A Mutation-Guided Assessment of Acceleration Approaches for
Continuous Integration: An Empirical Study of YourBase

Zhili Zeng
Software REBELs
University of Waterloo, Canada
z75zeng@uwaterloo.ca

Hideaki Hata
Faculty of Engineering
Shinshu University, Japan
hata@shinshu-u.ac.jp

ABSTRACT

Continuous Integration (CI) is a popular software development prac-
tice that quickly verifies updates to codebases. To cope with the
ever-increasing demand for faster software releases, CI acceleration
approaches have been proposed; however, adoption of CI accelera-
tion is not without risks. For example, CI acceleration products may
mislabel change sets (e.g., a build labeled as failing that passes in an
unaccelerated setting or vice versa) or produce results that are in-
consistent with an unaccelerated build (e.g., the underlying reasons
for failure differ between (un)accelerated builds). These inconsis-
tencies threaten the trustworthiness of CI acceleration products.
In this paper, we propose an approach inspired by mutation test-
ing to systematically evaluate the trustworthiness of CI acceleration.
We apply our approach to YourBase, a program analysis-based CI
acceleration product, and uncover issues that hinder its trustwor-
thiness. First, we study how often the same build in accelerated and
unaccelerated CI settings produce different mutation testing out-
comes. We call mutants with different outcomes in the two settings
“gap mutants”. Next, we study the code locations where gap mutants
appear. Finally, we inspect gap mutants to understand why accel-
eration causes them to survive. Our analysis of ten open-source
projects uncovers 2,237 gap mutants. We find that: (1) the gap mu-
tants account for 0.11%-23.50% of the studied mutants; (2) 88.95% of
gap mutants can be mapped to specific source code functions and
classes using the dependency representation of the studied CI accel-
eration product; and (3) 69% of gap mutants survive CI acceleration
due to deterministic reasons that can be classified into six fault
patterns. Our results show that even deterministic CI acceleration
solutions suffer from trustworthiness limitations, and highlight the
ways in which trustworthiness could be pragmatically improved.
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1 INTRODUCTION

The cadence of software development is set by the pace at which
Continuous Integration (CI) services process change sets [50, 69]. To
enable more rapid development, substantial effort has been invested
in improving the performance of each phase of the CI process [78].

Several approaches exist to accelerate the CI process, for exam-
ple by caching build environments [26], inferring dependencies [7],
skipping CI phases [31, 40], skipping CI altogether [1], and accel-
erating the CI testing phase [73]. These advances have led to the
emergence of CI acceleration products for commercial use.! CI ac-
celeration reduces build durations by omitting steps (or jobs) during
the CI process by either determining that (a) artifacts can be shared
between CI jobs; or (b) the outcome and output of steps are unlikely
to change based on the modified code.

There are families of approaches to CI acceleration. Program
Analysis-based (PA-based) acceleration is a popular deterministic
approach that relies on rule-based analysis (conducted prior to the
build process) to determine safe ways to accelerate subsequent
builds. In this paper, we study a commercial-grade CI acceleration
product — YourBase.? Similar to other PA-based CI acceleration
products, the studied product infers dependencies and constructs a
graph [26] during preceding builds, which in turn leveraged to accel-
erate subsequent builds, e.g., by skipping irrelevant test cases [7, 34].

However, if the CI acceleration process mislabels change sets
(e.g., a faulty build passes) [80], then it may ultimately result in
more work for developers [28]. Builds can fail for multiple reasons,
and these may not be consistent when using CI acceleration. This
can allow defects to slip through CI when acceleration is in use.
Indeed, when build behaviour is deemed untrustworthy, it is not un-
common for developers to rely on sub-optimal workarounds, such

!https://www.msystechnologies.com/test-automation-accelerator/
Zhttps://yourbase.io/
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as repeated execution [51]. Moreover, since developers tend to pri-
oritize correct build behaviour over efficiency [2], if CI acceleration
is untrustworthy, they may hesitate to adopt it.

Despite its importance, systematic approaches to evaluate the
trustworthiness of CI acceleration approaches do not yet exist. Early
work by Gallaba et al. [26] suggests that at a high level, accelerated
outcomes of change sets tend to match, i.e., change sets with a
passing (failing) outcome continue to pass (fail) when acceleration
is applied; however, the analysis was based on a replay of the builds
of 100 historical change sets, which may not capture a full variety
or breadth of potential software modifications.

To bridge this gap, we propose an approach inspired by mutation
testing [17] to study the trustworthiness of CI acceleration. Muta-
tion testing is a mature program analysis approach that is generally
used to evaluate the quality of test suites. Mutants (i.e., perturbed
versions of the code under test) are produced, and test suites are
re-executed to determine if the mutants are killed (i.e., at least one
test that passes for the unperturbed version fails) or survive (i.e.,
tests continue to pass on the perturbed version).

In this paper, we assess the trustworthiness of CI acceleration
by comparing the outcomes of mutation testing of accelerated and
unaccelerated builds of studied change sets. We first measure the
percentage of mutants that only survive in the accelerated setting
(i.e., gap mutants) to quantify the discrepancy between the accel-
erated and unaccelerated settings. Then we associate gap mutants
with the dependency representation of the studied CI acceleration
product to understand the limitations of its decision-making. Fi-
nally, we summarize patterns in these limitations by inspecting the
gap mutants to identify root causes of discrepancies that under-
mine the trustworthiness of the studied CI acceleration product.
Our analysis of ten open-source projects reveals 2,237 gap mutants,
which can be grouped into six patterns. This benchmark allows us
to answer the following research questions:

(RQ1) How often do mutants survive due to CI acceleration?
While 60% of the studied mutants survive both accelerated
and unaccelerated settings, a gap in mutation outcomes
between both settings exists and varies from 0.11%-23.50%
across the studied projects.

(RQ2) How are mutants that survive due to CI acceleration

mapped to the source code elements?
88.95% of gap mutants can be mapped to specific source code
functions and classes using the dependency representation
of the studied CI acceleration product; however, 6.66% of
gap mutants appear outside of the scope of source code
classes, and 4.38% of gap mutants are completely absent
from the dependency representation.

(RQ3) What causes mutants to survive in CI acceleration?
A majority (69%) of gap mutants survive in the accelerated
setting due to deterministic reasons that can be classified
into six fault patterns. However, a considerable proportion
(22.5%) of gap mutants survive in CI acceleration because
of non-deterministic build behaviour (e.g., mutants that
timeout in the unaccelerated setting and survive in the
accelerated setting). An analysis of the literature suggests
that at least the six deterministic fault patterns can apply
to, and help improve, other CI acceleration approaches.
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Contributions. This paper makes the following contributions:
(1) an approach to enhance the verification of CI acceleration ap-
proaches using mutation testing; and (2) an empirical evaluation of
a commercial-grade CI acceleration product — YourBase, that (a) un-
covers issues that can erode trust and (b) summarizes fault patterns
within the decision-making process of CI acceleration approaches.

2 RELATED WORK & RESEARCH QUESTIONS

In this paper, we study the trustworthiness of acceleration in Con-
tinuous Integration (CI) processes. More specifically, we apply mu-
tation testing to inspect the outcome of a CI acceleration product
in order to assess its trustworthiness.

Below, we introduce research related to CI and its acceleration.
We then present works related to the rationale behind mutation
testing and its applications. Finally, we formulate the research ques-
tions that we use to structure our study.

2.1 Continuous Integration and its Acceleration

The CI process begins when a developer (or automated tool) in-
troduces a change in their version control system [46]. A CI build
can then be triggered to automatically invoke a series of steps to
assess whether the change set integrates safely [22]. When a build
is triggered, a build job is created using project-specific criteria
(e.g., compile the code then run all tests). To process a build job, a
node downloads a specified version of the source code (typically,
the latest) and initiates the build process, including acquiring de-
pendencies [48], compiling the code, and running tests [71]. Then,
the node sends the build results to a reporting service to broadcast
them to the development team. This enables a development feed-
back loop that empowers its users. It is considered a best practice to
keep CI processes short so that feedback is provided quickly [70].

The presence of CI increases the efficiency and quality of soft-
ware builds. This has made it popular in both proprietary and
open-source settings [35, 74]. Since the emergence of CI services,
cloud-based CI providers (e.g., TravisCL> CircleCI* and GitHub
Actions®) have bridged the gap between professional CI services
and individual users [9, 23, 52, 67]. The adoption of CI has enabled
improvements to software quality in various settings [64, 72].

While Cl is an improvement over a scheduled build process, if
the build process itself is slow, feedback delay can hinder develop-
ment progress [30]. To reduce this delay, CI acceleration approaches
have been proposed. Some approaches rely on using historical code
changes [47] to train classifiers [44, 49], which are then used to
select tests for execution. Other popular methods for CI acceler-
ation rely on rule-based test case prioritization [12, 68] and test
case selection [21]. These techniques accelerate builds by running
a subset of the complete test suites or skipping steps of within test
cases. In addition, there are techniques that rely on greedy algo-
rithms [73], which decompose the build targets to make the builds
faster. Finally, there are techniques that cache environments and
infer dependencies [7, 11, 26], which speed up builds by exploiting
dependency relations for each build.

Shttps://www.travis-ci.com
4https://circleci.com
Shttps://github.com/features/actions
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CI acceleration approaches are not without pitfalls. Indeed, the
misuse of CI services can cause additional failures [13, 28, 75, 80].
Even if an acceleration approach achieves substantial savings, if it
introduces instability with respect to the unaccelerated build, teams
will likely hesitate to adopt it. To that end, in this paper, we set out
to study the extent to which accelerated builds can be trusted as a
replacement for unaccelerated builds.

2.2 Mutation Testing

Mutation testing is a program analysis approach [17] that consists of
artificially perturbing source code to inject (likely) faulty behaviour.
Mutation testing is primarily used to evaluate the quality of test
suites [58, 60, 61]. In practice, mutation testing can be found in
both experimental and industrial settings. Indeed, mutation testing
has been used at the experimental level to evaluate a model-based
approach for security protocols research [15, 16], to guide the input
for combinatorial interaction testing [57], and in order to address
test flakiness [33]. Meanwhile, at the enterprise level, mutation
testing has been applied to optimize Google’s deployment work-
flow [60, 62], and has been integrated into a Facebook production
environment [8]. In this paper, we use mutation testing to verify
the outcomes of a CI acceleration technique.

As a white box technique, a key feature of mutation testing is its
portability [63], which makes it applicable to different programming
languages and software testing levels (e.g., unit, integration) [39].
Since Python has become a popular programming language, the ap-
plication of mutation testing aimed at Python projects has become
widespread in recent years [19, 20]. Basic mutations (i.e., state-
ment deletion) has indeed been used to test a CI acceleration in the
past [43]. However, in this paper, we conduct mutation tests based
on known mutation operators on Python-specific CI acceleration
in order to identify CI acceleration weaknesses. Furthermore, the
approach tested (Pytest-rts) was not a commercial-grade approach,
and only computed the coverage graph once, thus reducing the max-
imum potential for acceleration. Specifically, we select Mutmut,® a
mature mutation tool for Python with 12 mutation strategies [25],
to generate mutants’ within our subject systems for the purpose of
studying the impact of CI acceleration.

The key metric of mutation testing is the percentage of killed
mutants (a.k.a., mutation score) [37, 59], which is calculated by
dividing the number of killed mutants (i.e., mutants that cause test
cases to fail) by the total number of generated mutants. Mutation
analysis has been used to improve various aspects of software en-
gineering [5, 18, 39, 41]; however, to the best of our knowledge,
mutation testing has not yet to be applied to assess CI acceleration
approaches. In this study, we use the percentage of surviving mu-
tants in accelerated and unaccelerated builds to quantify the gap
between accelerated and unaccelerated CI outcomes. To structure
this analysis, we formulate the following research question (RQ):

RQ1: How often do mutants survive due to CI accelera-
tion?

Shttps://mutmut.readthedocs.io/en/latest/
7A complete list of the mutation operators used can be found in our online appendix
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Mutation testing is a code-based analysis method [58] that can
complement code coverage analysis [76]. Mutation testing gener-
ates mutants in the source code and provides the precise location of
each surviving mutant [19]. This feature enables us to associate sur-
viving mutants with features of the programming language. More-
over, it may help to identify limitations in the decision-making pro-
cess of the CI acceleration approach used by YourBase. Accordingly,
we formulate this inquiry through our second research question:

RQ2: How are mutants that survive due to CI acceleration
mapped to the source code elements?

Mutation testing can be used to evaluate the quality of test
suites [38]. It can therefore allow us to compare the quality of
an unaccelerated test suite to the quality of the same test suite
when it is the target of CI acceleration. By comparing the results of
these two scenarios, we seek to gain insight into the root causes
of discrepancies that harm the trustworthiness of our studied CI
acceleration product. More precisely, we study why some mutants
only survive in accelerated builds through our research question:

RQ3: What causes mutants to survive in CI acceleration? ]

3 STUDY DESIGN

The goal of our study is to verify the outcomes of deterministic,
commercial-grade, CI acceleration and uncover reasons for out-
comes that can erode trust. To realize our goal, we apply mutation
testing and inspect the mutants that survive in accelerated and
unaccelerated CI settings on a commercial solution. To that end, we
study the locations in which these mutants appear and reason about
why they survive in ten well-established open-source systems.

Multiple commercial-grade CI acceleration approaches exist.
However, targeting multiple approaches is both time and cost-
prohibitive. We therefore focus on one commercial-grade approach,
while keeping our approach as general as possible to allow replica-
tion on other PA-based CI acceleration approaches. Recent prior
work claims that the approach behind YourBase can provide CI ac-
celeration with minimal resource overhead without compromising
build outcome [26]. Since we seek to identify flaws in CI accelera-
tion, an approach that claims build outcome safety provides a prime
candidate for our research. We therefore chose YourBase as our
chosen commercial-grade CI acceleration product.

While a coverage-guided analysis may seem appropriate, PA-
based CIl acceleration products, such as YourBase, make acceleration
decisions based on a coverage-based source-test mapping. Thus, an
evaluation using coverage would be unlikely to reveal faults.

In the remainder of this section, we present how we filter (Sec-
tion 3.1) and rank (Section 3.2) candidates to obtain our studied
projects. We then explain how we collect the mutation results for
each studied project and present the approaches that we use to
answer our research questions (Section 3.3).


https://mutmut.readthedocs.io/en/latest/

MSR 2024, April 2024, Lisbon, Portugal

Zeng et al.

( Data Filtering N
( Project Ranking N
DF1 DF2 PR2
Ranking System DF3
Project B
- ! Project| Size | Commits | Test Cases |Overall
Google  |2.9 million| 549,008 20849 | Project A ﬂ. N v
BigQuery | projects projects) projects — A 3 1 1 1 -
GitHub- Compute | Size:x B 5 7 4 5
repository Select Select Proj Commits: y Transform Select
jects : c |10 2 2 4 Studied
Python Pytest Relevance | restCases:z Measurgs (
Projects Projects Measures to Ranking Projects
L k J J
J ( Data Analysis
"""""""""""""""""""""""""" DA1 DA2 DA3 i
Studied Projects Released Unaccelerated Mutated
""""""""""""""""""""""""""" —> Extract Version ,Ffe”"".” Bulld Generate Unaccelerated Build
Change Sets Initial Builds Mutants p
iFor each
- - - - - studied Accelgrated Mutated .
projects Build Accelerated Build
- - - - - . B e
DA4 Unaccelerated DA5 j25
--------------------------------------------- Ly Inspect Mutant Stats —— Compare ——{ 4 T ‘67 i
Mutants ill Mutants pai
Gctcelfr;tte? Mutants Relations
utant Stats
. )

Figure 1: The study design for each selected project

3.1 Data Filtering

As shown in Figure 1, we begin by retrieving a dataset of GitHub
repositories from Google BigQuery.® This open-source dataset con-
tains the activity (e.g., commits) and property information (e.g.,
programming language) for the repositories that are hosted on
GitHub.

Select Python Projects (DF1): To mitigate the influence of differ-
ent programming languages on our experimental results, we focus
on the builds of projects that are written in a single programming
language. To that end, we group candidate projects by program-
ming language and select those that are primarily implemented in
Python. We focus on Python because it is the programming lan-
guage for which the selected CI acceleration product can guarantee
the most stable acceleration. We apply the filter by querying for
projects that have ‘Python’ as a field within the ‘language’ table in
the BigQuery dataset. The query returns the projects where Python
makes up the majority of the source code. After applying our first
filter, 549,098 projects survive.

Select Pytest Projects (DF2): After removing all non-Python
projects, we select the Python projects that use the pytest frame-
work.? We select the pytest framework because previous research
demonstrated that it has a more stable performance profile than
other testing frameworks [6]. After applying our second filter,
29,849 projects survive.

3.2 Project Ranking

Although our experimental procedures are largely automated, the
execution cost for each studied project is large. Thus, repeating the
experiment on thousands of systems is untenable. We therefore
apply a ranking procedure to systematically select subject systems.

8https://cloud.google.com/bigquery/public-data
“https://docs.pytest.org/en/7.1.x/contents.html

Compute Project Relevance Measures (PR1): For each candidate
system, we inspect the number of commits, the number of files, and
the number of test cases. We consider the number of commits and
files because repositories with a high number of commits and files
are more likely to offer an adequate volume of data for validation.
Meanwhile, the number of test cases is likely associated with the
speed at which a build completes. In this paper, we expect the time
consumed by the build of a studied project to be large enough to
perform meaningful CI acceleration. Since we cannot build every
project to measure its build duration, we instead use the number of
test cases as a heuristic.

Transform Measures to Rankings (PR2): To comprehensively
quantify the impact of our three chosen measures, we rank each
subject system. Figure 1 provides an overview of the ranking proce-
dure. We first compute the rank order of each candidate according
to each of the three measures independently. Then, we rank order
projects by the sum of its measure-specific ranks.

Select Studied Projects (DF3): Mutation testing is computation-
ally expensive [42, 65]. To maintain a manageable experimental
process, we set an upper bound for mutation time when select-
ing projects. Specifically, we set the maximum allowable mutation
duration to one week per project.

To obtain a diverse set of projects from which meaningful conclu-
sions can be drawn, we exclude projects from previously sampled
domains, selecting the next highest-ranked project from another
domain as a replacement. For example, if the Supervisor and the
Nagstamon projects both belong to the process management do-
main, we select Supervisor because it is the highest-ranked project
from the domain in our ranking. We then omit Nagstamon and any
other projects that belong to the same domain. Finally, we obtain
the set of ten studied projects that are summarized in Table 2.
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3.3 Data Analysis

To estimate the trustworthiness of our selected CI acceleration
product, we study the quantity, locations, and reasons for the mu-
tants that survive in the accelerated build but do not survive in the
unaccelerated build. First, we select a list of change sets for analysis.
Then, for each studied change set, we perform an initial unaccel-
erated build on its preceding commit. This is done to allow the CI
acceleration product to generate its internal graph, which is used
to reason about build and test invocation steps that may be skipped
in the future. Next, we checkout two copies of the studied change
set—one for executing unaccelerated (baseline) builds and another
for executing accelerated builds. We then apply mutation testing
on the independent copies of the codebase, ensuring that the same
set of mutants is generated in both settings. Finally, we compare
the mutants that we extract from the accelerated and unacceler-
ated mutation reports. Figure 1 provides an overview of our data
analysis procedure. Below, we describe each step in the procedure.

Extract Change Sets (DA1): CI acceleration approaches operate
on change sets. In the case of our studied projects, we extract
change sets from the version control system. To avoid build failures,
which would interfere with our analysis, we select commits tagged
with release numbers as our studied change sets. Indeed, release
code usually contains fewer failed test cases for a given project
because the release tag signals to user that the code has been deemed
stable enough for (production) use. The exact details of each studied
commit are provided in our online appendix.'® In addition, the test
coverage values for the studied projects are shown in Table 2.

Perform Initial Builds (DA2): We perform initial builds using
two settings: (a) unaccelerated build - the complete build of a given
project release in which no steps are skipped; (b) accelerated build
- the complete build of a given project release in which YourBase
skips tests based on its inferred dependency graph. During the
unaccelerated build, we invoke the pytest command to execute the
entire test suite. YourBase constructs and stores a dependency graph
for use in future builds. During the accelerated build, we re-invoke
the pytest command with the studied acceleration plug-in enabled,
which will access the dependency graph that was generated during
the build of the preceding commit. This graph from the preceding
commit replicates the state that YourBase would be in prior to
the studied commit. By traversing the graph, the CI acceleration
product skips tests that are deemed irrelevant to a code change.

Generate Mutants (DA3): We conduct mutation testing using
Mutmut® by invoking the mutmut run command after the initial ac-
celerated and unaccelerated builds are finished. Mutmut generates
mutants according to established rules and provides a mutation
report. Mutmut allows us to produce an identical set of mutants
that we evaluate in both accelerated and unaccelerated settings. To
do so, we first generate mutants in the unaccelerated builds and
record the mutation strategies used by Mutmut. We then enforce
the same mutation strategies on the same code and commit each
produced mutant independently to trigger CI acceleration and test
the accelerated setting for each mutant. While we use commits to in-
dependently test each mutant, we do so to study the CI acceleration
effect on the releases of our studied projects. Indeed, our “commits”

Ohttps://doi.org/10.5281/zenodo.10076515
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do not add new production code, but simply modify existing code
through an isolated mutation. Thus, in this case, the concept of
commit-relevant mutant [54, 55] does not apply since our mutants
are aimed at a release-level evaluation. We record the complete list
of mutants by invoking the mutmut show all command, storing
the output in a mutation report file.

Inspect Mutants (DA4): The generated mutation reports contain
detailed information about the mutation process and its outcome,
such as the number of killed and surviving mutants, the mutation
operator that produced each mutant, and the mutated lines of code.
We inspect the mutants that survive in the accelerated and unac-
celerated builds of each studied project. The difference between
the rates of mutant survival in the two settings quantify the gap
between accelerated and unaccelerated CI outcomes.

Compare Mutants (DA5): When comparing the mutants that
belong to the accelerated and unaccelerated builds of a studied
change set, there are three kinds of potential outcomes: (1) the
mutant is killed in both settings, (2) the mutants survives in both
settings, and (3) the mutant only survives in the accelerated setting.
Outcome 1 and 2 indicate agreement between the two settings, i.e.,
that the test suite is either capable of detecting the mutant or not,
respectively; however, Outcome 3 suggests that the acceleration
procedure has erroneously omitted a test that would kill the mutant.
Thus, in this paper, we concentrate with Outcome 3, i.e., those that
only survive in the accelerated setting.

The principle for this verification is based on the assumption
that in the ideal case, a CI acceleration product should only skip
test cases that can safely be skipped (i.e., would not affect the result
of the build). In this ideal case, the mutation testing outcomes for
accelerated and unaccelerated settings should be consistent (i.e.,
exactly the same). However, if mutation testing were to show that
mutants that are killed in the unaccelerated setting survive in the
accelerated one, then the trustworthiness of CI acceleration product
may be in jeopardy.

4 STUDY RESULTS

In this section, we present the results of our study with respect
to our RQs. For each RQ, we present our approach, followed by
our observations. We also extend the discussion of our patterns
from the CI acceleration product studied in RQ3 to CI acceleration
approaches presented in prior works.

(RQ1) How often do mutants survive due to CI
acceleration?

RQ1: Approach. To measure the gap between accelerated and un-
accelerated CI outcomes, we calculate the percentage of surviving
mutants in each studied project. Specifically, we find the number
of mutants that survive in accelerated and unaccelerated settings
in their respective mutation reports, and use Equation 1 to mea-
sure the Gap Rate, i.e., the percentage of mutants that only survive
during acceleration.
Mutmut reports one of five outcomes for each mutant:

e Killed: mutants that have been killed by at least one test;
e Survived: mutants that have not been killed by any test;
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Table 1: Confusion Matrix for Gap Rate Calculation

Accelerated Non-accelerated

Survived a b
Killed c d
Timeout e f
Suspicious g h

e Timeout: mutants where testing did not complete within a
given duration limit;

o Suspicious: mutants that increase the test duration substan-
tially, but do not exceed the timeout threshold;

o Skipped: mutants that should be omitted from further anal-
ysis due to, e.g., introducing syntax errors.

Since Mutmut does not report any skipped mutants in any of our
studied projects, we consider the remaining four mutant outcomes
in our Gap Rate formula (see Table 1 for definitions).

land|

_— 1
laUcUeUg| )

Gap Rate =
RQ1: Results. Here, we describe our observations pertaining to the
gap between accelerated and unaccelerated CI settings.

Observation 1 — CI acceleration indeed allows mutants
that do not survive in the unaccelerated setting to survive in
the accelerated setting. The Gap Rate for our studied projects is
presented in Table 2. With an average Gap Rate of 7.24% and a stan-
dard deviation of 8.17%, the results suggest that the trustworthiness
of CI acceleration varies across projects. Indeed, Table 2 illustrates
that while the gap between mutants that survive in accelerated and
unaccelerated builds can be zero (see the mackup project), it can
also be as high as 23.5% (see the retext project).

In the ideal CI acceleration scenario, the Gap Rate would be zero.
Indeed, this is the case for the mackup project, where there is no
difference between mutants that survive in the accelerated and
unaccelerated settings. In this project, mutation testing provides
consistent outcomes, indicating that CI acceleration safely skips test
cases, and does not affect the results of the build. However, mackup
is the only project that had a gap rate of zero. The remaining nine
studied projects showed varying degrees of inconsistency in the
mutation verification outcomes.

The average mutant survival rates across the studied projects
are 58.46% and 62.45% in the unaccelerated and accelerated settings,
respectively. This high mutant survival rate is important to note
because it suggests that the test suites of our studied projects are
not particularly effective at detecting mutants. It is also possible
that equivalent mutants affect this survival rate. However, while
the quality of a test suite may allow a more precise determination
of the weak points in a studied project, this does not prevent the
use of our methodology. Indeed, it is still possible to determine
the gap rate of a lower-quality test suite, and the uncovering of
any gap mutants can provide insight into the weaknesses of a CI
acceletation approach.

A non-zero Gap Rate indicates that CI acceleration performs
untrustworthy test skipping. In the case of the project retext, a Gap
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Rate of 23.5% was observed. This implies that nearly a quarter of
the mutants generated for this project survived in the accelerated
setting despite being killed by the original test suite. By using the
Gap Rate, we can identify mutants that should not survive, which
we then inspect more closely to address RQ2 and RQ3 below.

Outcome 1: The overall percentages of mutants that sur-
vive in both accelerated and unaccelerated settings of the
10 studied projects are high. Although the quantity varies
from project to project, there exist mutants that survive
in accelerated settings and were killed in unaccelerated
settings in most (9 of the 10) studied projects.

(RQ2) How are mutants that survive due to CI
acceleration mapped to the source code elements?

RQ2: Approach. To study the distribution of mutants that survive
due to CI acceleration (i.e., gap mutants), we propose four mapping
categories. These categories describe the location of each mutant
with respect to the source code of the project, and the dependency
graph generated by YourBase.

e Mapping in Function: The mutated statement appears
within the scope of a function and is correctly mapped in
the functions of the dependency graph;

e Mapping in Class: The mutated statement appears within
the scope of a class definition (but outside of the scope of a
function) and is correctly mapped in the dependency graph;

e Not in Class: The mutated statement appears outside of the
scope of source code classes (e.g., in a configuration file), and
is untracked in the dependency graph;

e No Mapping: The mutated statement appears within the
scope of a function, but this mapping is absent in the depen-
dency graph of the CI acceleration product.

The dependency graph generated by YourBase can accurately
represent the function-level granularity of a project, which consists
of three components: the project’s abstract syntax tree, known tests,
and their dependencies. To classify the above mapping relations,
we first locate each gap mutant in the source code. Then we check
if the mapping exists in the dependency graph.

Specifically, if the mutated statement is within the scope of a
function, we query for it in the function level of the dependency
graph and label the mutant as ‘Mapping in Function’. Similarly, if
the mutated statement is within the scope of a class but outside of
the scope of any function when we query for it in the class level of
the dependency graph, and label the mutant as ‘Mapping in Class’.
Additionally, there are mutants that do not appear within functions
or classes. In these cases, YourBase is unable to include them in the
dependency graph, and they are labeled as ‘Not in Class’. Mutants
labeled as ‘No Mapping’ appear within the scope of a function,
but are not tracked in the dependency graph. The ‘No Mapping’
category is a direct indication of incomplete or missing information
in the dependency graph.

This question aims to associate surviving mutants with the
dependency graph of YourBase by finding the mapping relation.
Through this relation, we aim to identify the limitations of the
dependency graph generated by YourBase.
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Table 2: Surviving Mutants and Gap Rate of each studied project
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Projects Domain Coverage Surviving Mutants (%) Total Gap Gap
Unaccelerated Settings ~ Accelerated Settings Mutants Mutants  Rate
mackup Configuration Tool 25% 408 (86.26%) 408 (86.26%) 473 0 0
dvc Data Version Control 82% 18165 (99.69%) 18185 (99.80%) 18221 20 0.11%
scholia Organization 89% 4295 (90.14%) 4320 (90.66%) 4765 25  0.58%
httpie Http Client 91% 3070 (77.19%) 3150 (79.21%) 3977 80 2.54%
bottle Python Web Framework 2% 62 (2.23%) 64 (2.30%) 2783 2 3.13%
supervisor Process Management 18% 38 (0.42%) 40 (0.44%) 9153 2 5.00%
asciinema  Productivity 94% 905 (86.44%) 974 (93.03%) 1047 69  7.08%
ranger File Management 52% 7036 (62.36%) 8037 (71.23%) 11283 1001 12.45%
asciidoc Documentation 45% 2579 (32.91%) 3147 (40.61%) 7836 568 18.05%
retext Text Editor 6% 1530 (46.99%) 2000 (61.43%) 3256 470 23.50%

Table 3: Category and Frequency of Gap Mutant Mapping

Mapping Category Frequency
“Count %
Mapping in Function 1902 85.02%
Mapping in Class 88  3.93%
Not in Class 149  6.66%
No Mapping 98  4.38%
e Statement in function 90  4.02%
e Statement in class 8 0.36%

RQ2: Results. Below, we describe our observations pertaining to
the mapping of gap mutants in the dependency graph.

Observation 2 — Most of the gap mutants are mapped in
the function category of the dependency graph. We extract the
2,237 gap mutants from ten studied projects. As shown in Table 3,
nearly 90% of gap mutants could be tracked in the dependency
graph. Among them, the majority (95.5%) of gap mutants are in the
‘Mapping in Function’ category, whereas only 88 gap mutants (4.4%)
are in the ‘Mapping in Class’ category. For the ‘Mapping in Class’
category, we randomly select five gap mutants (approximately 5%)
to verify its validity. We first locate the mutated statement in the
source code, and confirm the location is outside the function but
inside the class scope. Then we search the class name in the depen-
dency graph and track the class name under the test dependencies.

This distribution is consistent with the encapsulation feature
of object-oriented programming, i.e., keeping variables and corre-
sponding methods together in a single unit (class). When we inspect
the source code distribution of our ten studied projects, we find
that, on average, 11.50% of the code (lines of code) appear outside
the scope of classes and functions. This effectively indicates that
around 90% of gap mutants should be tracked in the dependency
graph. However, this also implies that YourBase is prone to errors
despite having access to dependency graph data.

Observation 3 — Incomplete information exists in the de-
pendency graph. According to Table 3, the ‘No Mapping’ category
is rare. Specifically, 4.02% of gap mutants located in the function
scope and 0.36% of gap mutants located in the class scope could not
be mapped within the dependency graph.

We also study the distribution of the ‘No Mapping’ mutants
across the studied projects. As shown in Table 4, the highest project-
specific ‘No Mapping’ rate is 100%. All mutants from both the bottle
and supervisor projects could not be mapped within the dependency
graph. Conversely, all of the gap mutants in the dvc and scholia
projects could be mapped within the dependency graph. For the
remaining six projects, the ‘No Mapping’ rate ranges between 1.45%
and 4.70%. We believe that alternative ways to identify test cases in
the ‘No Mapping’ category are needed. Indeed, if the CI acceleration
product could be forced to execute these tests, trustworthiness
would be improved. The detailed mapping information for each
studied project is shown in our online appendix.”

Observation 4 — A small number of gap mutants are not
mapped within the dependency graph due to their source
code locations. There are 6.66% of gap mutants whose mutated
statements are neither within the scope of functions nor the scope
of classes (e.g., global variable initialization). Since the dependency
graph of YourBase only records function and class-level informa-
tion, the dependencies for these mutants cannot be traced within
the dependency graph. These may therefore result in unsafe test
skipping, and lower trustworthiness. We consider this to be a limi-
tation of YourBase that should be considered by future products.

Another test acceleration approach [29] bypasses this limitation
by using data-flow tracing instead of class or function tracing. This
approach records dependencies using a data-flow model without
any location constraints for the statements when selecting the point
from which the data flow should begin. As a result, this approach is
able to track statements outside the scope of classes and functions.
However, it also restricts the use of mutation testing for source code
inspection. Indeed, many erroneous CI accelerations are caused by
failing to adequately analyze source code [13, 27].

Outcome 2: Most of the gap mutants are traceable within
the dependency graph. Incomplete dependency data and
the locations where mutations are applied explain only a
small proportion of the gap mutants that lack mappings.
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Table 4: No Mapping Distribution for Studied Projects
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Table 5: Reasons and Frequency of Gap Mutant Survival

Projects Gap Mutant ~ No Mapping
Count %
mackup 0 0
bottle 2 2 100.00%
supervisor 2 2 100.00%
dve 20 0 0
scholia 25 0 0
asciinema 69 1 1.45%
httpie 80 3 375%
retext 470 18 3.83%
asciidoc 568 25 4.40%
ranger 1001 47 4.70%

(RQ3) What causes mutants to survive in CI
acceleration?

RQ3: Approach. To uncover why mutants survive in CI acceleration,
and uncover fault patterns that exist in YourBase, we analyze a
random sample of 200 mutants. Our random sample was selected to
achieve analytic generalizability [24]. Therefore, we stop sampling
after we notice saturation [24]. To operationalize saturation, we
inspect gap mutants in samples of 50 per round, and continue
until we complete a round without discovering new labels. By
that definition, saturation was achieved after four rounds (i.e., 200
mutants). The choice of 50 samples per round was chosen to align
with similar evaluations from the literature [36, 77]. Before this
analysis, we first design a priming procedure to associate the gap
mutants with the dependency graph constructed by YourBase. The
priming procedure consists of three steps:

(1) Reproduce failure in the unaccelerated build: To verify the
integrity of gap mutants (and reduce the impact of flaky tests),
for each gap mutant, we first re-apply the suspect mutation to
the codebase and re-execute the build without acceleration;

(2) Confirm the test is skipped by CI acceleration: By rerun-
ning the mutated code, we can locate failed tests and verify if
the test is skipped in the accelerated setting;

(3) Associate the mutant-exposing test case with the gap
mutant: We inspect the test and the source code being tested
to determine why the test was skipped.

This priming procedure, specifically the inspection in step (3), is
onerous. Indeed, it is impractical to inspect all 2,237 identified gap
mutants using our approach. Therefore, to achieve analytical gen-
eralization [24], we use the principle of saturation. The inspection
is conducted by five individuals with CI acceleration experience.
During the inspection, new gap mutants are checked until no new
patterns of survival are discovered for at least 50 consecutive gap
mutants. Each pattern is discussed by two individuals and con-
firmed by the rest of the team to resolve disagreements. In the
end, using this criterion, we inspect 200 gap mutants, covering
all studied projects except mackup, since there is no gap between
accelerated and unaccelerated settings in that project.

RQ3: Results. Below, we describe our observations concerning the
reasons why gap mutants survive the accelerated build. Table 5

Reasons Frequency
Dependencies untracked by the CI acceleration 138 69.00%
product
o Class properties 40 20.00%
o Global variable 31 15.50%
e Constructor 23 11.50%
e Static method decorator 17 8.50%
e Conditional statement 14 7.00%
o Configuration-purpose string 13 6.50%
Non-deterministic build behaviours 45 22.50%
e Inconsistent Labeling 24 12.00%
o Flaky Tests 21 10.50%
Other (Failed to classify) 17 8.50%

outlines the patterns that we observe from the 200 inspected cases.
For each pattern, we provide its definition and a mutant example.

Observation 5 — 69% of the inspected gap mutants that
survive in the accelerated build had dependencies that were
untracked by YourBase. Below, we identify six patterns among
the inspected gap mutants in this category.

Class properties: Missing class-related dependencies (20% of Gap
Mutants) in the dependency graph would cause the CI acceleration
product to incorrectly label test cases that depend on this code as
independent. Therefore, the CI acceleration product would erro-
neously label these test cases as safe to skip. We uncovered this issue
during our analysis when checking the dependencies of class prop-
erties, where we found class fields with null values in the CI acceler-
ation product’s dependency graph. In those cases, if a skipped test
case depends on the variable initialization in the class property, it
can lead to a mutant surviving mutation testing when it should not,
implying a lack of trustworthiness for the CI acceleration product.

""./supervisor/options.py

) @@ -69,7 +69,7 @@""

Options:
- stderr = sys.stderr
+ stderr = None
stdout = sys.stdout
exit = sys.exit
warnings = warnings

Pattern 1: The gap mutant survived due to class properties

Global variable: 15.5% of the inspected gap mutants survive be-
cause of a lack of, or incomplete dependencies due to, global vari-
ables. In these cases, YourBase fails to correctly record the depen-
dency relations of the global variables in the source code. Changes
to global variables can affect the code under test, and skipping tests
that depend on those variables can lead to erroneous results. In
our experiments, this can occur when global variables are mutated
and tests are erroneously skipped. If a CI acceleration cannot accu-
rately record global variable dependencies, it may skip tests that are
necessary to ensure the trustworthiness of the accelerated build.

""./supervisor/options.py

2 @@ -60,7 +60,7 @@""
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version_txt = os.path.join(mydir, 'version.txt’)
with (version_txt, 1) as f:
f.read().strip()

; —VERSION = _read_version_txt()

+VERSION = None

normalize_path(v):
os.path.normpath(os.path.abspath(os.path.expanduser(v)))
Pattern 2: The gap mutant survived due to incorrect handling
of global variables

Constructor: 11.5% of the inspected gap mutants survived because
the CI acceleration product did not detect dependencies between
a test case and a constructor. These failures occur when mutated
statements are within the scope of a constructor. Thus, the depen-
dency graph fails to record the dependency information for the
constructor, and their related test cases are erroneously skipped.
"'asciinema/pty_.py

@@ -153,7 +153,7 @@"

SignalFD:
__init__(self, signals: List[signal.Signals]) -> None:

5 - self.signals = signals

+ self.signals = None
self.orig_handlers: List[Tuple[signal.Signals, Any]] = []
self.orig_wakeup_fd: Optional[ '] = None

Pattern 3: The gap mutant survived due to constructor

Static method decorator: 8.5% of inspected gap mutants had code
statements mutated in a function annotated with @staticmethod, a
Python decorator that defines a static method within a class. Static
methods belong to a class rather than its objects and can be called
without creating a class instance. This can cause the static method
dependencies to be inaccurately captured by CI acceleration.

1 "./asciidoc/asciidoc.py

@@ -1693,7 +1693,6 @@"'
skipsubs:
Title.attributes[ 'title'] = Title.dosubs(Title.attributes[ title'])

; - @staticmethod

dosubs(title):

Pattern 4: The gap mutant survived due to static method
decorator

Conditional statement: 7% of inspected gap mutants survive
due to complex conditional statements in the source code. These
mutated statements typically involve multiple conditions that are
combined using logical operators such as ‘and’, ‘or’, and ‘not’. Mut-
mut generates mutants in these logical operators and we use these
mutations to discover incomplete information for the functions that
contain these complex conditional statements in the dependency
graph. We find that the dependencies for the complex conditional
statements are not captured accurately by the CI acceleration prod-
uct, as a result, the mutants survive during acceleration.

1 "./ReText/tab.py

@@ -185,7 +185,7 @@""
errMsg = errMsg.replace('<a href="%s">'", ").replace('</a>", ")
%s</p>"% errMsg

'<p style="color: red">

headers = "
- includeStyleSheet self.p.ss None:
+ | includeStyleSheet self.p.ss - None:

headers += '<style type="text/css">\n' + self.p.ss + '</style=\n'

5 +__date__
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includeStyleSheet:

Pattern 5: The gap mutant survived due to conditional
statement

Configuration-purpose string: 6.5% of inspected gap mutants
have mutated statements (e.g., version and date strings) belonging
to configuration files. These strings are often separate from the
body of functional code; however, configurations can also affect the
behaviour of the program and the tests that need to be executed.
YourBase does not track changes in the strings of configuration files,
so it skips tests linked to the changes made in the configuration
file, further leading to the survival of gap mutants.
""httpie/__init__.py

@@ -4,7 +4,7 @@"

__version__ ='3.2.1'

—-__date__ ='2022-05-06'
= 'XX2022-05-06XX'

__author__ = 'Jakub Roztocil'

__licence__ = 'BSD'
Pattern 6: The gap mutant survived due to configuration-
purpose string

Observation 6 — 22.5% of the inspected gap mutants survive
due to non-deterministic build behaviour originating from
test flakiness and inconsistent mutation outcomes. We iden-
tify two patterns among the inspected gap mutants in this category.
We define and characterize each pattern below.

Flaky Tests: 10.5% of the inspected gap mutants survive due to
flaky tests. These tests produce non-deterministic outcomes when
executing on the same program version [3]. Flakiness is often
caused by test code that has external dependencies or relies on
non-deterministic algorithms [32]. These flaky tests can cause mu-
tants to survive (i.e., the build passes) for a mutant that should
have been killed (i.e., the build should have failed). Flakiness can
therefore cause mutants to be incorrectly labeled as gap mutants.
Therefore, whenever we manually identify a flaky test, we remove
it from our analysis.

Inconsistent Labeling: Inconsistent labeling from our selected
mutation tool also results in non-deterministic build behaviour
between accelerated and unaccelerated settings. When Mutmut
is invoked, some mutants are classified as ‘suspicious’, i.e., test
execution time increased tenfold or more, and ‘timeout’, i.e., their
execution time exceeds an upper limit on duration. These additional
outcomes may occur in the unaccelerated setting, and may survive
in the accelerated setting. This causes such mutants to be labeled as
gap mutants by our approach. These gap mutants, caused by non-
deterministic build behaviour, cannot be used to reason about the
trustworthiness of CI acceleration. Indeed, it is possible to reduce
the impact of such issues by repeating the experiment, but there is
no guarantee that such experimental noise can be fully eliminated.

In addition, 17 (8.5%) of the inspected mutants could not be
classified using our taxonomy. These mutants survive because of
project-specific situations. For example, in the httpie project, an
http request failed because of a mutated URL. In other cases, we
lack the domain knowledge to diagnose the issue. We attempt to
keep this “Other” category as small as possible by using an iterative
procedure when analyzing the mutants. Specifically, whenever a
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new category appears, we repeatedly re-check whether any of the
“Other” mutants belong to the new category.

Outcome 3: Most (69%) mutants survive CI acceleration
due to deterministic reasons that can be generally classified
into six fault patterns. A smaller, but not insignificant pro-
portion (22.5%) of mutants survive CI acceleration because
of non-deterministic build behaviour (e.g., flaky tests).

Potential Generalizability of the Observations

A systematic mapping study [66] found that prior research shows a
preference for test selection and prioritization approaches that use
failure history, execution history, and test coverage. Approaches
that use failure [79, 81] and execution history [45, 53] are at the
mercy of prior failures. Rare failures are therefore potential pitfalls
for these approaches. The causes for gap mutant survival might
also occur in rarely modified code. Using mutation-based testing to
analyze the trustworthiness of these approaches might therefore
allow the simulation of rarer failure cases, and in turn, may improve
the trustworthiness of these approaches.

Approaches that are based on test coverage [14] attempt to max-
imize the number of faults that can be detected without exceeding
a budget of resources (e.g., time, lines). Therefore, by design, such
approaches cannot guarantee that faults will be missed due to the
prioritization decisions that they make. Indeed, while additional
issues might also exist, we suspect that the reasons for the survival
of gap mutant that we report in this paper will also impact such
approaches if the mutant-detecting tests are deemed inefficient.
Therefore, while our studied CI acceleration product makes specific
use of a program analysis approach for test selection, we suspect
that our methodology, as well as the issues that we report, can help
to improve other types of test selection approaches.

A systematic literature review of test case prioritization [56]
based on machine learning found that these approaches tend to
concentrate on a small number of features that are relatively simple
to compute. Indeed, many approaches concentrate on code com-
plexity metrics [56]. We suspect that these approaches would also
likely suffer from low trustworthiness when issues occur in class
properties, global variables, and constructors, since those areas are
unlikely to have low code complexity (e.g., constructors often only
initialize fields), yet might cause test errors (e.g., if fields are incor-
rectly initialized). Approaches based on textual data, such as the
approach by Aman et al. [4], prioritize test cases by targeting those
that have different textual contents and, therefore, are more likely to
test different aspects of the program under analysis. Similarly, to tra-
ditional approaches based on code coverage, such approaches might
also present low trustworthiness for issues that are exposed by less
favoured tests. Finally, we suspect that ML-based test selection and
prioritization approaches that concentrate on code coverage are
likely to suffer from similar issues as those presented in this paper.
Indeed, even state-of-the-art approaches [10] make use of class-
level dependency analysis, which we suspect would also be prone to
configuration-purpose issues. Therefore, while we study a PA-based
CI acceleration approach, our methodology, and the issues that we
detect, have the potential to also guide improvements to ML-based
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test selection and prioritization approaches. Nevertheless, future
work is necessary to empirically verify that our findings can indeed
apply to other CI acceleration tools.

5 THREATS TO VALIDITY

Below, we describe the threats to the validity of our empirical study.

5.1 Construct Validity

Gap mutants may not accurately indicate the degree of trustworthi-
ness of CI acceleration if the mutants themselves are not realistic.
For example, we apply the default setting for the selected mutation
tool without customization. The default mutation strategy was not
originally designed for assessing the trustworthiness of CI accelera-
tion. Within the pre-established strategy, we obtain a finite number
of mutants and consequently extract limited gap mutants. For ex-
ample, the selected mutation tool (i.e., Mutmut) only generates 408
mutants for the mackup codebase due to the small project size and
limited test cases. An analysis of the impact of different configu-
ration settings may prove fruitful; however, we believe that our
results demonstrate the promise of our mutation-based approach
to trustworthiness assessment.

5.2 Internal Validity

Our capacity to discover fault patterns is based on the inspection
of gap mutants. If the mutation tool fails to generate mutants that
relate to the changed code or generates equivalent mutants, we
cannot detect trustworthiness problems associated with this part
of the code. This, in turn, prevents us from detecting the complete
set of fault patterns in the CI acceleration decision-making. How-
ever, in principle, the selected mutation tool (i.e., Mutmut) applies
mutations to a broad range of statements.

Since our study is conducted only using YourBase, it is possible
for the obtained gap mutants to be due to bugs or limitations in
the tool itself. We attempt to mitigate this issue by inspecting a
sample of 200 mutants that only survive in the accelerated setting
and catalogue their causes. However, it is possible that the causes
are indeed bound to YourBase’s implementation. Future replication
of our work in other CI acceleration solutions would be helpful.

It is also possible that the variance in the test coverage of our
studied projects may (partially) explain our results (rather than the
acceleration setting itself). The test coverage varies broadly from
2% to 94% among our studied projects. However, we believe that
the test coverage variance of our studied projects is reflective of
the breadth of real-world use-cases. Nevertheless, follow-up studies
should control for this confounding factor.

5.3 External Validity

We set an upper bound of mutation time to select projects that can
be analyzed within our practical constraints. This constrains the
scale of the studied projects. Moreover, we study GitHub-hosted
open-source projects that use Python and pytest. Because GitHub is
one of the most popular hosts for open-source projects and Python
is a popular programming languages, our findings apply to a wide
range of projects. Similarly, pytest is one of the most popular unit
testing frameworks for Python. Our focus on a single CI acceleration
product may constrain the generalizabity of our study; however,
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the studied product implements a typical PA-based technique and
the generalizabity of the observations has been comprehensively
discussed. Nonetheless, we encourage extensions of our study using
other approaches, projects, languages, and test frameworks.

6 CONCLUSIONS

Users of CI expect to obtain rapid and reliable feedback, allowing
them to verify if their source code changes integrate cleanly with
their existing systems. Cl acceleration promises to further accelerate
the CI process while maintaining its trustworthiness. However, the
trustworthiness of CI acceleration is not guaranteed.

To evaluate the trustworthiness of a commercial-grade CI ac-
celeration product, we apply mutation testing within accelerated
and unaccelerated settings across ten projects to measure the gap
between accelerated and unaccelerated builds. We make six obser-
vations (see Section 4) from which we conclude that:

® 90% of studied projects contain mutants that survive in accel-
erated settings despite being killed in unaccelerated settings.

o Up to 23.5% of mutants survive only in the accelerated setting
(7.24% on average).

® 88.95% of the mutants that only survive in the accelerated
setting are traceable within the dependency graph of the
studied CI acceleration product.

e 4.38% of gap mutants are not traceable due to incomplete
information in the dependency graph.

e While 22.5% of mutants only survive in the accelerated set-
ting because of non-deterministic build behaviour, 69% sur-
vive because of deterministic reasons, and can be broadly
classified into six categories.

In conclusion, this study shows that while CI acceleration may
sacrifice trustworthiness, it is possible to use techniques such as mu-
tation testing to evaluate this sacrifice and identify improvements
for current approaches. For future work, our study demonstrates
that the following improvements for PA-based CI acceleration ap-
proaches would improve their trustworthiness: (1) depending on
the size and complexity of the codebase, it may be necessary to
manually refine the dependency graph, especially by concentrating
on class properties, global variables, and constructor components;
and (2) solutions should be added to detect and bypass flaky test
during CI acceleration to minimize the impact of flakiness.

7 DATA AVAILABILITY

The online appendix is available, under an open license, using the
following link: https://doi.org/10.5281/zenodo.10076515
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