Orchestrating Change:
An Artistic Representation of Software Evolution

Shane MclIntosh*, Katie Legere!, and Ahmed E. Hassan*
*School of Computing, Queen’s University, Canada
{mcintosh, ahmed} @cs.queensu.ca
fSchool of Music, Queen’s University, Canada
legerek @queensu.ca

Abstract—Several visualization tools have been proposed to
highlight interesting software evolution phenomena. These tools
help practitioners to navigate large and complex software sys-
tems, and also support researchers in studying software evolution.
However, little work has explored the use of sound in the context
of software evolution. In this paper, we propose the use of musical
interpretation to support exploration of software evolution data.
In order to generate music inspired by software evolution, we
use parameter-based sonification, i.e., a mapping of dataset
characteristics to sound. Our approach yields musical scores
that can be played synthetically or by a symphony orchestra.
In designing our approach, we address three challenges: (1) the
generated music must be aesthetically pleasing, (2) the generated
music must accurately reflect the changes that have occurred, and
(3) a small group of musicians must be able to impersonate a
large development team. We assess the feasibility of our approach
using historical data from Eclipse, which yields promising results.

I. INTRODUCTION

Software systems need to react quickly to changes in a
competitive, rapidly changing software market. Belady and
Lehman first described this tendency in the context of com-
mercial IBM software using laws of software evolution [1]].
Godfrey and Tu found that Open Source Software (OSS) is
not exempt from these laws, but rather that projects like the
Linux kernel are subject to an accelerated version of them,
growing at superlinear instead of linear rates [2]. Furthermore,
Barahona et al. find that Debian, a compilation of more than
10,000 OSS projects, doubles in size every two years [3].

Prior work describes several visualization techniques for
exploring historical software changes to better understand
software evolution. For example, Wu ef al. expand the sound
spectrograph paradigm to a colour-coded visualization of his-
torical code changes [4]. D’ Ambros et al. propose an evolution
radar to visualize co-change information at various levels of
abstraction [5]. Wettel ef al. visualize the complexity of a
software system at a particular point in time using a city
metaphor [6]. A sequence of city snapshots can be animated
to illustrate the evolution process.

In this paper, we propose a novel approach to explore
software evolution through musical interpretation of historical
changes that are typically recorded in a Version Control
System (VCS). Prior studies on the use of sound in software
exploration motivate us to explore a musical interpretation
of software evolution. For example, Hussein et al. show that

sonification, i.e., the act of transforming data and relations
into sounds [7]], can be used to aid practitioners in program
comprehension [8]]. Furthermore, Boccuzzo and Gall use audio
properties such as pitch, loudness, and sharpness to comple-
ment a visualization in navigating large software systems [9].

We use parameter-based sonification [7]] of historical code
changes to generate musical scores. We represent three proper-
ties of code changes in the generated scores: (1) software com-
ponents are represented using motifs, i.e., short and memorable
passages of music, (2) development periods are represented
using measures, i.e, time-ordered sections of a musical score,
and (3) developers are represented using timbre, i.e., the
quality of sound created by a family of musical instruments.

Our approach generates musical scores that can be played
synthetically or by a symphony orchestra. The generated
musical scores may be of particular interest for practitioners
because they can highlight phenomena that may require atten-
tion. For example, we use dissonance, i.e., combinations of
musical notes that sound harsh or unpleasant, to signify rarely
co-changing components.

In addition, sales of recorded performances of the generated
music and ticket sales for live performances could generate
revenue for OSS projects, who despite highly active volunteer
communities [10} [11]], need to defray the monetary costs of
developing software. For instance, the Mozilla Foundation
requires funding for: (1) web hosting, (2) testing infrastructure,
and (3) personnel to perform tasks that volunteers are not
interested in. The majority of Mozilla Foundation funding
is provided by Google, who pays for the privilege of being
the default web search option in the Mozilla Firefox web
browser [12]. Many OSS projects generate revenue through
the sales of project memorabilia, such as mugs and T-shirts.

Our approach takes liberty in its representation of software
evolution when it will conflict with aesthetic qualities of the
generated score. More specifically, our approach addresses the
following three challenges:

(C1) Musicality
Motifs are sampled from well-known classical-era music
in order to retain a natural, familiar feel.

(C2) Representativeness
While one can generate music that favours representa-
tiveness by treating periods of inactivity as measures
of silence in the generated music, this detracts from

the score’s musicality. Since we favour musicality over
representativeness, we skip periods of inactivity when
generating scores, yet we still ensure that the music
varies across different periods of activities.
Cost-Effectiveness

We map the most active developers to the most com-
mon orchestral instruments. Infrequently contributing
developers are allocated to percussive instruments, such
that one musician can impersonate several developers —
leading to more realistic personnel requirements in a live
orchestral setting.

(C3)

The contributions of the paper are twofold. First, we provide
a general approach for sonifying historical code changes that
addresses the three challenges listed above. Second, we assess
our approach by performing a feasibility study using historical
code changes from the Eclipse project. We have made the
results of our feasibility study, i.e., the generated scores and
synthetically-rendered performances available online [13].

Paper Organization

The remainder of the paper is organized as follows. Sec-
tion [II] presents our approach and discusses how it addresses
the three challenges listed above. Section presents our
feasibility study on the evolution of the Eclipse project.
Section [IV] surveys related work. Finally, Section [V] draws
conclusions and discusses potential avenues for future work.

II. OUR SONIFICATION APPROACH

Figure || provides an overview of our approach to sonifying
historical code change data. In this section, we first describe
how historical code change data are extracted from a VCS, and
then discuss how properties of the code changes are mapped to
a musical notation such that the three challenges are addressed.

A. Data Extraction

Software projects evolve through continual change in the
source code and other artifacts. These changes are often col-
lected in patches that show the differences between revisions
of a file. Patches are typically logged in a VCS. File patches
that are submitted together make up a commit. In addition to
recording commits, VCSs record commit metadata, such as the
author of the commit and the time when the commit occurred.

Our approach relies on commit metadata that is recorded in
the VCS. Hence, prior to sonification, we first extract a listing
of historical commits and their properties from the VCS. Next,
our approach sonifies three properties of each commit:

(P1) The software component(s) impacted by the commit.
(P2) The date and time when the commit was recorded.
(P3) The developer who produced the commit.

Each commit property is mapped to a musical property in
order to address one of the challenges outlined in Section [I|

(P1-C1) Musicality: Mapping Components to Motifs

Definition Musicality is concerned with the tastefulness and
melodious qualities of music.

Motivation Our approach aims to yield music that is pleas-
ing enough to prompt donations from end users. Hence, the
musicality of the generated scores is of paramount importance.
Approach We map software components to motifs. When a
given component is modified, the mapped motif is performed.
Since VCSs record changes to source code files, we map file
changes to the software component that the file belongs to.
As described below, the developer who made the modification
determines the instrument that performs the motif.

Since a commit may change several components, several
motifs may be played simultaneously. To avoid generating
music that is full of jarring dissonance, we manually analyze
component co-change rates prior to mapping them to motifs.
We map consonant motifs to components that change together
frequently to give the impression of stability and repose.
Conversely, we map dissonant motifs to components that rarely
change together to give the impression of unrest. Since we
have no quantitative means of measuring consonance or dis-
sonance, we rely on the musical training of the second author
when performing this step. We recommend that musicians be
consulted when performing this step.

The motifs we select are each one measure long and are
sampled from Beethoven’s Symphony No. 3, The Eroica.
Selecting motifs from a Classical era symphony is advanta-
geous for two reasons. First, orchestral musicians will likely
be familiar with the types of motifs found in a Beethoven
symphony, and hence, should be able to learn the generated
music more easily than an unfamiliar arrangements of notes.
Second, those without musical training will likely notice
consonance and dissonance in classical motifs.

(P2-C2) Representativeness: Handling Periods of Inactivity

Definition Representativeness is concerned with how accu-
rately the generated music reflects the code change activity of
the historical period it is based upon.

Motivation While this is of less concern than musicality, we
also aim to generate music that is representative of the studied
periods of code change history to a large extent.

Approach In order to preserve the temporal properties of the
historical code changes, we map development time periods to
musical measures in the generated score. However, there are
periods of inactivity that may disrupt the flow of the music
if an inappropriate granularity is selected. We address these
time period granularity concerns on a case-by-case basis. For
example, a short development history of one month could
reasonably produce one measure for each hour in the day,
while a longer period of development history of one year may
only produce one measure for each day.

The tempo of the piece must be carefully selected. A tempo
that is too slow can also disrupt the flow of the music by
prolonging the silent periods of inactivity. On the other hand,
a tempo that is too fast will make it difficult to differentiate
between motifs. We rely on the musical training of the second
author when selecting a tempo that strikes a balance between
silence minimization and motif differentiability.

VCS

Y

Data
Extraction

Component

Time

Musicality:
Mapping Components
to Motifs

Representativeness:
Handling Periods
of Inactivity

Mapping Developers

[Cost-Effectiveness:
{ to Timbre

Fig. 1: Overview of our approach to sonify software evolution data.

(P3-C3) Cost-Effectiveness: Mapping Developers to Timbre

Definition Cost-effectiveness is concerned with the practi-
cality of the generated music.

Motivation Since the number of available musicians may
vary depending on the location of the recording studio or
performance hall, the code change property that is mapped to
timbre must adapt to fit the set of available musicians. In areas
with few available musicians, a small number of musicians will
need to impersonate a large number of developers.
Approach Several developers coordinate their efforts when
working on large-scale projects. We consider each developer
as a performer in a software development orchestra. As shown
in Figure[T] each developer is mapped to a timbre. As concrete
examples of timbre, we use instruments typically found in an
orchestra, e.g., clarinet, flute, trumpet, and violin. Whenever a
commit made by a particular developer is encountered in the
history, they are considered to be performing and their mapped
instrument is sounded. The motif that is played is determined
by the components that have been modified as described above.

In order to optimize the mapping of developers to instru-
ments, we first extract the list of unique developers and order
them by contribution rate, i.e., the rate at which they produce
source code changes. The instruments are also ordered from
most to least common with percussion instruments appearing
at the bottom of the list. We then map the most prolific
developers with the most common musical instruments.

We perform this rank-based mapping of developers to
musical instruments for two reasons. First, it is more likely
that one can find a musician who plays the flute than one
who plays the zither, so mapping developers with the highest
contribution rates to the most commonly played musical
instruments ensures that the final product requires a palette of
commonly available musicians. Second, there are likely more
developers participating in a software project than available

musicians. In a modern orchestra, it is common for a small
group of musicians to play several percussive instruments
during a performance. Thus, mapping several infrequently
contributing developers to percussion instruments helps to
reduce the number of required musicians.

ITII. ECLIPSE FEASIBILITY STUDY

We assess the feasibility of our approach by applying it to
two periods of Eclipse development history. Table [I] provides
an overview of the studied periods. We set the granularity
of our approach to one measure per day, i.e., all of the
development activity that occurs in one day is compressed into
a single measure in the generated music. While the granularity
level of days may seem too coarse, we find that it yields
reasonable musical scores based on the length of the studied
periods of development history.

A. Periods of Inactivity

We apply our approach to a foundational Eclipse devel-
opment period (May 2001 - Oct 2002), as well as a later
maintenance period (Jan 2005 - Dec 2005). There are intervals
of rapid activity as well as intervals of inactivity in both of
the studied periods. We apply two different approaches when
handling intervals of inactivity:

(1) Treat inactivity as musical silence
In this more literal data interpretation, we map intervals
of inactivity to rests in the score in order to preserve the
temporal characteristics of the data.
(2) Ignore inactivity
Contrary to the first approach, we discard intervals of
inactivity to produce a more contiguous piece of music.
In our opinion, the second approach yields more aesthet-
ically pleasing results. However, we have produced musical
scores using both approaches. We adopt approach 1 when

TABLE I: Overview of the feasibility study data

Period Timeframe Commits Developers = Components
. May 2001
Foundational Oct 2002 261 14 9
. Jan 2005
Maintenance Dec 2005 315 24 27

generating the foundational period score, and approach 2
when generating the maintenance period score. The scores
generated for the two periods, as well as synthetically rendered
performances of them are available online [13]].

B. Foundational Period Results

We apply our approach to the foundational Eclipse devel-
opment period between May 2001 and October 2002. We set
the tempo of the piece to 240 beats per minute. Since each
measure is comprised of four beats, each measure lasts one
second. Thus, the entire generated piece can be played in just
over four minutes. Although the individual motifs are played
quickly, they are still distinct enough for an astute listener to
notice trends and gain insight into the evolution of the Eclipse
project. In addition, since the longest period of inactivity is
15 days, the selected tempo ensures that 15 seconds is the
maximum duration of silence in the generated score.

When listening to the synthesized music, the long periods of
silence quickly become apparent. One can easily detect periods
of little change (where few instruments are sounded), as well
as periods of complete stagnation (where there is silence in the
piece). Many of the periods of silence coincide with common
holidays, e.g., there was little activity during the winter holiday
season of 2001.

C. Maintenance Period Results

The lengthy periods of silence in the foundational develop-
ment period results detract from the listening experience. Even
after accelerating the tempo of the piece, the periods of silence
tend to detract from the listening experience without adding
much value. Hence, we produce a second piece using a highly
active maintenance period with few periods of inactivity.

The synthesized music for this period is more intricate than
that of the foundational period. Indeed, the two-note motif
that sounds repeatedly beginning at 0:04 indicates that a single
component is changed frequently. The fact that the pattern is
sounded often by the clarinet indicates that a single developer
is responsible for much of the change.

Consonance and dissonance also play a much bigger role
in the maintenance piece than the foundational one, since co-
change occurs more frequently. For example, the measures
played between 1:40 and 1:51 are highly consonant, indicating
the co-change that occurred represents a large proportion of
the co-change for the components involved. On the other
hand, the motifs sounded between 0:14 and 0:16 are dissonant,
indicating that combination of co-changed components is rare.

IV. RELATED WORK

Sonification has received some software engineering re-
search attention as of late. Vickers and Alty built CAITLIN, a
sonification system that maps Pascal programming constructs
to motifs and can be used to “listen” to a program [[14f]. Vickers
and Alty also show that CAITLIN can be useful for Pascal
debugging tasks [[15]].

Prior work, such as that of Hussein et al. suggest that soni-
fication can aid practitioners in program comprehension [8].
Indeed, Berman and Gallagher build and evaluate a sonifica-
tion tool for assisting developers in understanding the archi-
tecture of Java applications [16]. Boccuzzo and Gall augment
their CocoViz tool with auditory icons [9] and ambient
sounds [17] to help practitioners to understand programs and
how they evolve. Rather than providing software development
tools, we focus on the artistic qualities of the generated music.

V. CONCLUSIONS & FUTURE WORK

Software tends to grow in terms of size and complexity
as it ages [L]. Much research effort has been invested in
visualization tools and techniques that aid in the software
evolution process [4H6]. In this paper, we explore the use
of parameter-based sonification as a means of producing a
musical interpretation of software evolution data. Through a
feasibility study on the evolution history of the Eclipse project,
we note that:

o The rate of activity during time intervals can be noticed
when inactive periods are mapped to musical rests, how-
ever the cohesiveness of the musical score suffers.

« Consonance and dissonance can highlight interesting phe-
nomena (e.g., rarely co-changing components).

Future Work Several of the steps in our approach re-
quire manual intervention. For example, we manually analyze
component co-change rates in order to map consonant and
dissonant motifs appropriately. We plan to explore approaches
to automate these sorts of steps in future work.

From a more general perspective, we are concerned with
representing the collaborative software development experi-
ence artistically. We have primarily focused on music, however
the visual arts may also provide an interesting avenue for
future work. The field of visualization has produced several
useful and representative renderings of software evolution
data. However, little work has focused on the aesthetic qual-
ities of these representations. Inspired by procedural genera-
tion techniques from computer graphics, we plan to generate
software evolution landscapes algorithmically. Ultimately, we
will pursue a hybrid approach that combines both visual art
and music to represent software evolution data and create an
immersive experience similar to that of a film.

ACKNOWLEDGMENTS

This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

REFERENCES

L. A. Belady and M. M. Lehman, “A model of large
program development,” IBM Systems Journal, vol. 15,
no. 3, pp. 225-252, 1976.

M. W. Godfrey and Q. Tu, “Evolution in Open Source
Software: A Case Study,” in Proc. of the 8th Int’l Conf.
on Software Maintenance (ICSM), 2000, pp. 131-142.
J. M. Gonzalez-Barahona, G. Robles, M. Michlmayr,
J. Amor, and D. German, “Macro-level software evo-
lution: a case study of a large software compilation,”
Empirical Software Engineering, vol. 14, no. 3, pp. 262—
285, 2009.

J. Wy, R. C. Holt, and A. E. Hassan, “Exploring Software
Evolution Using Spectrographs,” in Proc. of the 11th
Working Conf. on Reverse Engineering (WCRE), 2004,
pp- 80-89.

M. D’Ambros, M. Lanza, and M. Lungu, “Visualiz-
ing Co-Change Information with the Evolution Radar,”
Transactions on Software Engineering (TSE), vol. 35,
no. 5, pp. 720-735, 2009.

R. Wettel, M. Lanza, and R. Robbes, “Software Systems
as Cities: A Controlled Experiment,” in Proc. of the 33rd
Int’l Conf. on Software Engineering (ICSE), 2011, pp.
551-560.

T. Hermann, “Taxonomy and definitions for sonification
and auditory display,” in Proc. of the 14th Int’l Conf. on
Auditory Display (ICAD), 2008, pp. 1-8.

K. Hussein, E. Tilevich, 1. I. Bukvic, and S. Kim,
“Sonification Design Guidelines to Enhance Program
Comprehension,” in Proc. of the 17th Int’l Conf. on
Program Comprehension (ICPC), 2009, pp. 120-129.
S. Boccuzzo and H. C. Gall, “Software Visualization with

(10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

Audio Supported Cognitive Glyphs,” in Proc. of the 24th
Int’l Conf. on Software Maintenance (ICSM), 2008, pp.
366-375.

G. Robles, S. Duefias, and J. M. Gonzalez-Barahona,
“Corporate Involvement of Libre Software: Study of
Presence in Debian Code over Time,” in Open Source
Development, Adoption and Innovation, ser. The Inter-
national Federation for Information Processing (IFIP).
Springer, 2007, vol. 234, pp. 121-132.

D. Riehle, P. Riemer, C. Kolassa, and M. Schmidt, “Paid
vs. Volunteer Work in Open Source,” in Proc. of the 47th
Hawaii Int’l Conf. on System Science (HICSS), 2014, to

appear.
“Mozilla and Google Sign New Agree-
ment for Default Search in Firefox,”

https://blog.mozilla.org/blog/2011/12/20/mozilla-and-
google-sign-new-agreement-for-default...
“Supplementary materials,” http://sailhome.cs.queensu.
ca/replication/Orchestrating_Change/.

P. Vickers and J. L. Alty, “Using music to communicate
computing information,” Interacting with Computers,
vol. 14, pp. 435-456, 2002.

——, “When bugs sing,” Interacting with Computers,

vol. 14, pp. 793-819, 2002.

L. I. Berman and K. B. Gallagher, “Using Sound to
Understand Software Architecture,” in Proc. of the 27th
Int’l Conf. on Design of Communication (SIGDOC),
2009, pp. 127-134.

S. Boccuzzo and H. C. Gall, “CocoViz with Ambient
Audio Software Exploration,” in Proc. of the 31st Int’l
Conf. on Software Engineering (ICSE), 2009, pp. 571—
574.

https://blog.mozilla.org/blog/2011/12/20/mozilla-and-google-sign-new-agreement-for-default-search-in-firefox/
https://blog.mozilla.org/blog/2011/12/20/mozilla-and-google-sign-new-agreement-for-default-search-in-firefox/
http://sailhome.cs.queensu.ca/replication/Orchestrating_Change/
http://sailhome.cs.queensu.ca/replication/Orchestrating_Change/

	Introduction
	Our Sonification Approach
	Data Extraction

	Eclipse Feasibility Study
	Periods of Inactivity
	Foundational Period Results
	Maintenance Period Results

	Related Work
	Conclusions & Future Work

