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Abstract—Defect prediction models help software quality assurance teams to allocate their limited resources to the most defect-prone
modules. Model validation techniques, such as k-fold cross-validation, use historical data to estimate how well a model will perform
in the future. However, little is known about how accurate the estimates of model validation techniques tend to be. In this paper, we
investigate the bias and variance of model validation techniques in the domain of defect prediction. Analysis of 101 public defect
datasets suggests that 77% of them are highly susceptible to producing unstable results—selecting an appropriate model validation
technique is a critical experimental design choice. Based on an analysis of 256 studies in the defect prediction literature, we select
the 12 most commonly adopted model validation techniques for evaluation. Through a case study of 18 systems, we find that single-
repetition holdout validation tends to produce estimates with 46%-229% more bias and 53%-863% more variance than the top-ranked
model validation techniques. On the other hand, out-of-sample bootstrap validation yields the best balance between the bias and
variance of estimates in the context of our study. Therefore, we recommend that future defect prediction studies avoid single-repetition
holdout validation, and instead, use out-of-sample bootstrap validation.

Index Terms—Defect Prediction Models, Model Validation Techniques, Bootstrap Validation, Cross Validation, Holdout Validation.

1 INTRODUCTION

Defect prediction models help software quality assur-
ance teams to effectively focus their limited resources on
the most defect-prone software modules. Broadly speak-
ing, a defect prediction model is a statistical regression
model or a machine learning classifier that is trained
to identify defect-prone software modules. These defect
prediction models are typically trained using software
metrics that are mined from historical development data
that is recorded in software repositories.

Prediction models may provide an unrealistically opti-
mistic estimate of model performance when (re)applied
to the same sample with which they were trained. To
address this problem, model validation techniques (e.g., k-
fold cross-validation) are used to estimate the model
performance. Model performance is used to (1) indicate
how well a model will perform on unseen data [22} 25,
65, [83] [113, 121]); (2) select the top-performing prediction
model [36, 54} 62, 73| 77, 107, 115]; and (3) combine
several prediction models [7, 91} 111} [117].

The conclusions that are derived from defect predic-
tion models may not be sound if the estimated perfor-
mance is unrealistic or unstable. Such unrealistic and
unstable performance estimates could lead to incorrect
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model selection in practice and inaccurate conclusions
for defect prediction studies [70] [105].

Recent research has raised concerns about the bias (i.e.,
how much do the performance estimates differ from
the model performance on unseen data?) and wvariance
(i.e., how much do performance estimates vary when
the experiment is repeated on the same data?) of model
validation techniques when they are applied to defect
prediction models [34, 68| [73] [77, 92| [114]. An optimal
model validation technique would not overestimate or
underestimate the model performance on unseen data.
Moreover, the performance estimates should not vary
greatly when the experiment is repeated. Mittas et al. [73]
and Turhan et al. [114] point out that the random nature
of sampling used by model validation techniques may
introduce bias. Myrtveit et al. [77] point out that a high
variance in the performance estimates that are derived
from model validation techniques is a critical problem
in comparative studies of prediction models.

To assess the risk that defect prediction datasets pose
with respect to producing unstable results, we analyze
the number of Events Per Variable (EPV) in publicly-
available defect datasets. Models that are trained using
datasets where the EPV is low (i.e., below 10) are espe-
cially susceptible to unstable results. We find that 77%
of defect prediction datasets have EPV values below 10,
and thus are highly susceptible to producing unstable
results. Hence, selecting an appropriate model validation
technique is a critical experimental design choice.

Therefore, in this paper, we explore the bias and
variance of model validation techniques in both high-
risk (i.e., EPV=3) and low-risk (i.e., EPV=10) contexts.
Based on an analysis of 256 defect prediction studies that
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were published from 2000-2011, we select the 12 most
popular model validation techniques for our study. The
selected techniques include holdout, cross-validation,
and bootstrap family techniques. We evaluate 3 types
of classifiers, i.e., probability-based (i.e., naive bayes),
regression-based (i.e., logistic regression) and machine
learning (i.e., random forest) classifiers. Through a case
study of 18 systems spanning both proprietary and
open source domains, we address the following two
research questions:

(RQ1) Which model validation techniques are the
least biased for defect prediction models?
Irrespective of the type of classifier, the out-
of-sample bootstrap tends to provide the least
biased performance estimates in terms of
both threshold-dependent (e.g., precision) and
threshold-independent performance measures
(e.g., AUC).

(RQ2) Which model validation techniques are the
most stable for defect prediction models?
Irrespective of the type of classifier, the ordinary
bootstrap is the most stable model validation
technique in terms of threshold-dependent and
threshold-independent performance measures.

Furthermore, we derive the following practical guide-
lines for future defect prediction studies:

1) The single holdout family of model validation
techniques should be avoided, since we find that
single holdout validation tends to produce perfor-
mance estimates with 46%-229% more bias and 53%-
863% more variance than the top-ranked model
validation techniques.

2) Researchers should use the out-of-sample boot-
strap model validation techniques, since we find
that out-of-sample bootstrap validation is less prone
to bias and variance than holdout or cross-validation
counterparts in the sparse data contexts that are
present in many publicly-available defect datasets.

To the best of our knowledge, this paper is the
first work to examine: (1) a large collection of model
validation techniques, especially bootstrap validation,
which has only rarely been explored in the software
engineering literature; (2) the bias and variance of model
validation techniques for defect prediction models; and
(3) the distribution of Events Per Variable (EPV) of
publicly-available defect datasets (Section [2). Further-
more, we introduce (4) the Scott-Knott Effect Size Differ-
ence (ESD) test—an enhancement of the standard Scott-
Knott test (which cluster distributions into statistically
distinct ranks [90]), which makes no assumptions about
the underlying distribution and takes the effect size into
consideration (Section [5.8.1).

Paper organization. Section |2|introduces the Events Per
Variable (EPV) in a dataset, i.e., a metric that quantifies

the risk of producing unstable results, and presents real-
istic examples to illustrate its potential impact. Section
introduces the studied model validation techniques. Sec-
tion [ situates this paper with respect to the related work.
Section [5| discusses the design of our case study, while
Section 6| presents the results with respect to our two
research questions. Section [7] provides a broader discus-
sion of the implications of our results, while Section 8|
derives practical guidelines for future research. Section
discloses the threats to the validity of our study. Finally,
Section [10| draws conclusions.

2 MOTIVATING EXAMPLES

Mende [67] and Jiang et al. [51] point out that model
validation techniques may not perform well when using
a small dataset. An influential characteristic in the per-
formance of a model validation technique is the number
of Events Per Variable (EPV) [2, 16, 82], 99], i.e., the ratio
of the number of occurrences of the least frequently
occurring class of the dependent variable (i.e., the events)
to the number of independent variables used to train
the model (i.e., the variables). Models that are trained
using datasets where the EPV is low (i.e., too few events
are available relative to the number of independent
variables) are especially susceptible to overfitting (i.e.,
being fit too closely to the training data) and produce
unstable results [18] 82].

In order to assess whether low EPV values are affect-
ing defect prediction studies, we analyze 101 publicly-
available defect datasets (see Section for details
on our selection process for the studied datasets). 76
datasets are downloaded from the Tera-PROMISE repos-
itory [69], 12 clean NASA datasets are provided by
Shepperd et al. [93], 5 datasets are provided by Kim
et al. [56, [118]], 5 datasets are provided by D’Ambros et
al. [21)122]], and 3 datasets are provided by Zimmermann
et al. [122].

As is often done in defect prediction studies [21} 22
68, 186, 106, 122]], we create our dependent variable by
classifying the modules in these datasets as defective
(i.e., #defects > 0) or clean (i.e., #defects = 0). We
then calculate the EPV using the number of independent
variables that are offered by the studied datasets.

Figure [1] shows the distribution of EPV values in the
studied datasets using a beanplot [53]]. Beanplots are
boxplots in which the horizontal curves summarize the
distribution of a dataset. The long vertical black line
indicates the median value. Peduzzi et al. [82] argue that,
in order to avoid unstable results, the EPV of a dataset
should be at least 10. Thus, we shade the dataset that
fall into the high-risk area in red.

78 out of 101 publicly-available defect datasets (77%) are

highly susceptible to producing inaccurate and unstable

results. Hence, selecting an appropriate model validation
technique is a critical experimental design choice.
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Fig. 1: The distribution of Events Per Variable (EPV)
values in publicly-available defect prediction datasets.
The black line indicates the median value. The vertical
red line indicates the rule-of-thumb EPV value of 10 that
is recommended by Peduzzi et al. [82]. The red-shaded
area indicates the high-risk datasets that do not meet this
recommendation (EPV < 10).

Figure [I] shows that 77% of the studied datasets
have an EPV value below 10. Furthermore, the median
EPV value that we observe is 3, indicating that half of
the studied datasets are at a high risk of producing
inaccurate and unstable results. Indeed, only 23% of
the studied datasets have EPV values that satisfy the
recommendation of Peduzzi et al. [82].

Below, we present realistic examples to illustrate im-
pact that model validation techniques and EPV can have
on the performance of defect prediction models.

2.1 The Risk of Producing Inaccurate Performance
Estimate

To assess the risk that model validation techniques pose
with respect to producing inaccurate performance esti-
mates, we analyze the performance of a defect predic-
tion model when it is produced by model validation
techniques. We select the JM1 NASA dataset as the
subject of our analysis, since it is widely used in different
defect prediction studies [37, 47, 48, 51}, [62, |66} 98] [116].
We focus on the high-risk EPV context (i.e., EPV= 3)
because Figure [1| shows that 50% of the 101 studied
defect datasets have an EPV value below 3. Thus, we
select a sample from the JM1 dataset such that the EPV is
3. This sampling yields a dataset with 300 observations
(i.e., 63 defective and 237 clean modules). We train a
defect prediction model using logistic regression [20]
with the implementation that is provided by the glm R
function [85]. We measure the performance of the defect
prediction models using the Area Under the receiver
operator characteristic Curve (AUC) [39]. Finally, we
apply 12 different model validation techniques in order
to produce performance estimates (see Section [3| for
details on our selection process for the studied model
validation techniques).

The performance estimates that are produced by
model validation techniques vary by up to 15 per-
centage points. We find that the AUC performance esti-
mates that are produced by model validation techniques
vary from 0.58 to 0.73. Indeed, the ordinary bootstrap
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Fig. 2: The distribution of performance estimates that
are produced by the repeated 10-fold cross-validation at
different EPV contexts when the experiment is repeated
100 times.

produces an estimated AUC of 0.73, while the holdout
50% validation produces an estimated AUC of 0.58. This
suggests that defect prediction models may produce
inaccurate performance estimates if the wrong different
model validation technique is selected. However, it is
not clear which model validation techniques provide the
most accurate performance estimates in low EPV con-
texts. Hence, we evaluate each of our research questions
across a variety of model validation techniques.

2.2 The Risk of Producing Unstable Results in De-
fect Datasets

To assess the risk that defect datasets pose with respect to
producing unstable performance estimates, we analyze
the variation in performance estimates that are produced
by defect prediction models when the experiments are
repeated at different EPV contexts. Similar to Section 2.1}
we use the M1 NASA dataset as the subject of our
analysis. We train defect prediction models using logistic
regression [20] and measure the AUC performance. In or-
der to assess whether datasets at different EPV values are
affecting performance estimates, we draw sample defect
datasets of different EPV values (i.e., EPV= 1,3,5,10).
Since we preserve the original rate of defective modules
in these samples (i.e., 21%), our samples are of 100, 300,
500, and 1,000 modules for an EPV value of 1, 3, 5, and
10, respectively (see Section for details on sample
size generation). We apply the repeated 10-fold cross-
validation, since it is one of the most commonly-used
model validation techniques in defect prediction studies
(see Section [3| for details on our literature analysis).
In order to investigate the variation of performance
estimates, we repeat the experiment 100 times. Figure
shows the distribution of the 100 AUC performance
estimates for each EPV context.

Performance estimates that are produced by a model
that is trained in a low-risk EPV context (i.e., EPV= 10)
are more stable than that of a model that is trained in
a high-risk EPV context (i.e.,, EPV= 3). Figure [2 shows
that the performance estimates produced by the model
that is trained in a low-risk EPV context (i.e., EPV= 10)
vary from 0.69 to 0.70, while the performance estimates
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TABLE 1: Summary of model validation techniques.
Family Technique Training sample  Testing sample Estimated performance Iteration(s)
Holdout Holdout 0.5 50% of original Independent: 50% of original A single estimate 1
Holdout 0.7 70% of original Independent: 30% of original A single estimate 1
Repeated Holdout 0.5  50% of original Independent: 50% of original Average of performance of 100
several samples
Repeated Holdout 0.7  70% of original Independent: 30% of original Average of performance of 100
several samples
Cross-validation ~ Leave-one-out N-1 of original Independent: Subject that is not ~ Average of performance of N
included in the training sample  several samples
2-Fold 50% of original Independent: 50% of original Average of performance of 2
several samples
10-Fold 90% of original Independent: 10% of original Average of performance of 10
several samples
10 x 10-Fold 90% of original Independent: 10% of original Average of performance of 100
several samples
Bootstrapping Ordinary Bootstrap Original Average of performance of 100
several samples
Optimism-reduced Bootstrap Original Apparent! - optimism 100
Out-of-sample Bootstrap Independent: the training sub-  Average of performance of 100
jects that are not sampled in several samples
bootstrap
.632 Bootstrap Bootstrap Independent: the training sub-  0.368 x Apparent’ + 0.632 100

jects that are not sampled in

x average(out-of-sample)

bootstrap

t Apparent performance is computed from a model that is trained and tested on the original sample.

produced by the model that is trained in a high-risk
EPV context (i.e., EPV= 3) vary from 0.56 to 0.67. Thus,
model validation techniques may help to counter the
risk of low EPV datasets through built-in repetition (e.g.,
M bootstrap iterations or k folds of cross-validation).
However, it is not clear which model validation tech-
niques provide the most stable performance estimates in
such low EPV contexts. Hence, we evaluate each of our
research questions in both high-risk (i.e., EPV=3) and
low-risk (i.e., EPV=10) contexts.

3 MoODEL VALIDATION TECHNIQUES IN DE-
FECT PREDICTION LITERATURE

There are a plethora of model validation techniques
available. Since it is impractical to study all of these
techniques, we would like to select a manageable, yet
representative set of model validation techniques for
our study. To do so, we analyze the defect prediction
literature in order to identify the commonly used model
validation techniques.

We begin by selecting 310 papers that were published
between 2000-2011 from two literature surveys of defect
prediction—208 papers from the survey of Hall et al. [38]
and 102 papers from the survey of Shihab [94]. After
eliminating duplicate papers, we are left with 256 unique
defect prediction studies for analysis.

We read the 256 papers in order to identify the most
commonly-used model validation techniques in defect
prediction research. We find that 38 of the studied papers
needed to be excluded from our analysis because they
did not train defect prediction models. For example,
many of the excluded papers performed correlation
analyses, which does not require a model validation

technique. Furthermore, another 35 papers also needed
to be excluded because they did not use any model val-
idation technique. Finally, our analysis below describes
our findings with respect to the 183 papers that used
model validation techniques.

89 studies (49%) use k-fold cross-validation, 83 studies
(45%) use holdout validation, 10 studies (5%) use
leave-one-out cross-validation, and 1 study (0.5%) uses
bootstrap validation.

Below, we describe each studied model validation
technique. Table [I| provides an overview of the three
families of model validation techniques that we select
based on our study of the defect prediction literature.

3.1 Holdout Validation

Holdout validation randomly splits a dataset into train-
ing and testing corpora according to a given proportion
(e.g., 30% holdout for testing). The training corpus is
only used to train the model, while the testing corpus
is only used to estimate the performance of the model.
Prior work has shown that holdout validation is statis-
tically inefficient because much of the data is not used
to train the prediction model [31} 133} 40, [75, 100} [102].
Moreover, an unfortunate split of the training and testing
corpora may cause the performance estimate of holdout
validation to be misleading. To reduce the bias and vari-
ance of holdout validation results, prior studies suggest
that it be applied in a repeated fashion [9, [80] 109} 119]
120]. In this paper, we study the commonly used variant
of repeated holdout validation, where the entire process
is repeated 100 times.
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3.2 Cross-Validation

Cross-validation extends the idea of holdout validation
by repeating the splitting process several times. In this
paper, we study the k-fold cross-validation technique,
which randomly partitions the data into k£ folds of
roughly equal size where each fold contains roughly the
same proportions of the defective ratio [35][102]. A single
fold is used for the testing corpus, and the remaining
k — 1 folds are used for the training corpus. The process
of splitting is repeated k times, using each of the & folds
as the testing corpus once. The average of the k results
is used to estimate the true model performance.

The advantage of k-fold cross-validation is that all of
the data is at one point used for both training and testing.
However, selecting an appropriate value for k presents a
challenge. In this paper, we explore two popular % values
(i-e., k=2 and k = 10).

While the cross-validation technique is known to be
nearly unbiased, prior studies have shown that it can
produce unstable results for small samples [11) 145, 51
To improve the variance of cross-validation results, the
entire cross-validation process can be repeated several
times. In this paper, we study the commonly used
variant of the 10-fold cross-validation where the entire
process is repeated 10 times (i.e., 10 x 10-fold cross-
validation).

Leave-One-Out Cross Validation (LOOCYV) is the extreme
case of k-fold cross-validation, where k is equal to the
total number of observations (n). A classifier is trained
n times using n — 1 observations, and the one remaining
observation is used for testing. In a simulation exper-
iment [13], and an experiment using effort estimation
datasets [57], prior work has shown that LOOCYV is the
most unbiased model validation technique.

We considered two approaches to estimate model per-
formance when using LOOCYV in the defect prediction
context (i.e., classifying if a module is defective or clean):

(1) Computing performance metrics once for each it-
eration. However, threshold-dependent performance
measures achieve unrealistic results. Take, for exam-
ple, the precision metric—when the one testing ob-
servation is a defective module, the precision value
will either 0% (meaning the model suggests that the
module is clean) or 100% (the model suggests that
the module is defective). Alternatively, when the one
testing observation is a clean module, the precision
value is undefined because the denominator (i.e.,
#true positives + #false positives) is zero.

(2) Computing performance metrics using the N pre-
dicted values all at once. While this approach avoids
the pitfalls of approach 1, this approach will pro-
duce a single performance value. Thus, using this
approach, we cannot measure the variance of perfor-
mance estimates. Furthermore, this approach yields
bias values that are not comparable to the other
studied model validation techniques, since they are
not based on a distribution.

By considering the trade-offs of the considered ap-
proaches, we opt to apply LOOCV using approach 1
to only the Brier score (see Section because it
can be computed using a single observation for test-
ing [40] 143 84].

3.3 Bootstrap Validation

The bootstrap is a powerful model validation technique
that leverages aspects of statistical inference [33] 40,
43, [100]. In this paper, we study four variants of the
bootstrap. We describe each variant below.

The ordinary bootstrap was proposed by Efron et al. [31].
The bootstrap process is made up of two steps:

(Step 1) A bootstrap sample of size N is randomly
drawn with replacement from an original
dataset that is also of size V.

(Step 2) A model is trained using the bootstrap sample
and tested using the original sample.

These two steps are repeated M times to produce a
distribution of model performance measurements from
which the average is reported as the performance esti-
mate. The key intuition is that the relationship between
the studied dataset and the theoretical population from
which it is derived is asymptotically equivalent to the
relationship between the bootstrap samples and the
studied dataset.

The optimism-reduced bootstrap is an enhancement to
the ordinary bootstrap that is used to correct for upward
bias [30]. The enhancement alters Step 2 of the ordinary
bootstrap procedure. A model is still trained using the
i bootstrap sample, but the model is tested twice—
once using the original sample and again using the
bootstrap sample from which the model was trained.
The optimism of the model is estimated by subtracting
the performance (P) of the model when it is applied
to the i bootstrap sample from the performance of
the model when it is applied to the original sample
(see Equation [I). Optimism calculations are repeated M
times to produce a distribution from which the average
optimism is derived.

M
.. 1 00 T
Optimism = Vi Z(Pgoott(i) - P 1)

boot(7)
=1

Finally, a model is trained using the original sample
and tested on the original sample, which yields an
unrealistically inflated performance value. The average
optimism is subtracted from that performance value to
obtain the performance estimate (see Equation [2).

Optimism-reduced = P,;# — Optimism ()

The out-of-sample bootstrap, another enhancement to the

ordinary bootstrap, is used to leverage the unused rows

from the bootstrap samples. Similar to the optimism-
reduced bootstrap, Step 2 of the ordinary bootstrap
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procedure is altered. A model is still trained using the
drawn bootstrap sample, but rather than testing the
model on the original sample, the model is instead tested
using the rows that do not appear in the bootstrap
sample [29]. On average, approximately 36.8% of the
rows will not appear in the bootstrap sample, since the
bootstrap sample is drawn with replacement. Again, the
entire bootstrap process is repeated M times, and the
average out-of-sample performance is reported as the
performance estimate.

The .632 bootstrap, an enhancement to the out-of-
sample bootstrap, is designed to correct for the down-
ward bias in performance estimates [29]. Similar to the
optimism-reduced bootstrap, a model is first trained
using the original sample and tested on the same origi-
nal sample to obtain an “apparent” performance value.
This yields an unrealistically inflated performance value,
which is combined with the upwardly-biased estimate
from the out-of-sample bootstrap as follows:

M
1 ~ oot
632 Bootstrap = = (0.368 x Py +0.632 x Py V")
i=1
3)

The two constants in Equation 3| (i.e., 0.632 and 0.368)
are carefully selected. The constants are selected because
the training corpus of the out-of-sample bootstrap will
have approximately 63.2% of the unique observations
from the original dataset and the testing corpus will
have 36.8% (i.e., 100% — 63.2%) of the observations.
Furthermore, since the out-of-sample bootstrap tends
to underestimate and the apparent performance tends
to overestimate, 0.632 is used to correct the downward
bias of the out-of-sample bootstrap and 0.368 is used to
correct the upward bias of the apparent performance.

4 RELATED WORK & RESEARCH QUESTIONS

Defect prediction models may produce an unrealistic
estimation of model performance when inaccurate and
unreliable model validation techniques are applied. Such
inaccurate and unreliable model validation techniques
could lead to incorrect model selection in practice and
unstable conclusions of defect prediction studies.
Recent research has raised concerns about the bias
of model validation techniques when applied to defect
prediction models [34] (68, [70, 73, [77, [114]. The bias
of a model validation technique is often measured in
terms of the difference between a performance estimate
that is derived from a model validation technique and
the model performance on unseen data. A perfectly
unbiased model validation technique will produce a
performance estimate that is equivalent to the model
performance on unseen data. Mittas et al. [73], Turhan
et al. [114], and Myrtveit et al. [77] point out that the
random nature of sampling that is employed by model
validation techniques is a potential source of bias. Gao et

al. [34] point out that an unfortunate division of training
and testing corpora may also introduce bias.

Plenty of prior studies have explored the bias of
model validation techniques in other research domains.
However, these studies have arrived at contradictory
conclusions. Indeed, some studies conclude that the
bootstrap achieves the least biased estimate of model
performance [8) [11], while others conclude that 10-fold
cross-validation achieves the least biased estimate of
model performance [58) [75]. Other work concludes that
LOOCYV should be used to achieve the most accurate
estimate of model performance [13] 57].

We suspect that the contradictory conclusions of prior
work are largely related to changes in experimental
context. For example, some studies conduct simulation
experiments [11] 24, 28, 32, 45| 55], while others use
empirical data [11} 28] 57, 58, [75].

The lack of consistency in the conclusions of prior
work makes it hard to derive practical guidelines about
the most appropriate model validation technique to use
in defect prediction research. To address this, we formu-
late the following research question:

(RQ1) Which model validation techniques are the least
biased for defect prediction models?

In addition to the bias of a model validation technique,
it is also important to evaluate its variance [51} [67, (70,
77, 78, 92]—the performance estimates should not vary
broadly when the experiment is repeated. The variance
of a model validation technique is typically measured in
terms of the variability of the estimated performance,
i.e., how much do performance estimates vary when
the experiment is repeated on the same data. Myrtveit
et al. [77] point out that high variance in performance
estimates from model validation techniques is a critical
challenge in comparative studies of prediction models.
Shepperd and Kadoda [92] show that the performance of
defect prediction models that are trained using different
subsamples that are drawn from the same underlying
dataset vary widely. To structure our analysis of the
variance of model validation techniques, we formulate
the following research question:

(RQ2) Which model validation techniques are the most
stable for defect prediction models?

5 CASE STuDY DESIGN

In this section, we discuss our selection criteria for the
studied systems and then describe the design of our case
study experiment that we perform in order to address
our research questions.
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5.1 Studied Datasets

In selecting the studied datasets, we identified three
important criteria that needed to be satisfied:

— Criterion 1—Different corpora: Recent research
points out that the performance of defect prediction
models may be limited to the dataset from which
they are trained [98] [108]. To extend the generality
of our conclusions, we choose to train our defect
prediction models using systems from different cor-
pora and domains.

— Criterion 2—Sufficient EPV: Since we would like
to study cases where EPV is low-risk (i.e, = 10)
and high-risk (i.e, = 3), the systems that we select
for analysis should begin with a low-risk EPV. Our
rationale is that we prefer to control for dataset-
specific model performance by generating low and
high-risk EPV settings using the same dataset. This
ensures that a comparison of EPV is derived from
the same context. Essentially, we disregard datasets
with low initial EPV because we prefer to under-
sample to generate low and high-risk EPV datasets
from an initially high EPV dataset. For example, if
we were to select datasets with an initial EPV of 5,
we would need to over-sample the defective class in
order to raise the EPV to 10. However, the defective
class of a system with an initial EPV of 15 can be
under-sampled in order to lower the EPV to 10.

— Criterion 3—Sane defect data: Since it is unlikely
that more software modules have defects than are
free of defects, we choose to study datasets that
have a rate of defective modules below 50%.

To satisfy criterion 1, we begin our study using the
101 publicly-available defect datasets described in Sec-
tion To satisfy criterion 2, we exclude the 78 datasets
that we found to have an EPV value lower than 10
in Section To satisfy criterion 3, we exclude an
additional 5 datasets because they have a defective ratio
above 50%.

Table 2| provides an overview of the 18 datasets that
satisfy our criteria for analysis. To combat potential
bias in our conclusions, the studied datasets include
proprietary and open source systems with varying size,
domain, and defective ratio.

Figure 3| provides an overview of the approach that we
apply to each studied system. The crux of our approach
is that we calculate model performance on unseen data
such that the performance estimates that are derived
from model validation techniques can be compared to
the model performance on unseen data. The approach is
repeated 1,000 times to ensure that the results are robust
and that they converge.

5.2 Generate Sample Data

In order to compare the studied model validation tech-
niques, we begin by creating sample and unseen datasets

Project System Defective  #Files #Metrics EPV
Ratio
NASA M1t 21% 7,782 21 80
PC5? 28% 1,711 38 12
Proprietary ~ Prop-12 15% 18,471 20 137
Prop-22 11% 23,014 20 122
Prop-3? 11% 10,274 20 59
Prop-42 10% 8,718 20 42
Prop-5° 15% 8,516 20 65
Apache Camel 1.22 36% 608 20 11
Xalan 2.5? 48% 803 20 19
Xalan 2.62 46% 885 20 21
Eclipse Platform 2.0° 14% 6,729 32 30
Platform 2.13 11% 7,888 32 27
Platform 3.0 15% 10,593 32 49
Debug 3.4% 25% 1,065 17 15
SWT 3.44 44% 1,485 17 38
JDT® 21% 997 15 14
Mylyn® 13% 1,862 15 16
PDE® 14% 1,497 15 14

TProvided by Shepperd et al. [93].
2Provided by Jureczko et al. [52].
3Provided by Zimmermann et al. [120].
4Provided by Kim et al. [56].
S5Provided by D’Ambros et al. [21]22].

TABLE 2: An overview of the studied systems.

using historical data from a studied dataset. The sam-
ple dataset is created in order to train our model for
performance on unseen data, while the unseen dataset
is used to test it. The sample dataset is also used to
train and test models using the studied model validation
techniques. The performance on the unseen dataset is
compared to the performance estimates that are derived
from the studied model validation techniques.

5.2.1 Sample Dataset

In order to produce our sample datasets, we select
observations with replacement from the input dataset,
while controlling for two confounding factors:

(C1) The defective ratio: While generating sample
datasets, we preserve the defective ratio of the
original dataset to ensure that the sample and
unseen datasets are representative of the original
dataset. Thus, the defective ratio of the unseen
datasets are the same as the defective ratio of the
original datasets.

(C2) The EPV: As mentioned above, we explore high-
risk (EPV = 3) and low-risk (EPV = 10) contexts.

Note that by controlling for C1 and C2, we have spec-
ified the number of defective modules (and indirectly,
the number of clean modules) in the sample dataset. For
example, the size of the original JM1 dataset is 7,782
modules. To generate a sample of the JM1 dataset with
EPV values of 3 and 10, we need to preserve (1) the
defective ratio of 21%; and (2) the 21 variables. Thus,
a sample size of the JM1 dataset with an EPV of 3 is
300 modules (i.e., 63 defective and 237 clean modules).
Similarly, a sample size of the J]M1 dataset with an EPV
of 10 is 1000 (i.e., 210 defective and 790 clean modules).
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Fig. 3: An overview of the design of our case study experiment.

5.3 Data Preparation for Model Performance on Un-
seen Data

Unfortunately, the population of the input dataset is
unknown, so the actual model performance on unseen
data cannot be directly measured. Inspired by previous
studies [11} 45, 55| 58| 59], we estimate the model perfor-
mance using unseen data, i.e., the observations from the
input dataset that do not appear in the sample dataset.
To do so, we use the sample dataset as the training
corpus for training a defect prediction model and we
use the unseen dataset as the testing corpus to measure
the performance of that defect prediction model.

5.4 Data Preparation for Performance Estimation

In order to compare the estimates of the studied model
validation techniques to the model performance on un-
seen data, we apply the model validation techniques
to the sample dataset. To split the sample dataset
into training and testing corpora, we use: (1) the
createDataPartition function of the caret R pack-
age for the holdout family of model validation tech-
niques [60, [61], (2) the createFolds function of the
caret R package for the cross-validation family of
model validation techniques [60, 61], and (3) the boot
function of the boot R package for the bootstrap family
of model validation techniques [15]].

5.5 Model Construction

We select three types of classifiers that are often used
in defect prediction literature. These types of classi-
fiers include probability-based (i.e., naive bayes [27]),
regression-based (i.e., logistic regression [20]) and ma-
chine learning-based (i.e., random forest [12]]) classifiers.

Naive bayes is a probability-based technique that as-
sumes that all of the predictors are independent of each
other [27]. We use the implementation of naive bayes
that is provided by the naiveBayes R function [71]].

Logistic regression measures the relationship between
a categorical dependent variable and one or more in-
dependent variables [20]. We use the implementation
of logistic regression that is provided by the glm R
function [85].

Random forest is a machine learning classifier that
constructs multiple decision trees from bootstrap sam-
ples [12]. Since each tree in the forest may return a
different outcome, the final class of a software module is
computed by aggregating the votes from all trees. We use
the implementation of random forest that is provided by
the randomForest R function [63]].

To ensure that the training and testing corpora have
similar characteristics, we do not re-balance or re-sample
the training data, as suggested by Turhan [112].

5.5.1 Normality Adjustment

Analysis of the distributions of our independent vari-
ables reveals that they are right-skewed. As suggested
by previous research [49) [68], we mitigate this skew by
log-transforming each independent variable (In(z + 1))
prior to using them to train our models.

5.6 Performance Measurement

We apply the defect prediction models that we train
using the training corpus to the testing corpus in
order to measure their performance. We use both
threshold-dependent and threshold-independent perfor-
mance measures to quantify the performance of our
models. We describe each performance metric below.

5.6.1 Threshold-Dependent Performance Measures

When applied to a module from the testing corpus,
a defect prediction model will report the probability
of that module being defective. In order to calculate
the threshold-dependent performance measures, these
probabilities are transformed into a binary classification
(defective or clean) using a threshold value of 0.5, ie.,
if a module has a predicted probability above 0.5, it is
considered defective; otherwise, the module is consid-
ered clean.

Using the threshold of 0.5, we compute the precision
and recall performance measures. Precision measures the
proportion of modules that are classified as defective,
which are actually defective (H’Ti-fFP) Recall measures the
proportion of actually defective modules that were clas-

sified as such (TPZL%) We use the confusionMatrix
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function of the caret R package [60, 61] to compute the
precision and recall of our models.

5.6.2 Threshold-Independent Performance Measures

Prior research has argued that the precision and recall
are unsuitable for measuring the performance of de-
fect prediction models because they: (1) depend on an
arbitrarily-selected threshold (typically 0.5) [} 5] 62} 186}
95, and (2) are sensitive to imbalanced data [23)} 44, |64}
67, [103]. Thus, we also use three threshold-independent
performance measures to quantify the performance of
our defect prediction models.

First, we use the Area Under the receiver operator charac-
teristic Curve (AUC) [39] to measure the discrimination
power of our models. The AUC measures a classifier’s
ability to discriminate between defective and clean mod-
ules (i.e., do the defective modules tend to have higher
predicted probabilities than clean modules?). AUC is
computed by measuring the area under the curve that
plots true positive rate against the false positive rate
while varying the threshold that is used to determine
whether a module is classified as defective or not. Values
of AUC range between 0 (worst classifier performance)
and 1 (best classifier performance).

In addition to the discrimination power, practitioners
often use the predicted probabilities to rank the defect-
prone files [74] 79, 96| [122]. Shihab et al. [96] point out
that practitioners often use the predicted probability to
make decisions. Mockus et al. [74] point out that the
appropriate range of probability values is important
to make an appropriate decision (e.g., high-reliability
systems may require a lower cutoff value than 0.5). How-
ever, the AUC does not capture all of the dimensions of
a prediction model [26] 40, [100, 101]. To measure the
accuracy of the predicted probabilities, we use the Brier
score and the calibration slope.

We use the Brier score [14, 89] to measure the distance
between the predicted probabilities and the outcome.
The Brier score is calculated as:

N

B= 1 - @
where f; is the predicted probability, o; is the outcome
for module ¢ encoded as 0 if module ¢ is clean and 1 if it
is defective, and N is the total number of modules. The
Brier score ranges from 0 (best classifier performance) to
1 (worst classifier performance).

Finally, we use the calibration slope to measure the
direction and spread of the predicted probabilities [20),
26, 140, 42} [72, 99| [101]]. The calibration slope is the slope
of a logistic regression model that is trained using the
predicted probabilities of our original defect prediction
model to predict whether a module will be defective
or not [20]. A calibration slope of 1 indicates the best
classifier performance and a calibration slope of 0 (or
less) indicates the worst classifier performance. We use
the val.prob function of the rms R package [41] to
calculate the Brier score, AUC, and calibration slope.

5.7 Bias and Variance Calculation

We calculate each performance measure using the model
performance on unseen data and the model validation
techniques. In order to address RQ1, we calculate the
bias, i.e., the absolute difference between the perfor-
mance that we derive from the model validation tech-
niques and the model performance on unseen data. In
order to address RQ2, we calculate the variance of the
performance measures that we derive from the model
validation techniques (in terms of standard deviation).

5.8 Ranking and Clustering

Finally, we group the model validation techniques into
statistically distinct ranks according to the their bias
and variance using the Scott-Knott Effect Size Difference
(ESD) test.

5.8.1 The Scott-Knott Effect Size Difference (ESD) test

The Scott-Knott test [90] uses hierarchical cluster analysis
to partition the set of treatment means into statistically
distinct groups (o = 0.05). Two major limitations of the
Scott-Knott test are that (1) it assumes that the data
should be normally distributed; and (2) it may create
groups that are trivially different from one another. To
strengthen the Scott-Knott test, we propose the Scott-
Knott Effect Size Difference (ESD) test—a variant of the
Scott-Knott test that is normality and effect size aware.
The Scott-Knott ESD test will (1) correct the non-normal
distribution of an input dataset; and (2) merge any two
statistically distinct groups that have a negligible effect
size into one group.

Normality correction. The Scott-Knott test assumes that
the data under analysis are normally distributed. Thus,
we mitigate the skewness by log-transforming each treat-
ment (In(xz+1)), since it is a commonly-used transforma-
tion technique in software engineering research [49 [68].
Effect size correction. To quantify the effect size, we use
Cohen’s delta (d) [16], which is the difference between
two means divided by the standard deviation of the data:

X1 — T2

d= s.d. ®)

where the magnitude is assessed using the thresholds
provided in Cohen [17], i.e. |d| < 0.2 “negligible”, |d| <
0.5 “small”, |d| < 0.8 “medium”, otherwise “large”.

We implement the Scott-Knott ESD testﬂ [104] based
on the implementation of the Scott-Knott test that is pro-
vided by the ScottKnott R package [46] and the im-
plementation of Cohen’s delta provided by the effsize
R package [110].

5.8.2 Ranking and Clustering Approach

Figure [ provides an overview of our approach. First,
to identify the least biased model validation techniques,
similar to our prior work [36], we perform a double

1. https:/ / github.com/klainfo /ScottKnottESD
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Fig. 4: An overview of our ranking and clustering ap-
proach.

Scott-Knott test. We apply a Scott-Knott ESD test on the
bias results from the 1,000 iterations that are performed
for each studied dataset individually. After performing
this first set of Scott-Knott ESD tests, we have a list
of ranks for each model validation technique (i.e., one
rank from each studied dataset). We provide these lists
of ranks to a second run of the Scott-Knott ESD test,
which produces a ranking of model validation tech-
niques across all of the studied datasets. We perform the
first set of Scott-Knott ESD tests in order to control for
dataset-specific model performance, since some datasets
may be more or less susceptible to bias than others. Since
only one variance value is computed for the 1,000 runs of
one technique, only a single Scott-Knott ESD test needs
to be applied to the variance values.

6 CASE STuDY RESULTS

In this section, we present the results of our case study
with respect to our two research questions.

(RQ1) Which model validation techniques are the
least biased for defect prediction models?

In order to address RQ1, we compute the bias in terms of
precision, recall, Brier score, AUC, and calibration slope.
We then present the results with respect to probability-
based (RQ1-a), regression-based (RQ1-b), and machine
learning-based (RQ1-c) classifiers. Figure |5 shows the
statistically distinct Scott-Knott ESD ranks of the bias of
the studied model validation techniques.

RQ1-a: Probability-Based Classifiers

The .632, out-of-sample, and optimism-reduced boot-
straps are the least biased model validation techniques
for naive bayes classifiers. Figure shows that the
.632, out-of-sample, and optimism-reduced bootstraps
are the only model validation techniques that consis-
tently appear in the top Scott-Knott ESD rank in terms of
precision, recall, Brier score, AUC, and calibration slope
bias in both EPV contexts.

Other techniques appear consistently in the top rank
for some metrics, but not across all metrics. For example,
the repeated 10-fold and 10-fold cross-validation tech-
niques appear in the top rank in terms of precision,
recall, AUC, and Brier score, but not in calibration
slope for the high-risk EPV context. We suspect that the
calibration slope that we derived from the 10-fold cross-
validation is upwardly-biased because of the scarcity of
defective modules in the small testing corpus of 10-fold
cross-validation (i.e., 10% of the input dataset).

While advanced model validation techniques with
built-in repetitions (i.e., repeated holdout validation,
cross-validation and bootstrap validation) tend to pro-
duce the least biased performance estimates, single-
repetition holdout validation tends to produce the most
biased performance estimates. Indeed, single-repetition
holdout validation tends to produce performance esti-
mates with 46%-229% more bias than the top-ranked
model validation techniques, suggesting that researchers
should avoid using single holdout validation, since it
tends to produce overly optimistic or pessimistic perfor-
mance estimates. However, repeated holdout validation
produces up to 43% less biased performance estimates
than single holdout validation does. Indeed, by repeating
the holdout validation technique, the amount of bias of
the high-risk EPV context is substantially reduced by
30%, 20%, 32%, and 43% for precision, recall, AUC, and
calibration slope, respectively. Indeed, single-repetition
holdout validation should be avoided.

RQ1-b: Regression-Based Classifier

The out-of-sample bootstrap is the least biased model
validation technique for logistic regression classifiers.
Figure shows that the out-of-sample bootstrap is
the only model validation technique that consistently
appears in the top Scott-Knott ESD rank in terms of
precision, recall, Brier score, AUC, and calibration slope
bias in both EPV contexts.

Other techniques appear consistently in the top rank
with respect to the low-risk EPV context, but not
the high-risk EPV context. For example, the .632 and
optimism-reduced bootstraps, and the 10-fold and re-
peated 10-fold cross-validation techniques consistently
appear in the top rank in the low-risk EPV context, but
do not consistently appear in the top ranks of the high-
risk EPV context. Indeed, Figure indicates that the
.632 bootstrap tends to produce recall estimates with 21%
more bias than the top-ranked technique in the high-
risk EPV context, while the optimism-reduced bootstrap,
10-fold, and repeated 10-fold cross-validation techniques
tend to produce precision estimates that are 29% more
biased than the top ranked technique in the high-risk
EPV context. Furthermore, the bias in performance esti-
mates in the high-risk EPV context is larger than those
of the low-risk EPV context. This indicates that the
performance estimates that are derived from the least
biased model validation techniques in the high-risk EPV
context tend to produce 46% more bias than the least
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biased model validation techniques in the low-risk EPV
context. A lack of generality across EPV contexts of some
model validation techniques and an increase of performance
bias in the high-risk EPV context, suggests that selecting a
robust model validation technique is an especially important
experimental design choice in the high-risk EPV contexts that
are commonplace in defect datasets (cf. Section [2).

RQ1-c: Machine Learning Classifier

The out-of-sample bootstrap and 2-fold cross-
validation are the least biased model validation
techniques for random forest classifiers. Figure
shows that the out-of-sample bootstrap and 2-fold
cross-validation techniques consistently appear in the
top Scott-Knott ESD rank in terms of precision, recall,
Brier score, AUC, and calibration slope bias in both
EPV contexts.

While the .632 and optimism-reduced bootstraps are
less biased for the naive bayes and logistic regression
classifiers, the .632 and optimism-reduced bootstraps are
quite biased for random forest classifiers. We suspect
that the upward-bias in the .632 and optimism-reduced
bootstraps have to do with the low training error rate
of random forest. Since the low training error rate often
produces a high apparent performance, the calculation
of .632 and optimism-reduced bootstraps, which are
partly computed using the apparent performance, are
biased. This suggests that the .632 and optimism-reduced
bootstraps are not appropriate for classifiers that have
low training error rates, such as random forest. This
finding is also complementary to Kohavi et al. [58], who
suggests that repeated 10-fold cross-validation should
be used. On the other hand, Kohavi et al. [58] did not
evaluate the out-of-sample bootstrap. In our analysis, we
find that the out-of-sample bootstrap is less-prone to bias
than repeated 10-fold cross-validation is.

Irrespective of the type of classifier, the out-of-sample
bootstrap tends to provide the least biased performance
estimates in terms of both threshold-dependent and
threshold-independent performance metrics.

(RQ2) Which model validation techniques are the
most stable for defect prediction models?

In order to address RQ2, we compute the variance in
terms of precision, recall, Brier score, AUC, and cali-
bration slope. We then present the results with respect
to probability-based (RQ2-a), regression-based (RQ2-b),
and machine learning-based (RQ2-c) classifiers. Figure [f]
shows the statistically distinct Scott-Knott ESD ranks of
the variance of the studied model validation techniques.

RQ2-a: Probability-Based Classifier

All variants of the bootstrap, repeated 10-fold cross
validation, and repeated holdout validation techniques

are the most stable model validation techniques for
naive bayes classifiers. Figure [ba|shows that, in addition
to the repeated 10-fold cross-validation and the repeated
holdout techniques, the .632, optimism-reduced, out-of-
sample, and ordinary bootstrap techniques are the only
model validation techniques that consistently appear in
the top Scott-Knott ESD rank in terms of both precision
and recall variance in both EPV contexts.

While advanced model validation techniques with
built-in repetitions (i.e., repeated holdout validation,
cross-validation and bootstrap validation) tend to yield
the most stable performance estimates, single holdout
validation, which only uses a single iteration, tends to
yield the least stable performance estimates. Indeed, sin-
gle holdout validation tends to produce performance es-
timates with 53%-863% more variance than the most sta-
ble model validation techniques. Moreover, the repeated
holdout validation produces 40%-68% more stable per-
formance estimates than single holdout validation does.
Indeed, by repeating the holdout validation technique,
the amount of variance in the high-risk EPV context is
substantially reduced by 45%, 45%, 48%, 40%, 68% for
precision, recall, Brier score, AUC, and calibration slope,
respectively. Indeed, holdout validation should be avoid
unless it is repeated.

RQ2-b: Regression-Based Classifier

The .632 and ordinary bootstraps are the most stable
model validation techniques for logistic regression
classifiers. Figure [6b] shows that the .632 and ordinary
bootstraps are the only model validation techniques that
consistently appear in the top Scott-Knott ESD rank in
terms of precision, recall, Brier score, AUC, and calibra-
tion slope variance in both EPV contexts.

Other techniques appear consistently in the top rank
for the low-risk EPV context, but not for high-risk EPV
context. For example, the optimism-reduced bootstrap
and the 10-fold cross-validation techniques appear con-
sistently in the top rank in terms of threshold-dependent
metrics in the low-risk EPV context, but not in the high-
risk EPV context. Indeed, Figure @] shows that there
is (on average) a 66% increase in terms of precision
variance and 91% increase in terms of recall variance
when those techniques are used in the high-risk EPV
context. We suspect that the precision and recall that are
derived from the cross-validation family are less stable
in the high-risk EPV context because an unfortunate split
of the training and testing corpora may result in too
few defective modules appearing in the testing corpus.
Hence, very few correct (or incorrect) predictions can
have a very large impact on cross-validation perfor-
mance estimates.

Furthermore, the optimism-reduced and out-of-
sample bootstraps, as well as the repeated 10-fold
cross-validation techniques appear consistently in the
top rank in terms of threshold-independent metrics
in the low-risk EPV context, but not in the high-risk
EPV context. Indeed, Figure [6b| shows that there is (on
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Fig. 5: The Scott-Knott ESD ranking of the bias of model validation techniques. The technique in a bracket indicates
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our studied datasets.
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Fig. 6: The Scott-Knott ESD ranking of the variance of model validation techniques. The technique in a bracket
indicates the top-performing technique for each classifier type. The red diamond indicates the average amount of

variance across our studied datasets.
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average) a 110% increase in terms of AUC variance
when those techniques are used in the high-risk EPV
context. We suspect that the AUC is less stable because
the AUC derived from these techniques are calculated
from a small amount of data in the testing corpus. For
example, 10-fold cross-validation is validated on 10%
of the original data and the optimism-reduced and
out-of-sample bootstraps are validated on 36.8% of the
original data. Conversely, the performance estimates
when using the ordinary bootstrap that are computed
using a sample that has the same size as the original
data is likely to produce the most stable performance
estimates. On the other hand, the .632 bootstrap, which
is an enhancement of the out-of-sample bootstrap (cf.
Section [4), is also generally robust to the AUC variance.
A lack of generality across EPV contexts of some model
validation techniques and an increase of performance
variance in the high-risk EPV context, indeed, suggest
that the EPV plays a major role in the stability of
performance estimates.

RQ2-c: Machine Learning-Based Classifier

The ordinary bootstrap is the most stable model vali-
dation technique for random forest classifiers. Figure|6q
shows that the ordinary bootstrap is the only model
validation technique that consistently appears in the
top Scott-Knott ESD rank in terms of precision, recall,
Brier score, AUC, and calibration slope variance in
both EPV contexts.

We suspect that the most stable performance esti-
mates that are being produced by the ordinary boot-
strap because of the statistical inference properties of
the bootstrap itself. Indeed, the key intuition is that
the relationship between the performance that is de-
rived from a studied dataset and the true performance
that would be derived from the population of defect
datasets is asymptotically equivalent to the relationship
between the performance that is derived from a boot-
strap sample and the performance that is derived from
the studied dataset.

In addition to yielding highly biased results for ran-
dom forest classifiers (cf. RQ1-c), the .632 and optimism-
reduced bootstraps also tend to produce the least stable
performance estimates in terms of calibration slope. In-
deed, this further supports our suspicion that the .632
and optimism-reduced bootstraps are not appropriate
for classifiers that have low training error rates, such as
random forest.

Irrespective of the type of classifier, the ordinary bootstrap
is the most stable model validation technique in terms of
threshold-dependent and threshold-independent metrics.

7 DISCUSSION
7.1 Leave-One-Out Cross-Validation

In Section 3} we find that 5% of the analyzed defect pre-
diction literature uses the LOOCV technique. However,
since LOOCYV only performs one prediction per fold, it
is incompatible with the majority of our performance
metrics (see Section [3.2). Thus, we exclude it from our
core analysis of our research questions. On the other
hand, the bias and variance of the LOOCV technique
can be assessed using the Brier score.

Leave-one-out cross-validation is among the least
biased and most stable model validation techniques
in terms of Brier score. Indeed, Figures [5| and [f] show
that LOOCV appears in the top Scott-Knott ESD ranks
in terms of Brier score bias and variance. This finding
is very much complementary to recent work on soft-
ware effort estimation [57], which argues for the use of
LOOCYV for assessing software effort estimation models.

7.2 External Validation

We estimate the model performance using unseen data,
which may not be realistic, since it is derived from a
random sampling. While this random splitting approach
is common in other research areas [11, 45| 55, 58| 59],
recent studies in software engineering tend to estimate
the performance of defect models using data from sub-
sequent releases [50, [86H88]. We perform an additional
analysis in order to investigate whether the performance
of classifiers that is derived from model validation tech-
niques is similar to the performance of classifiers that
are trained using one release and tested on the next
one. We then repeat all of our experiments to compute
the bias and variance in terms of precision, recall, Brier
score, AUC, and calibration slope of naive bayes, logistic
regression, and random forest classifiers.

The out-of-sample bootstrap still yields the best
balance between bias and variance of performance
estimates. Based on our analysis of 5 releases of Pro-
prietary systems, 2 releases of Apache Xalan, and 3
releases of the Eclipse Platform, Figure @] shows that,
similar to Section [6] the out-of-sample bootstrap tends
to provide a good balance between bias and variance
of performance estimates in the high-risk EPV context.
We also find a consistent finding in the low-risk EPV
context, indicating that internally validated estimates of
model performance could accurately be obtained with
the out-of-sample bootstrap.

7.3 The Computational Cost of Model Validation
Techniques

Note that the computational cost (i.e., the number of
iterations) of each model validation technique varies (see
Table [T). For example, the performance that is derived
from holdout validation requires a single iteration, while
the performance derived from bootstrap validations re-
quires several iterations. Thus, for complex classifiers
(e.g., random forest), the advanced model validation
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Fig. 7: A scatter plot of the mean Scott-Knott ESD ranks in terms of bias and variance among 5 performance
metrics, 3 studied classifiers, and 18 studied systems for the high-risk EPV context (EPV= 3) when using two
different types of unseen data, i.e., Figure [7a| uses the observations from the input dataset that do not appear in the
sample dataset; and Figure |/b| uses the next software release. The techniques that appear in the upper-right corner

are top-performers.

techniques (e.g., bootstrap validation and repeated 10-
fold cross-validation) may require a large amount of total
execution time. However, since each iteration is indepen-
dent, they can be computed simultaneously. Therefore,
researchers can speed up the process using multi-core or
multi-thread processors.

In addition to the impact that the computational
cost of model validation techniques has on the total
execution time, it may affect the bias and variance of
performance estimates.

The number of iterations impacts the variance of
the performance estimates, but not the bias. Figure
[f| and Figure [7b] show that the bootstrap family and
repeated 10-fold cross-validation, which requires several
iterations, tend to yield the most stable performance esti-
mates, indicating that increasing the number of iterations
tends to produce more stable performance estimates.
This suggests that the repeated 10-fold cross-validation
is more preferable than the 10-fold cross-validation.
Conversely, we find that the number of iterations tends
to have less of an impact on the bias. For example,
all variants of bootstrap and repeated 10-fold cross-
validation that have the same amount of computational
cost (i.e., 100 iterations), have different amounts of bias
on performance estimates. Hence, we suspect that the
impact that model validation techniques have on the
bias of performance estimates may have more to do with
their calculation techniques (e.g., type or size of training
and testing data) than the number of iterations.

8 PRACTICAL GUIDELINES

Our experimental results indicate that the choice of
model validation technique can influence model perfor-
mance estimates, especially for complex classifiers. An
inappropriate model validation technique could lead to
misleading conclusions. In this section, we offer practical
guidelines for future defect prediction studies:

(1) Single-repetition holdout validation should be
avoided.
Section [3| shows that 45% of the surveyed defect
prediction literature uses the holdout model valida-
tion technique. However, Section [6] shows that the
single holdout family is consistently the most biased
and least stable model validation technique. Indeed,
our results show that the single holdout family
tends to produce performance estimates with 46%-
229% more bias and 53%-863% more variance than
the top-ranked model validation techniques. Hence,
researchers should avoid using the holdout family,
since it may produce overly optimistic or pessimistic
performance estimates and yield results that are diffi-
cult to reproduce. Section [p|shows that the repetitions
of holdout validation technique substantially reduce
the amount bias and variance, suggesting that the
repetition must be applied for the holdout valida-
tion. Nonetheless, the repeated holdout validation
techniques still produce performance estimates with
more variance than the ordinary bootstrap.

(2) Researchers should use out-of-sample bootstrap
validation instead of cross-validation or holdout.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Although other families of model validation tech-
niques are comparable to the out-of-sample boot-
strap techniques in the low-risk EPV context, Fig-
ure shows that, in high-risk EPV contexts, the
out-of-sample bootstrap technique is less biased (Fig-
ure[5) and more stable (Figure [6) than the other stud-
ied model validation techniques. Moreover, Figure
also confirms that internally validated estimates of
model performance can accurately be obtained with
the out-of-sample bootstrap. Furthermore, since Sec-
tion |4 shows that many publicly-available defect
datasets suffer from a high-risk EPV, we recommend
that researchers use the out-of-sample bootstrap in
future defect prediction studies.

9 THREATS TO VALIDITY

Like any empirical study design, experimental design
choices may impact the results of our study [105].
However, we perform a highly-controlled experiment to
ensure that our results are robust. Below, we discuss
threats that may impact the results of our study.

9.1 Construct Validity

The datasets that we analyze are part of several collec-
tions (e.g., NASA and PROMISE), which each provide
different sets of software metrics. Since the metrics vary,
this is another point of variation between the studied
systems that could impact the results. On the other hand,
the variation of metrics also strengthens the generaliza-
tion of our results—our findings are not bound to one
specific set of software metrics.

The conclusions of Section 2.2 are based on a rule-
of-thumb EPV value that is suggested by Peduzzi et
al. [82], who argue that, in order to avoid unstable
results, the EPV of a dataset should be at least 10.
However, their conclusions are not derived from defect
prediction context. Thus, we plan to explore an optimal
EPV value for defect prediction context in future work.

The design our experiments of Section [5| take the
approaches that have been used in the other research
areas into consideration [11} 45} 55} 58, 59]. Although our
approach is built upon these successful previous studies,
we made several improvements. For example, Kohavi et
al. [58] adopt a simple holdout approach to generate
sample and unseen corpora. However, our approach is
based on the bootstrap concept, which leverages aspects
of statistical inference. Moreover, we also maintain the
same defective ratio as the original dataset to ensure that
the sample and unseen datasets are representative of the
dataset from which they were generated. We also repeat
the experiment several times to ensure that the results
are robust and that they converge.

Randomness may introduce bias. To combat this bias,
we repeat the experiment 1,000 times to ensure that the
results converge. While we have reported the results
using 1,000 repetitions, we also repeated the experiment
using 300 repetitions, and found consistent results. Thus,

we believe the results have converged, and an increase
in the number of repetitions would not alter the conclu-
sions of our study.

In our experiment, parameter settings of classification
techniques may impact the performance of defect pre-
diction models [4, 19, 97, 105 [107]. However, only 2
out of the 3 studied classification techniques (i.e., naive
bayes and random forest) require at least one parameter
setting. Our recent work [107] finds that both naive bayes
and random forest classifiers are relatively insensitive
to the choice of parameter settings. Hence, we believe
that the choice of parameter settings would not alter the
conclusions of our study.

Although the Scott-Knott Effect Size Difference (ESD)
test (Section uses log-transformations [10] to mit-
igate the skewness of data distribution, we aware
that other data transformation techniques (i.e., Box-Cox
transformation [7, [10], Blom transformation [73]) may
yield different results [8I]. To ensure that the results
are robust, we repeat the experiment 1,000 times, as
suggested by Arcuri et al. [3]]. Therefore, according to the
Central Limit Theorem, the distribution of bias and vari-
ance results will be approximately normally distributed
if the sample size is large enough [76]. We believe that
other data transformation techniques would not alter the
conclusions of our study.

Finally, all variants of bootstrap validation techniques
are repeated 100 times (see Table [I). While our results
show that the 100 repetitions of the out-of-sample boot-
strap validation produce the least biased and most stable
performance estimates, we also repeated the experi-
ment using 200 repetitions, and found consistent results.
Hence, we believe that 100 repetitions are sufficient.

9.2 Internal Validity

While we find that the out-of-sample bootstrap tends
to provide the least bias and most stable performance
estimates across measures in both EPV contexts, our
findings are limited to 5 performance measures—2
threshold-dependent performance measures (i.e., pre-
cision and recall) and 3 threshold-independent per-
formance measures (i.e., AUC, Brier score, calibration
slope). Other performance measures may yield different
results. However, 3 of the studied performance measures
(i.e., precision, recall, and AUC) are commonly used
measures in defect prediction studies. We also explore
another 2 performance measures (i.e., Brier score and
calibration slope) that capture other important dimen-
sions of the performance of a classifier (cf. Section [5.6.2),
which have not yet been explored in the software
engineering literature. Nonetheless, other performance
measures can be explored in future work. This pa-
per provides a detailed methodology for others who
would like to re-examine our findings using unexplored
performance measures.
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9.3 External Validity

We study a limited number of datasets in this pa-
per. Thus, our results may not generalize to all soft-
ware systems. To combat potential bias, we analyze
18 datasets from both proprietary and open source
domains. Nonetheless, additional replication studies
are needed.

We study only one technique for each classification
family, i.e., probability-based, regression-based, and ma-
chine learning-based families. Thus, our results may
not generalize to other classification techniques of each
family. Hence, additional evaluation of families of clas-
sification techniques are needed.

10 CONCLUSIONS

Defect prediction models help software quality assur-
ance teams to effectively allocate their limited resources
to the most defect-prone software modules. Model val-
idation techniques are used to estimate how well a
model will perform on unseen data, i.e., data other than
that which was used to train the model. However, the
validity and the reliability of performance estimates rely
heavily on the employed model validation techniques.
Yet, little is known about which model validation tech-
niques tend to produce the least biased and most stable
performance estimates.

To that end, this paper investigates the bias and the
variance of 12 model validation techniques in terms of
2 threshold-dependent performance measures (i.e., pre-
cision and recall) and 3 threshold-independent perfor-
mance measures (i.e., Brier score, AUC, and calibration
slope). Since many publicly available defect datasets
are at a high risk of producing unstable results (see
Section , we explore the bias and variance of model
validation techniques in both high-risk (i.e., EPV=3)
and low-risk (i.e., EPV=10) contexts. We evaluate 3
types of classifiers that include probability-based (i.e.,
naive bayes), regression-based (i.e., logistic regression)
and machine learning-based (i.e., random forest) clas-
sifiers. Through a case study of 18 datasets spanning
both open source and proprietary domains, we make the
following observations:

— The out-of-sample bootstrap is the least biased
model validation technique in terms of both
threshold-dependent and threshold-independent
performance measures.

— The ordinary bootstrap is the most stable model
validation technique in terms of both threshold-
dependent and threshold-independent performance
measures.

— In datasets with a high-risk of producing unstable
results (i.e., the EPV is low), the out-of-sample
bootstrap family yields a good balance between bias
and variance of model performance.

— The single-repetition holdout validation consis-
tently yields the most biased and least stable es-
timates of model performance.

To mitigate the risk of result instability that is
present in many defect datasets, we recommend
that future defect prediction studies avoid using
the single-repetition holdout validation and instead
opt to use the out-of-sample bootstrap model vali-
dation technique.
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