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Abstract—Build systems are widely used in today’s software
projects to automate integration and build processes. Similar to
source code, build specifications need to be maintained to avoid
outdated specifications, and build breakage as a consequence.
Recent work indicates that neglected build maintenance is one
of the most frequently occurring reasons why open source and
proprietary builds break.

In this paper, we propose BUILDMEDIC, an approach to
automatically repair Maven builds that break due to dependency-
related issues. Based on a manual investigation of 37 broken
Maven builds in 23 open source Java projects, we derive three
repair strategies to automatically repair the build, namely Version
Update, Delete Dependency, and Add Repository. We evaluate
the three strategies on 84 additional broken builds from the 23
studied projects in order to demonstrate the applicability of our
approach. The evaluation shows that BUILDMEDIC can automat-
ically repair 45 of these broken builds (54%). Furthermore, in
36% of the successfully repaired build breakages, BUILDMEDIC
outputs at least one repair candidate that is considered a correct
repair. Moreover, 76% of them could be repaired with only a
single dependency correction.

I. INTRODUCTION

With the recent growth of social coding platforms, such
as GitHub1 and Bitbucket,2 Continuous Integration (CI) has
also grown in popularity [1]. Development teams use a CI
tool, such as Travis CI3 or Jenkins,4 to automatically build
the project once a commit has been pushed to the source code
repository [2]. CI improves the productivity of the team [3]
because integration failures are immediately detected, and can
be fixed while coding and design decisions are still fresh in
the minds of developers [4].

However, Hilton et al. showed that developers are con-
fronted with trade-offs when using CI [5]. For example, the
benefit of immediate feedback comes with an additional bur-
den in maintenance of build specifications [6] and furthermore,
it has been shown that neglecting build maintenance can lead
to build breakage [7]. Development teams are blocked by the
build breakage and have to fix the build prior to proceeding
with their main work. Kerzazi et al. [8] studied a project of
a large software company and found that a minimum of 900

1https://github.com
2https://bitbucket.org
3https://travis-ci.org
4https://jenkins.io

man-hours were spent on fixing build breakage over a six-
month period.

The reasons for build breakage are manifold. Recent studies
have focused on testing issues [9] and build specification issues
[7], [10], [11]. Concerning build specification issues, the main
reasons for build breakage are dependency-related issues, such
as dependency resolution errors or outdated dependency con-
figuration. Prior work investigated the frequency of different
types of build breakage and found that dependency-related
issues account for 39% [10], 58% [11], and 65% [7] of the
analyzed breakages. However, to the best of our knowledge,
there are no studies that have investigated the detailed reasons
for the dependency-related build breakage and how such build
breaks were repaired. We address this gap with our first
research question:
(RQ1) How do developers repair dependency-related build

breakage?
To answer this question, we use BUILDDIFF [12] to mine
the changes in the Maven build specifications of 23 Java open
source projects and introduce MAVENLOGANALYZER (MLA),
a tool to extract details from the execution log of a Maven
build. We then study these changes to find out which types
of changes have been performed by developers in the past to
repair dependency-related build breakage.

The results show that 17 of the 37 (46%) studied
dependency-related build breakages were fixed by updating
dependency versions (e.g., promoting so-called “snapshot”
dependencies by removing the “-SNAPSHOT” suffix). An
additional five breakages (15%) were repaired by removing
invalid dependencies. Furthermore, 30/37 (81%) of the break-
ages were repaired with only a single dependency correction.

Armed with an understanding of how developers fix
dependency-related build breakage, we set out to automate the
fixing process, which leads us to our second research question:
(RQ2) To what extent can we automatically repair depen-

dency-related build breakage?
To address this RQ, we introduce BUILDMEDIC, an approach
to automatically repair dependency-related build breakage.
BUILDMEDIC implements three repair strategies that we de-
rive from the most frequent developer fixes that we observe
in RQ1.



We evaluate BUILDMEDIC using an additional 84 randomly
selected revision pairs that exhibit a build breakage, of which,
BUILDMEDIC can automatically repair 45 (54%) of which
36% were found to be identical to the developer’s repair
actions. In 76% of the repairs, BUILDMEDIC only needs to
correct a single dependency. Concerning performance, we find
that BUILDMEDIC runs with an average total time of 22.8
minutes and an average overhead of only 8.6 minutes.

In summary, this work makes the following contribu-
tions: (1) an empirical investigation of how developers fix
dependency-related build breakage, (2) MAVENLOGANA-
LYZER (MLA), a tool to extract the build result and build
details from a Maven build log, (3) BUILDMEDIC, an ap-
proach to automatically repair dependency-related errors, (4)
a reference set of revision pairs that exhibit dependency-
related build breakage and the corresponding fixes, and (5)
a replication package that contains supplementary material.5

The remainder of the paper is organized as follows: Sec-
tion II situates the paper with respect to related work. Sec-
tion III describes the data set that we use for the stud-
ies in this paper. In Section IV, we present the study on
how developers fixed dependency-related build breakage. The
derived fix strategies are described in Section V. In Sec-
tion VI, we propose BUILDMEDIC, our approach to auto-
matically fix dependency-related build breakage. We evaluate
BUILDMEDIC in Section VII and conclude the paper in
Section VIII.

II. RELATED WORK

Build Maintenance. Prior studies have investigated main-
tenance of build systems and their specification. For instance,
Adams et al. used MAKAO [13], a framework for re(verse)-
engineering build systems, to study the Linux build system.
They found that the complexity of the build system grows
over time and identified maintenance as the main reason for
evolution [6]. McIntosh et al. studied evolution of ANT build
systems using a complexity metric [14] and found that the
ANT build system is evolving over time as well. Beside
studying maintenance and co-evolution, Hardt et al. developed
Formiga, a tool to refactor ANT build scripts [15], which has
been shown to reduce the build maintenance time and improve
the correctness of refactorings [16]. Furthermore, Xia et al.
[17] developed an algorithm that outperforms state-of-the-
art algorithms to predict missing dependencies in make files.
Moreover, other tools to support developers in maintaining
build systems and their specification exist, such as Tamrawi
et al. [18] who developed SYMake to visualize dependencies
in make files. Extracting semantic changes from build files
has also been addressed in prior work. Al-Kofahi et al. [19]
extract semantics of build specification changes in make files
with MkDiff.

Build systems for Java have also been studied. For example,
McIntosh et al. [20] investigated the co-evolution of Java build
systems, and production and test code. The study revealed that

5https://mitschi.github.io/tools/

these parts of a project co-evolve. In a large-scale study, McIn-
tosh et al. focus on understanding the relationship between
build technology and maintenance effort [21]. They found that
framework-driven build technologies like Maven need to be
maintained more often. Since prior work [20] indicates that up
to 27% of source code work items require an accompanying
change to the build system, recent studies aim to support
build maintenance by applying models to predict whether build
changes are needed. For instance, McIntosh et al. [22] try to
understand when build changes are necessary. They used code
change metrics retrieved by mining the history of projects to
train a model that can predict whether a commit lacks an
accompanying build change. Xia et al. [23] extended this study
by investigating the possibility of applying the model in a cross
project setting. Moreover, Macho et al. [24] improved both
models by adding fine-grained source code change information
to the model. Similar to Al-Kofahi et al. for ANT systems,
Macho et al. [12] apply BUILDDIFF to extract build changes
from Maven build specification files.

These prior studies mainly focus on empirically gaining
knowledge about build maintenance. Our work aims at going
one step further by providing a prototype that implements
our findings and supports developers during maintenance of
build systems and their specification by automatically repairing
broken build specifications.

Automatic Repair. Automatic Repair has already been
addressed by prior work mainly to fix bugs in programs’
source code. Forrest et al. applied Genetic Programming to
the problem of bug fixing in C programs [25]. Moreover,
Weimar et al. present GenProg [26], a generic approach to
automatically repair bugs in source code files using a genetic
algorithm. GenProg was used in subsequent studies, such
as Fast et al. [27] which aims to improve fitness functions
for the genetic algorithm and Le Goues et al. [28] which
improves the efficiency and precision of the fitness function.
Furthermore, Le Goues et al. also evaluate the fixing capability
of their approach and estimate the cost to automatically repair
each bug is on average $8 [29]. In the same study they
could fix 55 of 105 bugs in 8 open source programs. Le et
al. use historical information to prioritize the application of
changes for fixing bugs [30]. Martinez et al. use the Defects4J
dataset to investigate the real correctness of fixes performed
by automatic program repair techniques [31].

However, to the best of our knowledge, there is no approach
that is capable of automatically repairing broken builds. We
address this gap in this paper and propose BUILDMEDIC,
an approach to automatically repair dependency-related build
breakage.

III. DATA PREPARATION

In this section, we describe the studied data set. We first
describe the selection of the projects under investigation and
then provide an overview of the data retrieval process.

A. Project Selection

For our studies, we considered open source Java projects of
different sizes, vendors, and purposes. To minimize selection

https://mitschi.github.io/tools/


bias, we used GitHub, a popular social coding platform, as our
sample population and queried the GitHub API to receive a list
of the top-1000 Java projects with the most stars. Similar to
prior studies [12], [24], [32], we then selected the projects that
fulfill the following criteria (the criteria thresholds are chosen
conservative in order to minimize false positives):

Maven as build tool. We restrict our selection to Maven
projects for two reasons. First, Maven is a broadly adopted
technology for building software systems [21]. Second, Maven
has been the focus of many prior studies [12], [20], [21], [24].

More than 500 commits. We select projects that contain at
least 500 commits to avoid including projects that have not yet
reached maturity because projects usually change differently in
the starting phase and in the maintenance phase [33]. Including
such projects could bias our conclusions. We use GitHub to
obtain the total number of commits for each candidate project.

Actively developed. Furthermore, projects that are dis-
continued are also excluded. We identify discontinued or
abandoned projects in two ways. First, we check the date of the
last commit. If the project does not have at least one commit
in 2017, we assume the project is no longer under active
development. Second, we manually checked if the project
description contains any sign of discontinuity (e.g., “project
no longer maintained/discontinued”).

Build without manual setup or intervention. Build sys-
tems often rely on the environment that they are used in.
To avoid flagging builds as broken when the build environ-
ment was not properly configured, we restrict our analysis to
projects that do not require any manual setup or environmental
configuration. Furthermore, we manually investigate the build
results of the candidate projects and remove projects that
build incorrectly without manual intervention. We consider
projects to build incorrectly if they fail because installation
of a program is necessary or other additional steps need to be
performed (e.g., Apache Hadoop requires that npm is installed
prior to executing the build).

After applying the criteria, we were left with 23 projects
consisting of a total of 183,466 commits including 32,100
build-changing commits. Table I lists the selected projects
and shows the total number of commits, the number of build-
changing commits, and the number of build changes that we
extracted with BUILDDIFF. We use this list to create the data
set that we describe in the next section.

B. Data Preparation Process

The data preparation process consists of the following five
steps: First, we build all of the revisions of the selected
projects that are within the studied time period and save the
build output. Second, we extract the build details, such as the
build result, from the build output. Third, we pair revisions
according to their child-parent relation in the source code
management system and only keep pairs that fix dependency-
related build breakage. As a fourth step, we extract the build
changes [12] that were performed between the parent and the
child revisions. In the fifth step, we create two separate data

TABLE I
JAVA PROJECTS USED IN OUR STUDIES PLUS VALUES FOR THEIR BCC

(BUILD-CHANGING COMMITS) AND BC (BUILD CHANGES); *INDICATES
THAT THE PROJECT DID NOT HAVE A DEPENDENCY_RESOLUTION_

FAILED TO SUCCESS REVISION PAIR

Project #Commits #BCC #BC
Activiti* 8,019 1,333 22,013
alluxio 24,982 3,289 38,889
async-http-client 5,064 1,030 3,789
closure-compiler 10,367 91 230
cucumber-jvm 3,454 1,186 19,878
druid 8,586 2,524 28,795
fastjson 2,807 322 855
hazelcast 24,819 2,556 16,549
immutables 1,378 396 4,731
jersey 3,232 1,496 66,754
keycloak 10,918 3,318 125,691
libgdx 12,983 557 7,249
mapdb* 2,407 333 653
pinot* 5,188 530 2,656
retrofit 1,564 392 1,823
solo 1,791 298 857
storm 11,402 2,228 27,902
swagger-core 3,271 853 12,232
symphony 5,052 260 423
undertow 5,550 726 7,825
vavr 4,131 291 1,350
wildfly 25,276 7,631 127,045
YCSB 1,225 460 5,636
Total 183,466 32,100 523,825

sets for investigating RQ1 and RQ2. Below, we describe each
step in detail.

Build Revisions. The first step of the data retrieval process
builds all of the revisions of the selected projects that have
been committed after December 31, 2014 and before July 13,
2017 (day of data retrieval) including revisions on branches.
We only consider revisions within this time period to mitigate
ecosystem-related build failures, e.g., those that stem from
libraries that are outdated or are no longer available. A
preliminary analysis of the build results showed that revisions
before December 31, 2014 are more likely to have ecosystem-
related build failures.

We are aware that data sets, such as TravisTorrent [34], do
exist. However, as pointed out by Zolfagharinia et al. [35],
build results can be unreliable and difficult to reproduce
because they depend on the environment, e.g., build command
parameters and system configuration parameters. We build
each studied revisions using our own execution parameters
with the same build command parameters to avoid inconsis-
tency in the flagged build failures.

For each revision, we run the Maven command mvn -U
clean package -DskipTest=true to invoke the pack-
aging of the project. The toggle -U ”forces a check for missing
releases and updated snapshots on remote repositories”.6 This
is necessary because the mvn command waits for some time
after the download of a dependency has failed. This timeout
can affect the execution of the next build and even cause the
next build to fail (even though it would not fail under normal
circumstances). We enable the -U toggle to avoid such errors.

6See mvn --help



Furthermore, we set the skipTests parameter to true
to exclude the testing phase from the build. We exclude test
execution for two reasons. First, we are only interested in
dependency-related errors in this study. Second, the execution
of tests can take a large amount of time. The output of the
Maven build is saved in a build log file that contains the build
details, such as the build result, the failing module, and a
description of the error.

Extract Build Details. We developed MAVENLOGANA-
LYZER (MLA), a tool that uses a set of regular expressions to
extract the build result and details of the build from the build
logs, such as the failing module or the missing dependency
that caused the breakage. We refer the reader to the replication
package5 for a detailed description of the MLA approach.

The list of possible build errors is derived from the list of
standard Maven errors.7 We use a different set of categories
than proposed by Vasallo et al. [36] because their categoriza-
tion is based on the lifecycle phases of Maven, whereas we
need a categorization that is based on the error types of Maven
to find fixing revisions. The following list shows all of the
possible build results that we extract with MLA:

• SUCCESS
• DEPENDENCY_RESOLUTION_FAILED
• CYCLIC_DEPENDENCIES_FAILED
• TEST_EXECUTION_FAILED
• COMPILATION_FAILED
• GOAL_FAILED
• NO_PARENT_FAILED
• NO_CHILD_FAILED
• POM_PARSING_FAILED
• NO_POM_AVAILABLE
• NO_LOG
• UNKNOWN_FAILED

SUCCESS is the only build result that indicates that a build
is free of errors. DEPENDENCY_RESOLUTION_FAILED oc-
curs if a dependency cannot be downloaded (Figure 1).
CYCLIC_DEPENDENCIES_FAILED occurs if dependencies
form a cycle (e.g., A depends on B and B depends on
A). TEST_EXECUTION_FAILED occurs if at least one
test fails. Although we exclude the test execution phase
with the skipTests parameter, it is possible that some
tests are still executed because Maven allows any plugin to
be bound to any phase in the build lifecycle. One could
bind a testing plugin to the packaging phase for example.
COMPILATION_FAILED occurs if the code does not compile
cleanly. GOAL_FAILED occurs when build errors stem from
a failed execution of a plugin e.g., for deployment, such as
the maven-deploy-plugin. NO_PARENT_FAILED and
NO_CHILD_FAILED occur if the parent-child relationship
between two modules is corrupted, e.g., a child module is
referenced but not defined. NO_POM_AVAILABLE occurs
when the pom.xml file is missing, whereas NO_LOG indicates
the absence of the build log file. If MLA could not extract

7https://cwiki.apache.org/confluence/display/MAVEN/Errors+and+
Solutions

a build result, the build result is set to UNKNOWN_FAILED.
Furthermore, MLA extracts important details, such as the
missing dependency and the module that is failing in the case
of DEPENDENCY_RESOLUTION_FAILED, for each of the
possible build results.

Figure 1 shows the bottom lines of the build log of
revision 601cee78 of the Apache Storm project. MLA
correctly extracts the build result as DEPENDENCY_-
RESOLUTION_FAILED and further recognizes that the miss-
ing dependency is org.apache.storm:storm-hbase
:jar:0.11.0-SNAPSHOT. To ensure that MLA can cor-
rectly extract build details from build logs, we manually
evaluate 580 randomly selected build logs from the Travis
Torrent [34] data set which ensures 95% confidence level
with 5% margin of error. We can use the Travis Torrent build
logs because we are not verifying whether the build result is
correct, but instead are verifying whether MLA can extract
the build result that is represented by the build log. We found
that MLA correctly extracts the build details for all of the
evaluated revisions. The full evaluation details can be found
in the replication package.5
[INFO] BUILD FAILURE
[INFO] -----------------------------------------------------
[INFO] Total time: 10.362 s
[INFO] Finished at: 2017-08-04T08:52:44+02:00
[INFO] Final Memory: 25M/264M
[INFO] -----------------------------------------------------
[ERROR] Failed to execute goal on project flux-core: Could
not resolve dependencies for project com.github.ptgoetz:
flux-core:jar:0.2.3-SNAPSHOT: Could not find artifact org.
apache.storm:storm-hbase:jar:0.11.0-SNAPSHOT in sonatype-
nexus-snapshots (https://oss.sonatype.org/content/
repositories/snapshots) -> [Help 1]

Fig. 1. Excerpt of a Maven build log showing a dependency resolution error

Filter pairs. This step connects parent revisions to their
child revisions in the source code management system and
only keeps pairs that fix dependency-related build break-
age. For the context of this paper, we define a build as
failing with a dependency-related error if MLA extracts
DEPENDENCY_RESOLUTION_FAILED as the build result.
Hence, a pair that fixes such errors is a tuple 〈r1, r2〉 where
r1 is the parent revision of r2, r2 is the child revision of r1,
r1 yields DEPENDENCY_RESOLUTION_FAILED as its build
result, and r2 yields SUCCESS. We are aware that also other
build errors (e.g., COMPILATION_FAILED) can be ascribed
to a dependency-related error. However, we leave the analysis
of these less frequently occurring types of build breakage [11]
to future work.

Extract Build Changes. We use BUILDDIFF [12] to extract
build changes from Maven build files and use them to ana-
lyze the changes that fix dependency-related build breakage.
BUILDDIFF parses two versions of a pom.xml file and repre-
sents them as two trees. It then uses GumTree [37] to extract
tree edit actions that represent the differences between the
two trees. Finally, BUILDDIFF maps the edit actions to build
change types that are defined in the taxonomy of Macho et
al. [12]. Table II lists the change types that BUILDDIFF

8http://goo.gl/Tohyq9
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TABLE II
THE BUILDDIFF CHANGE TYPES [12] THAT WE FOCUS ON IN THIS PAPER

Abbr. Change Type
PAVU PARENT VERSION UPDATE
GPU GENERAL PROPERTY UPDATE
DVU DEPENDENCY VERSION UPDATE

DD DEPENDENCY DELETE
MI MODULE INSERT
PU PROFILE UPDATE
DU DEPENDENCY UPDATE

PRVU PROJECT VERSION UPDATE
GPD GENERAL PROPERTY DELETE
GPI GENERAL PROPERTY INSERT
MD MODULE DELETE

PI PLUGIN INSERT
MDI MANAGED DEPENDENCY INSERT

RD REPOSITORY DELETE
MDU MANAGED DEPENDENCY UPDATE

MDVU MANAGED DEPENDENCY VERSION UPDATE
MU MODULE UPDATE

PCU PLUGIN CONFIGURATION UPDATE

extracted during our analysis. In this paper, we focus on those
change types for the sake of clarity. We pass each of the
revision pairs 〈r1, r2〉 of the prior step to BUILDDIFF and
save the extracted changes.

Create Data Sets. We collect the changes and the build
results from all 125 revision pairs that we were left after
applying the filters to the 20 Java open source projects. Since
our approach to address RQ2 is based on the results of RQ1,
we randomly split the data set into two subsets. We use 30%
(37 pairs) of the instances for investigating RQ1 and the
remaining 70% (88 pairs) for RQ2.

IV. DEPENDENCY RESOLUTION FIXES

In this section, we investigate how developers have repaired
builds that broke because of dependency-related issues. We
quantitatively and qualitatively analyze 37 revisions (30%) of
our data set. We study the frequency of the change types that
were made in build-fixing revisions and which change types
were causal for the fix. Based on these frequencies, we derive
the repair strategies that we present in Section V. Below,
we present the approach and results of the quantitative and
qualitative analysis.

A. Quantitative Analysis

Our first investigation is performed using a quantitative
analysis of changes in revisions that fix dependency-related
issues. Counting the changes per change type, we obtain the
results depicted in Figure 2.
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Fig. 2. Frequencies per change type occurring in revisions that fix
dependency-related build breakage

The results show that PARENT VERSION UPDATE (29)
is the most frequently occurring change type for fixing
dependency-related build breakage followed by GENERAL -
PROPERTY UPDATE (23), DEPENDENCY VERSION -
UPDATE (10), and DEPENDENCY DELETE (9).

Since several change types have a similar purpose,
we group them into seven categories. For example
PARENT VERSION UPDATE and DEPENDENCY -
VERSION UPDATE both update a version number and
hence, we group them into the category Version Change. Our
seven change type categories are:

• Property Change: contains all changes to property def-
initions, such as GENERAL PROPERTY UPDATE and
GENERAL PROPERTY INSERT.

• Version Change: contains all changes to version
elements in the pom.xml, such as DEPENDENCY
VERSION DELETE and PROJECT VERSION
UPDATE.

• Repository Change: contains all changes to the repos-
itory entries, such as REPOSITORY UPDATE and
REPOSITORY INSERT.

• Dependency Delete: contains all changes concerning
the deletion of dependencies, such as DEPENDENCY
DELETE and MANAGED DEPENDENCY DELETE.

• Dependency ID Change: contains all changes
that belong to the identification of dependencies,
namely the groupId and the artifactId,
such as DEPENDENCY UPDATE and MAN-
AGED DEPENDENCY UPDATE.

• Dependency Insert: contains all insertions of depen-
dencies, such as DEPENDENCY INSERT and MAN-
AGED DEPENDENCY INSERT.

• Others: contains all change types that were not assigned
to any of the categories above.

Our categorization is inspired by the categorization pre-
sented by Macho et al. [12]. While they group the change
types according to their context in the pom.xml file, such as
all changes of the dependency specification are grouped into
the Dependency Changes category, we group the change types
according to their purpose. The full change type categorization
was validated with a PhD student and can be found in the
replication package.5

Figure 3 shows the results of counting the changes per
change type category. The results are similar to the results
obtained from counting the changes per change type. Changes
of the category Version Change (45) occurred most frequently
in revisions that fix dependency-related build breakage fol-
lowed by the category Property Change (30) and the category
Others (22).

We find that some change types, such as PARENT
VERSION UPDATE, only occur in a few revisions but when
they occur, they occur in several locations at once. This
might overemphasize the importance of those change types.
To address this possible bias, we also study the change type
frequencies per revision. We count the revisions per change
type and change type category, meaning that only the number
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Fig. 3. Frequencies per change type category occurring in revisions that fix
dependency-related build breakage

of revisions that a change type occurs in is counted. Figure 4
and Figure 5 show the results of this approach.
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Fig. 4. Number of revisions per change type that fix dependency-related build
breakage

As expected, Figure 4 shows a slightly different picture
compared to Figure 2. GENERAL PROPERTY UPDATE
changes occur in 18 of 37 revisions (49%), DEPENDENCY-
DELETE changes occur in 7 of 37 revisions (19%), and

DEPENDENCY VERSION UPDATE changes in 6 of 37
revisions (16%).

Figure 5 shows the same analysis for our change type
categories. Changes of the category Property Change were
performed in 24 of the 37 (65%) revisions while changes of
the categories Version Change and Others were performed in
14 revisions (38%) each.
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Fig. 5. Number of revisions per change type category that fix dependency-
related build breakage

B. Qualitative Analysis

Our quantitative analysis only reports the frequencies of
change types in revisions that fix dependency-related build
breakage, but does not show which specific change or combi-
nation of changes were performed to actually fix the breakage.
As stated by Dias et al. [38], commits are often tangled,
meaning that a commit may not solely consist of changes
of a single purpose (i.e., only changes that fix dependency-
related build breakage). To identify which changes fixed the
dependency-related build breakage, we manually analyze the
37 revisions.

We analyze each revision pair as follows: First, we checkout
the parent revision that contains the dependency-related issue.
Second, we apply each change (or combination of changes)
extracted by BUILDDIFF separately to the parent version and

execute the build. For combining the changes, we start with
each single change instance and then proceed with the various
combinations of changes (first combining two changes, then
combining three changes, and so on). If the build is successful
after applying a change (or combination of changes), we have
identified the change(s) that fix the dependency-related build
breakage. If we cannot obtain a successful build after applying
all the combinations of build changes, the fix might require
other changes, such as changes in the Java source code, that
we currently do not support. Note that it is possible that there
exist multiple ways to fix the build, e.g., two changes lead to
a fix independently.

Figure 6 shows the results of our qualitative analysis for the
change type categories considering only the 27/37 revisions
that can be fixed with a single change. 14/27 revisions fix
a dependency-related build breakage with a single change
of the category Property Change, followed by changes of
the category Dependency Delete that fix 5/27 revisions. The
remaining 8 revisions are fixed by the categories Version
Change, Repository Change, and Dependency ID Change (3,
3, and 2, respectively).

The fixes contained by the 10/37 revisions that need
more than a single change to fix the build breakage break
down as follows: 3/10 revisions of the keycloak project
are fixed with either a single GENERAL PROPERTY -
UPDATE change or a single REPOSITORY INSERT change.
Finally, 7/10 revisions required at least multiple changes of
at least two categories. For instance, one revision of the
project hazelcast involves 10 changes of 4 different types
and 2 change type categories to fix the dependency-related
build breakage.
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Fig. 6. Number of revisions per change type category that fix a dependency-
related build breakage with a single change

We further investigate the changes of the category Prop-
erty Change in detail because properties in Maven can be
used in all parts of the build specification. We observe that
all observed changes modify properties that are referenced
in version elements of dependencies, thus, they transitively
modify the version number of these dependencies. In total,
17 revisions are fixed with a single change of a version
number. Furthermore, we make two observations: First, 13 out
of the 17 (76%) changes update the version from a snapshot
dependency to a regular dependency e.g., by removing the
“-SNAPSHOT” suffix. Second, the updated version numbers
are usually close to the original version number (e.g., from
0.7.2-mmx4 to 0.7.2).

Another observation resulting from our qualitative analysis
is that in 30 out of 37 revisions (81%) the issue can be
fixed with only one change. This indicates that the fixes of



dependency-related issues in Maven build specifications are
typically small compared to fixes in other areas, such as
program repair (e.g., the fixes listed in Weimar et al. [39]
range from 2-11 lines in terms of size).

Based on the results, we can answer RQ1 as follows:
Developers fix dependency issues in Maven build specifi-
cations by updating the version in 17/37 (46%) cases. A
common update is to remove the “-SNAPSHOT” suffix to
promote the dependency (13/17). Furthermore, 81% of the
fixes contain only a single change.

V. BUILDMEDIC REPAIR STRATEGIES

In this section, we present three strategies to automatically
repair dependency-related errors in Maven build files. The
strategies are: Version Update, Dependency Delete, and Add
Repository. We derive these strategies from the results of our
quantitative and qualitative analyses of RQ1 (see Section IV,
especially Figure 6). The implementation of other strategies is
left to future work because they require additional data. This is
because, for example, adding dependencies to libraries requires
knowledge of the classes contained in new dependencies, e.g.,
in the case of a compilation error, one needs to know which
libraries could provide the missing classes.

A. Version Update

The first strategy is derived from our finding that
dependency-related build breakage is most frequently fixed
with Version Update changes. The overall goal of this strategy
is to modify the version element or referenced property in a
way that the build succeeds. To achieve this goal, the following
steps are performed: First, the failing dependency is identified
using MLA. Second, the corresponding dependency definition
in the Maven build file is located. Third, we determine how
the version of the dependency is specified. In Maven, this can
be done in four ways:

• Literal: The version is literally specified in the version
element of the dependency definition.

• Property: The version element references a property that
is defined in the current or a parent pom.xml.

• Dependency Management: The version is inherited from
the dependency management specification. The current
or a parent pom.xml defines the dependency in its
dependency management area and the current build con-
figuration file only specifies the usage of that dependency.

• Parent Dependency: The dependency and its version
element are declared in a parent build specification file
and inherited from the current pom.xml.

Fourth, the correct version of the dependency is determined
using the following procedure: First, we query the four popular
Maven repositories that we also use for the Add Repository
Strategy (see Section V-C) and retrieve all of the candidate
versions for the missing dependency. We then remove all
candidate versions that have already been used in previous
applications of the Version Update strategy to avoid double
usage of a single version. If no candidate version for the
dependency remains (i.e., all versions have already been tried

or there is no version available at all), we finish this strategy
without modifying the specification. If we could find at least
one available version, we analyze the current version that
caused the build to break. If it ends with “-SNAPSHOT”
or “-BUILD-SNAPSHOT”, we remove this extension and
check whether the candidate versions list contains the resulting
version. If it does, we choose that version. If the candidate
versions list does not contain that version, we select the version
that is most similar to the version of the failing dependency.

We make use of the concept of semantic versioning which is
also used by Raemaekers et al. [40]. They analyzed the Maven
repository and found that most versions follow the pattern
”Major.Minor.Patch”. Based on that finding, we compute the
distance between two versions with the following formula:

distance = abs(10000 ∗ (V 1maj − V 2maj) + 100 ∗
(V 1min − V 2min) + (V 1pat − V 2pat))

The greater the distance value, the greater the difference
between the two versions. We use the factors 10000 and 100,
respectively, to impose a greater penalty for a mismatch on
a major or a minor version than that of a patch version.
These values worked best in a sensitivity analysis. We compute
the distance of the current version to each of the candidate
versions. The candidate list is then sorted by the following
criteria: (1) whether the version was retrieved from the stan-
dard Maven repository (versions from this repository first), (2)
by the distance (low distances first), and (3) by the date when
the version was added to the repository (closer dates to current
version first, no dates last). After these steps, we obtain a list
of versions sorted by the similarity to the original version. We
choose the first element of this list as new candidate version.

Finally, if the failing dependency did not specify any
version, we choose the most recent version with respect to
the date on which the dependency was added to a repository.

B. Dependency Delete

The results for RQ1 revealed that the second most frequently
applied change type to fix dependency-related build breakage
is Dependency Delete. Based on this finding, we derive the
Dependency Delete strategy that scans all of the pom.xml
files in the current project and removes all definitions of the
dependency that cause the broken build. This ensures that the
dependency management system of Maven no longer tries to
retrieve this dependency, and thus, fixes the error.

C. Add Repository

Maven repositories can be configured in many ways, such
as in the Maven build specification (pom.xml) or in the
global Maven user settings. In the latter case, the specification
might be missing when cloning a repository because the global
Maven settings are usually not stored in the source code
management system.

To address this issue, we designed the Add Repository
strategy that adds the four common Maven repositories to the
build specifications. Maven can then use these repositories to



resolve the missing dependencies. The repositories that this
strategy adds are:

• The public repository of JBoss (https://repository.jboss.
org/nexus/content/repositories/public-jboss/)

• The Spring repository (http://repo.spring.io/
libs-milestone/)

• The Atlassian repository (https://maven.atlassian.com/
3rdparty/)

Note that the Maven Central repository will always be
queried first. The list can easily be adapted by the user. We
implement the three strategies in the BUILDMEDIC approach
that we present and evaluate in the next sections.

VI. BUILDMEDIC

In this section, we first present BUILDMEDIC, our approach
to repair dependency-related build breakage in Maven build
specification files. Second, we present an empirical evaluation
of BUILDMEDIC on 88 revision pairs to demonstrate its ability
to repair such breakage.

A. Approach

The input for BUILDMEDIC is the Maven build log ex-
pressing the dependency-related build error, and all of the
files of the failing revision (including Java source code files
and Maven build specification files). BUILDMEDIC extracts
the build information using MLA and generates candidate
repair plans. Each candidate is executed by applying a repair
strategy and running the build one after another. We consider
a candidate to be successful, if the build can be successfully
executed (i.e., MLA extracts SUCCESS from the resulting
build log file). The overall approach is depicted in Figure 7.
In the following, we describe the four steps in detail.

Fig. 7. Overview of the BUILDMEDIC approach

Repair Plan Generation. The first step concerns the gen-
eration of candidate repair plans. A repair plan consists of
n repair strategies. For this paper, we use n = 3 to limit the
execution time of the evaluation because as seen in Section IV,
fixes are usually small. Combinatorial, we obtain 3n plans.

However, some candidate repair plans might contain unrea-
sonable steps, such as adding repositories more than once. We
optimize the plan generation in two ways. First, we allow the
Add Repository strategy to occur only once and only as the
first repair action. Second, we sort the repair plans according
to their expected ability to fix an issue. Plans starting with Add

Repository are placed first. Then, we calculate a weighted sum
of the repair plan strategies using DeleteDependency = 1
and V ersionUpdate = 2. We choose these numbers because
we found in Section IV that Version Change is the most
promising strategy, directly followed by Delete Dependency.
Plans with higher sums are ranked first. In the end, we obtain
a list of 2n−1 + 2n = 12 candidate plans for n = 3 that are
sorted according to their expected ability to repair the build
breakage.

Next, we execute the following steps for each repair plan
until the build succeeds or no more strategies are available.

Parse Build Log. In this step, BUILDMEDIC parses the
most recent build log with MLA. At the start of the repair,
the most recent build log is the input build log and during
the repairing procedure it is the most recent log that ended in
DEPENDENCY_RESOLUTION_ERROR because logs of other
intermediate results, such as COMPILATION_FAILED do not
include details about the failing dependency anymore. If the
build result is SUCCESS, BUILDMEDIC has found a repair
plan and the repair actions that have already been performed
within this plan are marked as a successful repair candidate.
Otherwise, the approach continues.

Apply Fix Strategy. We apply the next repair strategy as
specified in the current repair plan. If the current repair plan
starts with the same repair strategies as an already known
successful repair candidate, BUILDMEDIC skips the current
repair plan. For example if we already found that a Version
Update repairs the build, we do not need to try any plans that
start with the Version Update strategy.

Build Revision. This step executes the Maven build with
the modified build specification and saves the build log. We
use the same Maven command as described in Section III-B
to invoke the build.

The procedure is repeated until a build ends with SUCCESS
or no more strategies are left in the current plan.

B. Evaluation

We evaluate our approach with the 88 revision pairs of the
RQ2 data set depicted in Section III. A preliminary check of
the pairs revealed that 8 pairs share 4 parent revisions because
the parent revisions were branched. To avoid double counting
the repair results of these pairs, we removed 4 pairs with the
duplicated parent and finally used 84 pairs for the evaluation.
For each revision pair, we checkout the parent revision that
fails because of a dependency-related issue. We then apply
BUILDMEDIC to repair the build and record the successful
repair candidates.

Table III shows the results per project of applying
BUILDMEDIC to the 84 revision pairs. BUILDMEDIC could
successfully repair 45/84 (54%) studied breakage pairs. Con-
sidering projects, BUILDMEDIC could repair 50% or more of
the failing builds in 13/19 (68%) of the studied projects. In
only 2/19 (11%) projects, BUILDMEDIC could not find a repair
candidate for any failing revision. Investigating the number of
changes needed to repair a build, we found that in 34/45 (76%)
of the successfully repaired revisions only a single change is

https://repository.jboss.org/nexus/content/repositories/public-jboss/
https://repository.jboss.org/nexus/content/repositories/public-jboss/
http://repo.spring.io/libs-milestone/
http://repo.spring.io/libs-milestone/
https://maven.atlassian.com/3rdparty/
https://maven.atlassian.com/3rdparty/


TABLE III
RESULTS OF USING BUILDMEDIC TO REPAIR 84 BUILDS IN 19 JAVA OPEN
SOURCE PROJECTS; ID AND SIM: IDENTICAL AND SIMILAR REPAIR, RESP.

Project Fixed Not Fixed n = 1 ID SIM
async-http-client 1 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
immutables 1 (100%) 0 (0%) 1 (100%) 1 (100%) 0 (0%)
closure-compiler 1 (100%) 0 (0%) 1 (100%) 1 (100%) 0 (0%)
symphony 4 (57%) 3 (43%) 4 (100%) 2 (50%) 2 (50%)
cucumber-jvm 1 (100%) 0 (0%) 1 (100%) 1 (100%) 0 (0%)
fastjson 1 (100%) 0 (0%) 1 (100%) 1 (100%) 0 (0%)
undertow 1 (50%) 1 (50%) 0 (0%) 0 (0%) 1 (100%)
solo 2 (67%) 1 (33%) 2 (100%) 0 (0%) 2 (100%)
vavr 2 (100%) 0 (0%) 2 (100%) 1 (50%) 1 (50%)
wildfly 0 (0%) 1 (100%) - (-) - (-) - (-)
YCSB 1 (20%) 4 (80%) 1 (100%) 0 (0%) 1 (100%)
retrofit 2 (67%) 1 (33%) 0 (0%) 0 (0%) 1 (50%)
storm 2 (100%) 0 (0%) 2 (100%) 0 (0%) 2 (100%)
jersey 2 (100%) 0 (0%) 2 (100%) 0 (0%) 0 (0%)
keycloak 2 (40%) 3 (60%) 2 (100%) 0 (0%) 0 (0%)
druid 0 (0%) 1 (100%) - (-) - (-) - (-)
alluxio 10 (37%) 17 (63%) 3 (30%) 1 (10%) 7 (70%)
libgdx 5 (100%) 0 (0%) 5 (100%) 1 (20%) 3 (60%)
hazelcast 7 (50%) 7 (50%) 7 (100%) 7 (100%) 0 (0%)
Total 45 (54%) 39 (46%) 34 (76%) 16 (36%) 20 (44%)

needed (see column n = 1). This observation confirms the
findings of the qualitative analysis in Section IV.

We also evaluated the quality of the successful repair
candidates. We compared the successful candidates with the
repairs that have been performed by the developers in the
repairing revision. We consider three levels: (1) identical (ID)
expresses a repair that is exactly the same as in the repository
(e.g., a Version Update is performed with the identical new
version), (2) similar (SIM) represents that the repair type is
the same but details are different (e.g., a different version),
and (3) different (DIFF) otherwise. Table III shows the results
for ID and SIM per project. We observe that 16/45 (36%)
revisions contain at least one repair plan that is identical to
the repair by the developers and 20/45 (44%) contain at least
one repair that is similar.

Table III shows that 39 out of 84 (46%) revisions could
not be automatically repaired by BUILDMEDIC. A manual
investigation of these broken builds reveals that:
• The step restriction (n = 3 in this study) limited

BUILDMEDIC to continue with the repair. A solution could
be found if the maximum number of steps is increased.

• The missing dependency was removed from the repos-
itories and needs to be compensated by inserting other
dependencies. Adding different dependencies or modifying
the ID of the current dependency can fix this issue.

• The fix also requires changes to the source code which are
currently not supported by our approach.

• BUILDMEDIC does not have a strategy to fix the build
breakage. A solution is to implement new strategies, such
as Insert Dependency and Update Dependency IDs. We
plan to provide these strategies in future work.

In addition to analyzing the repairs themselves, we also
analyze the runtime of BUILDMEDIC. It is important that the
fixes can be retrieved within an reasonable amount of time
(e.g., Martinez et al. [41] set the timeout in their study to
three hours). Addressing this, we measure the total time until
BUILDMEDIC finishes, and the overhead that BUILDMEDIC

adds to the build duration. We consider the overhead as the
time of running BUILDMEDIC excluding the time that is need
to execute the build. We found that the total time ranges
between 4 and 61 minutes with an average of 22.8 minutes.
The overhead of BUILDMEDIC ranges between 1.5 and 35
minutes with an average of 8.6 minutes.

With these results, we can answer RQ2 as follows:
BUILDMEDIC is able to repair 54% of dependency-related
build breakage adding an average overhead of 8.6 minutes.
36% of the repairs are identical to the developer’s repair
actions. In 76% of the repairs, a single change could repair
the breakage. BUILDMEDIC runs with an average total
time of 22.8 minutes and an average overhead of only
8.6 minutes.

VII. DISCUSSION

In this section, we discuss the applications and implications
of our results on research as well as on development. Further-
more, we discuss the possible threats to validity of our results
and how we addressed them.

A. Applications and Implications

For researchers. The answers to RQ1 and RQ2 have several
implications on research. First, the results of RQ1 (Section IV)
show that most dependency issues are fixed by updating the
version of the dependencies. Moreover, the removal of a
dependency fixed the breakage in five cases. Furthermore, the
results of RQ1 show that 81% of the developer repairs consist
of a single change. This demonstrates that the detailed changes
that are extracted by BUILDDIFF can be used to analyze
Maven build specifications in detail, e.g., for deriving repair
strategies. Hence, future research should use BUILDDIFF for
the analysis of changes in Maven build specifications. Second,
the results of RQ2 (Section VI) show that it is possible
to automatically repair many Maven builds that suffer from
dependency-related breakage. Compared with other areas of
automatic repair, such as program repair, the repair rate is
similar. However, Qi et al. [42] stated that the well known
GenProg approach can generate patches for 55/105 bugs (52%)
[29] but only two (4%) were correct. In our case, the results
of RQ2 show that 16/45 (36%) of BUILDMEDIC-generated
repairs are identical to the developer-performed repair and
20/45 (44%) are similar to the developer-performed repair.
We suspect that this is because of two reasons. First, we limit
the search space for the repairs by the nature of our repair
strategies and second, we do not rely on machine learning
but instead derive empirically-informed strategies based on
developer-performed repairs. Moreover, our manual analysis
of the 39 revisions that could not be repaired by BUILDMEDIC
showed that it needs additional strategies to cover other types
of build breakage. Future research should address this issue
and develop further strategies.

For developers. Our approach for repairing dependency-
related build breakage is fully automated by BUILDMEDIC.
Developers can use BUILDMEDIC to automatically repair



dependency-related build breakage which typically accounts
for 39% to 65% of build breakage [7], [10], [11].

Ideally, BUILDMEDIC can be added as a post-build reaction
in the CI environment to suggest repair candidates or to
automatically repair Maven builds that broke because of a
dependency-related issue. The evaluation of the performance
of BUILDMEDIC shows that it is applicable for this job as
we observed that BUILDMEDIC only adds an overhead of 8.6
minutes on average.

For smaller projects, BUILDMEDIC can be used as a stan-
dalone tool or as a plugin for the integrated development
environment. Whenever a build fails, the developer can run
BUILDMEDIC to suggest and/or execute a repair candidate to
repair the build. Both applications of BUILDMEDIC aim at
supporting developers with repairing broken builds in order to
be able to stay focused on their current programming tasks.

B. Threats to Validity

Internal Validity. We split the data randomly into two
data sets to use one for each research question. The resulting
samples might be biased. We mitigate this threat by adding a
qualitative analysis of the data. Furthermore, we only study
data within a date range (December 31, 2014 to July 13,
2017). This restriction might exclude data that could affect
our findings. We argue that this restriction actually supports
the validity because it reflects the current changes instead of
old changes. In our preliminary analysis, we found that the
build results before this threshold are likely to incorrectly flag
builds as failing because of environmental changes. Moreover,
we perform an analysis of historical data. We cannot analyze
rebased or deleted revisions which could bias our results.
Another threat to internal validity concerns our observation
of fixing changes. We only investigate the changes of the
directly preceding revision. We mitigate this threat by ana-
lyzing the fixes and identifying the change that caused the fix.
Moreover, the repairing revision might be a tangled commit
[38] containing changes that are unrelated to the repair. We
mitigate this threat by performing a manual investigation to
identify unrelated changes. In our data set, we include build
results that we retrieved by building each revision in our own
stable environment with a single build command. Excluding
the tests in the build command makes it possible that the
build is successful, but produces a semantically different result.
We counter this threat by analyzing the produced repairs and
comparing the fixes with the developer-performed repairs.

External Validity. The findings of this study might not gen-
eralize to other projects. We mitigate this threat by choosing
projects of different sizes, vendors, and purposes. Furthermore,
we only consider projects that use Maven to build. Hence,
the results might not generalize to other build tools, such as
Gradle and Ant. We use a common versioning pattern (MA-
JOR.MINOR.PATCH) to measure the distance of versions.
Other projects may use a different versioning pattern which
threatens the generalizability. We decided to use this pattern
because it is a common versioning pattern and is also used in
prior studies [40].

Construct Validity. We construct our repair strategies based
on qualitative observations. This might bias the selection of the
strategies because changes that are unrelated to fixes might be
counted. We address this threat by qualitatively studying the
cause for the fixes to identify the responsible changes. Another
threat to construct validity is that we consider a repair to be
successful if the build yields SUCCESS. However, the build
result can be successful without fixing the underlying issue
(e.g., deleting dependencies that are only needed at runtime).
We counter this threat in two ways. First, we do not only find
one repair candidate but we show all possible repair candidates
that our approach found. Second, we investigated all repair
candidates and compared them to the fixes that developers
performed.

VIII. CONCLUSIONS

Build specifications need to be maintained to avoid outdated
specifications, and build breakage as a consequence. Recent
studies found that dependency-related issues are the main
cause of build breakage. In this paper, we analyze 37 builds
that were broken due to dependency-related issues and study
the changes that were performed to repair the build breakage.
Furthermore, we perform a qualitative study of the fixing
revisions to identify the change or the changes that caused
the fix. Using this knowledge, we derive three strategies
based on frequently occurring repair types. We then propose
BUILDMEDIC, an approach to automatically fix dependency-
related build breakage. We evaluate BUILDMEDIC on 84
builds that were broken because of dependency-related issues.
More specifically, our study answers the research questions as
follows:
(RQ1) Developers often (46%) repair dependency-related

build breakage with changes to versions (e.g., re-
moving the “-SNAPSHOT” postfix) and dependencies
themselves. 81% of the fixes contain only a single
change. Furthermore, property changes are changes to
version identifiers in all of the studied revisions.

(RQ2) BUILDMEDIC fixes 54% of dependency-related build
breakage, which generates an overhead of 8.6 minutes
on average. 36% of repairs are identical to developer-
performed repairs and 76% of the repairs only consist
of a single step. BUILDMEDIC runs with an average
total time of 22.8 minutes and an average overhead of
only 8.6 minutes

Future work. We plan to extend BUILDMEDIC with
further strategies to cover other types of build breakage,
such as COMPILATION_FAILED, and to cover breakage that
BUILDMEDIC currently cannot repair. Furthermore, we will
improve the fix time by investigating models to predict the
best next strategy. Concerning dependency issues, we plan
to extend this work by implementing other fixing strategies,
such as adding dependencies. We also aim at extending the
study to other projects, in particular to projects from industry.
Furthermore, we plan to integrate BUILDMEDIC directly into
Maven (via a plug-in) to immediately invoke the repair, once
an issue is detected.
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