
1

Accelerating Continuous Integration by Caching
Environments and Inferring Dependencies

Keheliya Gallaba, Student Member, IEEE , John Ewart, Yves Junqueira,
and Shane McIntosh, Member, IEEE

Abstract—To facilitate the rapid release cadence of modern software (on the order of weeks, days, or even hours), software
development organizations invest in practices like Continuous Integration (CI), where each change submitted by developers is built
(e.g., compiled, tested, linted) to detect problematic changes early. A fast and efficient build process is crucial to provide timely CI
feedback to developers. If CI feedback is too slow, developers may switch contexts to other tasks, which is known to be a costly
operation for knowledge workers. Thus, minimizing the build execution time for CI services is an important task.
While recent work has made several important advances in the acceleration of CI builds, optimizations often depend upon explicitly
defined build dependency graphs (e.g., make, Gradle, CloudBuild, Bazel). These hand-maintained graphs may be (a) underspecified,
leading to incorrect build behaviour; or (b) overspecified, leading to missed acceleration opportunities. In this paper, we propose
KOTINOS—a language-agnostic approach to infer data from which build acceleration decisions can be made without relying upon build
specifications. After inferring this data, our approach accelerates CI builds by caching the build environment and skipping unaffected
build steps. KOTINOS is at the core of a commercial CI service with a growing customer base. To evaluate KOTINOS, we mine 14,364
historical CI build records spanning three proprietary and seven open-source software projects. We find that: (1) at least 87.9% of the
builds activate at least one KOTINOS acceleration; and (2) 74% of accelerated builds achieve a speed-up of two-fold with respect to
their non-accelerated counterparts. Moreover, (3) the benefits of KOTINOS can also be replicated in open source software systems; and
(4) KOTINOS imposes minimal resource overhead (i.e., < 1% median CPU usage, 2 MB – 2.2 GB median memory usage, and 0.4 GB
– 5.2 GB median storage overhead) and does not compromise build outcomes. Our results suggest that migration to KOTINOS yields
substantial benefits with minimal investment of effort (e.g., no migration of build systems is necessary).

Index Terms—Automated Builds, Build Systems, Continuous Integration

F

1 INTRODUCTION

Continuous Integration (CI) [10] is the practice of auto-
matically compiling and testing changes as they appear
in the version control system (VCS) of a software project.
CI is intended to provide quick feedback to developers
about whether their changes will smoothly integrate with
other changes that team members have submitted. Unlike
scheduled (e.g., nightly) builds, CI feedback is received
while design decisions and tradeoffs are still fresh in the
minds of developers.

With the adoption of CI, software organizations strive
to increase developer productivity [41] and improve soft-
ware quality [31]. Open source [5] and proprietary [12, 35]
software organizations have invested in adopting CI. Cloud-
based CI services such as CIRCLECI have become popular,
since they provide the benefits of CI without the burden of
provisioning and maintaining CI infrastructure.

Using a suboptimally configured CI service can slow
feedback down and waste computational resources [16, 42,
49]. Indeed, Widder et al. [45] found that developers often

• K. Gallaba is with the Department of Electrical and Computer Engineer-
ing, McGill University, Canada.
E-mail: keheliya.gallaba@mail.mcgill.ca

• J. Ewart and Y. Junqueira are with YourBase Inc., USA.
E-mail: john@yourbase.io, yves@yourbase.io

• S. McIntosh is with the Cheriton School of Computer Science, University
of Waterloo, Canada.
E-mail: shane.mcintosh@uwaterloo.ca

Manuscript received date; revised date.

complained about slow feedback caused by builds that take
too long as a pain point in CI.

Several build tools have been proposed to reduce build
duration by executing incremental builds. Google’s Bazel,
Facebook’s Buck, and Microsoft’s internal CloudBuild [12]
service are prominent examples from large software compa-
nies. While these solutions make important contributions,
in our estimation, they have two key limitations. First,
the build acceleration features rely upon a graph of build
dependencies that is specified by developers in build con-
figuration files (e.g., Bazel BUILD files). These manually
specified build dependency graphs may drift out of sync
with the other system artifacts [25, 27, 46]. Indeed, build
dependency graphs may be overspecified [28, 40], leading to
acceleration behaviour that is suboptimal (i.e., an unneces-
sary dependency forces potentially parallelizable steps to be
executed sequentially), or worse, underspecified [6], leading
to acceleration behaviour that fails non-deterministically
(i.e., a missing dependency may or may not be respected de-
pending on whether or not the acceleration service decides
to execute the dependent steps sequentially or in parallel).

Second, the accelerated build tools are designed to re-
place existing build tools, increasing the barrier to entry. For
example, a team that has invested a large amount of effort
in designing a build system with an existing tool may be
reluctant to migrate their build code to a new language.

To address these limitations, we propose KOTINOS—a
build acceleration approach for CI services that disentangles
build acceleration from the underlying build tool. KOTINOS

© 2020 IEEE. Author pre-print copy. The final publication is available online at: https://dx.doi.org/10.1109/TSE.2020.3048335

https://dx.doi.org/10.1109/TSE.2020.3048335

2

accelerates CI by inferring dependencies between build
steps. Rather than parsing build configuration files, KOTI-
NOS infers the build dependency graph by tracing system
calls and testing operations that are invoked during the
execution of an initial (cold) build. This inferred dependency
graph is then used to reason about and accelerate future
(warm) CI builds. First, the environment setup is cached for
reuse in future builds. Second, by traversing the inferred de-
pendency graph, we identify build steps or tests that can be
safely skipped because they are not impacted by the change
under scrutiny. Since the KOTINOS approach is agnostic of
the programming languages and build tools being used,
KOTINOS can yield benefits for teams without requiring
considerable build migration effort. Currently, KOTINOS is
at the core of a CI service1 with a growing customer base.

We evaluate KOTINOS by mining 14,364 historical CI
build records spanning ten software projects (three propri-
etary and seven open source) and nine programming lan-
guages. Our evaluation focuses on assessing the frequency
of activated accelerations, the savings gained by these ac-
celerations, and the computational cost of KOTINOS, and is
structured along the following three research questions:
RQ1: How often are accelerations activated in practice?

Motivation: To determine whether an acceleration can
be applied to a build, KOTINOS checks what files have
changed and how those files impact the previously in-
ferred dependency graph. Therefore, it is important to
know how frequently these opportunities for accelera-
tion occur in practice. If such opportunities for acceler-
ation are rare, adopting KOTINOS might not be worth-
while. Therefore, we set out to study how often each type
of acceleration (i.e., environment cache, step skipping) is
activated in sequences of real-world commits.
Results: We find that in practice, at least 87.9% of builds
activate at least one KOTINOS acceleration type. Among
the accelerated builds, 100% leverage the build environ-
ment cache, while 94% skip unnecessary build steps.

RQ2: How much time do the proposed accelerations save?
Motivation: The primary goal of KOTINOS is to reduce
build duration. Therefore, we set out to measure the
improvements to build duration that KOTINOS provides.
Results: By mining the CI records of the studied pro-
prietary systems, we observe that, build duration re-
ductions in accelerated builds are statistically significant
(Wilcoxon signed rank test, p < 0.05; large Cliff’s delta,
i.e., > 0.474). Moreover, the accelerated builds achieve a
clear speed-up of at least two-fold in 74% of the studied
builds. By replaying past builds of the studied open
source systems, we observe that build durations can be
reduced in five out of seven open source subject systems.

RQ3: What are the costs of the proposed accelerations?
Motivation: Build acceleration approaches often increase
computational overhead or hinder build correctness.
Therefore, it is important to quantify the costs of KOTI-
NOS in terms of resource utilization and correctness.
Results: We observe that KOTINOS can accelerate builds
with minimal CPU (median < 1%), memory (median 53
MB), and storage (median 5.2 GB) overhead. Further-
more, 100% of the open source builds that we repeated

1https://yourbase.io/

Table 1: The duration of build steps in a proprietary system.

Build Step Duration

Environment Initialization 1m 14s
Provision OS 42s
Setup DB Services (MySQL & Redis) 22s
Install Ruby 7s
Install Node.JS 3s

Dependency Installation 5m 5s
apt-get update 7s
apt-get install 1m 48s
gem install bundler 8s
bundle install 3m 37s
npm install 25s

Database Population 1m 23s
rake db:create 11s
rake db:setup 9s
rake db:migrate 1m3s

Test Execution 1hr 23m 17s
npm run test:javascript 4s
rake spec 1hr 23m 13s

Total 1hr 31m 6s

in the KOTINOS environment report the same build
outcome (pass, fail) as the currently adopted CIRCLECI
service, suggesting that KOTINOS outcomes are sound.

2 MOTIVATING EXAMPLE

To demonstrate the reasons for long durations in a typical
build, we use the build log of a proprietary software project.
The log include diagnostic information about the execution
of all jobs belonging to a build. We first classify each com-
mand in the build log according to its build phase, which
includes: (1) environment initialization; (2) dependency in-
stallation; (3) database population; and (4) test execution.
Second, for each command, we use its timestamp to estimate
the execution duration of the command.

Table 1 shows the durations of these commands and
phases. A non-negligible proportion (8.5%) of the time is
spent on preparatory steps for build execution (i.e., environ-
ment initialization, dependency installation, and database
population); however, the vast majority of time (91.5%) is
spent (re-)executing tests. This suggest that substantial build
acceleration may be achieved by skipping the re-execution
of unnecessary tests and by reusing previously prepared
build environments.

Table 1 also shows that the build process of this project
uses multiple tools (i.e., apt, bundler, npm, and rake) and
runs tests written in multiple languages (i.e, JavaScript/N-
ode.js and Ruby). This suggests that tool-specific acceleration
solutions are unlikely to achieve optimal results.

It is observations like these that inform our design
of KOTINOS—a programming language and build tool-
agnostic approach to accelerate CI builds. KOTINOS ad-
dresses the challenge of environmental reuse by building
and leveraging a cache of previously established build
environment images. Moreover, KOTINOS addresses the
challenge of excessive re-execution of test steps (but more
broadly, build steps) by reasoning about build dependencies
using an inferred, system-level dependency graph.

https://yourbase.io/

3

3 RELATED WORK

The focus of our work is accelerating CI builds. Therefore,
we begin by describing the background with respect to
challenges associated with CI in general, slow CI builds,
and proposed techniques for optimizing slow CI builds.

3.1 Challenges in Continuous Integration
CI provides several benefits to software teams that adopt it.
For example, Vasilescu et al. [41] observed that the adoption
of CI coincides with improvements in the productivity of
software teams. Practitioners use CI because it helps them
to catch bugs early and release software more often [21].

On the other hand, CI also introduces many challenges
in the software development process [32, 33]. For example,
Hilton et al. [20] observed that practitioners face problems,
such as increased complexity, increased time costs, and new
security concerns when working with CI. Prior studies have
also found that CI specifications [16] and processes [42, 49]
are susceptible to anti-patterns [8] that impact their main-
tainability, performance, and security.

To tackle these CI adoption and maintenance problems,
the research community has provided tools that improve the
transparency and maintainability of the CI pipeline. Recent
research on identifying reasons for build breakage in CI is
one such area [15, 44]. Techniques for automatically fixing
build breakages have also been proposed [19, 26, 43]. More-
over, tools like HANSEL & GRETEL [16] and CI-ODOR [42]
suggest fixes for common anti-patterns in CI pipelines.

While the prior work is helpful, the speed at which CI
feedback is provided is a primary objective of CI [31]. Below,
we discuss the prior work on long CI build durations.

3.2 Slow CI Feedback
In a recent literature survey, Widder et al. [45] summarize
multiple studies about the implications of slow CI builds.
According to the diverse populations that were studied,
slow CI builds is one of the key barriers to adoption of CI for
software teams. The latency introduced by slow CI builds
can delay pull request assessments [48, 50], hindering the
premise of rapid CI feedback [34]. Developers also complain
about the cost of computational resources and the difficulty
of debugging software with a slow CI cycle [20, 23].

Felidré et al. [14] studied the CI build durations of 1,270
open source projects and found that 16% of the projects have
build durations that exceed the 10-minute rule of thumb for
which past literature [7, 20] has advocated. Furthermore,
78% of the participants in the study by Hilton et al. [20]
stated that they actively allocate resources to reduce the du-
ration of their CI builds. This further illustrates the practical
importance of making improvements to CI build speed.

3.3 Accelerating Slow CI Builds
Due to its importance to practitioners, there have been
several recent approaches proposed to tackle slow CI builds.
Ghaleb et al. [17] studied the reasons behind long build du-
rations, observing that caching content that rarely changes
is a cost-effective way of speeding up builds. Cao et al. [9]
use a timing-annotated build dependency graph to forecast
build duration. Tufano et al. [39] propose an approach to

alert developers about the impact that code changes may
have on future CI build speeds. While these techniques help
developers to cope with slow CI builds, we propose a set of
approaches to automatically accelerate CI builds.

In prior work, several approaches have been proposed
to reduce the time taken by CI builds. Abdalkareem et
al. [1, 2] suggest to skip CI altogether for commits that do
not affect source code. However, skipping quality checks
and avoiding testing altogether when they were necessary
(i.e., false positives) can lead to botched releases. Esfahani
et al. [12] describe the CloudBuild distributed build service,
which uses content-based caching to save time and compute
resources at Microsoft. Li et al. [24] propose test case
selection [36] during CI by using static dependencies and
dynamic execution rules. Many other approaches have been
proposed to reduce test execution time by minimization,
selection, and prioritization (e.g., [11, 29, 47]).

The past work highlights the effectiveness of CI build
acceleration solutions that skip build steps based on a
shared cache of build outputs, as well as the selection of
tests that are impacted by a software change. However,
a key limitation of prior approaches is a reliance upon
developer annotation and/or (largely) manually specified
build configuration files. The manual specification of build
dependencies is error-prone [6, 25, 27, 46]. Moreover, since
organizations may already have non-trivial build specifica-
tions that were written for existing build tools, migrating to
a new build tool requires a large investment of effort [18, 37].
Therefore, in this paper, we strive to accelerate builds
without relying on explicitly specified build dependencies.
To simplify the adoption of our approach, we leverage
existing CI pipeline specifications where available. Broadly
speaking, we strive to deliver a language-agnostic solution
so that existing code bases can immediately benefit from our
approach with minimal investment of migration effort.

4 THE KOTINOS APPROACH

A CI build is comprised of jobs, each executing an isolated
set of tasks. A typical approach is to have one job for each
targeted variant of the programming language toolchain or
runtime environment of the project. Once the CI service
receives a build request, jobs are created based on the CI
configuration file. These jobs are placed into a queue of
pending jobs. When job processing nodes become available,
they execute jobs from this queue. In this paper, we focus on
reducing the duration of the job processing phase.

We propose two acceleration techniques. Listings 1
and 2 provide a running example of the CI configuration
of the Wallaby project (https://github.com/reinteractive/
wallaby). Listing 1 shows the original steps specified for the
TRAVIS CI service. We migrated this CI configuration to the
format of KOTINOS (Listing 2), which simplifies parsing and
enables acceleration features; however, the existing build
system (Rake and Bundler in this case) remains unmodified.

4.1 Caching of the Build Environment (L1)

Before invoking the commands specified in a project’s
CI configuration, build job processing nodes need to be
initialized and prepared. First, a programming language

https://github.com/reinteractive/wallaby
https://github.com/reinteractive/wallaby

4

Listing 1: TRAVIS CI Configuration
1 language: ruby
2 cache: bundler
3 node_js: ’10.5.1’
4 rvm:
5 - 2.6.0
6 gemfile:
7 - gemfiles/Gemfile.rails-5.0
8
9 env:

10 global:
11 - DB=postgresql
12 - RAILS_ENV=test
13
14 addons:
15 postgresql: "9.6"
16
17 before_install:
18 - gem install bundler
19
20 install:
21 - bundle install
22
23 before_script:
24 - psql -c ’CREATE DATABASE dummy_test;’ -U postgres
25
26 script:
27 - bundle exec rake db:setup
28 - bundle exec rake db:migrate
29 - bundle exec rake spec

Commit DCommit CCommit BCommit A

RUBY RUBY

Modifed
files

Impacts
dependency

graph

True True TrueFalse

Build Cold Warm WarmWarm

TEXTRUBY

Figure 1: An example of commits in chronological order. In
Commit A, all source code files are added. In Commit B, the
README.md file is modified. In commits C and D, source
code files that can affect multiple tests are modified.

runtime and basic toolchain need to be installed within an
execution environment. Next, the libraries and services (e.g.,
databases, message brokers, browsers) that are required to
build the project are also installed. Since systems rarely mi-
grate from one programming language to another and their
dependencies often reach a stable point, we conjecture that
these steps for preparing the build processing environment
are rarely changed over the lifetime of a project. Repeatedly
installing the same runtime and downloading the same
dependencies at the start of each build wastes time.

We propose to reuse the environment across builds. We
implement this behaviour in KOTINOS by caching a Docker
container that is created during the first passing (cold) build,
and reusing that image during subsequent (warm) builds. If
the environment changes in the later builds (e.g., due to
updates in dependency versions), the environment cache
will be invalidated and the cold build procedure will be
re-executed (i.e., a fresh image will be created and stored).

To illustrate these concepts, consider the series of
commits from the Wallaby project (https://github.com/
reinteractive/wallaby) that are shown in Figure 1. When
the first commit (Commit A) is built, KOTINOS executes
all of the initialization and preparation steps because no

Listing 2: KOTINOS Configuration
1 dependencies:
2 build:
3 - ruby:2.6.0
4 - node:10.15.1
5
6 build_targets:
7 - commands:
8 - apt-get update
9 - apt-get install -y postgresql-client libpq-dev

10 - gem install bundler
11 - bundle install
12 - bundle exec rake db:setup
13 - bundle exec rake db:migrate
14 - bundle exec rake spec
15
16 name: daily_ci
17 container:
18 image: yourbase/yb_ubuntu:16.04
19
20 environment:
21 - DB=postgresql
22 - BUNDLE_GEMFILE=gemfiles/Gemfile.rails-5.0
23 - PGUSER=ci
24 - PGPASSWORD=ci
25 - RAILS_ENV=test

prior build for the project has been executed. First, an
Ubuntu 16.04 build image must be provisioned (line 18 of
Listing 2). Next, Ruby and Node.js language runtimes must
be installed (lines 3–4). Then, environment variables must
be set to specified values (lines 21–25). Finally, the build
commands (lines 8–14) can be executed. After the build
finishes, a Docker image that encapsulates the initialization
and preparation steps is saved to the cache to be reused in
subsequent builds. The procedure for Docker image encap-
sulation is described below.

When later warm builds (for Commits B, C, and D) are
requested, KOTINOS checks its cache for build images of
ancestors in the version history of the project and selects the
most recently created image. This reuse of images avoids
repeating installation and preparation steps.

Environment Caching Details. Every request to initiate a
CI build is accompanied by build metadata: (1) a reference
to a build image; (2) the URL of the source code repository;
and (3) the unique identifier (e.g., SHA) of the commit to
be built. KOTINOS uses this metadata to look-up previous
builds executed for this repository.

If there are no previous builds for the specified reposi-
tory, a cold build is initiated. Based on the user-specified con-
tainer build image (e.g., ubuntu:latest) a pre-built image that
is hosted in an internal Docker registry is downloaded and
a container is created based on this image. This container is
used for running the remainder of the build.

Using the source code repository URL and the commit
ID, the revision of the code to be built is downloaded
within the container. Then, the build steps (e.g., compiling,
running tests), which are specified in the configuration file,
are executed within the container. Once the build process
finishes, if it was successful, the state of the container is
saved, and is stored in the environment cache along with the
repository name and the commit ID. This image is later used
for subsequent warm builds of the same repository, saving
the set up time needed before every build. If a cold build
fails, the container is retained for debugging purposes, but
is not used for accelerating subsequent builds.

https://github.com/reinteractive/wallaby
https://github.com/reinteractive/wallaby

5

4.2 Skipping of Unaffected Build Steps (L2)

Changes for which CI builds are triggered often modify
a small subset of the files in a repository. If build steps
that a change does not impact can be pinpointed, those
steps could be safely skipped. These sorts of incremental
builds that only re-execute impacted commands have been
at the core of build systems for decades [13]. Typically, build
tools create and traverse a Directed Acyclic Graph (DAG) of
dependencies to make decisions about which build steps
are safe to skip. These DAGs are explicitly specified by
developers in tool-specific DSLs (e.g., makefiles).

To implement step skipping in a tool-agnostic manner
at the level of the CI provider, we first collect traces of
system calls that are made during build execution. We then
mine these system call traces to understand the processes
that are created, file I/O operations, and network calls
associated with each build step. This information is then
used to construct a dependency graph. Later, we traverse
this dependency graph to identify skippable steps.

For example, during Commit A of Figure 1, the depen-
dency graph is inferred based on the system call trace log.
Later, when the build for Commit B is requested, KOTINOS
checks whether files modified in Commit B are part of the
dependency graph. In this case, README.md is not part of
the dependency graph. Therefore, all build steps (line 8–14)
are skipped. This effectively skips an entire CI build like
the approach proposed by Abdalkareem et al. [1, 2] without
relying on heuristics. On the other hand, in Commits C and
D, the modified source code files are part of the dependency
graph, and therefore KOTINOS decides to run the tests (line
14: bundle exec rake spec).

By default, each command that is specified in the config-
uration file can be skipped separately. However, users can
choose to skip subprocesses at a finer granularity by wrap-
ping invocations using the skipper command. If users
require an even finer granularity for skipping, KOTINOS
provides test-level skipping via plug-ins for popular testing
frameworks like RSpec (Ruby) and JUnit (Java).

Below, we define the inferred dependency graph, and
the approaches we use to construct, update, and traverse it.
The inferred dependency graph is a directed graph
BDG = (T,D) where: (1) nodes represent targets T =
Tf ∪ Ts, Tf is the set of files produced or consumed by the
build, Ts is the set of build commands, and Tf ∩Ts = ∅; and
(2) directed edges denote dependencies d(t, t′) ∈ D from
target t to target t′ of three forms: (a) read(tf , ts), i.e., file
tf is read by command ts; (b) write(ts, tf), i.e., command
ts writes file tf ; and (c) parent(ts1 , ts2), i.e., command ts1 is
the parent process of command ts2 .

Inferring the Build Dependency Graph. The first build of
a project is a cold build. As the first step during the cold
build, KOTINOS creates a fresh container based on a user-
specified container image. Then, the build steps specified
by the user in the configuration file are executed inside
the freshly-created container. Another process monitors all
the system calls being executed during each build step.
This monitoring process records: (1) the path of files being
read and written; (2) the commands being invoked; (3) the
Process ID (PID) of started processes; and (4) the PID of the
parents of started processes. Prior to constructing the BDG,

we filter the system call traces to remove files that do not
appear in the VCS. After the cold build is completed, the
BDG is stored for later use in subsequent warm builds.
Updating the Inferred dependency graph. To make correct
decisions during the acceleration, the BDG must reflect the
state of project dependencies that is relevant to commit Ct.
Since Ct represents a unique state of source code at a given
time t, we can say that the initial build B0 is derived from
C0 (i.e., B0 ← f(C0)). The BDG inferred from a commit Ct

is denoted as Gt ← ObservationOf(Bt).
After build B0 completes, there exists a BDG (G0) that

contains the inferred dependencies for that build. Since
KOTINOS acceleration strives to skip unnecessary build
steps, the BDG from a warm build will be incomplete.
We solve this by implementing a pairwise BDG update
operation ω(Gn−1, Gn), which updates the previous BDG
with the current observed behaviour of the build.

To ensure that graph Gn is updated to include new
dependencies from Bn we:

1) Clone the graph from the parent build (Gn−1).
2) Process the recorded observations from the incremental

build (Bn) and create a partial dependency graph (G′n)
3) For each step recorded in G′n:

a) Look for the identical step in Gn.
b) If found, prune its dependencies replacing them with

the newly identified nodes using existing nodes as
needed (e.g., if another step shares a dependency).

c) If no step is found, then this step is new and is added
to the existing dependency graph in the correct loca-
tion, also linking to existing nodes where applicable.

d) Remove the step from G′n.
4) Store the merged graph, Gn as a new graph so that it

can be referenced for subsequent warm builds.
For example, consider a build process that consists of

three steps, npm install, npm lint, and npm test. These com-
mands will download the dependencies, statically analyze
the source code for errors (i.e., linting), and then run the
tests. At the first commit, all the build steps will be executed
and G0 will be generated. In the second commit, if a test file
is modified, KOTINOS will only run the npm test step and
generate a partial graph G′1. If new files are read during this
run, they will be recorded as dependencies in G′1. Then, the
subgraph of G0 that is affected by the npm test step will be
replaced by G′1 and this modified G0 will be saved as G1.

To avoid incorrect build behaviour, BDG-based acceler-
ation is bypassed for commits that will likely modify the
structure of the BDG (e.g., those that add or rename files).

In cases where KOTINOS determines that it cannot confi-
dently make a decision about applying acceleration, it will
revert to cold build behaviour to guarantee an accurate
build output and dependency graph. For example, in the
case where new files are added to a project, prior BDGs are
considered invalid and a cold build is performed.
Traversing the Build Dependency Graph. For each build
request, KOTINOS first derives the set of files being changed
in the changeset to be built (ChangedFilesList). KOTI-
NOS determines which build steps should be run, given the
ChangedFilesList and the inferred build dependency
graph (BDG). We first compute the impacted steps using the
union of the transitive closures within the BDG for each file

6

Changed Files

F1

Build Steps

S1 S2 S3

F2 F3

Unchanged Files

Reads Writes Reads Reads

Skipped

Figure 2: An example of how the Build Dependency Graph
is used to identify which steps to skip. S1 and S2 cannot be
skipped because they are directly and transitively depen-
dent on the changed file F1, respectively. However, S3 can
be skipped because it does not depend on any changed files.

f in ChangedFilesList. For each build step, we check
whether it is in the set of impacted steps. If it is, we must re-
execute the step, and if not, the step can be safely skipped.

Figure 2 provides an example of a BDG and highlights
the behaviour when one file (file F1) is modified by a
changeset being built. The example illustrates how KOTI-
NOS handles the three types of scenarios that may occur for
a step within the graph. We describe each scenario below:
Direct dependency (S1). Step S1 or one of its subprocesses

reads from file F1. Therefore, S1 cannot be skipped.
Transitive dependency (S2). Step S1 reads from F1 and

writes to file F2. The step S2 reads from F2. Therefore,
S2 transitively depends on F1 and cannot be skipped.

No dependency (S3). Step S3 only depends on the file F3,
which was not modified by the change set being built.
Since step S3 does not have a direct or transitive depen-
dency on modified files, step S3 can be safely skipped.

5 RQ1: HOW OFTEN ARE ACCELERATIONS ACTI-
VATED IN PRACTICE?
In this section, we address RQ1 by studying the frequency
at which KOTINOS accelerations are activated. We first in-
troduce the subject systems, then describe our approach to
addressing RQ1, and finally, present our observations.
Subject Systems. The top three rows of Table 2 provides
an overview of the three proprietary systems that we use to
evaluate RQ1. We study a sample of 13,864 passing builds
from September 1st, 2019 to December 31st, 2019.

These three subject systems are sampled from the pool
of projects that actively use KOTINOS as their primary CI
service. We selected these systems for analysis because they
are implemented using a variety of programming languages
and frameworks, and use a variety of build and test tools.
Approach. During each build execution, KOTINOS prints
detailed diagnostic logging messages to an internal datas-
tore. Each KOTINOS build includes a diagnostic log in that
datastore. Messages in those diagnostic logs indicate when
an acceleration is activated (among other things). To answer
RQ1, we analyze the logs of all passing builds in our studied
timeframe to determine which levels of acceleration were
activated during each build execution. If the log mentions
that the build was performed within a container that was
based on a previously cached image, that build is labelled
as accelerated by caching. If the log mentions that at least
one of the build steps was skipped, that build is labelled as
accelerated by skipping build steps.

Table 2: Overview of the subject systems.

Project ID Application
Domain

Programming
Languages LOC # Passing

Builds

Non-accelerated
Build Duration

(Median)

Commercial A Fintech
Android,
Dart, Go,

Ruby, Node.js
455,470 5,202 18min 33s

Commercial B Blockchain Python,
Node.js 208,768 7,273 2min 40s

Commercial C E-commerce Ruby,
Node.js 1,218,980 1,389 1hr 7min 33s

apicurio-studio Development
Tools

Java,
TypeScript,

HTML, CSS
84,446 100 8min 28s

forecastie Weather Java, Python,
HTML, CSS 10,012 96 2min 19s

gradle-gosu-plugin Development
Tools Groovy, Java 3,773 82 3mins

Robot-Scouter Robotics Kotlin 1,442,304 27 16min 36s

aerogear-android-push Development
Tools Java 2,280 23 1min 34s

magarena Entertainment Groovy, Java 165,199 26 1hr 18min 22s

cruise-control Development
Tools Java, Python 61,426 71 36min 17s

Observation 1: At least 87.9% of the builds in the studied sys-
tems are accelerated. Table 3 shows the percentages of studied
builds that activate the different types of acceleration. We
find that 87.9%, 98.9%, and 97.6% of the studied builds are
accelerated by at least one type of acceleration in the A, B,
and C systems, respectively. This indicates that KOTINOS
can frequently accelerate CI builds. We delve into why
system A has a lower rate of acceleration activation below.

Observation 2: Environment caching is the most commonly
activated strategy. Indeed, 87.9%–97.6% of builds leverage
the environment cache. In system A, all of the builds that
are accelerated by environment caching also skip steps. In
systems B and C, 9.2% and 24.8% of the accelerated builds
only use the environment cache, respectively.

We follow an iterative process to identify why 548 builds
did not use the environment cache. First, we select and
inspect a random sample of 30 logs from the builds that
missed acceleration. The inspection reveals the root cause
for missing acceleration. For each root cause, we implement
a detection script to automatically identify occurrences in
the other logs. We repeat this sampling, inspection, and
scripting process until root causes for all 548 builds. In
2% (twelve of 548) of the cache-missing builds, the user
explicitly overrode KOTINOS’ decision-making, forcing the
cache to be ignored (via a build request parameter). Users
may decide to override caching in multiple scenarios. For
example, if users want to invalidate an external dependency,
ignoring the caching will force a fresh copy of external
dependencies to be downloaded. Moreover, if users expect
to encounter inconsistencies in the generated dependency
graph, they may override KOTINOS’ decision-making to
reset with a fresh build. This often occurs when new files are
added to (a dynamically generated area of) the build graph.
Users who choose to override KOTINOS’ decision-making
are prioritizing the correctness of the build over the speed
of feedback—a common trade-off in build systems [4].

Another 0.7% (four of 548) missed the cache because
KOTINOS had purged the cache and had started with a
fresh container. This purging behaviour triggers when users
reach the organizational limit of 100 cached image layers.
However, the majority of the cache-missing builds (97%)
occurred because KOTINOS was unable to find a cached
image of a predecessor for the commit that is being built.

Observation 3: Although less frequently activated than environ-

7

Table 3: The frequency of activated build accelerations.

Project
ID

Studied
Builds

% Builds
Accelerated
by Caching

% Builds
Accelerated
by Skipping

Steps

% Builds
Accelerated

by Any
Strategy

A 5,202 87.9 87.9 87.9
B 7,273 98.9 89.7 98.9
C 1,389 97.6 72.8 97.6

●

●

●
●
●

●
●

●

●

●
●

●
●

●

●●●
●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●●●
●

●
●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●
●●

●

●
●

●

●●
●●
●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●
●

●

●

●

●●

●

●

●

●
●

●●

●

●●

●

●

●
●
●●
●

●

●
●

●
●●
●

●
●

●●●●
●

●

●

●

●

●
●

●
●●

●

●

●●
●
●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●
●●●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●
●

●

●
●●●

●

●
●

●

●●

●

●●
●

●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●
●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●
●

●

●
●●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●●

●
●

●
●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●
●
●●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●●●
●●

●
●
●

●

●

●

●●
●

●

●

●

●
●●

●●

●●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●
●●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●
●
●

●
●●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●
●●

●

●●
●
●

●
●

●

●●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●
●

●

●

●
●●
●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
10

100

1,000

10,000

A B C

Project ID

B
ui

ld
 D

ur
at

io
n

(S
ec

on
ds

)

Accelerated

FALSE

TRUE

Figure 3: Distribution of durations in accelerated and non-
accelerated builds across the three subject systems.

ment caching, step skipping accelerations are activated regularly
as well. Table 3 shows that 87.9%, 89.7%, and 72.8% of the
studied builds skip at least one build step in systems A,
B, and C, respectively. This shows that it is relatively rare
for the changed files in a commit to impact all of the build
steps. Even though steps are being skipped the majority of
the time, when they are not skipped, builds are still often
accelerated by leveraging the environment cache.

In practice, a majority of builds (at least 87.9%) activate
at least one of the KOTINOS accelerations.

6 RQ2: HOW MUCH TIME DO THE PROPOSED AC-
CELERATIONS SAVE?
In this section, we address RQ2 by studying the change in
build durations of accelerated and non-accelerated builds.

6.1 Overall Statistical Analysis

First, we conduct a statistical analysis to measure the effect
of KOTINOS acceleration on the build durations of the
three proprietary subject systems from Section 5. Below, we
describe our approach, present our results, and discuss the
limitations of such a statistical analysis.

Approach. We extract build durations by using the
build_start_time and build_end_time fields in our
dataset. Then, we apply Wilcoxon signed rank tests (un-
paired, two-tailed, α = 0.05) and compute the Cliff’s delta
to check whether our acceleration strategies reduce build
durations to statistically and practically significant degrees.

Observation 4: KOTINOS achieves large, statistically significant
reductions to build durations. Figure 3 shows the distributions
of build durations. Based on the p-values after applying
Holm-Bonferroni correction [22], the null hypothesis that
there is no significant difference among the distributions
of accelerated and non-accelerated build durations could
be rejected in all three subject systems. Moreover, for all
three subject systems, the Cliff’s Delta values are large
(i.e., δ > 0.58), indicating that the difference between non-
accelerated and accelerated builds is practically significant.

Limitations. Although this analysis provides an overview of
the benefit of KOTINOS accelerations, the observations may
be impacted by (at least) two confounding factors:

1) Differences in jobs. Past builds may have targeted
different (groups of) jobs. For example, while most
builds of Project A target the entire software system,
a subset of past builds only target the backend.

2) Changes in CI configuration over time. Throughout a
project’s history, build steps may be added or removed
from the CI configuration.

Due to the above reasons, build durations from the same
project can vary and may not be directly comparable.

6.2 Longitudinal Analysis

To mitigate the limitations of the overall statistical analysis,
we conduct a longitudinal analysis. In a nutshell, the ap-
proach clusters related builds into streams. Builds within a
stream can be more meaningfully compared to one another.

Approach. Since it is unsafe to compare jobs with different
definitions, we first group builds according to their unique
job names. Next, within each job grouping, we further
categorize builds by the set of build steps that are being
executed. For this purpose, we extract the set of build
steps by parsing each build log for the diagnostic messages
that print the set of build steps that were performed. It is
important to note that the order of build steps is preserved
by this extraction step. We then feed this list of steps into a
hash function (i.e., Python hash) to compute a fingerprint
for the set of build steps that is easy to compare.

By comparing the hash fingerprints across all of the
builds in our sample, we find that there are 25 streams of
unique build steps within the build jobs of the three subject
systems. Since the hash comparison can be too strict, we
manually inspect the 25 sets of build steps for opportunities
to merge streams that only differ in minor ways. We find
four streams that share similar commands and are unlikely
to differ substantially in terms of build duration. These
streams were not grouped together because of the overly
strict matching of the hashing function. The only differences
between these streams are: (1) minor version changes in ex-
ternal dependencies; (2) adding an external dependency that
does not affect build steps; and (3) renaming a build script.
After merging these minor changes into their respective
streams, we are left with 22 streams of builds with durations
that may be compared within the streams.

For every warm build bw, we find the cold build bc
to which it should be compared by searching backwards
within the stream to which bw belongs. The build bc is the
most recent preceding cold build of bw in the version control

8

history. Finally, we plot the build duration of warm builds in
each stream in comparison to the corresponding cold build.
Observation 5: The vast majority of warm builds are faster than
cold ones. Figure 4 shows how the warm build duration
changes over the studied period as a percentage of cold
build duration in the main job of each subject system. Due
to space constraints, we only include the line plot for each
project’s main job. The plots for all jobs are available in the
online appendix.2 Each line segment with the same shade
of gray shows the period in which the project was using
the same set of build steps. The black circles show when
cold builds were triggered. The red line marks the build
duration of the most recent preceding cold build of each
warm build. Therefore, gray lines appearing below the red
line in Figure 4 illustrate when warm builds are faster than
their cold counterparts. The lines with same shade of gray in
these figures also show that the build steps are not changed
throughout the studied period for the projects A and B.

For project C, some warm builds took longer than cold
builds during the first half of the studied time period, as
shown by the light gray line segment in Figure 4c. This was
due to the overhead of an experimental feature of KOTINOS,
which was enabled only for project C. Then, after a change
to the build steps that disabled the experimental feature in
mid-November, the warm builds appear consistently below
the cold builds, as shown in the dark gray segment.

Figure 5 shows the distribution of warm build durations
as a percentage of cold builds within the same stream. The
solid red line indicates the cold build duration. The builds in
red-shaded areas are faster than their cold counterparts. In
the best case (Project A), 99.9% of warm builds outperform
cold builds. Even in the worst case (Project C), 86.4% of
warm builds outperform cold builds. Overall, 93% of warm
builds outperform their cold counterparts.
Observation 6: Acceleration often yields substantial build speed
improvements. In Figure 5, the builds in dark red-shaded area
(below the dashed red line) complete within 50% of the
duration of comparable cold builds. Indeed, 99.1%, 53.2%,
and 74.5% of the studied warm builds complete within 50%
of their cold counterparts in the A, B, and C systems, respec-
tively. Overall, 74% of the studied warm builds complete
within 50% of the build duration of similar cold builds.

6.3 Replay Analysis

The historical build records from the studied proprietary
systems provide a concrete perspective on build savings, but
it is not possible to analyze the impact of each acceleration
technique. To enable such an analysis, we expand our study
to include subject systems from the open source community.

Approach. We select a sample of seven repositories that use
CIRCLECI (a market leader in cloud-native CI3). Using the
CIRCLECI API, we select the seven systems with the longest
median build duration from the set of systems with passing
builds in between January and July 2020. The bottom seven
rows of Table 2 provide an overview of the subject systems.

We extract the most recent sequence of commits from
the master branch of each repository, along with their CI

2https://doi.org/10.6084/m9.figshare.12106845
3https://www2.circleci.com/forrester-wave-leader-2019.html

configuration, in the reverse chronological order, until a
limit of 100 commits is reached or the CI configuration is
modified to the extent that builds start failing. We collect 425
commits across the seven subject systems for further analy-
sis. Then, we migrate the most recent CI configuration file
of each subject system to KOTINOS’ configuration format.
To replay builds following the sequence of development,
we build each commit in the order in which they appeared
on the master branch (oldest to newest). For each commit,
we perform three types of builds: (1) without KOTINOS
accelerations; (2) with environment caching enabled (i.e.,
L1); and (3) with both caching and step-skipping enabled
(i.e., L1+L2). To mitigate the impact that fluctuations in the
workload on our experimental machines may have in our
observations, we repeat each build variant ten times. To
check whether the acceleration levels differ in terms of build
duration to a statistically significant degree, we rank the
build durations of each commit in each acceleration level
using the Scott-Knott ESD test [38]. Finally, we compute the
likelihood of each acceleration type appearing in the lowest
(i.e., fastest) rank across the seven subject systems.

Observation 7: In a majority of open source subject systems,
accelerated builds are faster than non-accelerated builds. Figure 6
shows the results of the replay experiment on the seven
open source subject systems. The lines indicate the median
build performance across ten repetitions, while the error
bars indicate the 95% confidence interval. In five of the
seven subject systems (i.e., aerogear-android-push, apicurio-
studio, forecastie, gradle-gosu-plugin, and Robot-Scouter), all
commits except the first one are built faster when acceler-
ations are enabled. The first build of each subject system is
slow because an environment cache does not yet exist and
the inferred graph needs to be constructed. In the other two
subject systems (i.e., cruise-control and magarena), accelera-
tions rarely reduce build duration considerably. Inspection
of the source code reveals that all test groups in these
systems are invoked by a single process. This resulted in an
“all or nothing” re-execution of tests. If code that impacts
just one test was changed, all tests would be re-executed. To
enable skipping at the finer granularity of individual tests,
we plan to implement a language-specific extension capable
of decomposing large test groups in future work.

Figure 7 shows the likelihood of each acceleration ap-
proach appearing in the top rank of the Scott-Knott ESD
test. The builds without acceleration rarely appear in the
top rank (median 1%), where as L1 and L1+L2 acceleration
levels achieve top-rank performance much more frequently
(medians of 47% and 52%, respectively).

Accelerated builds are statistically significantly faster
than non-accelerated builds with large effect sizes. More-
over, the builds accelerated by KOTINOS achieve a clear
speed-up of at least two-fold in 74% cases in practice. The
benefits of KOTINOS can also be replicated in open source
systems that practice process-level test invocation.

 https://doi.org/10.6084/m9.figshare.12106845
https://www2.circleci.com/forrester-wave-leader-2019.html

9

●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●● ● ●●● ●●●

0%

50%

100%

O
ct

N
ov

D
ec Ja
nA

cc
el

er
at

ed
 B

ui
ld

 D
ur

at
io

n
/ N

on
−

ac
ce

le
ra

te
d

B
ui

ld
 D

ur
at

io
n

(a) Project A

● ●●●●●●●●●●●●●●

0%

50%

100%

150%

200%

O
ct

N
ov

D
ec Ja
n

(b) Project B

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●

0%

50%

100%

150%

200%

O
ct

N
ov

D
ec Ja
n

(c) Project C

Figure 4: Warm build duration as a percentage of cold build duration in each project’s main job. The red line marks the cold
build duration. The black circles indicate when cold builds were triggered. Projects A and B uses only one CI configuration.
Project C has modified the CI configuration in mid-November as shown by the different shades of gray.

0%

50%

100%

200%

A B C
Project ID

%
 A

cc
el

er
at

ed
 B

ui
ld

 D
ur

at
io

n

Figure 5: The gray-shaded violin plots show the kernel
probability density of warm build durations as a percentage
of cold builds across the three subject systems. The solid red
line indicates the cold build duration (baseline). The builds
in red-shaded area (below the solid red line) are faster than
their cold counterparts. The builds in dark red-shaded area
complete within 50% of their cold counterparts.

7 RQ3: WHAT ARE THE COSTS OF THE PROPOSED
ACCELERATIONS?
Build speed is often a trade-off with other non-functional
build requirements, e.g., computational footprint [12] and
build correctness [3]. In prior sections, we quantified the
benefits of KOTINOS. In this section, we set out to quantify
the costs in terms of resource utilization and correctness.

7.1 Resource Utilization

As KOTINOS relies on cached information and trace logs of
build execution, memory, CPU, and storage are consumed
in exchange for the performance improvement. Thus, when
addressing RQ3, we first measure the resource overhead.

Approach. We study the seven open source systems from
Section 6. We measure memory and CPU usage by collecting
process-level metrics from each VM in which the seven

Table 4: CPU and memory usage of KOTINOS during the
builds of seven open source systems.

Normalized CPU
Usage (%)

Memory Usage
(MB)Project ID Process Type Median Max Median Max

System Call Monitoring 0.30 5.20 53 54
Graph Creation/Update 0.42 4.32 231 348apicurio
Graph Traversal 0.05 0.10 64 90
System Call Monitoring 0.70 1.10 53 54
Graph Creation/Update 0.64 1.05 129 130forecastie
Graph Traversal 0.01 0.05 2 29
System Call Monitoring 0.15 0.90 53 156
Graph Creation/Update 0.20 0.57 35 182gradle-gosu
Graph Traversal 0.04 0.05 8 9
System Call Monitoring 1.26 2.77 53 105
Graph Creation/Update 0.11 14.51 2,241 2,592Robot-Scouter
Graph Traversal 0.04 6.20 22 62
System Call Monitoring 0.50 0.87 53 88
Graph Creation/Update 0.45 1.04 49 153aerogear
Graph Traversal 0.01 0.04 6 7
System Call Monitoring 0.02 2.45 53 159
Graph Creation/Update 0.08 13.34 693 720magarena
Graph Traversal 0.05 0.06 41 50
System Call Monitoring 0.01 0.54 53 54
Graph Creation/Update 0.08 1.11 149 190cruise-control
Graph Traversal 0.04 0.05 13 20

systems are built during the execution of three KOTINOS
processes: (1) system call monitoring; (2) graph creation/up-
date; and (3) graph traversal. To compute storage usage, we
first download the source code of each subject system and
the language toolchain that is required to build that source
code into a Docker container. Next, all the build steps are
executed without using KOTINOS. The size of the image at
this point is recorded as the baseline. Then, each studied
commit is built using KOTINOS, after which, the size of
the image is computed. The storage overhead of KOTINOS
is computed as the difference in the sizes of a post-build
KOTINOS image and the post-build baseline image.

Observation 8: KOTINOS does not consume resources heavily.
Table 4 shows the CPU and memory usage of the three
KOTINOS components. Five of the seven subject systems
have minimal CPU (median < 1%) and memory usage
(median 2 MB – 231 MB) during their builds. Yet the Robot-
Scouter and magarena systems have greater CPU and mem-
ory usage (median 693 MB – 2.2 GB). The logs indicate that
these two subject systems made fivefold as many system
calls as other systems, leading to a larger memory footprint
when parsing system calls and inferring the BDG.

10

gradle−gosu−plugin magarena Robot−Scouter

aerogear−android−push apicurio−studio cruise−control forecastie

50

100

150

0

1000

2000

3000

0

250

500

750

1000

1250

0

200

400

600

800

0

1000

2000

3000

4000

5000

25

50

75

100

50

100

150

Commit

B
ui

ld
 D

ur
at

io
n

(S
ec

on
ds

)

Acceleration Level:

Non−accelerated

L1

L1+L2

Figure 6: Median build time for each acceleration level in the open source subjects. Black vertical bars indicate the 95%
confidence interval. (Acceleration Levels: L1 = Caching of the build environment, L2 = Skipping of unaffected build steps).

●

●

●

None

L1

L1+L2

0% 20
%

40
%

60
%

Likelihood of being the best performing technique

A
cc

el
er

at
io

n
Le

ve
l

Figure 7: The likelihood of each acceleration technique ap-
pearing in the top rank. Circles indicate the median, while
the error bars indicate the 95% confidence interval.

Table 5: Storage overhead of KOTINOS build images.

Project ID

Baseline
Image

Size
(GB)

Median
Post-build

Image Size
(GB)

Effective
Post-build

Image Size
(GB)

apicurio-studio 3.12 49.08 45.96
forecastie 3.45 4.94 1.49
gradle-gosu-plugin 1.53 3.03 1.50
robot-scouter 4.19 7.74 3.55
aerogear-android-push 3.59 3.99 0.40
magarena 0.57 5.81 5.23
cruise-control 1.64 5.87 4.23

Table 5 shows the median image size created by KOTI-
NOS builds. In six of the seven subject systems, KOTINOS
introduced between 0.4 GB and 5.23 GB of storage over-
head. In the extreme case of apicurio-studio system, median
image size was 45.96 GB. By inspecting the builds of this
system further, we identified that Maven generated a JAR
file that included all the transitive dependencies of the final
deliverable. This caused the image to grow in size during
each subsequent build. Even in this extreme case, the cost
of storing a build image for a month will only be US$1 (50
GB × $0.020 per GB) based on cloud storage prices offered
by popular service providers. By exploiting the layered file

system of Docker, the size of the image on disk is further
reduced, effectively minimizing storage costs.

7.2 Correctness
Although build steps are being skipped, it is important
that build outcomes are preserved. Therefore, we set out to
compare the outcomes provided by KOTINOS and CIRCLECI
(i.e., a traditional CI service) for a common set of commits.
Approach. We select 500 commits of the seven studied open
source systems, irrespective of the original build outcome
in their CIRCLECI builds. To mitigate the risk of non-
deterministic (i.e., “flaky”) build outcomes, we check that
the outcomes of two cold builds are identical for each
studied commit. We remove 34 commits because the build
outcome was inconsistent. We then build the remaining
466 commits with KOTINOS acceleration and compare the
outcome with the corresponding CIRCLECI builds.
Observation 9: 100% of the KOTINOS build outcomes are con-
sistent with CIRCLECI builds. All 425 builds that passed orig-
inally, resulted in passing KOTINOS builds. The 41 builds
that failed in CIRCLECI also failed in KOTINOS.

KOTINOS can accelerate builds with minimal resource
overhead and without compromising build correctness.

8 IMPLICATIONS

KOTINOS saves time and computational resources by
accelerating CI builds. By identifying which steps in the
CI process can be safely skipped, KOTINOS helps software
teams to reduce CI build duration. Since the accelerated
CI results are available within minutes, developers will be
able to stay focused on their tasks, avoiding costly context
switches [30, 51]. Moreover, since unnecessary build steps
will not be re-executed, KOTINOS also helps organizations
to reduce the computational footprint of their CI pipelines.

11

Language-agnostic build accelerations allow systems writ-
ten in various languages using heterogeneous build chains
to benefit. As long as a software project has a build script
that specifies a series of steps for converting source code into
software deliverables, KOTINOS can infer its graph and ac-
celerate future builds. Irrespective of the language runtime
or tools that are used in each step, the KOTINOS approach
should apply. This allows teams to use the programming
languages and build tools that they are comfortable with
while still benefiting from modern CI acceleration.
Software teams can immediately benefit by migrating
to KOTINOS with minimal disruptions. The accelerations
provided by KOTINOS are available to projects without
requiring changes to source code or build system specifica-
tions. The users only need to introduce a high-level config-
uration file (e.g., Listing 2), which invokes steps in existing
build files. This approach of not modifying existing project
artifacts means that teams are able to immediately derive
benefits from migration to KOTINOS without a substantial
initial investment (e.g., migration of build tools [18, 37]) and
with minimal disruptions to development activities.

9 THREATS TO VALIDITY

This section describes the threats to the validity of our case
study-based evaluations in Sections 5 and 6.
Internal Validity. Threats to internal validity are concerned
with (uncontrolled) confounding factors that may offer
plausible alternative explanations for the results that we
observe. It is possible that factors other than the studied
ones may be slowing CI builds down. This work aims to
tackle two major causes of slow builds and is not intended to
be exhaustive. In our future work, we plan to identify more
causes and to add additional acceleration types to KOTINOS.
External Validity. Threats to external validity refer to limita-
tions to the generalizability of our observations to examples
outside of our study setting. We analyze and demonstrate
our approach on three proprietary and seven open source
subject systems. As such, our results may not generalize
to all software systems. However, the subject systems that
we analyze, use nine different programming languages and
nine build tools. By evaluating KOTINOS using these subject
systems, we show that the language-agnostic nature of
KOTINOS can benefit systems implemented using a broad
variety of languages and build tools.

10 CONCLUSION AND FUTURE WORK

A main goal of practicing CI in software teams is to provide
quick feedback to developers. While existing build accelera-
tion tools have made important advances, in our estimation,
they suffer from two key limitations: (1) reliance upon ex-
plicitly specified dependencies in build configuration files;
and (2) the barrier to entry for adopting a new build tool.

To overcome these limitations, we propose KOTINOS—
an approach to build acceleration that is language- and
tool-agnostic. At its core, KOTINOS accelerates CI builds by:
(1) populating and leveraging a cache of build images to
avoid repeating environmental setup steps; and (2) inferring
and reasoning about dependencies between build steps by
tracing system calls during build execution. Our case study

of three consumers of KOTINOS shows that accelerations are
regularly triggered (87.9%–97.6% of the time) and when they
are triggered, provide significant reductions in build time
(74% of accelerated builds take at most half of the time of
their non-accelerated counterparts). Furthermore, KOTINOS
accelerates builds in open source software systems that
practice process-level test invocation, with minimal resource
overhead and without compromising build outcome.

Future Work. In future work, we will relax the conditions
that KOTINOS currently requires in order to achieve robust
acceleration. We list these conditions below.

1) Use a build tool that supports deterministic depen-
dency resolution. If the project’s build tool relies on
an external service to determine the version of depen-
dencies to be used during each build, KOTINOS will
not re-invoke this dependency resolution service dur-
ing builds unless the build specification file changes.
This can lead to dependencies getting resolved to out-
dated or missing versions. To mitigate this problem, we
currently require projects to pin dependency versions
(including transitive dependencies) explicitly, using the
lock file mechanisms that are provided by dependency
management tools (e.g., Gemfile.lock in Bundler).

2) Test suite is isolated and idempotent. If state is per-
sisted using files or database storage during the test
execution and not restored to its original state after the
test execution, subsequent builds will have access to the
persisted state due to environment caching. This can
yield misleading test results. Therefore, KOTINOS users
must ensure that the testing environment is reset to its
initial state before the test execution.
Since most modern testing frameworks perform an
environment reset during test execution, idempotency
and isolation issues have been rarely observed in
projects that use KOTINOS. In cases where idempotency
issues persist, KOTINOS provides a mechanism that
allows users to explicitly exclude (sub)processes from
acceleration. For example, if a database needs to be re-
created on every test run, then the command can be
forced to re-execute rather than short-circuited.

3) Conditional behaviour during the build should be
kept to a minimum. KOTINOS relies on system call
traces to infer the dependency graph. Like any dynamic
analysis, this may yield an incomplete view of the
artifact under evaluation (i.e., build dependencies) if
there is conditional behaviour. To mitigate this risk,
after each build execution, the dependency graph is
updated by isolating the steps of the build that were
re-executed during warm builds.

Since these are best practices that are recommended
for effective and robust automated testing, we believe that
software projects should be striving for these build prop-
erties whether or not they choose to adopt KOTINOS. Even
for the projects that are not currently following these best
practices, adopting them will help not only to accelerate
CI builds with KOTINOS, but will also yield other benefits
(e.g., preventing false positive or false negative test results).
Nonetheless, in future work, we aim to expand the capabil-
ities of KOTINOS so that even projects that do not fulfill the
above conditions can benefit from build acceleration.

12

REFERENCES

[1] R. Abdalkareem, S. Mujahid, and E. Shihab. A machine
learning approach to improve the detection of CI skip
commits. IEEE Trans. on Softw. Eng., 2020.

[2] R. Abdalkareem, S. Mujahid, E. Shihab, and J. Rilling.
Which commits can be CI skipped? IEEE Trans. Softw.
Eng., 2019.

[3] B. Adams, K. de Schutter, H. Tromp, and W. de Meuter.
MAKAO (demo). In Proc. of Int. Conf. Softw. Mainte-
nance, pages 517–518, 2007.

[4] B. Adams, K. de Schutter, H. Tromp, and W. de Meuter.
The evolution of the linux build system. Electron.
Commun. of the ECEASST, 8, 2008.

[5] C. AtLee, L. Blakk, J. O’Duinn, and A. Z. Gasparnian.
Firefox release engineering. In A. Brown and G. Wilson,
editors, The Architecture of Open Source Applications:
Structure, Scale, and a Few More Fearless Hacks, chapter 2.
Creative Commons, 2012.

[6] C.-P. Bezemer, S. McIntosh, B. Adams, D. M. German,
and A. E. Hassan. An empirical study of unspecified
dependencies in make-based build systems. Empirical
Softw. Eng., 22(6):3117–3148, 2017.

[7] G. Brooks. Team pace keeping build times down. In
Agile 2008 Conference, pages 294–297, 2008.

[8] W. J. Brown, H. W. McCormick III, and S. W. Thomas.
AntiPatterns and Patterns in Software Configuration Man-
agement. John Wiley & Sons, Inc., 1999.

[9] Q. Cao, R. Wen, and S. McIntosh. Forecasting the
duration of incremental build jobs. In Proc. of Int. Conf.
Softw. Maintenance and Evolution, pages 524–528, 2017.

[10] P. M. Duvall, S. Matyas, and A. Glover. Continuous In-
tegration: Improving Software Quality and Reducing Risk.
Pearson Education, 2007.

[11] S. Elbaum, G. Rothermel, and J. Penix. Techniques for
improving regression testing in continuous integration
development environments. In Proc. of the Int. Symp.
Found. Softw. Eng., pages 235–245, 2014.

[12] H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan,
E. Mavrinac, W. Schulte, N. Sanches, and S. Kandula.
CloudBuild: Microsoft’s distributed and caching build
service. In Proc. of Int. Conf. Softw. Eng. Companion,
pages 11–20, 2016.

[13] S. I. Feldman. Make — a program for maintaining
computer programs. Software: Practice and Experience,
9(4):255–265, 1979.

[14] W. Felidré, L. Furtado, D. A. da Costa, B. Cartaxo, and
G. Pinto. Continuous integration theater. In Proc. Int.
Symp. Empirical Softw. Eng. Measurement, 2019.

[15] K. Gallaba, C. Macho, M. Pinzger, and S. McIntosh.
Noise and heterogeneity in historical build data: an
empirical study of Travis CI. In Proc. of Int. Conf. Autom.
Softw. Eng., pages 87–97, 2018.

[16] K. Gallaba and S. McIntosh. Use and misuse of continu-
ous integration features: An empirical study of projects
that (mis)use Travis CI. IEEE Trans. Softw. Eng., 2018.

[17] T. A. Ghaleb, D. A. da Costa, and Y. Zou. An empirical
study of the long duration of continuous integration
builds. Empirical Softw. Eng., 2019.

[18] M. Gligoric, W. Schulte, C. Prasad, D. van Velzen,
I. Narasamdya, and B. Livshits. Automated migration

of build scripts using dynamic analysis and search-
based refactoring. In Proc. of Int. Conf. Object Oriented
Programming Systems Languages & Applications, pages
599–616, 2014.

[19] F. Hassan and X. Wang. HireBuild: An Automatic
Approach to History-Driven Repair of Build Scripts. In
Proc. of Int. Conf. Softw. Eng., pages 1078–1089, 2018.

[20] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and
D. Dig. Trade-offs in continuous integration: assurance,
security, and flexibility. In Proc. Joint Meeting Eur. Softw.
Eng. Conf. Int. Symp. Found. Softw. Eng., pages 197–207,
2017.

[21] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and
D. Dig. Usage, costs, and benefits of continuous in-
tegration in open-source projects. In Proc. of Int. Conf.
Autom. Softw. Eng., pages 426–437, 2016.

[22] S. Holm. A simple sequentially rejective multiple test
procedure. Scandinavian Journal of Statistics, 1979.

[23] C. Lebeuf, E. Voyloshnikova, K. Herzig, and M.-A.
Storey. Understanding, debugging, and optimizing
distributed software builds: A design study. In Proc. of
Int. Conf. Softw. Maintenance and Evolution, pages 496–
507, 2018.

[24] Y. Li, J. Wang, Y. Yang, and Q. Wang. Method-level
test selection for continuous integration with static
dependencies and dynamic execution rules. In Int.
Conf. Softw. Quality, Reliability and Security, pages 350–
361, 2019.

[25] C. Macho, S. McIntosh, and M. Pinzger. Predicting
build co-changes with source code change and commit
categories. In Int. Conf. on Softw. Analysis, Evolution,
Reengineering, 2016.

[26] C. Macho, S. McIntosh, and M. Pinzger. Automatically
repairing dependency-related build breakage. In Proc.
of Int. Conf. Software Analysis, Evolution, Reengineering,
pages 106–117, 2018.

[27] S. McIntosh, B. Adams, M. Nagappan, and A. E. Has-
san. Mining co-change information to understand
when build changes are necessary. In Int. Conf. Softw.
Maintenance Evolution, 2014.

[28] S. McIntosh, B. Adams, M. Nagappan, and A. E.
Hassan. Identifying and Understanding Header File
Hotspots in C/C++ Build Processes. Autom. Softw. Eng.,
23(4):619–647, 2015.

[29] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell,
R. Siemborski, and J. Micco. Taming google-scale con-
tinuous testing. In Proc. of Int. Conf. Softw. Eng.: Softw.
Eng. in Practice Track, 2017.

[30] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zim-
mermann, and T. Fritz. The work life of developers:
Activities, switches and perceived productivity. IEEE
Trans. Softw. Eng., 43(12):1178–1193, 2017.

[31] A. Miller. A hundred days of continuous integration.
In Proc. of the Agile Conf., pages 289–293, 2008.

[32] G. Pinto, F. Castor, R. Bonifacio, and M. Rebouças.
Work practices and challenges in continuous integra-
tion: A survey with Travis CI users. Softw.: Practice and
Experience, 48(12):2223–2236, 2018.

[33] G. Pinto, M. Reboucas, and F. Castor. Inadequate
testing, time pressure, and (over) confidence: A tale
of continuous integration users. In Proc. of the Int.

13

Workshop on Cooperative and Human Aspects of Softw.
Eng., pages 74–77, 2017.

[34] T. Rausch, W. Hummer, P. Leitner, and S. Schulte. An
empirical analysis of build failures in the continuous
integration workflows of java-based open-source soft-
ware. In Proc. of Int. Conf. Mining Softw. Repositories,
pages 345–355, 2017.

[35] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and
R. Bowdidge. Programmers’ build errors: a case study
(at Google). In Proc. of Int. Conf. Softw. Eng., pages 724–
734, 2014.

[36] A. Shi, P. Zhao, and D. Marinov. Understanding and
improving regression test selection in continuous inte-
gration. In Int. Symp. Softw. Reliability Eng., 2019.

[37] R. Suvorov, M. Nagappan, A. E. Hassan, Y. Zou, and
B. Adams. An empirical study of build system migra-
tions in practice: Case studies on KDE and the linux
kernel. In Proc. of Int. Conf. Softw. Maintenance, pages
160–169, 2012.

[38] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto. An empirical comparison of model val-
idation techniques for defect prediction models. IEEE
Trans. on Softw. Eng., 43(1):1–18, 2017.

[39] M. Tufano, H. Sajnani, and K. Herzig. Towards pre-
dicting the impact of software changes on building
activities. In Proc. of Int. Conf. Softw. Eng.: New Ideas
and Emerging Results, pages 49–52, 2019.

[40] M. Vakilian, R. Sauciuc, J. D. Morgenthaler, and V. Mir-
rokni. Automated decomposition of build targets. In
Int. Conf. Softw. Eng., 2015.

[41] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov.
Quality and productivity outcomes relating to contin-
uous integration in GitHub. In Proc. Joint Meeting Eur.
Softw. Eng. Conf. Int. Symp. Found. Softw. Eng., pages
805–816, 2015.

[42] C. Vassallo, S. Proksch, H. C. Gall, and M. Di Penta.
Automated reporting of anti-patterns and decay in
continuous integration. In Proc. of Int. Conf. Softw. Eng.,
pages 105–115, 2019.

[43] C. Vassallo, S. Proksch, T. Zemp, and H. C. Gall. Un-
break my build: Assisting developers with build repair
hints. In Proc. of Int. Conf. Program Comprehension, pages
41–51, 2018.

[44] C. Vassallo, G. Schermann, F. Zampetti, D. Romano,
P. Leitner, A. Zaidman, M. D. Penta, and S. Panichella.
A tale of CI build failures: An open source and a
financial organization perspective. In Proc. of Int. Conf.
Softw. Maintenance and Evolution, pages 183–193, 2017.

[45] D. G. Widder, M. Hilton, C. Kästner, and B. Vasilescu.
A conceptual replication of continuous integration pain
points in the context of Travis CI. In Proc. Joint Meeting
Eur. Softw. Eng. Conf. Int. Symp. Found. Softw. Eng.,
pages 647–658, 2019.

[46] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan.
Cross-project build co-change prediction. In Int. Conf.
on Softw. Analysis, Evolution, Reengineering, 2015.

[47] S. Yoo and M. Harman. Regression testing minimiza-
tion, selection and prioritization: a survey. Softw. Test-
ing, Verification and Reliability, 22(2):67–120, 2012.

[48] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu.
Wait for it: Determinants of pull request evaluation

latency on GitHub. In Proc. of Int. Conf. Mining Softw.
Repositories, pages 367–371, 2015.

[49] F. Zampetti, C. Vassallo, S. Panichella, G. Canfora,
H. Gall, and M. D. Penta. An empirical characterization
of bad practices in continuous integration. Empirical
Softw. Eng., 25(2):1095–1135, 2020.

[50] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and
B. Vasilescu. The impact of continuous integration
on other software development practices: A large-scale
empirical study. In Proc. of Int. Conf. Autom. Softw. Eng.,
pages 60–71, 2017.

[51] M. Züger and T. Fritz. Interruptibility of software de-
velopers and its prediction using psycho-physiological
sensors. In Proc. of Int. Conf. Human Factors in Comput-
ing Systems, pages 2981–2990, 2015.

Keheliya Gallaba is a Ph.D. student at McGill
University, Canada. His Ph.D. thesis aims to
improve the robustness and efficiency of con-
tinuous integration and continuous deployment
tools. More about Keheliya and his work is avail-
able online at http://keheliya.github.io/.

John Ewart is a co-founder and the CTO at
YourBase. Previously, he was a software engi-
neer at Amazon and AWS. John has over eight
years of experience teaching at Northeastern
University, University of California, Merced, Cali-
fornia State University, Stanislaus, and Columbia
Community College. He has written multiple
books on technical subjects including managing
large scale production systems with Chef.

Yves Junqueira is a co-founder and the CEO
at YourBase. Previously, he was a senior site
reliability engineer at Google for ten years. Yves
grew up in Brazil and currently lives in Seattle,
USA.

Shane McIntosh is an Associate Professor at
the University of Waterloo. Previously, he was
an Assistant Professor at McGill University. He
received his Ph.D. from Queen’s University. In
his research, Shane uses empirical methods to
study build systems, release engineering, and
software quality: http://shanemcintosh.org/.

http://keheliya.github.io/
http://shanemcintosh.org/

	Introduction
	Motivating Example
	Related Work
	Challenges in Continuous Integration
	Slow CI Feedback
	Accelerating Slow CI Builds

	The Kotinos Approach
	Caching of the Build Environment (L1)
	Skipping of Unaffected Build Steps (L2)

	RQ1: How often are accelerations activated in practice?
	RQ2: How much time do the proposed accelerations save?
	Overall Statistical Analysis
	Longitudinal Analysis
	Replay Analysis

	RQ3: What are the costs of the proposed accelerations?
	Resource Utilization
	Correctness

	Implications
	Threats to Validity
	Conclusion and Future Work
	Biographies
	Keheliya Gallaba
	John Ewart
	Yves Junqueira
	Shane McIntosh

