In this tutorial, we discuss why it is
desirable to restore the incremental build features of the past. We
also describe past and ongoing work that strives to make DevOps
pipelines operate incrementally again. Finally, we discuss perceived
barriers to adoption that our past solutions have faced.

KEYWORDS
Mining Software Repositories, DevOps Pipelines, Incremental Builds
ACM Reference Format:
Shane McIntosh. 2024. Mining Our Way Back to Incremental Builds for
DevOps Pipelines. In 21st International Conference on Mining Software Repos-
itories (MSR ’24), April 15–16, 2024, Lisbon, Portugal. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3643991.3649106

1 THE DEATH OF THE INCREMENTAL BUILD
Build systems transform sources into deliverables by orchestrating
commands (e.g., compilers, test harnesses). Build specifications (e.g.,
Makefiles, CMakeLists.txt) declare platform- and configuration-
sensitive dependencies, which specify whether and the order in
which commands are invoked by build tools (e.g., make, cmake).

Since their inception [10], a key feature of software build systems
has been the incremental build. Incremental builds traverse the
graph of specified and/or implied dependencies, and invoke the
subset of commands that have been directly or transitively impacted
by a change set. By relying on incremental (rather than full) builds,
stakeholders save time and computational resources that would
otherwise be wasted performing redundant and unnecessary work.

In the past, scheduled builds that were run nightly to integrate
daily activies, and personal builds that were run within IDEs or on
the command line, were the primary scenarios in which build sys-
tems were used. Nowadays, builds are often performed during Con-
tinuous Integration (CI) [6]. CI workflows (which in turn enable De-
vOps pipelines) typically invoke build tools to check whether a sub-
ject change set introduces integration issues when build-triggering
events occur (e.g., a pull request is created/updated).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0587-8/24/04
https://doi.org/10.1145/3643991.3649106

Cloud-based CI services tacitly encourage full builds. Since the
cloud-based machine instances (e.g., containers) that are used to
perform builds are often ephemeral, it is not uncommon for CI
workflows to begin by checking out a fresh copy of the code base,
rendering the incremental features of build systems effectively inert.
Indeed, since intermediate and output files produced by previous
jobs are being deleted, the build tool is forced to consider each build
within the CI context as a full (i.e., non-incremental) build.

2 THE BIRTH OF CI ACCELERATION
The literature describes several approaches that improve CI per-
formance, which we group according to those that do not consider
dependencies when making decisions and those that do.

Dependency-free solutions often make selection and/or pri-
oritization decisions to optimize a tradeoff between the cost
of CI execution and the (faster) discovery of failures. For
example, Jin and Servant [14] benchmarked selection and
prioritization techniques that skip or reorder entire CI jobs
(e.g., CI skip [1, 2, 13, 16]) or tasks within jobs (e.g., test selec-
tion [12] and prioritization [7]). Batched execution of CI jobs
has also been explored to reduce the cost of CI execution [9].

Dependency-aware solutions strive to restore incremental
build behaviour by caching the results of prior builds and/or
inferring dependencies. For example, organizations that can
leverage a fleet of developer machines may use a build tool
that leverages a shared cache of artifacts [8]. However, adop-
tion of such technologies is not always successful [3]. Gal-
laba et al. [11] propose Kotinos—a CI service that caches the
state of build containers after prior builds, and restores them
for future builds to effectively build incrementally again.
Approaches [4, 11] also infer dependencies by listening to
file system operations that occur during full (a.k.a., “cold”)
builds, and leverage them to skip unaffected or irrelevant CI
commands in subsequent (a.k.a., “warm”) builds.

3 PERSISTENT BARRIERS TO ADOPTION
Dependency-aware approaches have the advantage of (often) be-
having deterministically; however, they are not without limitations.
For example, our recent work shows that even deterministic CI ac-
celeration products can erroneously skip CI steps [18]. If an acceler-
ation approach allows failures to permeate without being detected,
stakeholders in settings where the cost of failures is high may not
perceive the acceleration as beneficial enough to justify the risk.

In addition, incremental builds are only as reliable as the depen-
dency graphs that they resolve. An underspecified build system, i.e.,
one that omits dependency expressions, may not respect an impor-
tant dependency when performing tasks (in parallel), and in turn,
can fail sporadically. We will discuss proposed solutions [5, 15, 17]
to help identify and fix such missing dependencies.

https://orcid.org/0000-0002-0193-3975
https://doi.org/10.1145/3643991.3649106
https://doi.org/10.1145/3643991.3649106


MSR ’24, April 15–16, 2024, Lisbon, Portugal McIntosh

REFERENCES
[1] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. 2021. AMachine Learning

Approach to Improve the Detection of CI Skip Commits. Transactions On Software
Engineering (TSE) 47, 12 (2021), 2740–2754.

[2] Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, and Juergen Rilling. 2019.
Which Commits Can Be CI Skipped? Transactions On Software Engineering (TSE)
47, 3 (2019), 448–463.

[3] Mahmoud Alfadel and Shane McIntosh. 2024. The Classics Never Go Out of Style:
An Empirical Study of Downgrades from the Bazel Build Technology. In Proc. of
the 46th Int’l Conf. on Software Engineering (ICSE). To appear.

[4] Talank Baral, Shanto Rahman, Bala Naren Chanumolu, Başak Balcı, Tuna Tuncer,
August Shi, and Wing Lam. 2023. Optimizing Continuous Development By
Detecting and Preventing Unnecessary Content Generation. In Proc. of the 38th
Int’l Conf. on Automated Software Engineering (ASE). 901–913.

[5] Cor-Paul Bezemer, Shane McIntosh, Bram Adams, Daniel M. German, and
Ahmed E. Hassan. 2017. An Empirical Study of Unspecified Dependencies
in Make-Based Build Systems. Empirical Software Engineering 22, 6 (2017),
3117–3148.

[6] Paul M. Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-Wesley Professional.

[7] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments.
In Proc. of the 22nd Int’l Symposium on the Foundations of Software Engineering
(FSE). 235–245.

[8] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac,
Wolfram Schulte, Newton Sanches, and Srikanth Kandula. 2016. CloudBuild:
Microsoft’s distributed and caching build service. In Proc. of the Int’l Conf. on
Software Engineering (ICSE) Companion. 11–20.

[9] Emad Fallahzadeh, Amir Hossein Bavand, and Peter C. Rigby. 2023. Accelerating
Continuous Integration with Parallel Batch Testing. In Proc. of the 31st Int’l Sym.

on the Foundations of Software Engineering (FSE). 55–67.
[10] Stuart I. Feldman. 1979. Make—A program for maintaining computer programs.

Software: Practice and Experience 9, 4 (1979), 255–265.
[11] Keheliya Gallaba, John Ewart, Yves Junqueira, and Shane McIntosh. 2022. Accel-

erating Continuous Integration by Caching Environments and Inferring Depen-
dencies. IEEE Transactions on Software Engineering 48, 6 (2022), 2040–2052.

[12] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The
Art of Testing Less without Sacrificing Quality. In Proc. of the 37th Int’l Conf. on
Software Engineering (ICSE). 483–493.

[13] Xianhao Jin and Francisco Servant. 2020. A Cost-Efficient Approach to Building
in Continuous Integration. In Proc. of the 42nd Int’l Conf. on Software Engineering
(ICSE). 13–25.

[14] Xianhao Jin and Francisco Servant. 2021. What helped, and what did not? An
Evaluation of the Strategies to Improve Continuous Integration. In Proc. of the
43rd Int’l Conf. on Software Engineering (ICSE). 213–225.

[15] Thodoris Sotiropoulis, Stefanos Chaliasos, Dimitris Mitropoulis, and Diomidis
Spinellis. 2020. A Model for Detecting Faults in Build Specifications. Proc. of the
ACM on Programming Languages 4, OOPSLA (2020), 144:1–144:30.

[16] Gengyi Sun, Sarra Habchi, and Shane McIntosh. 2024. RavenBuild: Context,
Relevance, and Dependency Aware Build Outcome Prediction. In Proc. of the 32nd
Int’l Sym. on the Foundations of Software Engineering (FSE). To appear.

[17] Rongxin Wu, Minglei Chen, Chengpeng Wang, Gang Fan, Jiguang Qiu, and
Charles Zhang. 2022. Accelerating Build Dependency Error Detection via Virtual
Build. In Proc. of the 37th Int’l Conf. on Automated Software Engineering (ASE).
5:1–5:12.

[18] Zhili Zeng, Tao Xiao, Maxime Lamothe, Hideaki Hata, and Shane McIntosh. 2024.
A Mutation-Guided Assessment of Acceleration Appproaches for Continuous
Integration: An Empirical Study of Yourbase. In Proc. of the 21st Int’l Conf. on
Mining Software Repositories (MSR). To appear. https://doi.org/10.1145/3643991.
3644914

https://doi.org/10.1145/3643991.3644914
https://doi.org/10.1145/3643991.3644914

	Abstract
	1 The Death of the Incremental Build
	2 The Birth of CI Acceleration
	3 Persistent Barriers to Adoption
	References

