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Abstract—Software Quality Assurance (SQA) is a resource
constrained activity. Research has explored various means of sup-
porting that activity. For example, to aid in resource investment
decisions, defect prediction identifies modules or changes that are
likely to be defective in the future. To support repair activities,
fault localisation identifies areas of code that are likely to require
change to address known defects. Although the identification
and localisation of defects are interdependent tasks, the synergy
between defect prediction and fault localisation remains largely
underexplored.

We hypothesise that modifying code that was suspicious in
the past is riskier than modifying code that was not. To validate
our hypothesis, in this paper, we employ fault localisation, which
localises the root cause of a program failure. We compute the past
suspiciousness score of code changes to each fault, and use those
scores to (1) define new features for training defect prediction
models; and (2) guide the next actions of developers for a commit
labelled as fix-inducing. An empirical study of three open-source
projects confirms our hypothesis. The new suspiciousness features
improve F1 score and balanced accuracy of Just-In-Time (JIT)
defect prediction models by 4.2% to 92.2% and by 1.2% to
3.7%, respectively. When guiding developer actions, past code
suspiciousness successfully guides developers to a defective file,
inspecting two to nine fewer files on average, compared to the
baselines based on previous findings on past faults. These results
demonstrate the potential of synergies of fault localisation and
defect prediction, and lay the groundwork for explorations of
that combined space.

Index Terms—defect prediction, fault localisation, search-based
software engineering, software quality assurance

I. INTRODUCTION

Since exhaustive testing is impractical (if not impossible),
software organizations must take pragmatic and cost-effective
approaches to Software Quality Assurance (SQA). To focus
SQA detection activities, defect prediction [1], [2] has been
proposed to prioritize modules by their likelihood of being de-
fective. Modern so-called “Just-In-Time” (JIT) defect predic-
tion models identify risky code changes, i.e., code changes in a
fix-inducing commit, rather than defective modules. Targeting
risky changes fits nicely within a change-based development
model, raising warnings about changes while the context of
the changes is still fresh in the mind of developers [3].

To support SQA repair activities, fault localisation [4] has
been proposed to prioritise areas within the codebase that
are likely to require modification to address a defect. Fault
localisation ranks program elements by their likelihood of

being implicated in the fix for a given program failure (sus-
piciousness). Information Retrieval-based Fault Localisation
(IRFL), one of the most actively studied approaches to fault
localisation, exploits the lexical similarity between code and
bug reports to localise faulty code [5]–[7]. Unlike the most
dynamic FL techniques that require test execution, IRFL can
be applied as soon as bug reports are available.

Despite being interdependent tasks, the literature on (JIT)
defect prediction and fault localisation have largely developed
independently of one another. Indeed, both fault localisa-
tion and defect prediction strive to support quality assurance
activities with different timing—defect prediction and fault
localisation occur before and after program failures have been
identified, respectively. Exploiting synergies between the two
distinct areas may yield more accurate and actionable insights.
Early work by Sohn and Yoo [8], [9] shows that features
that have typically been used in defect prediction (i.e., code
and change features) can improve the performance of fault
localisation. In this paper, we set out to explore the inverse.
More specifically, we set out to address the following question:

Can insights from fault localisation be leveraged
to enhance JIT defect prediction?

To address this central question, we quantify the suspicious-
ness of past code using IRFL. Computing the past suspicious-
ness of code using fault localisation is a natural choice because
it shares a similar goal with JIT defect prediction, i.e., identify-
ing risky code. We conjecture that code that was suspicious in
the past will remain suspicious for some time and warrants
additional scrutiny when being modified. We first evaluate
whether using past suspiciousness measures of code improve
the performance of JIT defect prediction models. Then, we
investigate whether these past suspiciousness measures aid in
guiding the repair activities of developers for risky commits.
To evaluate our approach of using past suspiciousness of code
in defect prediction, we perform an empirical study of three
open-source projects. In addition to that empirical study, this
paper makes the following contributions:

• We define new defect prediction features based on the
prior suspiciousness of code according to fault localisa-
tion. Using these features, we observe that the F1 score of
JIT models improves by 4.2% to 92.2%. We also observe
a small increase in Balanced Accuracy of 1.2% to 3.7%.



• We use the prior suspiciousness of code to guide the next
action of developers after a commit is predicted to be
risky. The experimental results show that by inspecting
files modified in a commit in descending order of their
suspiciousness, developers can examine the first defective
file, on average, two to nine files faster.

The remainder of this paper is organised as follows. Sec-
tion II introduces our hypothesis on leveraging the past suspi-
ciousness of code changes in a commit and the two approaches
that we took to verify this hypothesis. Section III presents
three research questions and describes the experimental setup
for the empirical study. Section IV discusses the results and
Section V presents the threats to validity. Section VI describes
the related work, and lastly, Section VII concludes our paper.

II. FL2DP: FAULT LOCALISATION TO DEFECT
PREDICTION

Defect Prediction (DP) aims to predict whether a given
change is fix-inducing or not, before actually executing any
test. Fault localisation, on the other hand, aims to predict the
location of a fault whose existence has been already confirmed
by a failing test execution. Although both techniques have been
widely studied, the interplay between two techniques has not
been thoroughly investigated. Existing work has investigated
how features frequently used for defect prediction can improve
accuracy of fault localisation [8], [9], but the opposite direction
of using fault localisation for better defect prediction has not
been explored. This section motivates the way we make use
of previous faults via fault localisation for better DP.

A. The Impact of Past Faults in Defect Prediction

Kim et al. showed the localities of faults: faults appear
together instead of individually [10]. The reasoning is that
developers make fix-inducing changes due to the incorrect
understanding of the changes, and therefore are likely to
introduce more than one fault in the area of misunderstanding,
either directly or indirectly (e.g., via the propagation of
changes). The authors introduced various types of localities:
temporal, spatial, and changed or new-entity. Despite their
differences, they all assume that the area that has been related
to faults, either was defective or changed along, is riskier.
Rahman et al. followed this up by comparing these localities to
each other and reported that temporal locality, which presumes
that recently fixed code is more defect-prone, performs the best
for defect prediction [11].

Another way that previously defective elements become
more defect prone in the future is if fixing previous faults
actually resulted in new ones. Mockus and Weiss reported
that changes that fix defects are riskier than the other types of
changes, such as new features [12]. Shihab et al. performed an
industrial case study on the risk of software changes [13]: their
study showed that the more bug-fixing changes were made on
a file, the riskier the file is. Combined, these results suggest
that areas of source code that contained previous faults tend
to be more defect prone in the future.

We propose fault localisation techniques as a unified frame-
work that can capture various aspects of previous faults studied
in the context of defect prediction. Instead of looking at binary
property of whether a file has been defective in the past or
not, or whether a file has been a target of bug fix or not, we
measure how suspicious the changed file would be with respect
to previous faults, using a specific fault localisation technique.
This way, we capture degrees of suspiciousness instead of the
binary property of being faulty or not.

In the software life-cycle, there are two processes that aim
to locate the code related to program failure: Fault Localisation
(FL) and Defect Prediction (DP). Both FL and DP are designed
to assist developers with testing and debugging. Their tasks
can be defined as follows:

• Fault Localisation (FL): locate the source code that
caused the observed program failure

• Defect Prediction (DP): predict whether the changed
source code will result in a program failure

If DP is an a priori detection of faults, FL is an a posteriori
detection of faults, i.e., knowing where the fault is after the
fact. In the software development timeline, these two tasks
will interleave with each other. Consequently, if there are
temporal and spatial locality in the occurrence of faults, we
posit that FL results for previous faults can help with DP
for the current change. More specifically, we formulate the
following hypothesise:

Hypothesis: If a commit modifies code that was suspicious
in the past (FL), the commit is more likely to introduce
faults than those that were not (DP).

To validate this hypothesis, we define new features based
on the results of fault localisation on previous faults and in-
vestigate whether these features can improve the performance
of defect prediction. We also study how the suspiciousness of
code computed from past fault localisation can make the DP
results more actionable for developers. The remainder of this
section introduces the new features and describes how we use
them to enhance the actionability of DP results.

B. IR based Fault Localisation as Defect Prediction Feature

Table I shows the input features used for our defect pre-
diction model. The first 13 features are features that have
been widely studied for defect prediction and are taken from
existing work [3]. We have excluded three review features
studied by McIntosh and Kamei, as our choice of benchmark
(see Section III-B) did not adopt an explicit code review
process. The remaining three features are based on IRFL.

While a diverse range of fault localisation techniques have
been studied [5], [7]–[9], [14]–[17], we focus on IRFL because
of two reasons: its non-dynamic nature, and its flexibility. The
intuition behind IRFL is that a bug report, and the part of the
source code that is the root cause of the reported bug, are likely
to share a strong lexical similarity with each other. Based on
this intuition, IRFL adopts various textual similarity metrics
developed in the field of Information Retrieval (IR) to rank



program elements according to their similarity to the given
bug report: the given bug report becomes the query, which
is used to search the documents that are program elements.
Consequently, it does not require any dynamic analysis, apart
from the occurrence of the bug that resulted in the original bug
report. This makes IRFL an ideal candidate for a DP feature,
since DP is typically performed before the test execution.

By flexibility of IRFL, we refer to the fact that textual
similarity can be computed between any bug report and any
program element, regardless of the timeline. Our hypothesis
is that modifying code that was suspicious for historical faults
poses higher risk. However, if we were to compute the exact
suspiciousness of each program element at the time of each
historical fault, it would result in non-trivial analysis cost even
if the FL technique of choice is a non-dynamic one such as
IRFL. To avoid this, we approximate the past suspiciousness
by taking the textual similarity between historical bug reports
and the current program elements that have been modified and
submitted for defect prediction. We posit that there will be
sufficient continuity in the set of lexical tokens that appear in
the same program element such as a file or a specific function.
This lexical continuity, coupled with the temporal and spatial
locality of fault [10], allows us to avoid the inherently noisy
and costly process of tracing change history from current
changes to the locations of previous faults.

TABLE I
16 FEATURES USED TO TRAIN DEFECT PREDICTION MODELS

Property Description

Size Lines Added The number of added lines in a commit
Lines Deleted The number of deleted lines in a commit

Diffusion

Subsystem The number of modified subsystems in a commit
Directory The number of modified directory in a commit
File The number of modified files in a commit
Entropy The spread of modified lines across files

in a commit

History
Changes The number of changes made to the modified

files in past
Developers The number of developers who have changed

the modified files in a commit in the past
Age The time interval to the last changes on the

modified files

Experience

Prior changes The number of prior changes to the modified
files the authors participated

Recent changes The number of prior changes to the modified
files the authors participated weighted by the
time interval between changes

Subsystem The number of prior changes to the modified
changes directories the authors participated
Awareness The fraction of prior changes to the modified

directories that the authors participated

Bug report
sim2rsum The sum of similarities between code changes

in a commit and recent bug reports
sim2rmax The maximum of similarities between code

changes in a commit and recent bug reports
sim2rmean The arithmetic mean of similarities between code

changes in a commit and recent bug reports

1) Vector Space Model for IRFL: We use IRFL technique
based on Vector Space Model (VSM) [18] to compute the
similarity between code changes made in a commit and
previous bug reports [4]. After the standard text preprocess-

ing that includes text normalisation1, stopword removal, and
word stemming, both the query (i.e., the bug report) and
the documents (i.e., program elements, such as source files)
are represented as fixed-length weight vectors, where each
weight corresponds to a unique word (term). The typical
means of obtaining weights for each term is to compute term
frequency-inverse document frequency (tf-idf ). Given a term
t, a document d, and the set of all documents, D, let ft,d be
the number of times t appears in d. tf-idf is defined as follows:

tf(t, d) = log (1 + ft,d) (1)

idf(t,D) = log (
|D|

|{d ∈ D|t ∈ d}| ) (2)

tf − idf(t, d,D) = tf(t, d) · idf(t,D) (3)

Intuitively, tf(t, d) captures the degree to which a term t is
coupled with a document d (i.e., the frequency of appearance
of t in d), whereas idf(t,D) captures the degree of how
narrow the coupling between t and documents is (i.e., higher
idf(t,D) means most of documents in D contain t, whereas
lower idf(t,D) means only a few documents in D contain t).
A tf-idf weight is simply the product of TF and IDF of a given
term; a document d, or a query q, is represented as a fixed-
length vector of tf-idf weights, each of which is the weight
for a term in the corpus D. Finally, the similarity between a
document and a query can be computed as the cosine similarity
between two tf-idf vectors.

2) Feature Engineering for IRFL Scores: For IRFL, we
have multiple documents (i.e., source code files) to match
against a single query (i.e., a bug report). However, for its use
in the context of Just-In-Time DP, we would like to measure
how similar the single commit under consideration is to a
range of potentially related previous faults. This results in a
single document (i.e., the commit) and multiple queries (i.e.,
the previous faults that are potentially relevant). Both factors
affect how we convert an IRFL score (i.e., similarity) to a
defect prediction feature.

The single document situation means that the idf ’s only
information is whether a term is in documents or not, which
can be covered by tf . As a result, we fix the idf to 1, using
only the tf for actual computation of the similarity. Given
that each commit should ideally contain only a single change,
we believe that using term frequency to represent its topic is
an acceptable choice. Even if the commit under consideration
addresses multiple issues, we expect the range of topics to be
much narrower and more focused compared to all possible
semantic topics in the entire system. Note that the single
document issue only applies when we try to convert the IRFL
score into a feature for defect prediction of a single commit
under consideration. If the commit is predicted to be defective,
we would like to localise the cause of concern for actionability,
for which we consider different files in the single commit as
separate documents. See Section II-C for more details.

The issue with multiple queries is that we cannot ascertain
which previous fault is the most relevant to the commit under

1We normalise camelCase identifiers into its constituent subtokens.



consideration. To resolve this, we focus our analysis on the
bug reports that have been created within the predefined time
window (based on the temporal locality assumption). Since
there are often multiple bug reports within the time window,
multiple similarity values are calculated for the given commit.
We aggregate these similarity values using three different
methods and define one feature for each: arithmetic mean
(sim2rmean), sum (sim2rsum), and maximum (sim2rmax).

Here, c denotes the commit under consideration, and r a
bug report submitted to the same project. By defining a time
window, we first identify the set of bug reports (R(c, w)) that
have been submitted during the time window as follows:

R(c, w) = {r|timestamp(c)− timestamp(r) ≤ w} (4)

Now, let cl(c) be the set of lines modified by c, and M be
one of the aggregation methods, {arithmetic mean, sum,max}.
The similarity based DP feature for the given commit c under
M is defined as follows:

sim2rM (cl(c), w,R) = M({sim(cl(c), r)|r ∈ R(c, w)}) (5)

That is, sim2rM (cl(c), w,R) is either arithmetic mean,
sum, or maximum of similarities between the changed lines in
the given commit and bug reports submitted within the given
time window from c. We use cosine similarity for sim.

C. Actionability
A defect prediction result is actionable if it can guide

the developer on how to handle the potentially fix-inducing
commit. In an ideal case, all changes in a commit will be
tightly coupled to each other, resulting in all files modified by a
fix-inducing commit being responsible for the induced defect.
In practice, however, this is not always the case: a fix-inducing
commit often contains changes unrelated to the induced fault.
As a result, without knowing which file is defective, developers
may waste their effort inspecting non-defective files. Given this
consideration, we propose to use the similarity to previous bug
reports to guide the developer.

Our approach presumes the temporal locality of faults:
similar faults may appear again within a short time frame. We
exploit this for actionability by aiming to localise the fault
among the files modified by the given commit. Since there is
no information about what exactly the induced fault will be at
the time of defect prediction, we use the previous bug reports
as an approximation, using the temporal locality assumption:
we run IRFL on the files changed by the given commit against
previous bug reports, i.e., R(c, w). The suspiciousness of a file
f modified by a fix-inducing commit c is computed as follows:

susp(f, c, w,R) =
∑

r∈R(c,w)

sim(cl(c, f), r) (6)

Here, cl(c, f) denotes the set of lines in file f that have
been changed by the commit c. The final suspiciousness score
(susp) of a file f is the sum of the similarities between the
changes of the file and previous bug reports within the time
window w. Note that sim2rM is used to denote the defect
prediction feature, which represents the commit under consid-
eration, whereas susp(f, c, w,R) denotes the individual IRFL

suspiciousness of each file modified by the commit c, in the
context of actionability. We hereafter refer to susp(f, c, w,R)
as suspf for the sake of brevity.

III. EXPERIMENTAL SETUP

In this section, we present our research questions and the
corresponding experimental setup for our empirical study.

A. Research Questions

We formulate three research questions to evaluate the
utility of the past suspiciousness of code changes in a commit
when predicting its defect-proneness.

RQ1. Feature Analysis: Do sim2rM features capture distinct
and useful features of fix-inducing commits? Before using
sim2rM features introduced in Section II-B2, we investigate
whether these features can capture distinct and useful proper-
ties of fix-inducing commits.

Firstly, to estimate the degree to which our features are
distinct, we perform Spearman correlation analysis on the
16 features in Table I. If sim2rM features capture new
dimensions that have not yet been explored, they will have
a weak correlation to existing JIT DP features. Secondly, to
show that our features can be useful in defect prediction, we
perform Mann-Whitney U-tests on the sim2rM features of
fix-inducing commits and non-inducing commits (α = 0.05).
Since sim2rM features assume that defective changes are
more similar to past faults than non-defective changes are, we
expect fix-inducing commits to have larger values of sim2rM
features. We also compare the feature importance values in
the learnt defect prediction models between the sim2rM
features and the other 13 features to assess how useful the
sim2rM features are compared to the other JIT-DP features.

RQ2. Effectiveness: Can the use of sim2rM features improve
the performance of defect prediction models? To answer RQ2,
we compare the performance of defect prediction models
trained with and without sim2rM features. Before comparing
them, however, we first investigate the relationship between
the effectiveness of sim2rM features and the duration of
the time window. sim2rM features aggregate the similarities
between code changes and bug reports that are created within
a fixed time window. Thus, the effectiveness of sim2rM
features can vary depending on the choice of the time window.
We use four different values for the time window, 30, 60, 90,
and 120 days, and inspect how the value of the time window
affects the benefit of using sim2rM features. We then go
back to the initial question and compare the performance of
models with and without sim2rM features, using the best
time window among the four. We run Mann-Whitney U-test
on the pairs of the DP models with and without sim2rM
features and measure Cliff’s delta effect size for these pairs.
We deem the improvement from using sim2rM features is
statistically significant if the p-value of the U-test is ≤ 0.05,
and the effect size is at least medium (δ > 0.33) [19].



RQ3. Actionability: Can suspf guide the action of develop-
ers for fix-inducing commits? To validate the actionability of
past suspiciousness of code (suspf ), we compare the effort
spent before inspecting the first defective file when examining
files modified in a commit in descending order of their suspf
scores with the effort when examining the files randomly. If
suspf scores computed per file are truly actionable, they will
allow developers to discover a defective file with less effort.

In addition to the random inspection, we use closed bug
count (cntCB) as another baseline of suspf . Closed bug count
of a file is the number of closed bugs that modified the file.
Here, closed bug denotes the bug that has been closed before
the commit. Previous studies used the closed bug count to sort
files in order of their defect-proneness [11], [20]. Results of
these studies show that simply ordering files in descending
order of their closed bug counts could be as effective as more
sophisticated defect prediction techniques.

Compared to previous work, which utilises only the ground-
truth of defective files, we use past suspiciousness of files
that were non-defective in the past along with past suspi-
ciousness of files that were defective. To verify that the
improvement gained from using suspf does not solely come
from computing the suspiciousness scores of defective files,
but rather from taking both defective and non-defective files
into consideration, we select a variant of cntCB called simCB

as the last baseline. simCB stands for the similarity to past
closed bugs; it adds up the suspiciousness scores of a file to
each past fault for which it was responsible instead of counting
them. Consequently, if the use of suspf also outperforms the
use of simCB , we can conclude that including files that were
non-defective in the past, in addition to past defective files
does contribute positively.

Unlike cntCB and simCB , suspf does not require bug
reports to be closed for computation, as it uses suspiciousness
scores of code. Nevertheless, we take the closed bugs as
inputs for suspf by default. To fully exploit suspf , we
investigate how the effectiveness of suspf changes as more
reports become available for inspection. For this, we conduct
another experiment that compares the effectiveness of suspf
with different sets of reports: a set of both open and closed
bug reports, and a set of reports of all types.

TABLE II
THREE OPEN-SOURCE BENCHMARKS: THE TABLE ON THE LEFT

DESCRIBES THE COLLECTED COMMITS, AND THE TABLE ON THE RIGHT
SHOWS THE AVERAGE NUMBER OF BUG REPORTS COLLECTED USING

FOUR DIFFERENT TIME WINDOWS.

# of # of non- # of fix- Collection Avg. # of bug reports
Project commits inducing inducing Period in diffrent time window (days)

commits commits 30 60 90 120

Lang 3,929 3,697 232 2002/07 – 2019/10 3.15 5.50 7.59 9.74
Math 4,810 4,325 485 2003/05 – 2019/10 4.44 8.12 11.78 15.43
Closure 1,948 1,848 100 2009/11 – 2013/12 7.46 14.60 21.64 28.51

B. Subjects

We evaluate our approach of leveraging the past suspicious-
ness of code using Defects4J [21], a real-world fault dataset
frequently studied in fault localisation. We use Defects4J

v.1.5.0, which contains six open-source projects; these projects
manage their issue reports using different issue trackers.
Among the six projects, we select three projects, Commons-
Lang, Commons-Math, and Closure Compiler, for the evalua-
tion. The main criterion of this selection is how structured an
issue report is. If issue reports are written freely, there will be
many variables to consider when parsing them, e.g., whether to
include comments. Thus, we prefer projects that use an issue
tracker with a strict format. Lang and Math adopt Jira [22], an
issue tracker that stores issues in a highly structured format
and is designed for use by agile development teams. Issues in
Closure that are covered by Defects4J are stored in Google
Code Archive. As issue reports managed by Git issue tracker
are less well structured, we exclude the projects that use the
Git issue tracker, leaving only Lang, Math, and Closure.

We use the SZZ algorithm to identify fix-inducing com-
mits [23]. Instead of implementing our own, we use the open-
source implementation of SZZ algorithm [24]. To filter out
false-positives, we adopt six of the eight filters applied by
McIntoch and Kamei [3]. We omit the two filters that exclude
the commits that either fix or induce too many faults because
they were too aggressive, leading to several false-negatives,
when they were applied to our dataset. Table II shows the
final number of commits for each category, either fix or non-
inducing, and the associated commit collection period.

C. Training Defect Prediction Models

For training defect prediction models, we use Random
Forest (RF), which showed good-enough performance in
previous studies of defect prediction [25]–[30]. We employ
scikit-learn [31] for Random Forest and set the number
of trees as 200. For other parameters of RF, we use the
default values provided in scikit-learn. We have decided to use
the default parameter setting, as our initial grid-search based
hyperparameter tuning has failed to improve performance
consistently and significantly across performance metrics and
studied subjects compared to the default settings. We would
recommend careful parameter tuning in case the proposed
technique is applied to a real project with stable history.

For training and test data sets, we sort the collected commits
in their chronological order, i.e., commit time, and sequentially
divide them into five folds. We train defect prediction models
for each fold using all commits prior to the target fold. Since
the first fold, i.e., fold zero, does not have any preceding fold to
train defect prediction models, we exclude fold zero from the
evaluation. Figure 1 describes how the fix-inducing commit
rate changes over time. As software becomes more mature,
the number of fix-inducing commits decreases dramatically.
For each fold, we repeat the training 30 times due to the
randomness of Random Forest.

D. Evaluation Metrics

To answer RQ2, we compare the performance of defect
prediction models trained with and without sim2rM features
and examine whether using sim2rM features improves the
performance of defect prediction models. We use five metrics
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Fig. 1. Fix-inducing rate per fold: the actual number of fix-inducing commits is written next to each point. For all three project, the fix-inducing rate decreases
gradually as the projects become more mature.

that are frequently adopted to evaluate the performance of
defect prediction models: ROC-AUC, Accuracy, Balanced
Accuracy, F1 score, and PR-AUC.

ROC-AUC measures the capability of a model distinguish-
ing two classes, in our case, fix-inducing and non-inducing
commits. Accuracy is the overall rate of correctly classified
instances, while Balanced Accuracy is the average rate of
correctly classified instances of each class. F1 score is the
harmonic mean of Precision and Recall, and PR-AUC is the
area under the curve of Precision and Recall; it measures the
trade-off between these two as a threshold changes.

RQ3 concerns whether suspf can direct developers to
defective files. To answer this, we compare the effort of
developers spent before meeting the first defective file. We
assume that the effort is proportional to the number of non-
defective files examined before the first defective one and
use the number of those non-defective files as the effort. As
mentioned in Section III-A, we compare suspf with three
baselines: the random, the closed bug count (cntCB), and the
closed bug similarity (simCB). Among these baselines, the
random approach is inherently stochastic and requires to be
repeated to generalise its outcome. Instead of repeating the
random approach, we compute the expected rank of the first
defective file and use it as an alternative. Assuming that the
likelihood of each file to be inspected is uniform, we define
the expected rank of the first defective file as below:

exp(f, c) =

∑M−N+1
rank=1 rank

M
, M = |Fc|, N = |GTc| (7)

As Equation (7) shows, the expected rank of the first
defective file is the arithmetic mean of all possible ranks of
defective files. Here, M is the total number of files modified
in a commit c, and N is the number of those files whose
changes induce the fault. We also use this expected rank as
an alternative for the cases where all the modified files have
the same ranking by the other approaches.

In addition to the number of inspected files, we use acc@n
metric, which is often adopted for the evaluation of fault lo-
calisation, for the effort evaluation. acc@n counts the number
of fix-inducing commits whose ranking contains at least one
defective file within the top n. For example, if n = 5 and
acc@n = 10, it means that at least one defective file has been
successfully located within the top five for ten fix-inducing
commits. For the random approach, we compute acc@n by
counting the number of fix-inducing commits in which the

expected rank is smaller or equal to n.

TABLE III
MANN-WHITNEY U-TEST ON sim2rM FEATURES BETWEEN

FIX-INDUCING AND NON-INDUCING COMMITS WITH A STATISTICAL
SIGNIFICANCE OF 0.05. P-VALUES SMALLER OR EQUAL TO 0.05 ARE IN

BOLD TEXT. F STANDS FOR FOLD.

sim2rsum sim2rmean sim2rmax

Proj F 30 60 90 120 30 60 90 120 30 60 90 120

Lang

0 0.12 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.15 0.24 0.46 0.56
1 0.55 0.22 0.16 0.29 0.41 0.14 0.08 0.10 0.75 0.75 0.63 0.74
2 0.49 0.21 0.09 0.14 0.01 0.00 0.00 0.00 0.23 0.13 0.13 0.20
3 0.18 0.07 0.04 0.01 0.01 0.00 0.00 0.00 0.05 0.01 0.01 0.01
4 0.39 0.13 0.06 0.06 0.73 0.54 0.50 0.50 0.79 0.61 0.63 0.74
all 0.07 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.28 0.25 0.29 0.45

Math

0 1.00 1.00 0.97 0.95 0.86 0.00 0.00 0.00 1.00 0.71 0.43 0.29
1 0.15 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.53 0.41 0.67 0.70
2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.53 0.92 0.74
3 0.47 0.01 0.00 0.01 0.24 0.02 0.00 0.00 0.95 0.97 1.00 1.00
4 0.02 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.02 0.03
all 0.80 0.14 0.11 0.10 0.00 0.00 0.00 0.00 0.96 0.84 0.94 0.90

Closure

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.74 0.93 0.98
1 0.48 0.52 0.42 0.46 0.36 0.42 0.32 0.38 0.93 0.97 0.97 0.95
2 0.22 0.23 0.11 0.07 0.18 0.18 0.10 0.09 0.55 0.84 0.83 0.93
3 0.01 0.01 0.00 0.00 0.01 0.05 0.01 0.01 0.03 0.16 0.12 0.26
4 0.73 0.45 0.18 0.19 0.33 0.35 0.34 0.37 0.17 0.45 0.63 0.73
all 0.10 0.19 0.32 0.52 0.00 0.00 0.00 0.00 0.76 1.00 1.00 1.00

TABLE IV
FEATURE IMPORTANCE.EACH CELL CONTAINS THE RANKING OF THE
sim2rM FEATURE WHEN SORTING THE 16 FEATURES IN DESCENDING

ORDER OF THEIR AVERAGE FEATURE IMPORTANCE IN THE DP MODELS.

sim2rsum sim2rmean sim2rmax

project fold 30 60 90 120 30 60 90 120 30 60 90 120

Lang all 8 4 2 2 10 3 5 6 11 8 4 3

Math all 8 7 4 4 11 4 2 2 12 10 8 8

Closure all 4 4 4 4 9 7 5 5 6 5 6 7

IV. RESULT AND ANALYSIS

This section presents the results of our empirical evaluation
and responds to the research questions.

A. RQ1. Feature Analysis

Figure 2 presents the heatmaps of Spearman correlation
coefficients between the 16 features used to train our defect
prediction models. Overall, for all three projects, our three
new features, sim2rsum, sim2rmax, and sim2rmean, are
weakly correlated to the existing ones (lighter shade), while
being strongly correlated to each other (darker shade). From
these, we argue that sim2rM features do contain some extra
information that is not captured by the existing features. While
the figures show only the results of using a time window of
60 days, the other three windows also share the similar trend.
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Fig. 2. Heat maps of Spearman correlation coefficients between the 16 features. The coefficients whose p-values are greater than 0.05 are replaced with zero.

Table III shows the results of Mann-Whitney U-test between
sim2rM feature values from fix-inducing and non-inducing
commits. We have performed a two-tailed test with the al-
ternative hypothesis that fix-inducing commits have higher
sim2rM values than non-inducing commits. Each cell in the
table contains the p-value from a specific U-test. Among three
sim2rM features, sim2rmax shows the weakest correlation
with its p-values rarely below 0.05, failing to reject the
null-hypothesis. sim2rmean shows the strongest correlation,
rejecting the null-hypothesis for all three projects; sim2rsum
sits in the middle. We suspect that these different correlations
may stem from how these features are aggregated. sim2rmax

takes the maximum similarity between bug reports and code
changes; it is more easily affected by any outlier bug report
coincidently similar to the commit under consideration than
the other features. In contrast, sim2rmean is the most stable
due to taking the arithmetic mean; sim2rsum is less sensitive
to outliers than sim2rmax, but susceptible to the number of
bug reports as it adds their similarities to the commit.

Table IV shows the rankings of the sim2rM features
when the 16 features used to train DP models are sorted in
descending order of their feature importance values in those
models: if a feature is within the top four most important
features (25%), its ranking is written in bold. Overall, at least
one variation of the sim2rM features is in the top four, further
emphasising the usefulness of sim2rM features.

Answer to RQ1: sim2rM features capture distinct and
useful properties of fix-inducing commits. Between three
sim2rM features, sim2rmean is the most useful one, followed
by sim2rsum, and then sim2rmax.

B. RQ2. Effectiveness

Tables V to VII compare the performance of defect pre-
diction with (denoted by IRFL) and without using sim2rM
features (denoted by base). Any performance metric value in
bold text indicates that the use of sim2rM features outper-
forms the baseline; the values in percentage denote the degree
of relative improvement. The results are evaluated both for
each fold (fold 1 to 4) and for the union of these four folds
(all). The row all in Tables V to VII, and the rightmost plots
of Figures 3a to 3f, show the summary of the results: overall,

TABLE V
THE EFFECTIVENESS OF sim2rM FEATURES IN LANG. THE VALUES IN
PERCENTAGE DENOTE THE RELATIVE IMPROVEMENT FROM USING THE
sim2rM FEATURES. THE UNDERLINED VALUE MEANS THAT THE

RESPECTIVE IMPROVEMENT IS STATISTICALLY SIGNIFICANT (p ≤ 0.05)
AND HAS AT LEAST A MEDIUM EFFECT SIZE (δ ≥ 0.33).

IRFL: with sim2rM features
F metric base 30 days 60 days 90 days 120 days

1

AUC 0.698 0.671 -3.9% 0.658 -5.7% 0.662 -5.2% 0.681 -2.4%
Acc 0.929 0.929 0.0% 0.929 0.0% 0.928 -0.1% 0.928 -0.1%
Accbal 0.540 0.535 -0.9% 0.541 0.2% 0.537 -0.6% 0.537 -0.6%
F1 0.146 0.132 -9.6% 0.149 2.1% 0.137 -6.2% 0.135 -7.5%
PR 0.195 0.203 4.1% 0.204 4.6% 0.205 5.1% 0.201 3.1%

2

AUC 0.799 0.829 3.8% 0.842 5.4% 0.829 3.8% 0.833 4.3%
Acc 0.932 0.940 0.9% 0.937 0.5% 0.938 0.6% 0.926 -0.6%
Accbal 0.647 0.654 1.1% 0.632 -2.3% 0.645 -0.3% 0.640 -1.1%
F1 0.259 0.286 10.4% 0.252 -2.7% 0.268 3.5% 0.237 -8.5%
PR 0.189 0.230 21.7% 0.202 6.9% 0.183 -3.2% 0.176 -6.9%

3

AUC 0.682 0.692 1.5% 0.729 6.9% 0.712 4.4% 0.717 5.1%
Acc 0.900 0.907 0.8% 0.895 -0.6% 0.902 0.2% 0.890 -1.1%
Accbal 0.592 0.582 -1.7% 0.627 5.9% 0.634 7.1% 0.633 6.9%
F1 0.195 0.187 -4.1% 0.234 20.0% 0.251 28.7% 0.234 20.0%
PR 0.163 0.167 2.5% 0.187 14.7% 0.192 17.8% 0.186 14.1%

4

AUC 0.866 0.874 0.9% 0.886 2.3% 0.871 0.6% 0.876 1.2%
Acc 0.925 0.926 0.1% 0.926 0.1% 0.931 0.6% 0.906 -2.1%
Accbal 0.757 0.751 -0.8% 0.787 4.0% 0.763 0.8% 0.840 11.0%
F1 0.092 0.090 -2.2% 0.101 9.8% 0.100 8.7% 0.096 4.3%
PR 0.058 0.055 -5.2% 0.063 8.6% 0.067 15.5% 0.090 55.2%

all

AUC 0.644 0.649 0.8% 0.684 6.2% 0.666 3.4% 0.663 3.0%
Acc 0.921 0.926 0.5% 0.922 0.1% 0.925 0.4% 0.912 -1.0%
Accbal 0.584 0.580 -0.7% 0.593 1.5% 0.596 2.1% 0.595 1.9%
F1 0.177 0.176 -0.6% 0.191 7.9% 0.199 12.4% 0.182 2.8%
PR 0.110 0.113 2.7% 0.124 12.7% 0.125 13.6% 0.123 11.8%

DP models using sim2rM features can often outperform those
that do not. The underlined values in Tables V to VII show
that the improvement of the evaluation metric computed from
the 30 repetitions is statistically significant (p ≤ 0.05) with a
moderate effect size (δ > 0.33) in most cases.

As described in Figure 3, the impact of using sim2rM
features varies depending on the size of the time window
that was used to collect bug reports. Overall, there does not
exist the best value for the time window that outperforms all
the others, particularly since this value also changes during
the software development. For example, in Lang, 30 days is
the best choice for the time window in fold two, whereas,
in fold three, 90 days is the better choice. To maximise the
effectiveness of sim2rM features, the time window should be
tuned for each project and adjusted dynamically throughout
the software development. Nevertheless, within these results,
the best value for the time window would be 90 days for
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Fig. 3. Relative Improvements in F1 score and Balanced Accuracy: while the degree of improvement varies depending on both time window and fold, using
sim2rM features often improves the overall performance of defective prediction models (Rel.Imprvall > 0)

TABLE VI
THE EFFECTIVENESS OF sim2rM FEATURES IN MATH.

IRFL: with sim2rM features
F metric base 30 days 60 days 90 days 120 days

1

AUC 0.787 0.797 1.3% 0.790 0.4% 0.794 0.9% 0.799 1.5%
Acc 0.826 0.834 1.0% 0.847 2.5% 0.852 3.1% 0.847 2.5%
Accbal 0.656 0.668 1.8% 0.660 0.6% 0.652 -0.6% 0.677 3.2%
F1 0.414 0.436 5.3% 0.433 4.6% 0.424 2.4% 0.457 10.4%
PR 0.429 0.447 4.2% 0.444 3.5% 0.442 3.0% 0.459 7.0%

2

AUC 0.833 0.844 1.3% 0.849 1.9% 0.842 1.1% 0.842 1.1%
Acc 0.896 0.894 -0.2% 0.882 -1.6% 0.882 -1.6% 0.896 0.0%
Accbal 0.714 0.746 4.5% 0.763 6.9% 0.737 3.2% 0.741 3.8%
F1 0.430 0.459 6.7% 0.454 5.6% 0.432 0.5% 0.459 6.7%
PR 0.475 0.490 3.2% 0.459 -3.4% 0.449 -5.5% 0.464 -2.3%

3

AUC 0.763 0.763 0.0% 0.759 -0.5% 0.766 0.4% 0.758 -0.7%
Acc 0.866 0.876 1.2% 0.863 -0.3% 0.844 -2.5% 0.835 -3.6%
Accbal 0.682 0.641 -6.0% 0.662 -2.9% 0.667 -2.2% 0.685 0.4%
F1 0.336 0.301 -10.4% 0.312 -7.1% 0.300 -10.7% 0.310 -7.7%
PR 0.221 0.226 2.3% 0.203 -8.1% 0.197 -10.9% 0.203 -8.1%

4

AUC 0.833 0.840 0.8% 0.841 1.0% 0.845 1.4% 0.845 1.4%
Acc 0.944 0.953 1.0% 0.957 1.4% 0.955 1.2% 0.955 1.2%
Accbal 0.643 0.644 0.2% 0.648 0.8% 0.614 -4.5% 0.610 -5.1%
F1 0.303 0.337 11.2% 0.360 18.8% 0.297 -2.0% 0.285 -5.9%
PR 0.283 0.311 9.9% 0.322 13.8% 0.297 4.9% 0.288 1.8%

all

AUC 0.809 0.817 1.0% 0.809 0.0% 0.806 -0.4% 0.809 0.0%
Acc 0.883 0.889 0.7% 0.887 0.5% 0.883 0.0% 0.883 0.0%
Accbal 0.679 0.684 0.7% 0.687 1.2% 0.673 -0.9% 0.690 1.6%
F1 0.385 0.400 3.9% 0.401 4.2% 0.378 -1.8% 0.398 3.4%
PR 0.344 0.365 6.1% 0.347 0.9% 0.329 -4.4% 0.336 -2.3%

Lang and Closure and 30 or 60 days for Math. With these
time windows, sim2rM features improve F1 score by 12.4%,
4.2%, and 92.2% and Balanced Accuracy by 2.1%, 1.2%, and
3.7%, respectively for Lang, Math, and Closure.

We observe that sim2rM features mainly improve F1 score
and PR-AUC while increasing the other metrics evaluated over
the entire set, i.e., AUC, Accuracy, and Balanced Accuracy,
by a small degree, at least when using the best time window.
For example, in Lang, sim2rM features with the 90 days
window improve F1 and PR-AUC by 12.4% and 13.6%,
respectively; for the other metrics, the relative improvements
are 3.4%, 0.4%, and 2.1%, respectively for AUC, Accuracy,
and Balanced Accuracy. This increase in F1 score and PR-
AUC along with the small increase in the other metrics implies
that fix-inducing commits that were previously predicted as

TABLE VII
THE EFFECTIVENESS OF sim2rM FEATURES IN CLOSURE.

IRFL: with sim2rM features
F metric base 30 days 60 days 90 days 120 days

1

AUC 0.671 0.669 -0.3% 0.644 -4.0% 0.626 -6.7% 0.635 -5.4%
Acc 0.941 0.936 -0.5% 0.946 0.5% 0.949 0.9% 0.948 0.7%
Accbal 0.519 0.533 2.7% 0.528 1.7% 0.544 4.8% 0.538 3.7%
F1 0.078 0.120 53.8% 0.105 34.6% 0.161 106.4% 0.140 79.5%
PR 0.127 0.140 10.2% 0.154 21.3% 0.181 42.5% 0.189 48.8%

2

AUC 0.815 0.833 2.2% 0.798 -2.1% 0.785 -3.7% 0.808 -0.9%
Acc 0.982 0.984 0.2% 0.983 0.1% 0.983 0.1% 0.983 0.1%
Accbal 0.547 0.559 2.2% 0.524 -4.2% 0.519 -5.1% 0.524 -4.2%
F1 0.156 0.189 21.2% 0.083 -46.8% 0.065 -58.3% 0.083 -46.8%
PR 0.326 0.417 27.9% 0.452 38.7% 0.427 31.0% 0.474 45.4%

3

AUC 0.684 0.679 -0.7% 0.666 -2.6% 0.649 -5.1% 0.653 -4.5%
Acc 0.964 0.962 -0.2% 0.963 -0.1% 0.966 0.2% 0.962 -0.2%
Accbal 0.495 0.507 2.4% 0.509 2.8% 0.547 10.5% 0.540 9.1%
F1 0.004 0.034 750.0% 0.038 850.0% 0.128 3100.0% 0.106 2550.0%
PR 0.073 0.088 20.5% 0.088 20.5% 0.116 58.9% 0.102 39.7%

4

AUC 0.843 0.807 -4.3% 0.791 -6.2% 0.843 0.0% 0.830 -1.5%
Acc 0.988 0.984 -0.4% 0.988 0.0% 0.987 -0.1% 0.988 0.0%
Accbal 0.496 0.495 -0.2% 0.496 0.0% 0.496 0.0% 0.497 0.2%
F1 0.000 0.000 0.0% 0.000 0.0% 0.000 0.0% 0.000 0.0%
PR 0.025 0.022 -12.0% 0.021 -16.0% 0.026 4.0% 0.024 -4.0%

all

AUC 0.745 0.750 0.7% 0.726 -2.6% 0.710 -4.7% 0.724 -2.8%
Acc 0.969 0.966 -0.3% 0.970 0.1% 0.971 0.2% 0.970 0.1%
Accbal 0.518 0.531 2.5% 0.521 0.6% 0.537 3.7% 0.533 2.9%
F1 0.064 0.096 50.0% 0.074 15.6% 0.123 92.2% 0.110 71.9%
PR 0.082 0.096 17.1% 0.095 15.9% 0.106 29.3% 0.106 29.3%

non-inducing are correctly predicted as fix-inducing by using
sim2rM features, reducing the number of false-negatives,
which in our case, are fix-inducing commits predicted as
non-inducing. Bug reports explain bugs that were induced by
fix-inducing commits. We argue that by directly comparing
code changes to bug reports, sim2rM features capture the
properties of fix-inducing commits that are related to the
context of induced bugs, which the previous features based on
the meta-data of fix-inducing commits were unable to capture.

Figure 3 shows that the degree of improvement varies
depending on folds. While there is no strong general trend, the
improvement is more notable in folds with more fix-inducing
commits, such as the first fold of Math and Closure.

Answer to RQ2: sim2rM features can improve the per-
formance of defect prediction models, given sufficient fix-



inducing commits to train and test. Benefits of sim2rM can be
further maximised by tuning the time window for each project.

C. RQ3. Actionability

Table VIII and Figure 4 compare the efforts spent until
encountering the first defective file between when following
the order of suspf , and when following the baselines, which
are random ordering, ordered by closed bug count (cntCB),
and ordered by closed bug similarity (simCB). To focus on
the cases where developers can save their effort by knowing
defective files in advance, we consider only the fix-inducing
commits that also contain non-defective changes, for evalua-
tion. As there are always more than one modified files in these
cases, the expected rank of the random approach is always
greater than one, resulting in acc@1 to be zero. Compared to
the random ordering, the use of suspf successfully increases
acc@1 of Lang, Math, and Closure from zero up to 42, 93,
and 28, respectively. While the degree of increase in acc@n
decreases as n grows, developers can still find the defective
file earlier using suspf , when compared to random inspection.

The effectiveness of suspf tends to increase as the time
window increases. For example, as the time window changes
from 30 to 60 days, acc@1 increases from 70 to 90 in Math.
However, an unnecessarily large time window may also harm
the effectiveness of suspf , since it becomes more likely that
the used bug reports are now outdated: acc@1 decreases from
93 to 89 in Math when the time window changes from 90 to
120 days. Similarly to our answer to RQ2, we may need to
tune the time window for each project to maximise the benefit
of suspf . In general, Table VIII shows that a time window of
90 to 120 days achieves fair performance.

Inspecting files following the order of suspf can easily
outperform the other two baselines, cntCB and simCB . For
all three projects, acc@n with suspf is significantly higher:
for Lang and Math, acc@1 increases at least by 2600% and
1067%, and by 800% and 592%, when compared to cntCB

and simCB , respectively. For Closure, while both cntCB

and simCB failed to rank any defective file at the top for
any fix-inducing commits (acc@1 = 0), suspf successfully
does so for at lest 27 commits (acc@1 = 27). Unlike the
random approach, cntCB and simCB do take past faults into
account, similarly to suspf . We argue that the difference in
actionability comes from whether an approach takes files that
were non-defective in the past into account: suspf does by
using past suspiciousness of files regardless of whether they
were defective in the past, whereas cntCB and simCB do
not by considering only the files that were defective in the
past. Consequently, from the improvement gained by using
suspf over cntCB and simCB , we suspect that the previously
suspicious files that were not actually defective may turn out
to be relevant to defective changes in subsequent commits that
we investigated.

Figure 4 visualises the complete comparison between suspf
and the baselines. Regardless of the choice of the time window,
suspf always reduces the inspection effort of developers by
successfully ranking defective files near the top.

Table IX presents how the effectiveness of suspf changes
as more reports are included for computation of suspf . Here,
CB denotes closed bug repots, B denotes bug reports only with
the status of open or close, and A denotes all types of bug
reports. In Lang and Math, acc@n increases as more report
types are considered. For example, by switching from using
only CB to A, the degree of improvement in acc@1 increases
from at least 592% to at least 908% for Math with 60 days
window. While acc@n decreases for Closure by considering
open bug reports in addition (i.e., going from C to B), suspf
is the most effective when all types of bug reports are taken
into consideration (i.e., A). These results suggest that we can
further improve actionability of DP results by leveraging more
bug reports. Table X reports how much effort (measured in
the number of files inspected) we can save by employing
suspf computed using all types of bug reports within the time
window. On average, developers can inspect two to nine fewer
files before meeting the first defective file.

Answer to RQ3: suspf can make DP results more
actionable by successfully guiding developers to defective files
based on the past suspiciousness. Comparison to the baselines
suggests that the previously suspicious, but non-defective files
can still be relevant to defective changes in the future commits.

V. THREATS TO VALIDITY

The primary threat to validity of this study is whether the
data collection and model inference have been performed cor-
rectly. To mitigate this threat, we use the SZZ algorithm [23]
that is widely used for defect prediction research [3], [13].
We use the open source implementation [24], with additional
filters from previous work [3] that are designed to reduce
false-positives. For model inference, we use the widely used
machine learning package, scikit-learn [32].

Threats to external validity concerns any factors that affects
how generalisable the results of this study are. The biggest
factor is the fact that our results are based on Defects4J,
a benchmark of real-world faults [21]. Defects4J has been
extensively studied in the context of Fault Localisation (FL),
and we use it to exploit the synergy between DP and FL.
However, further studies are needed to confirm our results for
the benchmark datasets in the area of defect prediction.

Threats to construct validity concerns whether our mea-
surement actually reflects what we intend to measure. All
our evaluation metrics are standard metrics used for binary
classification, which is how defect prediction is formulated.

VI. RELATED WORK

Our aim is to improve both accuracy and actionability of de-
fect prediction results by considering previous faults via fault
localisation techniques. Historical faults have been studied in
relation to recent or future faults. Yu et al. generated a math-
ematical model that predicts the probability of a subsystem
having a defect based on the correlation between the number of
past and future faults [33]. Similarly, Graves et al. utilised the
number of past defects to generate a model for predicting the
number of future faults in a program module [34]. Exploiting



TABLE VIII
ACTIONABILITY (acc@n): COLUMN n DENOTES THE n IN acc@n. THE PARENTHESISED NUMBER IN COLUMN PROJECT IS THE TOTAL NUMBER OF

EVALUATED FIX-INDUCING COMMITS. THE OTHER PARENTHESISED VALUES ARE THE RELATIVE IMPROVEMENTS. FOR cntCB AND simCB , WE
COMPARED THEM WITH THE RANDOM (R). FOR suspf , THESE VALUSE ARE ARE THE RELATIVE IMPROVEMENTS OVER R, cntCB , AND simCB .

30 days 60 days 90 days 120 days
Project n R cntCB simCB suspf cntCB simCB suspf cntCB simCB suspf cntCB simCB suspf

Lang (131)
1 0 1 ( — ) 2 ( — ) 27 ( — ,26.00,12.50) 1 ( — ) 3 ( — ) 33 ( — ,32.00,10.00) 1 ( — ) 4 ( — ) 36 ( — ,35.00, 8.00) 1 ( — ) 4 ( — ) 42 ( — ,41.00, 9.50)
3 78 79 (0.01) 79 (0.01) 94 (0.21, 0.19, 0.19) 81 (0.04) 81 (0.04) 93 (0.19, 0.15, 0.15) 82 (0.05) 82 (0.05) 96 (0.23, 0.17, 0.17) 82 (0.05) 82 (0.05) 98 ( 0.26, 0.20, 0.20)
5 98 99 (0.01) 99 (0.01) 109 (0.11, 0.10, 0.10) 101 (0.03) 101 (0.03) 108 (0.10, 0.07, 0.07) 102 (0.04) 102 (0.04) 111 (0.13, 0.09, 0.09) 102 (0.04) 102 (0.04) 110 (0.12, 0.08, 0.08)

Math (324)
1 0 6 ( — ) 10 ( — ) 70 ( — ,10.67, 6.00) 4 ( — ) 13 ( — ) 90 ( — ,21.50, 5.92) 4 ( — ) 12 ( — ) 93 ( — ,22.25, 6.75) 4 ( — ) 12 ( — ) 89 ( — ,21.25, 6.42)
3 151 155 (0.03) 155 (0.03) 201 (0.33, 0.30, 0.30) 152 (0.01) 153 (0.01) 208 (0.38, 0.37, 0.36) 151 (0.00) 152 (0.01) 207 (0.37, 0.37, 0.36) 151 (0.00) 152 (0.01) 204 (0.35, 0.35, 0.34)
5 199 205 (0.03) 205 (0.03) 230 (0.16, 0.12, 0.12) 205 (0.03) 205 (0.03) 238 (0.20, 0.16, 0.16) 204 (0.03) 204 (0.03) 239 (0.20, 0.17, 0.17) 204 (0.03) 204 (0.03) 236 (0.19, 0.16, 0.16)

Closure (77)
1 0 0 ( — ) 0 ( — ) 28 ( —- , —- , —- ) 0 ( — ) 0 ( — ) 27 ( —- , —- , —- ) 0 ( — ) 0 ( — ) 28 ( —- , —- , —- ) 0 ( — ) 0 ( — ) 27 ( —- , —- , —- )
3 38 38 (0.00) 38 (0.00) 55 (0.45, 0.45, 0.45) 38 (0.00) 38 (0.00) 56 (0.47, 0.47, 0.47) 38 (0.00) 38 (0.00) 59 (0.55, 0.55, 0.55) 38 (0.00) 38 (0.00) 58 (0.53, 0.53, 0.53)
5 51 51 (0.00) 51 (0.00) 66 (0.29, 0.29, 0.29) 51 (0.00) 51 (0.00) 67 (0.31, 0.31, 0.31) 51 (0.00) 51 (0.00) 67 (0.31, 0.31, 0.31) 51 (0.00) 51 (0.00) 66 (0.29, 0.29, 0.29)
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Fig. 4. The effort spent before meeting the first defective file: the x-axis is the number of non-defective files that are inspected, and the y-axis represents the
number of fix-inducing commits in which at least one of their defective file is located in the top x+ 1. For better visualisation, the graphs cover up to only
95% of the fix-inducing commits. For cntCB and simCB , we report only the best results.

,
TABLE IX

COMPARISON BETWEEN THREE TYPES OF suspf USING THREE DIFFERENT
SETS OF REPORTS (CB, B, AND A). THE ONE WITH THE BEST

PERFORMANCE IS IN BOLD TEXT.

30 days 60 days 90 days 120 days
Project n CB B A CB B A CB B A CB B A

Lang (131)
1 27 49 49 33 51 51 36 53 53 42 57 57
3 94 101 101 93 99 99 96 96 96 98 99 99
5 109 111 111 108 111 111 111 113 113 110 111 111

Math (324)
1 70 88 123 90 94 131 93 100 134 89 95 125
3 201 206 233 208 204 243 207 204 238 204 206 237
5 230 238 261 238 242 266 239 247 264 236 244 263

Closure (77)
1 28 26 32 27 20 30 28 17 31 27 18 32
3 55 52 60 56 50 58 59 49 60 58 48 60
5 66 65 69 67 61 67 67 64 65 66 63 65

TABLE X
EFFORT SAVED FROM USING suspf WITH ALL REPORTS (A) (AVG. # OF

FILES): cnt AND sim ARE THE SHORT OF CNTCB AND SIMCB .

30 days 60 days 90 days 120 days
Project R cnt sim R cnt sim R cnt sim R cnt sim

Lang 4.5 4.5 4.5 4.7 3.9 4.0 4.7 3.3 3.3 5.1 3.8 3.8

Math 8.1 4.9 4.9 8.8 5.6 5.5 9.0 5.9 5.8 8.6 5.5 5.5

Closure 2.4 2.4 2.4 2.1 2.1 2.1 2.0 2.0 2.0 1.9 1.9 1.9

the correlation even further, Hassan and Holt generated the list
of the top ten subsystems that are most susceptible to have
faults based on their previous faults [35]. Zimmerman et al.
also showed that the number of pre-release and post-release
faults are correlated [36]. While all these studies highlight the
correlation between past and future faults, most of them stop
at looking at the number and location of faults. We try to
provide richer information for defect prediction by adopting a
fault localisation technique.

Recently, Bowes et al. proposed a new defect prediction

technique that uses the results of mutation testing on a target
program [25]. The results showed that the performance of
defect prediction could be improved by using the dynamic
analysis. While this work is similar in the sense that it exploits
information from other faults, it uses artificial mutants whereas
we directly leverage previous faults via fault localisation.

VII. CONCLUSION

We focus on the observation that while both fault locali-
sation and defect prediction try to assure a certain degree of
software quality, the impact each process has on the other has
been rarely investigated. As the first step of exploring this
mostly untouched area from the side of defect prediction, we
leverage the past suspiciousness scores of code changes com-
puted from fault localisation to improve defect prediction. The
experimental results on three open-source projects confirm that
the past suspiciousness of code can enhance defect prediction
by improving the performance of JIT defect prediction models
and assisting developers on processing fix-inducing commits
via further directing them to defective files.
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