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Abstract—When software is maintained and evolved the build
configuration also needs to be updated. Knowing when to update
the build configuration is typically done manually with the risk
of missing an update and breaking the build. To mitigate this
risk, previous work has investigated prediction models to help
developers to identify commits that will likely involve an update
of the build configuration.

In this paper, we investigate whether we can improve these
existing prediction models by taking into account detailed in-
formation on source code changes and commit categories. Our
main hypothesis is that such detailed information on changes will
significantly improve the prediction of build co-changes.

To that extent, we extract information on changes from 10
Java open source projects and use a random forest classifier
to train models that predict build co-changes within and across
projects. Our results show significant improvements over existing
prediction models: the AUC for intra- and cross-project predic-
tion improves by 11.54% and 9.46% respectively. In addition,
we investigate advanced resampling techniques to explore the
effect of unbalanced data on our models. The results show that
SMOTE can particularly improve prediction models with low
performance that were trained on unbalanced data. Our models
improve the prediction and enable a better understanding of
build co-changes.

I. INTRODUCTION

As today’s software engineering projects get more and more
complex, also the way how to build a project increases in
complexity. Similar to the maintenance of source and test code,
the build configuration needs to be maintained [1] to avoid
breaking the build and slowing down the development process.
Indeed, Seo et al. [2] identify neglected build maintenance as
the most common root cause for build breakage. Kerzazi et
al. found that such build breakages can be expensive [3].

To that extent, it is crucial to understand when changes to
a build configuration are needed, meaning when changes in
the source and test files also involve a change in the build
files. Addressing this issue, McIntosh et al. [4] propose to
use machine learning to train models to predict build changes
based on prior build changes and changes in the source and
test files. This approach has been further investigated by Xia et
al. [5] to assess the possibility of performing such predictions
across projects.

In this study, we aim to enhance their model by using
source code change and commit categories. We use Change
Distiller [6], [7] to obtain the source code change categories.

Change Distiller parses two consecutive versions of a Java
file and creates their ASTs. The two ASTs are compared
using a tree-differencing algorithm [8]. The differences in the
ASTs are then mapped to their corresponding source code
change categories. For the categorization of commit messages,
we follow the approach of Hattori et al. [9], who divide
commits into four categories based on the content of the
commit message.

Using the source code change and commit categories, and
the basic attributes of [4] computed for ten Java open source
projects, we train intra- and cross-project prediction models
with the random forest classifier. For intra-project prediction,
the data of a single project is split into training and test
sets, whereas for cross-project prediction, one project is used
for training the classifier and another project is used for
testing the model. We also investigate various resampling
methods to deal with the issue of unbalanced data for training
prediction models. Finally, we report on two examples of
source code changes that involved changes in build files to
better understand the potential impact of code changes on the
build configuration.

With the results of our study, we aim to answer the
following three research questions:
(RQ1) To what extent can source code change and commit

categories improve intra- and cross-project build
co-change prediction?
Source code change and commit categories signif-
icantly improve the model for predicting build co-
changes. Compared to the models presented by McIn-
tosh et al. [4], the average AUC value for intra-project
prediction improves from 0.78 to 0.87 or 11.54%.
Regarding cross-project prediction, compared to the
models presented by Xia et al. [5] our results show an
average improvement of the AUC values from 0.74 to
0.81 or 9.46%.

(RQ2) To what extent can advanced resampling methods
improve the performance of build co-change pre-
diction?
Advanced resampling methods (e.g., SMOTE [10])
improve the performance of intra- and cross-prediction
models. In particular, the prediction models with the
weakest performance among the studied Java projects



yield the largest improvement. For instance, the AUC
value for the Hadoop project improved from 0.73
to 0.89 for intra-project prediction. For cross-project
models that are trained using Hadoop data, the AUC
value when testing using the Karaf project improved
from 0.50 to 0.88.

(RQ3) Which attributes of our models are important
to predict build co-changes within and across
projects? Number of Files, Method Body Changes,
and Prior Build Co-Changes are the most important at-
tributes for building intra- and cross-project prediction
models, directly followed by the commit categories
Management, Forward Engineering, and Reengineer-
ing.

By answering these research questions, we make the fol-
lowing main contributions: (1) An improved model for build
co-change prediction with source code change and commit
categories; (2) an evaluation of the models for intra- and cross-
project prediction; (3) an evaluation of advanced resampling
methods for addressing the issue of unbalanced data in the
training set; and (4) a qualitative study to understand the
impact of source code changes on build co-changes.

The remainder of the paper is organized as follows: Section
II sums up the related work about build systems and prediction.
Section III describes our data extraction process. Sections IV,
V, and VI present the results of our analyses, which address
our three RQs. In Section VII we discuss the threats to validity
and we draw conclusions in Section VIII.

II. RELATED WORK

In this section, we discuss prior studies on build systems
and change prediction.

Build Systems. Several prior studies have focused on ana-
lyzing build maintenance. For example, Kumfert et al. [11] and
Hochstein et al. [12] show that build maintenance generates
a ”hidden overhead” on software development. Furthermore,
Adams et al. [1] claim that source and build code tend
to co-evolve and show this tendency in a study with the
Linux kernel. Furthermore, McIntosh et al. confirmed the
observations of Adams et al. in Java build systems [13],
ANT build systems [14], and also for other languages [15].
Xia et al. [16] and Zhou et al. [17] focus on detecting and
automatically inferring missing dependencies. Further studies
aim at understanding build changes and predicting build co-
changes, such as McIntosh et al. [4] within a project and Xia
et al. [5] across projects.

There are also tools that support build maintenance. Adams
et al. [18] propose a reverse engineering tool called MAKAO
based on building a dependency graph. Tamrawi et al. [19]
present SYMake, which aims to visualize dependencies in
Makefiles. Furthermore, MkDiff by Al-Kofahi et al. [20]
extracts the semantics of build specification changes. Hardt
et al. [21], [22] present a tool called Formiga which is used
to automate build changes or to assist in build refactoring of
ANT build files.

Change Prediction. A large body of research exists that
uses prediction methods, in particular machine learning, to
understand various characteristics of software engineering.
For instance, Hassan et al. [23] predict the passing of a
certification process by using decision trees. Ratzinger et al.
[24] use classification algorithms to predict the need of future
refactoring. Ibrahim et al. [25] predict whether a developer
should contribute to an email discussion. Knab et al. [26]
predict defect densities in source code files. Furthermore,
Romano et al. [27] use classifiers to identify change-prone
Java interfaces. Finally, Giger et al. [28] use fine-grained
source code changes for predicting future bugs.

We motivate our research by acknowledging that source
code changes have already been used for various prediction
models and the fact that source code and build code co-evolve.
We claim that source code changes are indicators for build co-
changes and investigate this in this paper.

III. PREDICTING BUILD CO-CHANGES

In this section, we present our approach to predict build
co-changes. The approach is split up into two main parts:
Data Extraction and Data Analysis. The data extraction part
deals with the extraction of work items from source code
repositories and the calculation of various measures used for
building the prediction models. The data analysis part builds
the prediction models and measures their performance. Figure
1 shows an overview of our approach. Below we describe each
part in detail.

A. Data Extraction

At the beginning of our data extraction, we clone a source
code repository and retrieve the log information on each
commit from the master branch. We currently support software
projects that use git1 as source code repository and Maven2 as
build system (see Section III-C). Next, we iterate over each
commit and perform the following steps:

File Type Classification. In our approach, we distinguish
between build, source, and test files. As Maven provides a
strong convention for the repository structure, we directly rely
on this project layout. Build files are all files named pom.xml.
Source and test files are distinguished by investigating their
respective location in the project folders. Files located in the
folder src/main are considered source files. Files located
in the folder src/test are considered test files. We do not
handle other files as our proposed model does not make use
of metrics calculated with other files.

Change Extraction. One of the most important parts of
the process is the change extraction. This step extends the
approach of McIntosh et al. [4]. We compare each commit
with the preceding (parent) commit and extract the fine-
grained source code changes of the Java files. We use Change
Distiller [7], [8] for extracting those changes. Change Distiller
parses two consecutive versions of a Java file and creates an
AST for each of them. Then, it compares the two ASTs and

1https://git-scm.com
2https://maven.apache.org



Fig. 1. Overview of our approach for predicting build co-changes

extracts the differences using a tree-differencing algorithm.
Change Distiller is able to extract source code changes down to
the AST level, such as the insertion of a method invocation,
the change of a method return type, or the change of an if
condition. Changes to the build files are extracted by checking
whether a commit references pom.xml files that are added,
deleted, or modified. The source code, test code, and build file
changes are stored into a database that we call Change DB
together with commit meta data (compared revisions, time,
author, and commit message).

Work Item Aggregation. Because earlier studies, such as
McIntosh et al. [29], have shown that commits are too fine-
grained to properly represent a development task, we group
commits that are logically coupled into work items. We use a
similar approach for identifying work items as proposed by
McIntosh et al. [29] by parsing the commit messages and
searching for patterns3 that identify a work item in the issue
tracking system. We group commits by linking work items
with their respective commits in our database.

Work Item Summarizer. This step calculates the various
attributes for each work item as shown in Table I. Aiming
at improving existing prediction models, we calculate the
basic attributes proposed by McIntosh et al. [4] and add
our measures of commit categories and source code changes.
Regarding the commit categories, we implement the approach
by Hattori et al. [9] who use keywords to divide commits
into four categories: Forward Engineering, Reengineering,
Corrective Engineering, and Management. For each work item,
we investigate the commit messages and count the matched
keywords for each category.

For source code changes, we use a similar approach. Fluri
et al. provide a taxonomy of fine-grained source code changes
and categories [6]. We adopt this taxonomy to cover all change
types that Change Distiller is capable of extracting, resulting in
ten source code change categories. Then, for each work item,
we count the number of changes in each category. Compared
to the approach by McIntosh et al. [4], these attributes are
computed on fine-grained source changes explaining the at-
tribute ’(Source/Test File modified)’ in more detail. We argue

3E.g.: HADOOP-[number] or HBASE-[number]; where [number] stands
for a sequential number given by the issue tracking system

TABLE I
WORK ITEM ATTRIBUTES USED TO BUILD PREDICTION MODELS

Attribute Category Name Abbrev.

Source Code Change
Categories [6]

Class Body Changes CBC
Method Body Changes MBC
Structure Statements SST
Access Modifier Changes AMC
Attribute Declaration Changes ADC
Class Declaration Changes CDC
Final Modifier Changes FMC
Method Declaration Changes MDC
Documentation Changes DOC
Unclassified Changes UNC

Basic Model
Attributes [4]

Number of Files NF
Prior Build Co-Changes PBC
(Source/Test) File added (S/T)FA
(Source/Test) File deleted (S/T)FD
(Source/Test) File renamed (S/T)FR

Commit Categories
[9]

Corrective Engineering CE
Forward Engineering FE
Management MA
Reengineering RE

that this more detailed information leads to better prediction
models. We also measure the other attributes of the basic
model that was proposed by McIntosh et al. [4], which are
’(Source/Test) File added, deleted, and renamed’, as well as
’Number of Files’ and ’Prior Build Co-Changes’. ’Number of
Files’ represents the total number of added/changed/deleted
files in a work item. For ’Prior Build Co-Changes’, we select
the maximum ratio of all files in the work item that were build
co-changing in previous work items.

Finally, we label a work item as build co-changing if at least
one pom.xml in that work item has been added, deleted, or
changed.

B. Data Analysis

The data analysis part splits the data into a training and a test
set. Then, the optional step of applying resampling methods
to the training set is executed. With the resulting data set
we train a random forest classifier for binary classification.
The classifier is evaluated on the test set based on which
we compute the F-measure, AUC, and MCC to quantify the



performance of our prediction models. Below, we describe
these steps in detail.

Training/Test Set separation. For the validation of our
prediction models, we split the data into a training set and a
test set. The split is different for intra-project prediction and for
cross-project prediction. For intra-project prediction, we use
repeated random sub-sampling. For each project, we repeat the
experiment 100 times to achieve reliable performance metrics
and to minimize the influence of selecting instances for the test
set. In each run, we randomly select 90% of the work items in
a project for training and the remaining 10% of work items for
testing the prediction model. The values of the performance
metrics are averaged over the 100 runs. This validation strategy
has been used in several previous studies, such as Pinzger et al.
[30]. For cross project prediction, we use all work items of one
project as the training set and the work items of another project
as test the set. This is repeated for all possible combinations
of different projects.

Resampling. Similar to the systems studied by McIntosh
et al. [4], our subject systems listed in Table II show an
imbalanced number of work items that build co-changed.
Since this affects the performance of prediction models, we
experiment with several advanced resampling techniques to
achieve an equal distribution of work items that did build co-
change and that did not. Section V presents the details on
the resampling techniques and their effect on the prediction
performance.

Classifier Construction. Since we aim to predict whether
a work item will need a build co-change or not, we construct
a binary classifier using the random forest algorithm [31].
The random forest classifier generates many decision trees.
Each decision tree is built with a random subset of all model
attributes. The classifier calculates a classification decision for
each of the trees and then aggregates the partial results to a
total classification result. We selected random forest since this
algorithm has been used in many previous empirical studies
[4], [5], [32], [33], and tends to have good predictive power
[34].

Classifier Evaluation. We apply the classification model to
the test set and output the results in the following confusion
matrix.

Classified As
Actual Category Change No Change

Change a b
No Change c d

Based on this matrix, we compute the following perfor-
mance metrics:

• Precision (P): Ratio of work items correctly classified as
build co-changing (a) out of all work items classified as
build co-changing (a+c), i.e., P = a

a+c

.
• Recall (R): Ratio of work items correctly classified as

build co-changing (a) out of all work items that actually
did build co-change (a+b), i.e., R = a

a+b

.
• F-Measure: The harmonic mean of precision and recall,

i.e., F = 2 · precision·recall
precision+recall

• Area under ROC-Curve (AUC): The area under the
curve plots the true positive rate ( a

a+b

) against the false
positive rate ( c

c+d

) for various values of the chosen
threshold used to determine whether a work item is
classified as build co-changing. Values of AUC range
from 0 (worst classifier performance) to 1 (best classifier
performance) where 0.5 indicates that the classifier is no
better than random guessing.

• Matthews Correlation Coefficient (MCC): Measures
the quality of a binary classification and is considered a
good metric for measuring the performance of classifiers
[35]. It is calculated as MCC = a·d�c·bp

(a+c)·(a+b)·(d+c)·(d+b)

and values range from -1 (total disagreement) to +1
(perfect classifier) whereas 0 means the classifier is no
better than random guessing.

We use these performance metrics to compare our approach
with the approaches of McIntosh et al. [4] and Xia et al. [5].

C. Studied Systems

To evaluate the proposed model and approach, we selected
Java open source projects of different sizes and domains that
satisfy the following constraints:

• uses git as source code management system;
• uses Apache Maven as its build system;
• satisfies the Maven Standard Directory Layout;4

• provides at least two years of evolution data;
• shows similar distribution of commits and work items
We investigated several subject systems and finally selected

10 projects for our experiments. Table II lists the selected
systems and their properties that are relevant for this study.
Among the systems, we selected Java frameworks, such as
Hibernate Search, Karaf, Camel, and Wicket, as well as
end-user systems, such as Jenkins, ActiveMQ, Wildfly, and
Roo. Furthermore, we selected two projects from the Hadoop
system, namely Hadoop and HBase.

Regarding the links between commits and change requests,
we compared the distribution of commits and work items per
month. Similar to McIntosh et al. [4] we used beanplots [36]
to visualize the distribution of commits and work items per
month. Figure 2 shows the shape of the distributions for each
project. We selected projects that show similar distributions of
commits and work items over time, meaning that commits are
adequately linked to work items. A bad linkage would lead
to a biased data set which is a known problem for building
prediction models [37], [38].

IV. IMPROVING BUILD CO-CHANGE PREDICTION

In this section, we address the first research question: (RQ1)
To what extent can source code change and commit categories
improve intra- and cross-project build co-change prediction?
By comparing our results to those of McIntosh et al. [4]
and Xia et al. [5], we show that fine-grained source code
changes and commit categories can lead to improved models

4https://maven.apache.org/guides/introduction/
introduction-to-the-standard-directory-layout.html



TABLE II
COMMIT PROPERTIES OF THE STUDIED PROJECTS

ActiveMQ Hadoop HBase Camel Hibernate Wicket Wildfly Karaf Roo JenkinsSearch
First Commit 2007 2011 2011 2007 2008 2006 2010 2010 2009 2012
Project Files 11045 21027 8346 9594 7456 33377 33804 4638 5676 9126

Commits 6768 10753 8008 4929 3899 12814 16924 3929 4878 6031
Work Items 2542 9441 6209 1336 1217 3623 5628 2018 2094 970

Commits with Work Items 60% 98% 94% 60% 83% 44% 52% 83% 95% 31%
Build Co-Changing Work Items 375 543 397 266 400 130 1314 915 281 109

Not Build Co-Changing Work Items 2167 8898 5812 1070 817 3493 4314 1103 1813 861
Build Co-Change Ratio 15% 6% 6% 20% 33% 4% 23% 45% 13% 11%

Fig. 2. Comparison of commits and work items per months (black denotes
commit distribution and gray denotes work item distribution)

for predicting build co-changes within and across projects. In
the following, we first present the results for the case of intra-
project prediction and then for cross-project prediction.

A. Intra-Project Prediction

We apply our approach to the selected Java open source
projects to extract the data, measure the metrics, and train
the prediction models using the random-forest classifier. For
the comparison with the approach presented by McIntosh et
al. [4], we first compute the models with the basic model
attributes that we then extend with our measures of the
commit and source code change categories as listed in Table I.
Concerning the validation of the prediction models, we use
a repeated random sub-sampling approach as described in
Section III.

Table III shows the results of the classification models
computed with our approach and the approach of McIntosh
et al. [4]. The metric values have been averaged over the 100
runs. At the bottom of the table, we also present the minimum,

maximum, and average values over all projects. Figure 3 shows
a detailed comparison of the results with box-plots.

TABLE III
PERFORMANCE METRICS OF PREDICTION MODELS COMPUTED WITH OUR

APPROACH (O) AND THE APPROACH OF MCINTOSH et al. [4] (M).

Project F-measure AUC MCC
M O d M O d M O d

ActiveMQ 0.57 0.60 0.10 0.84 0.902 0.75 0.52 0.551 0.19
Hadoop 0.14 0.172 0.29 0.62 0.732 0.95 0.22 0.252 0.29

HBase 0.08 0.182 0.74 0.56 0.742 1.00 0.12 0.272 0.76
Camel 0.61 0.652 0.33 0.86 0.912 0.70 0.56 0.622 0.38

Hib. Search 0.65 0.722 0.62 0.77 0.892 0.95 0.52 0.632 0.67
Wicket 0.57 0.59 0.09 0.86 0.932 0.54 0.58 0.61 0.09
Wildfly 0.64 0.692 0.59 0.85 0.902 0.94 0.58 0.632 0.55

Karaf 0.82 0.842 0.32 0.91 0.932 0.62 0.69 0.722 0.44
Roo 0.34 0.532 0.79 0.72 0.872 0.95 0.36 0.522 0.71

Jenkins 0.60 0.702 0.40 0.81 0.912 0.57 0.56 0.692 0.56
MIN 0.08 0.17 0.09 0.56 0.73 0.54 0.12 0.25 0.09

MAX 0.82 0.84 0.79 0.91 0.93 1.00 0.69 0.72 0.76
AVG 0.50 0.57 0.43 0.78 0.87 0.80 0.47 0.55 0.47

1p < 0.05; 2p < 0.001: significance level of the Two-Tailed Mann-Whitney U-Test
d: effect size computed with Cliff’s Delta

Looking at the performance metrics and the box-plots, we
can see that the prediction models computed with our approach
outperform the models computed with the approach by McIn-
tosh et al. [4]. Regarding the F-measure, we can improve the
minimum value from 0.08 to 0.17 and the maximum value
from 0.82 to 0.84 with an average increase from 0.50 to
0.57. The minimum AUC enhances from 0.56 to 0.73 and
the maximum value from 0.91 to 0.93 resulting in an average
improvement from 0.78 to 0.87. For the MCC metric, we
observe similar behavior. Minimum MCC increases from 0.12
to 0.25, maximum from 0.69 to 0.72, and the average improves
from 0.47 to 0.55.

To test whether the improvements obtained with our predic-
tion models are not by chance, Table III shows the results of
a Two-Tailed Mann-Whitney U-Test and the Cliff’s-Delta d.
Except the F-measures for the projects ActiveMQ and Wicket,
and the MCC value of Wicket, the differences are statistical
significant. For Cliff’s Delta d, the effect size is considered
negligible for d < 0.147, small for 0.147  d < 0.33, medium
for 0.33  d < 0.47, and large for d � 0.47 [39]. Looking at
the AUC values, the effect sizes of all projects are considered
large. For the F-measures the difference is considered large for
4 out of 10 projects, the MCC values show a large difference
for 5 out of the 10 projects.

Based on these results, in particular the large improvement
of the AUC values, we can answer the first research question



(a) F-measure (b) AUC (c) MCC

Fig. 3. Comparison of F-measure, AUC, and MCC values of prediction models computed with McIntosh et al.’s [4] basic (M) and our attribute set (O)

for the case of intra-project prediction:

Source code change and commit categories significantly
improve the model for intra-project prediction of build co-
changes resulting in a gain of the average AUC of 11.54%
compared to the model of McIntosh et al. [4].

B. Cross-Project Prediction

For this experiment, we use the same data set as before
but apply a different method for obtaining the training and
test sets. In particular, we use each project once for training
the random forest classifier. The resulting prediction model is
then tested with the data of each of the other nine projects.
For instance, we train a prediction model with the Hadoop
work items and then test the model on the sets of work items
of each other project. The values of performance metrics are
averaged over all tested projects.

Table IV lists the average F-measure, AUC, and MCC
values that are computed for each project when it is used
to train a prediction model (Source) evaluated with the other
nine projects, and when it is used for testing the prediction
models that are built with each of the other nine projects
(Target). Looking at the Source values, we can see that, except
Hadoop, HBase, Roo, and Jenkins, each project can be used
to train prediction models with an average F-measure � 0.51,
AUC � 0.85, and MCC � 0.45. As a target, only Hibernate
Search and Wildfly have an average AUC  0.79. Regarding
the F-measure of using projects to test prediction models (i.e.,
targets), only the projects Hadoop and HBase have values <
0.40.

Table V lists an excerpt of the detailed cross-project pre-
diction results. Several prediction models show high values
for the performance metrics. For example, training a model
with the data of Wildfly and testing it on Karaf reaches an
F-measure of 0.80, an AUC of 0.92, and an MCC of 0.70.
We can observe a similar performance for using Camel as
training set and Karaf as test set (F-measure of 0.80, AUC of

TABLE IV
PERFORMANCE METRICS OF CROSS-PROJECT PREDICTION. EACH PROJECT

IS USED TO TRAIN (SOURCE) AND TEST (TARGET) PREDICTION MODELS

Project Source Target
F-measure AUC MCC F-measure AUC MCC

ActiveMQ 0.58 0.88 0.52 0.38 0.80 0.38
Hadoop 0.16 0.64 0.22 0.31 0.81 0.30

HBase 0.20 0.76 0.27 0.34 0.81 0.33
Camel 0.56 0.87 0.50 0.44 0.80 0.45

Hibernate Search 0.56 0.86 0.51 0.46 0.75 0.39
Wicket 0.51 0.85 0.47 0.40 0.86 0.42
Wildfly 0.58 0.87 0.52 0.43 0.79 0.42

Karaf 0.52 0.86 0.45 0.52 0.82 0.47
Roo 0.24 0.70 0.25 0.43 0.84 0.39

Jenkins 0.22 0.83 0.26 0.43 0.85 0.41
MIN 0.16 0.64 0.22 0.31 0.75 0.30

MAX 0.58 0.88 0.52 0.52 0.86 0.47
AVG 0.41 0.81 0.40 0.41 0.81 0.40

TABLE V
DETAILED CROSS PREDICTION RESULTS (EXCERPT)

Source Target F-measure AUC MCC
Camel Wildfly 0.67 0.87 0.58
Wildfly Karaf 0.80 0.92 0.70

Hibernate Search Wicket 0.56 0.92 0.54
Camel Karaf 0.80 0.91 0.67

ActiveMQ Wicket 0.55 0.94 0.53
ActiveMQ Karaf 0.80 0.92 0.70

0.91, and MCC of 0.67). In total, there are 90 combinations
of projects that we investigated. Four combinations show F-
measures � 0.75 having three of those with F-measure � 0.80.
38 combinations achieve an AUC � 0.85 with 9 combinations
having an AUC � 0.90. Concerning MCC, 6 combinations
have an MCC � 0.6 having 2 projects with an MCC � 0.7.

Comparing our results with the average performance values
for cross-project prediction reported by Xia et al. [5], we note
an improvement of the F-measure from 0.40 to 0.41 and a
significant improvement of the AUC value from 0.74 to 0.81
(9.46%). This underlines the predictive power of commit and
source code changes categories also for cross-project build





co-change prediction. Based on these results, we can answer
RQ1 for the case of cross-project prediction:

Source code change and commit categories improve the
model for cross-project prediction of build co-changes result-
ing in a gain of the average AUC of 9.46% when compared
to the model of Xia et al. [5].

V. APPLYING ADVANCED RESAMPLING METHODS

Most classifiers, including random forest, focus on cor-
rectly classifying the majority class because this yields better
classification performance. Thus, classifier performance on
minority class instances tends to suffer. As shown in Table II,
build co-changing work items are the minority class. Indeed,
our data set is unbalanced with respect to the work items
that build co-changed. In this section, we address this issue
and investigate several resampling methods to answer the
second research question: (RQ2) To what extent can advanced
resampling methods improve the performance of build co-
change prediction?

He et al. [40] provide an overview of state-of-the-art meth-
ods for advanced resampling to achieve a more balanced data
set for training prediction models. This overview includes
Synthetic Minority Over-sampling TEchnique (SMOTE) [10],
Edited Nearest Neighbors (ENN) [41], and TomekLinks [42].
SMOTE creates artificial instances with respect to the model
attributes. ENN and TomekLinks remove instances that are
prone to diminish the classifier performance. Batista et al.
[43] investigated the performance of those methods and com-
binations of them. Based on their results, they recommend
combinations of SMOTE with either ENN or TomekLinks.

Below, we report on the results that we obtain by repeat-
ing previous experiments on intra- and cross-project predic-
tion with the various resampling methods. In the remainder
of the paper, we refer to the methods as NO=no resam-
pling, S=SMOTE, T=TomekLinks, E=ENN, ST=SMOTE and
TomekLinks, and SE=SMOTE and ENN. We apply the resam-
pling only to the training data set and compare the performance
of resulting prediction models using the F-measure, AUC, and
MCC.

A. Intra-Project Prediction

Table VI shows the results when applying resampling
for training intra-project prediction models to our selected
projects. Similar to Section IV we use repeated random sub-
sampling with 100 runs to validate the prediction models.
Values have been averaged over the 100 runs.

Comparing the values, we observe the highest improve-
ments for Hadoop and HBase. Note, the prediction models
that we computed for these two projects showed the lowest
performance in our experiments before. The F-measure for
these projects increases from 0.17 to 0.43 (Hadoop) and from
0.18 to 0.40 (HBase). Their AUC increases from 0.73 to 0.89
(Hadoop) and from 0.74 to 0.87 (HBase). Similarly, their MCC
increases from 0.25 to 0.39 (Hadoop) and from 0.27 to 0.37
(HBase). For the other projects, the resampling methods lead

to no or only a small improvement. For some projects, the
values show even a small decrease in the performance, such
as the AUC values for the ActiveMQ project.

Regarding the resampling methods, the SMOTE (S) alone
or in combination with either TomekLinks (ST) or ENN (SE)
show the best performance. This supports the recommendation
of Batista et al. [43] to use SMOTE combined with ENN or
TomekLinks. In particular for the Hadoop and HBase projects,
they lead to a considerable improvement of the F-measure,
AUC, and MCC. For instance, using SMOTE (S), the F-
measure of Hadoop increases from 0.17 to 0.43, the AUC
from 0.73 to 0.89, and the MCC from 0.25 to 0.39. Using
TomekLinks (T) or ENN (E), only small improvements (if at
all) are observed.

Comparing the averages, we see the highest improvement
is achieved through SMOTE (S) and SMOTE in combination
with TomekLinks (ST) or ENN (SE). For S, ST, and SE, the
average F-measure increases from 0.57 to 0.61, for S and SE
the average AUC increases from 0.87 to 0.90, and to 0.89 for
ST. Regarding the average MCC, the resampling methods do
not show an improvement. Based on these results, we answer
RQ2 for the case of intra-project prediction:

Advanced resampling methods improve the classifier perfor-
mance of intra-project prediction. The biggest improvement
is obtained with SMOTE or combinations of it and for
models with low performance.

B. Cross-Project Prediction

We apply the advanced resampling techniques to cross-
project prediction. We train the classifier with the resampled
data of each project as the training set and use each of the other
projects as the test set. Note, the test set is never resampled.
We then compare the performance of the resulting prediction
models using the F-measure, AUC, and MCC. As we retrieve
a large amount of data from this experiment, we only present
the results when using Hadoop as source project to train the
prediction models in Table VII. These models show the biggest
improvement in the performance obtained through resampling.
The results of the other projects are available online.5

We can see that SMOTE (S) and combinations of SMOTE
with ENN (SE) and TomekLinks (ST) improve classification
performance. For instance, when predicting Karaf, the F-
measure increases from 0.11 to 0.71 (ST), the AUC from
0.50 to 0.88 (S), and the MCC from 0.17 to 0.59 (ST). The
cross-project prediction from Hadoop to Wildfly show similar
improvement - the F-measure increases from 0.16 to 0.61 (ST,
SE), the AUC value from 0.57 to 0.84 (S, ST, SE), and the
MCC from 0.23 to 0.55 (ST, SE). Using TomekLinks or ENN
alone does not lead to such large improvements in the case
of Hadoop. The average values of Table VII show similar
results. The average F-measure can be raised from 0.17 to 0.52
(S,ST,SE), the average AUC from 0.65 to 0.84 (S,ST,SE), and
the average MCC from 0.23 to 0.46 (S,ST,SE).

5http://serg.aau.at/bin/view/ChristianMacho/DataAndTools



TABLE VI
F-MEASURE, AUC, AND MCC FOR INTRA-PROJECT PREDICTION PER RESAMPLING METHOD AND PROJECT

F-measure AUC MCC
Project NO S T E ST SE NO S T E ST SE NO S T E ST SE

ActiveMQ 0.60 0.59 0.60 0.61 0.60 0.61 0.90 0.88 0.89 0.89 0.88 0.88 0.55 0.53 0.54 0.56 0.52 0.55
Hadoop 0.17 0.43 0.23 0.19 0.43 0.43 0.73 0.89 0.75 0.78 0.88 0.88 0.25 0.39 0.28 0.27 0.39 0.39

HBase 0.18 0.40 0.20 0.17 0.40 0.39 0.74 0.87 0.74 0.73 0.87 0.86 0.27 0.37 0.28 0.27 0.36 0.36
Camel 0.65 0.65 0.69 0.67 0.64 0.67 0.91 0.90 0.91 0.90 0.89 0.91 0.62 0.59 0.63 0.61 0.55 0.59

Hibernate Search 0.72 0.72 0.72 0.71 0.72 0.70 0.89 0.89 0.88 0.89 0.88 0.87 0.63 0.60 0.60 0.60 0.60 0.57
Wicket 0.59 0.55 0.55 0.60 0.52 0.53 0.93 0.95 0.93 0.94 0.93 0.95 0.61 0.54 0.56 0.61 0.52 0.52
Wildfly 0.69 0.69 0.70 0.70 0.70 0.70 0.90 0.90 0.90 0.90 0.89 0.89 0.63 0.62 0.64 0.64 0.61 0.61

Karaf 0.84 0.84 0.84 0.84 0.84 0.84 0.93 0.93 0.93 0.93 0.93 0.93 0.72 0.73 0.72 0.72 0.71 0.72
Roo 0.53 0.52 0.53 0.52 0.53 0.52 0.87 0.86 0.87 0.87 0.87 0.87 0.52 0.46 0.50 0.50 0.47 0.46

Jenkins 0.70 0.67 0.69 0.67 0.67 0.67 0.91 0.91 0.91 0.91 0.92 0.91 0.69 0.65 0.67 0.66 0.65 0.63
AVG 0.57 0.61 0.58 0.57 0.61 0.61 0.87 0.90 0.87 0.87 0.89 0.90 0.55 0.55 0.54 0.54 0.54 0.54

TABLE VII
F-MEASURE, AUC, AND MCC FOR CROSS-PROJECT PREDICTION PER RESAMPLING METHOD FOR THE HADOOP PROJECT

F-measure AUC MCC
Target Project NO S T E ST SE NO S T E ST SE NO S T E ST SE

ActiveMQ 0.13 0.44 0.16 0.13 0.44 0.44 0.66 0.83 0.67 0.66 0.83 0.83 0.23 0.40 0.25 0.23 0.39 0.39
HBase 0.20 0.40 0.25 0.22 0.39 0.40 0.66 0.84 0.66 0.66 0.85 0.85 0.27 0.36 0.31 0.29 0.35 0.36
Camel 0.24 0.51 0.28 0.25 0.55 0.53 0.65 0.82 0.65 0.65 0.83 0.82 0.31 0.51 0.35 0.32 0.53 0.51

Hibernate Search 0.14 0.61 0.19 0.19 0.61 0.62 0.52 0.78 0.52 0.52 0.78 0.78 0.17 0.50 0.19 0.21 0.50 0.50
Wicket 0.28 0.53 0.33 0.29 0.50 0.50 0.71 0.89 0.70 0.71 0.89 0.88 0.35 0.52 0.36 0.36 0.48 0.48
Wildfly 0.16 0.60 0.20 0.18 0.61 0.61 0.57 0.84 0.57 0.57 0.84 0.84 0.23 0.54 0.25 0.25 0.55 0.55

Karaf 0.11 0.70 0.15 0.13 0.71 0.70 0.50 0.88 0.50 0.50 0.87 0.87 0.17 0.58 0.20 0.18 0.59 0.58
Roo 0.28 0.41 0.30 0.30 0.42 0.42 0.83 0.83 0.83 0.82 0.83 0.83 0.35 0.35 0.36 0.37 0.34 0.35

Jenkins 0.02 0.48 0.09 0.02 0.47 0.47 0.71 0.85 0.72 0.72 0.86 0.85 -0.01 0.42 0.15 0.03 0.40 0.41
AVG 0.17 0.52 0.22 0.19 0.52 0.52 0.65 0.84 0.65 0.65 0.84 0.84 0.23 0.46 0.27 0.25 0.46 0.46

We can answer the second research question RQ2 for the
case of cross-project prediction:

SMOTE and combinations of SMOTE with TomekLinks and
ENN can improve cross-project prediction. Projects with low
original performance benefit the most.

VI. CHARACTERISTICS OF THE PREDICTION MODEL

In this section, we set out to answer our third research
question: (RQ3) Which attributes of our models are important
to predict build co-changes within and across projects?

To answer this question, we first analyze the importance of
each attribute in our intra- and cross-prediction models. We
measure the importance using the mean decrease in the Gini
coefficient, a measure of how each variable contributes to the
homogeneity of the nodes and leaves in the resulting random
forest [31]. Furthermore, we provide anecdotal evidence ob-
tained through a manual analysis of selected changes in the
source code that involved changes in the build files.

A. Importance of Attributes

First, we deal with the variable importance of the model
attributes that we obtain from the random forest classifier.
Figure 4 shows the box-plots of the Mean Decrease in the
Gini coefficient (MDG) from the 100 runs of the intra-project
prediction experiment for the two projects ActiveMQ (a) and
Roo (b), and over all the ten projects (c).

According to the box-plots depicted in Figure 4a, the two
attributes Number of Files and the Prior Build Co-Changes

are most important for predicting build co-changes in the Ac-
tiveMQ project. They are followed by Method Body Changes
and Corrective Engineering commit category. Regarding the
values output for the Roo project depicted by Figure 4b, we
spot the Management and Reengineering commit categories as
most important attributes. They are closely followed by Num-
ber of Files and Method Body Changes attributes. Furthermore,
the attributes Source File Deleted, Prior Build Co-Changes,
and Forward Engineering are of value in these models to
predict build co-changes. These results indicate that attributes
from all three categories are important for building co-change
prediction models.

To analyze the overall importance of the attributes, we
aggregate the values of the MDG over all ten of the studied
projects as shown in Figure 4c. Based on these box-plots, we
observe that Number of Files is the most important attribute
followed by Method Body Changes and Prior Build Co-
Changes. Furthermore, the three commit categories Manage-
ment, Forward Engineering, and Reengineering, as well as
the Source File Deleted attribute are of value for predicting
build co-changes. In contrast, attributes denoting changes in
the access and final modifiers, attribute and class declaration,
unclassified source code changes, as well as renaming of
source and test files do not significantly impact the prediction.

The analysis of the models from the cross-prediction ex-
periments obtains similar results. This is expected because the
training of the random forest classifier is done with almost the
same training set - instead of using 90% of the work items
for training the classifier, it is trained with all work items
of a project. In summary, our results confirm the findings of



(a) ActiveMQ (b) Roo (c) Overall

Fig. 4. Mean decrease Gini coefficient for attributes (see Table I) of intra-project prediction models for ActiveMQ (a), Roo (b), and over all ten projects (c)

McIntosh et al. [4] (i.e., Number of Files and Prior Build
Co-Changes are important) but also add that Method Body
Changes and commit categories help to significantly improve
the prediction models.

B. Build Co-Change Examples

In addition to the quantitative analysis of the prediction
models, we manually analyzed a number of work items. We
focused on work items that exhibit Method Body Changes
and analyzed the changes in the source and build files by
browsing them with the SourceTree tool.6 Below, we report
on two representative examples, the first adding a dependency
to a third party Java library and the second one removing an
unused dependency.

Concerning the first example, we analyzed the commit
3a6d67e8f95320bea91b7c7106173c9b34773bc57

of the ActiveMQ project containing the following change in
the ActiveMQServiceFactory.java file.

ResourceXmlApplicationContext ctx =
new ResourceXmlApplicationContext(...)

to

OsgiBundleXmlApplicationContext ctx =
new OsgiBundleXmlApplicationContext(...)

In this change, the instance of the
class ResourceXmlApplicationContext
is replaced by an instance of the class
OsgiBundleXmlApplicationContext to create a
context object. The replacing class is provided by the
spring-osgi-core library, which was not included in
the ActiveMQ classpath. This Method Body Change involved
the addition of the dependency to spring-osgi-core

6https://www.atlassian.com/software/sourcetree
7http://tinyurl.com/glkgazw

library in the pom.xml file denoting a build co-change.

<dependency>
<groupId>org.springframework.osgi</groupId>
<artifactId>spring-osgi-core</artifactId>
...

</dependency>

If the developer would not have updated the build file, the
next Maven build would have failed due to the missing library.
Testing the intra-project prediction models with only this work
item, our models can predict the build co-change with an
average Precision of 0.66.

The second example stems from the Karaf project in
which a developer replaced the Property class from the
org.apache.felix.utils library with the standard Java
Property class (see the commit8). The two Method Body
Changes and one Class Body Change involved an update of the
pom.xml file in which the developer removed the dependency
to the org.apache.felix.utils library. This change
would not have led to an immediate build breakage, but in
terms of having a clean project the removal of the dependency
makes sense, for instance to minimize the chance of having
class incompatibilities due to transitive dependency resolution.

Based on the analysis of the attribute importance of
our prediction models and the manual analysis of build
co-changes, we answer the third research question RQ3:

Number of Files, Method Body Changes, and Prior Build
Co-Changes are the most important attributes for building
intra- and cross-project prediction models, directly followed
by the commit categories Management, Forward Engineer-
ing, and Reengineering.

VII. THREATS TO VALIDITY

Regarding the validity of our results, we identify the fol-
lowing threats to the construct, internal, and external validity.

8http://tinyurl.com/hm3oy6s



Construct Validity. A first threat to construct validity
stems from our approach to aggregate commits to work items.
We use search patterns to identify work items in the issue
tracking systems and might miss linking commits to work
items if they do not match our search patterns. We mitigate
this issue by using bean-plots to compare the distribution of
commits and work items over time selecting only projects that
graphically show similar distributions, indicating that commits
are adequately linked to work items (see Figure 2). This
approach has also been used in the previous study by McIntosh
et al. [4].

A second threat is due to the algorithms that we use to
measure our new attributes to train and test our prediction
models. We used Change Distiller to extract source code
change categories that might not extract all possible changes
in source files. Change Distiller has been intensively evaluated
in previous studies [8], [28], which show that it covers most of
the changes occurring in Java projects. Furthermore, Change
Distiller handles changes that cannot be mapped by assigning
them to the Unclassified Changes category. Regarding the
commit categories, we use the heuristics of Hattori et al. [9]
that have been evaluated with nine open source projects.

Internal Validity. One threat to internal validity relates
to our selection of training and test sets. We address this
threat by using repeated random sub-sampling, repeating the
experiments 100 times with randomly selected training and
test sets to minimize bias in our results.

A second threat is due to our selection of attributes to
explain build co-changes. We might have overlooked other
attributes that could help to explain build co-changes and may
improve the prediction models. Similar to McIntosh et al.
[4], we selected metrics that cover a wide range of change
characteristics and added further attributes to describe source
code change and commit categories.

Finally, several of our systems, such as Wicket, have a low
build co-change ratio. Classifiers like random forest focus on
correctly classifying the majority class because this yields bet-
ter overall classification performance. We addressed this threat
by investigating three state-of-the-art resampling methods that
improved the performance of our prediction models.

External Validity. The main threat to external validity
concerns the generalizability of our results, since we per-
formed the experiments with ten Java open source projects
that use Maven as their build tool. We mitigated this threat
by selecting a range of different projects of different size
comprising Java frameworks and end-user systems. However,
further experiments with industrial systems, systems written in
other programming languages and systems using other build
tools instead of Maven are needed.

VIII. CONCLUSIONS

Software systems change and several of these changes
require accompanying changes to the build system. A missing
build co-change can lead to build breakage which costs time
and money [3]. In this paper, we propose an improved model
for predicting build co-changes. We extended the prior work

of McIntosh et al. [4] with source code change and commit
categories and achieved the following results:

• (RQ1) Source code change and commit categories sig-
nificantly improve the model of McIntosh et al. [4] for
intra-project prediction and the model of Xia et al. [5]
for cross-project prediction.

• (RQ2) Resampling applied to better balance the training
data set improves the models for intra- and cross-project
prediction of build co-changes. In particular, projects
with poor unrebalanced prediction performance benefit
the most from rebalancing.

• (RQ2) SMOTE [10] and combinations with ENN [41] or
TomekLinks [42] yield the best minority class improve-
ment.

• (RQ3) Number of Files, Method Body Changes, and
Prior Build Co-Changes are the most important attributes
for building intra- and cross-project prediction models,
directly followed by the commit categories Management,
Forward Engineering, and Reengineering.

Future work. The proposed models are trained to predict
possible build co-changes. We plan to extend this study to
verify the study with a larger number of projects as well
as with industrial projects to investigate a broader range of
projects. Furthermore, we want to use the prediction models
to predict the number of build co-changes and the category
of the build co-change. This can give developers hints on
where to start for build co-changing. We also plan to identify
typical patterns of the co-evolution of source-/test code and
the build system code. Furthermore, we plan to investigate
improvements of our prediction models, such as by adding
information from issue tracking systems.
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