
1

Code Reviews with Divergent Review Scores:
An Empirical Study of the OpenStack and Qt Communities

Toshiki Hirao, Student Member, IEEE, Shane McIntosh, Member, IEEE, Akinori Ihara, Member, IEEE,

and Kenichi Matsumoto, Member, IEEE

Abstract—Code review is a broadly adopted software quality practice where developers critique each others’ patches. In addition to

providing constructive feedback, reviewers may provide a score to indicate whether the patch should be integrated. Since reviewer

opinions may differ, patches can receive both positive and negative scores. If reviews with divergent scores are not carefully resolved,

they may contribute to a tense reviewing culture and may slow down integration.

In this paper, we study patches with divergent review scores in the OPENSTACK and QT communities. Quantitative analysis indicates

that patches with divergent review scores: (1) account for 15%–37% of patches that receive multiple review scores; (2) are integrated

more often than they are abandoned; and (3) receive negative scores after positive ones in 70% of cases. Furthermore, a qualitative

analysis indicates that patches with strongly divergent scores that: (4) are abandoned more often suffer from external issues (e.g.,

integration planning, content duplication) than patches with weakly divergent scores and patches without divergent scores; and (5) are

integrated often address reviewer concerns indirectly (i.e., without changing patches).

Our results suggest that review tooling should integrate with release schedules and detect concurrent development of similar patches

to optimize review discussions with divergent scores. Moreover, patch authors should note that even the most divisive patches are

often integrated through discussion, integration timing, and careful revision.

Index Terms—Modern Code Review, Divergent discussion, Empirical Study.

✦

1 INTRODUCTION

CODE review is widely considered a best practice for
software quality assurance [1]. The Modern Code Re-

view (MCR) process—a lightweight variant of the tradi-
tional code inspection process [2]—allows developers to
post patches, i.e., sets of changes to the software system, for
review. Reviewers (i.e., other team members) are either: (1)
appointed automatically based on their expertise [3], [4], [5];
(2) invited by the author [3], [6], [7]; or (3) self-selected by
broadcasting a review request to a mailing list [8], [9], [10].

Reviewer opinions about a patch may differ. Therefore,
patches that are critiqued by more than one reviewer may
receive scores both in favour of and in opposition to inte-
gration. In this paper, we focus on these patches as their
discussions have the potential to be divergent. In order to
arrive at a final decision about these patches, the divergent
positions of reviewers will likely need to be resolved.

Broadly speaking, divergent opinions have been stud-
ied for a long time in academic settings [11]. Recently,
divergence in reviews has been studied within open source
communities [12], and has been observed to correlate with
negative development outcomes [12]. For example, diver-
gence has been associated with increased rates of developer
abandonment [13] and poorer team performance [14].

Specifically, in the context of code review, divergent
review scores may forebode disagreement among reviewers.

• Toshiki Hirao and Kenichi Matsumoto are with the Graduate School of
Information Science, Nara Institute of Science and Technology, Japan.
E-mail: hirao.toshiki.ho7, matumoto@is.naist.jp

• Shane McIntosh is with the Department of Electrical and Computer En-
gineering, McGill University, Canada. E-mail: shane.mcintosh@mcgill.ca

• Akinori Ihara is with the Faculty of System Engineering, Wakayama
University, Japan. E-mail: ihara@sys.wakayama-u.ac.jp

Manuscript received date; revised date.

Divergent reviews can slow integration processes down [7],
[9] and can create a tense environment for contributors [15].
For instance, consider review #12807 from the QTBASE

project.1 The first reviewer approves the patch for integra-
tion (+2). Afterwards, another reviewer blocks the patch
from being integrated with a strong disapproval (-2), argu-
ing that the scope of the patch must be expanded before inte-
gration could be permitted. Those reviewers who provided
divergent scores discussed whether the scope of the patch
was sufficient for five days, but an agreement was never
reached. One month later, the patch author abandoned
the patch without participating in the discussion. Despite
making several prior contributions, this is the last patch that
the author submitted to the QTBASE project.

In this paper, we set out to better understand patches
with divergent review scores and the process by which
an integration decision is made. To achieve our goal, we
analyze the large and thriving OPENSTACK and QT com-
munities. Through quantitative analysis of 49,694 reviews,
we address the following two research questions:

(RQ1) How often do patches receive divergent scores?
Motivation: Review discussions may diverge among
reviewers. We first set out to investigate how often
patches with divergent review scores occur.
Results: Divergent review scores are not rare. Indeed,
15%–37% of the studied patch revisions that receive
review scores of opposing polarity.

(RQ2) How often are patches with divergent scores even-
tually integrated?
Motivation: Given that patches with divergent scores
receive both positive and negative scores, making an

1https://codereview.qt-project.org/#/c/12807/

c© 2020 IEEE. Author pre-print copy. The final publication is available online at: https://dx.doi.org/10.1109/TSE.2020.2977907

https://codereview.qt-project.org/#/c/12807/
https://dx.doi.org/10.1109/TSE.2020.2977907


2

integration decision is not straightforward. Indeed,
integration decisions do not always follow a simple
majority rule [16]. We want to know how often these
patches are eventually integrated.
Results: Patches are integrated more often than they
are abandoned. For example, patches that elicit posi-
tive and negative scores of equal strength are eventu-
ally integrated on average 71% of the time. The order
in which review scores appear correlates with the
integration rate, which tends to increase if negative
scores precede positive ones.

(RQ3) How are reviewers involved in patches with diver-
gent scores?
Motivation: Patches may require scores from addi-
tional reviewers to arrive at a final decision, impos-
ing an overhead on development. We set out to study
in reviews with divergent scores (a) if additional
reviewers are involved; (b) when reviewers join the
reviews; and (c) when divergence tends to occur.
Results: Patches that are eventually integrated in-
volve one or two more reviewers than patches with-
out divergent scores on average. Moreover, posi-
tive scores appear before negative scores in 70% of
patches with divergent scores. Reviewers may feel
pressured to critique such patches before integration
(e.g., due to lazy consensus).2 Finally, divergence
tends to arise early, with 75% of them occurring by
the third (QT) or fourth (OPENSTACK) revision.

To better understand divergent review discussions, we
qualitatively analyze: (a) all 305 of the patches that elicit
strongly divergent scores from members of the core devel-
opment teams; (b) a random sample of 630 patches that elicit
weakly divergent scores from contributors; and (c) a random
sample of 305 patches without divergent scores. In doing so,
we address the following research questions:

(RQ4) What drives patches with divergent scores to be
abandoned?
Motivation: In RQ2, we observe that 29% of the
studied patches with divergent scores are eventually
abandoned. Since each patch requires effort to pro-
duce, we want to understand how the decision to
abandon patches with divergent scores is reached.
Results: Abandoned patches with strong divergent
scores more often suffer from external issues than
patches with weakly divergent scores and without
divergent scores do. These external issues most often
relate to release planning and the concurrent devel-
opment of solutions to the same problem.

(RQ5) What concerns are resolved in patches with diver-
gent scores that are eventually integrated?
Motivation: In the 71% of cases where patches with
divergent scores are eventually integrated (see RQ2),
the concerns of the negative score are resolved. We
want to investigate which types of concerns are
addressed in such cases.
Results: In OPENSTACK NOVA, reviewer concerns
are more often indirectly addressed (e.g., through
integration timing) in patches with strong divergent
scores than patches with weakly divergent and with-

2https://community.apache.org/committers/lazyConsensus.html

out divergent scores. On the other hand, in QT-
BASE, reviewer concerns are often directly addressed
through patch revision, irrespective of whether di-
vergent scores are present.

Our results suggest that: (a) software organizations
should be aware of the potential for divergence, since
patches with divergent scores are not rare and tend to in-
volve additional personnel; (b) automation could relieve the
burden of reviewing for external concerns, such as release
scheduling and duplicate solutions to similar problems; and
(c) authors should take heart from the fact that even the
most divisive patches are often integrated through construc-
tive discussion, integration timing, and careful revision.
Enabling replication. To enable future studies, we have
made a replication package available online,3 which in-
cludes the collected data and analysis scripts, as well as
more detailed hierarchies of the reasons for abandonment
and integration of patches with divergent scores.
Paper organization. The remainder of this paper is orga-
nized as follows. Section 2 describes the design of our
case study, while Sections 3 and 4 present the quantita-
tive and qualitative results, respectively. Section 5 discusses
the broader implications of our results. Section 6 discloses
threats to the validity of our study. Section 7 surveys related
work. Finally, Section 8 draws conclusions.

2 CASE STUDY DESIGN

In this section, we describe the subject systems, their Gerrit-
based review processes, and our data preparation approach.

2.1 Studied Projects

To address our research questions, similar to prior work [17],
[18], we perform an empirical study on large, thriving,
and rapidly evolving open source systems with globally
distributed teams. Due to the manually intensive nature
of our qualitative analysis, we choose to select a sample
of four software projects from two communities. We select
the OPENSTACK and QT communities for analysis because
they have made a serious investment in code review for
several years, having adopted the Gerrit tool for managing
the code review process.4 These communities are theoret-
ically sampled [19] to represent different sub-populations.
OPENSTACK is a free and open source software platform for
cloud computing that is primarily implemented in Python
and is developed by many well-known software companies,
e.g., IBM, VMware, and NEC [3]. QT is a cross-platform ap-
plication and UI framework that is primarily implemented
in C++ and is developed by the Digia corporation, but
welcomes contributions from the community at large [20].

The OPENSTACK and QT communities are composed of
several projects. We study the two most active projects in
each community (based on the number on patch submis-
sions). Table 1, which provides an overview of the studied
projects, shows that 18% (NOVA), 20% (NEUTRON), 67%
(QTBASE), and 84% (QT-CREATOR) of patches involve only
one reviewer. The discrepancy between the communities
(OPENSTACK vs. QT) is likely reflective of differences in

3https://figshare.com/s/4d3e096f4339f6d4b3da
4https://code.google.com/p/gerrit/

https://community.apache.org/committers/lazyConsensus.html
https://figshare.com/s/4d3e096f4339f6d4b3da
https://code.google.com/p/gerrit/


3

TABLE 1
An overview of the subject systems. The white and gray rows show the

overview of each subject system and each community, respectively.

Product Scope Studied Period #Patches #Multi-Rev
Patches

#Revs

OPENSTACK 07/2011 to 01/2018 444,582 297,961 9,108
NOVA Provisioning

manage-
ment

09/2011 to 01/2018 25,901 21,224 1,602

NEUTRON Networking
abstraction

07/2013 to 01/2018 12,350 9,936 1,063

QT 05/2011 to 01/2018 168,066 36,752 1,785
QTBASE Core UI

functional-
ity

05/2011 to 01/2018 37,974 12,459 627

QT-CREATOR Qt IDE 05/2011 to 01/2018 37,587 6,075 278

(1) Uploading patch 
revisions

(2) Sanity 
testing

(3) Soliciting peer 
feedback

Fail

Pass

Fail

(4) Initiation of an 
integration request

(5) Automated 
integration testing

(6) Final integration

Pass

Pass Pass

Pass

Fail Fail

	+	+	+	

	+	+	+	

	−	−	

	−	−

Submit

Fig. 1. The OPENSTACK and QT code contribution processes.

integration policies—while OPENSTACK changes normally
require two +2 scores for integration approval, only one +2
score is required for QT changes.

2.2 The OpenStack and Qt Code Review Processes

The OPENSTACK and QT communities manage code con-
tributions (i.e., patches) using a rigourous modern review
process that is enabled by Gerrit. Figure 1 provides an
overview of that code review process, which is made up
of the following steps.

(1) Uploading patch revisions. A patch author uploads a
new patch or revision to Gerrit and invites a set of
reviewers to critique it by leaving comments for the
author to address or for review participants to discuss.
Reviewers are not notified yet about the patch’s details.

(2) Sanity testing. Before reviewers examine the submitted
patches, sanity tests verify that the patch is compliant
with the coding and documentation style guides, and
does not introduce obvious regression in system be-
haviour (e.g., compilation error). If the sanity tests report
issues, the patch is blocked from integration until a revi-
sion of the patch that addresses the issues is uploaded.

(3) Soliciting peer feedback. After a submitted patch
passes sanity testing, reviewers examine the patch. The
reviewer is asked to provide feedback and a review
score, which may be: +2 indicating an approval for in-
tegration, +1 indicating agreement without integration
approval, 0 indicating abstention, -2 blocking integra-
tion, or -1 indicating disagreement without blocking
integration. Only those reviewers on the core team have
access to +2 or -2 scores. Unlike the conference paper
reviewing model, where positive and negative scores

Include SP (+2)

Include SN (-2) Include SN (-2)

Yes No

Yes NoYes No

+2

+1

-2

-1

+2

+1 -1 +1

-2

-1 +1 -1

SP-SN

SN-SP

SP-WN

WN-SP

WP-SN

SN-WP

WP-WN

WN-WP

Fig. 2. An overview of our approach to classify patches with divergent
scores.

indicate the support for and opposition to a one-time
acceptance decision, respectively, code review scores
are submitted with the intention of iterating upon and
improving the patch.

(4) Initiation of an integration request. Gerrit allows teams
to encode review and verification criteria that must
be satisfied before patch integration. For example, the
OPENSTACK policy specifies that a patch needs to re-
ceive at least two +2 scores.5 After satisfying these
criteria, the patch can enter the queue for integration.

(5) Integration testing. Patches that are queued for integra-
tion are checked by a set of integration tests—a more
rigourous check than sanity testing. If the integration
tests report issues, the patch is blocked from integration
until the patch author uploads a revision of the patch
that addresses the issues. These revisions should be
reviewed again (if only briefly) because the fixes for
integration testing issues may introduce other problems.

(6) Final integration. Once the patch passes integration
testing, the patch is integrated into the upstream (offi-
cial) project repositories. This step still may fail due to
conflicts that may arise due to integration timing.

2.3 Data Preparation

Using the Gerrit API, we extracted review records for all of
the available OPENSTACK and QT patches in January 2018.
Then, as described below, we prepared the data for analysis.
Divergent score identification. We begin by identifying
patches with divergent scores, i.e., patches elicit at least one
positive and one negative score. Since these patches receive
opposing scores, they indicate the potential for divergence.
However, patches with divergent scores may include false
positive cases where there is no actual divergence between
positive and negative scores. In this study, we further
identify patches that have actual divergent scores due to
a variety of reviewer concerns.

First, to identify whether or not a patch has divergent
review scores, we select the patches that have at least one
positive and one negative review score in the same revision.
In cases where a reviewer updates their score, we select their

5http://docs.openstack.org/infra/manual/developers.html#
project-gating

http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating


4

Non-divergent DiscussionDivergent Discussion

A

+2

C

+1

B

-1

A

+1

Revision 1

Revision 2

1st 

score

2nd 

score

3rd 

score

B

+1

C

+1

Revision 1

Revision 2

1st 

score

2nd 

score

A

-2

Fig. 3. Examples of review score patterns that we consider divergent
and non-divergent.

first score because we want to know their initial opinion
before changing their mind. We then use four patterns of
divergence based on the Gerrit review scores (+2, +1, -1,
-2). We do not include 0 scores because they indicate no
position. In addition, we consider the order in which the
scores were submitted, and classify patches with divergent
votes into eight patterns:

Strong Positive, Strong Negative (SP-SN, SN-SP). Patches
with at least one +2 and at least one -2. SP-SN if +2
appears before -2, SN-SP otherwise.

Strong Positive, Weak Negative (SP-WN, WN-SP). Patches
with at least one +2 and at least one -1, but no -2.
SP-WN if +2 appears before -1, WN-SP otherwise.

Weak Positive, Strong Negative (WP-SN, SN-WP). Patches
with at least one -2 and at least one +1, but no +2.
WP-SN if +1 appears before -2, SN-WP otherwise.

Weak Positive, Weak Negative (WP-WN, WN-WP). Patches
with at least one -1 and at least one +1, but no +2 or
-2. WP-WN if +1 appears before -1, WN-WP otherwise.

Figure 2 provides an overview of our classification pro-
cess. For example, when classifying patch with +2, -1, and
+1 scores on the same revision, we follow the path for
patches that “Include SP” on the left, and then the path for
patches that do not “Include SN” on the right to arrive at
the “strong positive and weak negative” category. Since the
strong positive is provided earlier than weak negative, the
patch is classified as SP-WN.

Note that the patch revision process complicates our
classification approach, since review scores may be recorded
with respect to different patch revisions. We focus on review
scores that were applied to the same revision when identify-
ing patches with divergent scores. For example, the scenario
on the left of Figure 3 shows a patch with divergent scores,
since it has at least one positive score (Rev A or Rev C) and
one negative score (Rev B) on the same revision (Revision 2).
Although the scenario on the right of Figure 3 also receives
positive and negative scores, they do not appear in the same
revision, and thus, it is not labelled as divergent.

3 QUANTITATIVE RESULTS

In this section, we present the results of our quantitative
analysis with respect to RQ1–RQ3. For each question, we

TABLE 2
The number and proportion of each potentially divergent pattern in the

four subject systems.

System SP-SN SN-SP SP-WN WN-SP WP-SN SN-WP WP-WN WN-WP Total

NOVA 192 52 2051 785 299 30 2945 349 6703
(1%) (< 1%) (10%) (4%) (1%) (< 1%) (14%) (2%) (32%)

NEUTRON 112 24 918 414 124 21 1763 320 3696
(1%) (< 1%) (9%) (4%) (1%) (< 1%) (18%) (3%) (37%)

QTBASE 50 11 499 302 86 10 1163 208 2329
(< 1%) (< 1%) (4%) (2%) (1%) (< 1%) (9%) (2%) (19%)

QT-CREATOR 21 4 180 81 32 9 497 81 905
(< 1%) (< 1%) (3%) (1%) (1%) (< 1%) (8%) (1%) (15%)

TABLE 3
The integration rate of each divergent score pattern in the four subject

systems.

System SP-SN SN-SP SP-WN WN-SP WP-SN SN-WP WP-WN WN-WP

NOVA 46% 94% 83% 93% 34% 50% 69% 66%
NEUTRON 58% 92% 88% 96% 19% 33% 71% 65%
QTBASE 56% 82% 81% 90% 28% 50% 73% 70%
QT-CREATOR 43% 75% 81% 96% 59% 56% 81% 90%

describe our approach for addressing it followed by the
results that we observe.

(RQ1) How often do patches receive divergent scores?

Approach. To address RQ1, we examine how often the
reviews of patches in NOVA, NEUTRON, QTBASE, and QT-
CREATOR receive divergent scores. To do so, we compute
the rate of multi-reviewer patches that receive positive and
negative scores on the same revision (Table 2).
Results. Observation 1—Patches with divergent scores
are not rare in OPENSTACK and QT. Table 2 shows that
15%–37% of the patches that have multiple review scores
receive both positive and negative scores. While the ma-
jority of patches with divergent scores have only a weak
negative score (SP-WN, WN-SP, WP-WN, and WN-WP), 7%–
9% have at least one strong negative scores (SP-SN, SN-
SP, WP-SN, and SN-WP) in the four subject systems (e.g.,
192+52+299+30

6,703
≃ 9% in NOVA).

From the alternative perspective, 63%–85% of reviews do
not have divergent scores. On the surface, this may seem like
reviewers often agree about patches, calling into question
the necessity of having more than one reviewer evaluate
patches. We caution against this interpretation because more
reviewers bring additional perspectives, commenting on a
variety of concerns during the review process. Moreover,
reviewer scores may change across revisions—a case that
we conservatively classify as non-divergent.

15%–37% of patches that receive multiple review scores
have divergent scores.

(RQ2) How often are patches with divergent scores

eventually integrated?

Approach. To address RQ2, we examine the integration
rates of patches with divergent scores. For each divergence
pattern, we compute the proportion of those patches that
are eventually integrated (Table 3).
Results. Observation 2—Patches that receive stronger pos-
itive scores than negative ones tend to be integrated. In
patches that receive stronger positive review scores than
negative ones, intuition suggests that most will be inte-
grated. Table 3 shows that this is indeed the case, with



5

the SP-WN integration rate of 81%–88% and WN-SP inte-
gration rate of 90%–96% across the four subject systems.
Interestingly, even patches with weakly scored criticism
are not integrated on occasion, suggesting that authors are
attuned to that criticism despite securing a positive score
that enables integration.

Similarly, in patches that receive stronger negative scores
than positive scores, intuition suggests that most will be
abandoned. Again, Table 3 shows that in the NOVA, NEU-
TRON, and QTBASE systems, this is indeed the case in the
WP-SN pattern, with the integration rates below 50%. The
WP-SN integration rate is only above 50% for QT-CREATOR

(59%); however, we note a greater tendency towards accep-
tance in all of the patterns for the QT-CREATOR system.

The results imply that a -2 score is a large obstacle
to integration. Resolving criticism is a common research
topic not only in code review [13], but also academic paper
reviewing [11]. The prior work on code reviews suggests
that when developers include constructive suggestions (e.g.,
alternative solutions) when critiquing patches, authors feel
encouraged to continue contributing. The recommendation
indicates that such a critique should be resolved through
patient contributions from both reviewers and authors.

Unlike in academic peer review settings, the order in
which the code review scores are recorded shares a strong
relationship with the integration rate. Table 3 shows that
if the negative score is submitted before the positive score
(i.e., SN-WP), the integration rate grows by 14–22 percentage
points in the NOVA, NEUTRON, and QTBASE systems. On
the other hand, we observe a drop of three percentage points
in the QT-CREATOR system; however, the integration rate
remains above 50%.

Observation 3—Patches that receive positive and neg-
ative scores of equal strength tend to be integrated. In
patches that receive positive and negative scores of equal
strength, intuition suggests that half of such patches will be
integrated. Indeed, Table 3 shows that the SP-SN pattern has
integration rates of 43%–58%, which is roughly in line with
our intuition. Again, the order in which scores are recorded
plays a key role—when a strong positive score is provided
after a strong negative one (SN-SP), the integration rates
increase to 75%–94%, suggesting that the late arrival of a
proponent can encourage contributors to revise and rescue
the patch from abandonment.

Likewise, the WP-WN and WN-WP patterns have the
integration rates of 69%–81% and 65%–90% respectively,
which is higher than we had anticipated. The results suggest
that patches with weak divergent scores are often redeemed,
even if there is only weak support for them initially.

Patches with divergent scores are often eventually in-
tegrated. The timing of the arrival of scores plays a
role, with later positive scores being correlated with
considerable increases in integration rates.

(RQ3) How are reviewers involved in patches with diver-

gent scores?

Approach. To address RQ3, we examine the review data
from three perspectives. First, we report the difference in
the number of reviewers in patches with divergent review
scores and those without (Table 4). To analyze reviewer

TABLE 4
The number of reviewers in reviews that receive divergent scores and

reviews that do not in the four subject systems.

System SP-SN SN-SP SP-WN WN-SP WP-SN SN-WP WP-WN WN-WP Non

NOVA 4.28 4.96 3.71 4.44 3.89 3.40 3.41 3.32 3.65

(0.63) (1.31) (0.06) (0.79) (0.24) (-0.25) (-0.24) (-0.33) –

NEUTRON 5.34 5.00 4.69 5.19 3.74 4.71 4.01 4.07 4.07

(1.27) (0.93) (0.63) (1.12) (-0.33) (0.65) (-0.05) (< 0.01) –

QTBASE 2.57 2.56 2.49 2.64 2.46 2.20 2.46 2.39 2.30

(0.27) (0.26) (0.19) (0.34) (0.16) (-0.10) (0.17) (0.10) –

QT-CREATOR 2.44 2.00 2.24 2.42 2.21 2.00 2.26 2.22 2.17

(0.27) (-0.17) (0.07) (0.25) (0.04) (-0.17) (0.09) (0.05) –

TABLE 5
The N→SP and P→SN rates of the five most active reviewers in the

four subject systems.

Rank NOVA NEUTRON QTBASE QT-CREATOR

N→SP P→SN N→SP P→SN N→SP P→SN N→SP P→SN

1st 17% 50% 31% 0% 50% 75% 18% 90%
2nd 58% 90% 43% 88% 36% 100% 46% 93%
3rd 49% 97% 53% 100% 35% 75% 22% 0%
4th 36% 88% 52% 90% 46% 91% 28% 0%
5rd 29% 100% 44% 84% 30% 0% 31% 83%

tendencies, we then compute the rate at which the five most
active reviewers in each subject system submit scores of a
different polarity than the other reviewers (Table 5). Finally,
we plot the revision when divergence occurs against the last
revision of each review with divergent scores (Figure 4).
Results. Observation 4—Patches with divergent scores
tend to require one to two more reviewers than patches
without divergent scores. Table 4 shows that overall,
patches that receive strong positive scores (SP-SN, SN-SP,
SP-WN, and WN-SP) have a greater difference in the number
of reviewers than the other patterns. Table 4 shows that
specifically in SP-SN and SN-SP patterns of NOVA and NEU-
TRON, the differences range from 0.63 to 1.31. Unlike these
patterns, the difference in patches without -2 scores (WP-
SN, SN-WP, WP-WN, and WN-WP) tends to remain below
one. Rigby and Bird [21] observed that two reviewers were
often enough, except in cases where reviews became a group
problem solving activity. Our results complement theirs,
suggesting that patches with divergent scores also require
additional review(er) resources to reach a final decision.

Observation 5—The most active reviewers tend to pro-
vide negative scores after positive ones. Table 5 shows that
the most active reviewers provide strong negative scores
after positive ones (P→SN) more often than strong positive
scores after negative ones (N→SP). Indeed, 16 of the 20
analyzed reviewers stop a positive trend in review scores
more often than they stop a negative trend, with personal
differences of 25–72 percentage points. Active reviewers
may feel pressured to critique patches with a positive trend
before integration. The practice of lazy consensus, where a
reviewer avoids joining a discussion when other reviewers
raise concerns, may also help to explain this tendency.

In contrast, there are four reviewers who tend to stop
negative trends (1st in NEUTRON, 5th in QTBASE, and
3rd and 4th in QT-CREATOR). All four of these reviewers
never stop a positive trend with a strong negative score.
Upon closer inspection, we find that these reviewers are
senior community members who take on a managerial role.
These reviewers appear to only join reviews late in order to
provide a strong vote in favour for high priority content.

Observation 6—Divergent scores have a tendency to



6

●●● ●
●

●●●

●
●●

●

●

●

●● ●
●

●●

●●
●

●

●

● ●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●● ●●

●

●

●

●

●●
● ●

●

●
●

●

●●

●

●
●

●

●● ●●●

●

●●
●

●

●
●●

●

●

●

●

●

●●●

●

●●●

●

●●

●● ●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●
●●●●

●

●●

●

●●●

●

●
●●●● ●

●

●

●●

●

●●● ●
●●●●●●
●

●●

●
●

●●

●
●

●●
●

●

●●

●● ●●●●

●

●

●

●
●● ●●●●●

●

●
●●●●

●
●
●
●●●●

●●

●

●●

●

●●

●●

● ●● ●●●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●

● ●

●●

●
●●

●

●

●

●
●

●●

●

●●

● ●
●●

●●●
●

●

●

●

●

●
●●●●●● ●●

●

●●●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●●
● ●

●

●

●●
● ●●●

●

●●

●

●

●
●●

●
●

● ●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●●
●

●

●●

●

●●
●●

●

●

●●
●
● ●●●●●

●

●●● ●●●●

●

●●●●●● ●●●●●●●●
●

●●
●

●●●●●●●●●●●●

●

●
●●

●●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●●

●●

●

●●

●

●
●●

●

●

●

●

● ●

●

●●

●

●

●●●●●●●●●●●●
●
●

●

●

●

●

●●●●●

●

●

●●
●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●
●●

●

●
●

●

●

●

●●●

●

●

●●●●● ●

●●

●

●●

●

●●●

●

● ●●

●

●

●●

●

●●● ●●

●

●● ●●●●●● ●●●

●

●● ●●●●

●
●

●
●

●●
●

●●● ●●●●

●

●●
●

●●●
●

●

●

●●●●●●● ●●●●●●●●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●●●

●

●●
●

●

● ●

●
●●

●●●

●

●
●●●●

●

●
●●

●
●●

●●

●

● ●
●

●●●
●

●●●

●

●

●●●

●

●●
●●●

●
●

●
●

●

● ●

●

●

●

●●●● ●●

●

●●●● ●

●

●●

●

●
● ●●

●●

●

●●● ● ●●
●

●

●

●●

●

● ●●●

●

●●●
●●

●●
●

●

●

● ●●● ●

● ●

●●●

●

●

●

●

●

●

●●●●●●

●

● ●●●●●

●

●
●

●

●● ●
●●

●

●

●●● ●●
●

●

●●●
●

●
●

●

●

●

●●
●

●●

●

●

●

● ●

● ●

●

●

●

●● ●● ●● ●●

●
●

●

●●●●

●●●●
●

●
●

●

●●
●

●

●●
●

● ●

●

●●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

● ●●●

●

●●●●● ●●● ●●●●
●

●
●

●

●●
●

●

●
●

●●●

●

●

●

●●●●

●
● ●

● ●●●●

●

●

●

●

●

●●

●●
●

●
●●● ●

●

●

●

●

● ●●

●

●

●

●

●●
●

●●●

●

●

●
●●

●

●

●●●●●●●

●

●●

●

● ●
●● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●

●●

●
●

●

●

●

●

●

●

●●

●

●●●

●
●

●
●●

●

●
●

●

●●●

●

●

●

●

●●●● ●●●

●

●

●●

●

●●●●●●

●
●

●

● ●●
●●●● ●●

●

●

●

●
●

●

●●

●
●

●
●

●
●●

●

●●

●
●●

●

●

● ●●

● ●

●

●

●

●

●
●

●

●
●
●●●

● ●

●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●●

● ●●●●●●●●
●●

●●

●

●●●●●●●● ●
●

●●●●

●

●
●

●

●

●●
●

●

●
●● ●●●

●

●

●

●
●

●

●

●

●●●
●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●●

●
●

●

●●●●
● ●

●

●

●

●●
●●●●

●●●●●●
●

●

●

●●●
●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●
●● ●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●●●
●

●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●●
●

●

●●●●
● ●

●●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●●

●

●●

●

●
●

●

●

●

●

●

● ●
●

●

●●●●●●●●
●●

● ●●●

●

●●

●

●

●●
●
●

●

●●

●

●●●●
●●

●●●●●

●

●

●

●
●●

●

●●●

●
●

●●●●●●●

●

●
●

●●●

●
●

●

●

●

●

●●
●●

●

●●

●●

●

●

●

●
●●

●

●

●

●●
●

●

●●●●● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●●●
●

●● ●
●●

●
●●

●

●

●●

●●●

●
●●●●

●

●●●
●●●●

●
●

●

● ●● ●
●●●

●

●●
●

●

●

●
●●

●
●

●

●●

●

● ●

●●

●●●

●●
●

● ●●

●

●

●

●

●

●●
●

●

●

●

● ●●

●●

●

●
●
●

●

●

●

●

●●●
● ●●

●

●●●●● ●● ●●●●●
● ● ●
●

●● ●

● ●

●

●

●
●●● ●
●

●●
●

●

●

●●

●●●

●

●
●●●

●
●

●

●

●
●

●

● ●●
●

●

● ●

●

●●
● ●●

●

●

●●

●

●

●●●

● ●

●●

●
●

●

●

●

●
●●

●
●

●●
●

●●

●

●

●●

● ●●● ●
●

●
●●●●
●

●● ●
●●●● ●

●●●
●

● ●●

●

●

●●●

●

●●

●

●

●

●
●

●

●●
●●
●

●

●

●

●

●
●

● ●●

●
●

●

●

●
●

●

●

● ●

●
●●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●

● ●
●●

●

●

●

●

●

●
●
●●

●●
●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

● ●

●
●

●

●●
●

● ●●●●●

●
●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●●

●

●●●●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●●●
●●●●●

●

●●
●●●

●●●

●

●●
●

●●● ●

●

●

●

●● ●

●

●
●

● ●●

●

●

●●●●
●

●●●

●

●●●

●●

●

●
●

●

●

●● ●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●●
●●

●
●

●

●● ●●

●
●●●

●

●

●●●

●

●

●●

●

●●
●●

●

● ●

●

●●●●●
●

●

●

●

●●
●

●

●

●

●●●

●

●
●

●
●●●●●

●

●

●●●

●

●●

●

●

●●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●●●● ●
● ●● ●●
●●

●

●

●

●

●

●
●●

●

●
●

●●

●●●

●●
●●●

●●●
●

●● ●

●●

●
●●

●

●

●

●●●

●

●●●● ●

●

●●
●● ●●

●

●

●

●● ●

●●

●
●

●●

● ●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●●●●●●
●

●●●

●

●●

●

●●

●

●

●●●
●●

●
●

●
●●

●

●
●

●

●

●●
●●

●
●

●

●●

●

●●

●

●

●●
●●●

●

●

●
●

●

●

●
●●●

●

●●●●
●

●

●

●
●

●

●

●
●●●●

●

●

●

●

●●●

●
●

●

●●

●

●

●

●● ●●●

●

●

●

●
●●

●

●

●

●
●●● ●

●

●

●

●
● ● ●

●

● ●
● ●
●

●

●

●●●●
●

●●

● ●●

●

● ●

●

●

●●●

●

●

●

● ●●

●

●

● ●●●●●●
●

●
●●

●

●

●●●●
●●●●

●
●

●

●

●●
●●●●●●●

●●
●

●

●●

●

●

●●
●

●

●●
●

●●●

●
●

●●●

●
●

●

●

●●

●

●●
●

●

●

●

●

●●●●

● ●

●●●

●

●

●

●●● ●

●

●●●●

●

●●●

●

●●●●●●●●
●

●●●●●●

●
●

●

●●●
●

●●
●

●●

●
●●

●
●

●

●

● ●
●●

●●

●

●●●●●●●●●●●
●●●●

●

●● ●●●

●

●
●●

●

●●●●●

●
●

●

●●

●● ●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●●

●●

●

●

●

●

●
●
●●

● ●

●

●

●
● ●

●

●

●
●●

● ●

●

●

●●●●

●

●

●

●
● ●

●●●

●●

●

●

●

●
●●● ●●

●

●

●●●●
●●

●
●● ●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●● ●●

●

●

●●●●

● ●

●●● ●●
●

●

●●
●

●

●
●

●
●●●●●●

●
●

● ●
●

●

●

●

●●●

●●●

●

●●

●

●

●
●

●
●

●

●

●●●

●

●
●

●●●● ●
●●

●

●

●●●

●●

●●

●

●●● ●●
●

●

●●

●

●
● ●

●
●

●●●●●●

●

●
●

●●

●

●●● ●

●

●●
●● ●●

●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●●●●

●

●
●●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●●●●●●
●●

●●●●●●●●
●

●
●

●●

●

●

●

●

● ●

●

●●●

●●

●●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●●●

●
●

●
●

●
● ●●

● ●

●
●

●

●●
● ●●●

●

●●●●● ●●● ●●

●

●

●
●● ● ●

●●●●

●●

●

●

●

●

●● ● ●●

●

●●●●

●

●●●

●

●●●

●
●

●●
●

●●●●●● ●●

●

● ●

●

●

●

●●●●
●

● ●●●

●

●

●

●●●●

●

●●

●

●●

●

●
●●●
●

●

●●●●

●

●

●●

●

● ●●●

●

●●
●●

●

●●
●●●●

●

●●
●

●

●
●

●

●
●

●

●

●●

●●
●
●

●
●
●●●

●●

●

●●●
●

●●

●

● ●

●
●●

●

●
●●

●

●
●●

●

●
●●●

●● ●

●

●

●

●●●

●

● ●
●
●●●

●
● ●●●●

●

●●●●●●●●

●

●●

●

●
●

●●

●

●●●●

●

●
●

●●

●●
●

●

●

●

●

●●
●●●●

●

●

●
● ●●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●●

●

●●
●

●

●

● ●

●

●

●

●

●●

●

●●

●

● ●

●

●

●
●

●

●

● ●

●

●●●●

● ●●

●

●
● ●●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●● ●●●

●

●●

●●
●●
●

●

●

●

●

●

●
● ●

●●
● ●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●

●●● ●

●
●●

●

●● ●

●

●

●

●●●

●

●

●

●
●

●

●●●

●

●

●

●
●●●●●

●

● ●
●●

●

●

●
●●●

●●

●

●

●●
●

●

●

●

●● ●●●●●●●●●

●

●●●
● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●
●●●

●

●
●●●

●● ●●

●

●
●●

●
●

●

●●●
●●

● ●

●

●

●

●●●
●●

●
●

●

●

●

●●●
●

●●
●

● ●

●

●●

●●

●●

●

●●

●

● ●●
●●●●●●

●●

●
●

●●
●●●

●

●

●

●

●
●

●

● ●●

●

●

●

●●●
●●

●● ●● ●
●●

●

●●

●

● ●

●
●●●

●

●
●

●●

●

●●●

●

●●

●

●●●●●●●●●

●
●●●●

●●
●

●●●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

● ●
●

●

●●● ●

●

●●●
●●

●
●●●●

●

●●●●●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●● ●
●● ●●●●

●
●●

●

●●

●

●
●●

●
●

●●

●●●
●●

●

●

●●
●● ●●

●●

●●●

●

●
●●

●● ●●
●

●
●

●● ●

●

●
●●●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●● ●●●●●

●

●

●
●

●

●●●●●

●

●

●

●

●

●

●●●●●
●●●●●

●

●
●

●

●

●

●●●
●● ●●

●

●●●●

●

●
●

●●

●

●

●●

●●

●

●●

●

●

●
●● ●● ●●

●

●

●
●

●
●

●

●●

●

●●●

●

●
●●●●

●●

●
●

●●●

●

●●●●●

●

●
●●●●

● ●●

●

●●●

●

●

●

●●
●●●

●● ●●

●

●

●
●

●●●●●
●

●

●●

●

●●● ●●

●
●●

●

●●
●

●●●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●●●
●●
●

●●●

●●
●

● ●●●

●

●●

●●

●

●

●

●●●●●

●

●
●

●●

●●●●

●

●●

●

●

●
●●

●
●● ●●● ●●

●
●

●

●●●●

●

●●
●

●

●
●●●

●●●

●
●
●

●

●

●
●●● ●

●

●

●

●

●●
● ●●

●

●●●●●●

●

●●

●

●

●

●

●

●●

●

●●●●●●

●●

●● ●
●●

● ●●●
●●●●●●● ● ●●●●●●●●●●●

●

●

●
●

●

●●
●

●

●

●●

●

●●
●●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●

●

●●●●
●●●●● ●

●
●●

●

●●●●●●●
●

●●

●
●
●

●●
●●●

●●●●●●●
●

●

● ●●●

●

● ●●●

●

●●● ●●

●

●●

●
●

●

●●●●
●●●

● ●

●

●●

●●●
●

●

●

●

●●

●
●

● ●

●

●

●

●●

●

●●
●

●

●●

● ●●●●●
●● ●●
●● ●●●

●

●●●

●

●●●

●
●●●●
●●

●

●

●●●

●
●

●●●

●●●

●

●
●

●
●

●

●

●●●●●●●●●●
●

●
●

●●●

●

●●●●●●●
●

●

●●● ●
●

●

●●●

●

● ●

●

● ●
●

●●●●
●●

●

●

●●

●●
●

●●●●●

●

●●●

●●
●

●

●

●
●

●

●● ●●●

●

●

●

●

●
●●

●

●●
●●

●

●

●
●

●

●●

●●●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●● ●●

●

●

●●●
●

●

●●●

●
●●

●●

●

●

●

●

● ●

●● ●●●●●●●●
●

●
●●●

●

●●●●

●

●● ●

●●

●

●●
●

●

●●

●●

●●●●●●●● ●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
● ●

●

●●●●●
●●●●●●●

●●
●●
●●

●

●●●

●

●●●●
●
●●

●
●

●

●●●

●

●

●

●

●
●●●●●●●

●
●

●

●

●

●

●

● ●●

●
●●

●

●
●

●

●

●

●
●

●●

●

●●

●

●

●

●

●●●
●●

●
●

●●

●

●●●●

●

●
●●●
●●

●●
●●

●

●

●●●●●●●●● ●●●

●

●●
●

●●
●

●
●●●●

●
●

●
●●●

●

●●
●

●●

●●●●●●●●●●●● ●
●

●

●●
●

●●

●

●
●●

●

●

●

●●

●

●●●
●

●

●●

●

●●●●●
●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●
●●

●●●
●
●●●●●●●●●

●

●●●●●● ●●●●●●●●
●●●●●
●●

●

●●●●●
●●
●

●●●●●●●

●

●

●

●

●●

●●● ●●

●●

● ●●●●●
●

●

●●●●●

●●●●●●●●

●

●●● ●●

●

●

●
●

●

●

●●

●●
●
●

●

●

●

●

●
●●

●
● ●●●●

●

● ●
●

●
●●● ●

●
●

●●

●

●●

●●

●
●●

●
●
●

●●

●
●●
●

●

●● ●●●●●●●●

●

●●●●
●

●●
●●●●●●●●●

●● ●
●●●

●
●●●

●

●●●●●●●
●

●●●
●●

●

●
● ●●●

●

●●

●

●● ●●●●●●
●●●●
●

●●
●●●●●

●

●

●

●●●●●●●
● ●

●●●●

● ●

●

●

●●●

●
●●

●

●●

●

●●●●

●

● ●
●●

●

●
●

●

●●

●

●

●

●●●●●
●●●●

●

●

●●
●●●

●

●●
●●●●●●●●● ●●●

●

●●●
●

●●● ●●

● ●

●●●●●●
●

●

●

●●●

●●●

●
●●●

●
●●●●●● ●

●

●●●

●

●●●●●●●●●●●●●

●

●
●●

●●
●●●●

●

●
●

●

●
●

●
●●

●

●●

●

●● ●●

●

●●
●●

●
●●

●
●

●
●

●●

●●

●●●

●●

●

●
●●●● ●●

●

●

● ●

●

●●●
●●●

●
●

●●
●
●

●●●
●

●

●
●

●●●●●●●●

●

●

●

●●

●

●

●

● ●
●●

●

●
●

●

●

● ●●●

●

●●

●

●
●●●●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

● ●●
●●●

●
●●

●
●●●●

●●
●

●

●●

●

●

●●●●●●

●

●

●

●●●●

●

●●

●

●●

●

● ●●●●●

●
●

●
●●●

●

●●

●

●●

●

●
●

●

●

●

●

●●●●

●●●●●
●

●

●●●

●●

●

●

●

●

●

●

●

●●
●

● ●●
● ●

●●

●
●

●

●

●●●

●

●●●●

●
●

●●

● ●●● ●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●
●●●●●
●●

●

●●●

●

●●●●

●

●

●

●●●

●

●

●

●●
●
●

●

●●
●●●●●

●
●●

●
●

●

●

●

●
●

●

●

●●●
●●

●●

●

●

●

●
●

●

●

●
●●●

●

●●●
●●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●● ●●●●●●●●

●

●
●

●

●

●

●

●

●●

●

●● ●
●

●
●

●●●●●●●●●●
●●

●

● ●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●●●●●

●

●●
●●

●●
●

●
●●●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

● ●●●●
●●

●

●

●●

●

●

●●
●

●

● ●●

●

●

●●●

●

●
●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●●● ●● ●●●●●●●

●

●
●

●●

●

●●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●●●

●

●●●
●●●

●

●

●

●
●●

●●
●●●●

●

●●●●

●

●

●

●

●
●

●●●

●●

●

●

●
●

●
●

●

●

● ●●
●●

●

●
●

●

●
●

●●●
●

●●
●●●●●

●

●●●

●

●●● ●●●

●

●●
●

●●

●

●●
●

●

●

●

●

●

●●●●●
●

●●

●
●

●
●●

● ●●●

●●

●●

●

●

●●

●

●
●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●
●

●●●●
●

●●●●
●

●

●

●●

●

●

●

●●

●

● ●●●●
●

●●●●● ●
●●
●●●●

●
●

●
●

●
●

●●●

●●
●

●

●
●●

● ●●● ●●● ●

●

●●●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●●●

●
●

●
●●●●●

●

●

●●
●

●

●
●

● ●
●

●●

●

●

●
●

●

●
●

●●
●●●● ●●

●

●●
●●

●

●●

●

●

●

●

●
●

●
●

●

●

●
● ●●●●●● ●

●
●●●

●

●

●

●

●

●

●

●

●
● ●●●

●

●● ●●●

●

●

●

●●●

● ●●
● ●

●

●

●●●
●

●

●●

●

●
●●●●●●●

●

●●●●

●

●●● ●
●

●●
●●●

●

●●● ●●●

●
●

●●
●

●●●
●

●●
●●●●●

●

●
●●●

●

●●
●●

●●●

●

●●●●
●●●

●

●●●

●

●

●●●●
●

● ●●
●

●

●●●

●

●

●●●● ●
●

●
●●● ●

●

●

●●●

●●

●
●●

●

●
●

●●●●

●

●

●

●●

●●
● ●●

●●

●

●
●●● ●●
● ●

●

●

●

●

●

●●

●
●●

● ●
●

●●●
●

●●● ●

●●●●
●

●●

●
●●
●●●●

●

●

●

●

●

●

●

●

●●●●
●

●
●

●●

●●●●

●

●

●●●●

●

●●●● ●

●

●●

●

●
●●●

●●

●●

●●

●

●

●

● ●

●

●

●●

●●●
●

●●●

●●

●

●

●

●
●

●●●● ●
●

●● ●
●

●●●● ●●

●
●

●●

●●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●
●

●

●●●●●●●●●
●

●● ●●●

●●●

●●

●

●●

●

●●● ●

●●

●

●

●

●

●
●

●●

●

●●●●●

●

●
●

●●●

●

●●

●●
●

●

●● ●

● ●
●●●

●●●

● ●

●●●
● ●

●

●●

●

●
●
●

●

●●●●●

●

●

●●●

●
●

●●●

●

●
●●

●
●●

●
●

●
●●

●●

●

●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●

●

●●●●●●●●●

●●

●
●● ●●●●●

●●
●●●●

●

●

●●

●
●●

●

●

●

●

● ●●

●

●
●

●

●
●●●

●●●●●●●
●

●

●

●

●● ●

●

●

● ●

● ●●

●
●●●●●●●

●

●●●●●●

●

●● ●

●

●●

●

●

●

●●
●
●●

●

●●●●
●

●●●●●●

●●

●●●
●

●

●●

●

●
● ●●●●●

●

●

●
●

●●

●

●

●

●●●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

● ●

●●●

●
●●● ●●●●●●●
●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●

●●●●●● ●●●●

●

●●●
●

●

●●●●●●●●●●●●●●●●●●

●

●●
●●●●●●

●

●

●
●●●

●
●

●●●●●●●
●●

●●●

●

●●●●●●●●
●●

●●●

●●

●●●

●

●●●●
●●●●●●●

●

●●

●●
●

●
●●●●●●●●●

●

●
●●●●

●

●
●●●●●●●●

●

●●●●●●●

●
● ●●●●●●●●●

●

●

●
●

●

●●●●●

●●●●●●●●

●

●●
●

●

●

●●●●●

●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●●●

●

●

●

●●●

●

●

●● ●●●● ●

●

●
●●
●

●●●●

●

● ●

●

●●●●

●

●●● ●●●
●

●
●

●● ●

●

●●

●

●●

●

●

●

●●●

●●

●●

●
●

●
●

●

●

●●

●

●
●

●
●

●●
●

●

● ●●

●
● ●●

●●
●

●

●

●●

●
●●●●●
●

●●●
● ●

●●
●●●●●

●
●●●

●

●●●●

●

● ●●
●

●
●

●
●

●
●●●●●●

●

●

●

●

●
●●●

●●
●●

●●●●●●●●●● ●●
●

●●
●

●●●●

●

●
●●●●
●

●●

●

●●

●

●● ●●●●
●●●

●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●

●

●

●●●●●●

●

●●●
●

●

●●
● ●●●● ●●●

●●

● ●●●
●

●

●●●

●

● ●● ●
●

●

●●

●●

●

●●
●

●
●

●●●● ●● ●●●●
●

●●● ●
●

●●

●

●●●●●●●

●

●●●●●

●

● ●●●

●

●●●●

●

●
●

●

●●●● ●
●

●●● ●●●●

●

●

●

●● ●●●

●

●
●●●●

●
● ●

●

●●

●

●

●

●●●●●●●●●
●●●●●●●●
●

● ●●●●

●

●● ●● ●
●

●

●

●●●
●

●

●●●

●●
●● ●●●●● ●●●

●
●●

●

●●
●

●●●●●●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●●

●●

●

● ●●●●
●●●●

●

●●●

●

●
●

●

●

●
●●

●
●●●

●

●●●●●●

●

●

●●

●
●●● ●

●

● ●●●

●

●●●●

●

●

●

●●

●

●
●

●

●●●●●● ●●●
●
●
●●

●●●●●●

●

●●●●●●
●●

●

●●●●

●

● ●●●

●

●

●

●●●

●

●●
●●●

●
●●
●

●

●
●
●

●

●●
●●●

●

●

●

●●●
●

●

●

●●●

●

●●
●●● ●●●

●

●●●

●

●

●

●●●●●

●

●● ●●●●●●●●

●

●●
●

●

●

●●●●

●

●

●●●●

●●

●

●● ●

●

●●
●

●●

●●●●
●●●●●●●●●● ●●●●

●

●●●

●

●●●●●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●●●
●

●●
●

●●

●
●

●
●

●●●●●●●●

●

●●●
●●

●
●

●●●●
●●
●●●●●●●●●

●
●

●

●

●●● ●
●

●●●●

●●

●●

●

●●●●
●●

●

●

●●●●●●●●

●

●
●

●
●●●

●

●

●
●

●●

●

●●● ●●●●●●

●

●●

●

●
● ●

●

●
●

●●●
●●

●●
●

●

●●

●●●●●●●●●● ●●●●●●● ●●●●●●
●

●● ●●●

●

●●●

●

●●
● ●

●●●
●●●

●
●

●
●

●
●●●●●●●

●

●
●

●
●●

●

●●●●

●

●
●●

●

●●●●●●

●

●

●
●●●● ●●
●

●

●
●●

●

●

●●● ●●●●●●
●

●●●●●●●●●● ●

●

●● ●●
●

●●●●●●●

●
● ●●

●●

●●●●

●

●

●● ●●

●

● ●●●●●●●●●●●●●●
●

● ●●

●

●●

●

●●

●●

●

●● ●
●

●
●●●

●

●

●
●

●●
●●

●●●●●●●

●
●

●●●●
●●

●●●●●●
●●●

●

●

●

●
●

●●
●

●

●●●●

●●

●
●●●

●

●

●

●●●

●

●●
●

●●●●

●

●

●
●

●
●
●

●

●

●●●●

●●

●

●●
●

●

●
●●

●●●●
● ●●●●

●●●●●

●

●●●●●

●

●
●

●●●●●●●

●

● ●●●●●●●
●●

●

●

● ●●●

●

●●●●●

●●

●

●
● ●

●

●

●●●● ●●

●
●

●●●

●

●●●●●● ●●

●

●●●● ●●●●●

●●

●●●
●

●

●●●

●●●●
●●●●●●●

●

●
●

●

●

●●
●
●

●●
●

●

●
●

●
●●●

●

●

●●●●●
●

● ●●
●●●●●●●

●

●●●●
●

●●●

●

●●●●

●

●●●● ●●●●●●
●

●

●

●
●

●●●●

●

●●
●●●

●
●●● ●
●

●● ●●
●

●●●●

●●●●●

●

●
●●●●
●

●●
●●●

●●

●●●●●●
●

●●●●●●●
●●●●●

●

●●
●●

●●●●●●●

●●●

●●

●

●

●●●●●
●

●●●●●●●●●●●●●●●●
●

●●●●●●● ●

●

●
● ●●●●●●

●

●●

●

●●●

● ●●
●●

●●●●●●●●

●

●●●
●

●●●●●

●
●

●●
●

●●

●● ●

● ●●●●●●●●

●

●●●●●●

●●

●●●●●
●

● ●●

●

●● ●●● ●●
●

●●●●
●

●

●

●
●

●●
●●● ●

●

●
●●● ●●

●●●●●●●

●●●
●●●●

●

●●●

●

●

●●●●●●

●

●●●

●

●●●● ●

●● ●

●●
●●

●●●
●

●

●●●

●●

●
●●●●

●

●

● ●
●

●

●●● ●●●

●

●

●

●●
●

●

●●●●●●●
●●

●●●

●

●●
●●

●● ●●●●●●●

●

●●●●
●

●●
●●●

●●●●
●

●●●●●●●● ●
●

●●

●

●●●●●
●

●

●●●●●

●

● ●●●●●●●●●

● ●

●

●

●
●●●●●

●
●●

●

●●●
●

●

●
●●●●●●●●

●
●● ●●●●

●

●

●

●●●●
●●

●●●

●

●

●●●●● ●●●●●
●

●●●●

●

●● ●●●●●●
●●

●

●

●

●●

●

●●●

●

●
●●

●●

●

●

●
●

●●●●●

●●

●●●●●●● ●

●

●●●●●

●

●
●●●●●●●

●●

● ●
●

●

●

●●●●●●
●●

●●●●●●

●●
●●●●●●●●●

●
●●●

●

●

●

●

●

●●●●●●

●

●●
●

●

●

●

●●
●●

●●● ●●●●●
●

●●●●

●

●
●●●

●

● ●●●

●

●●●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●

●

●
●●●●●

●
●

●●●●●●●●
●● ●●●●●
●

●

●

●

●

●●●●●

●

●●

●

●●●●●

●●
●

●●●●●●●
●

●●

●●●●●●●●●●●●
●

●●
●●●●●●●

●

●

●
●

●●
●●●

●●●●●●●●
●

●●●●●●●

●

●●●●

●

●
●

●●●
●●

●●●●

●

●●●
●

●

●

●
●

●

●

●●●●●●●

●

●●●
●

●●●●●
●●

●

●

●●●

●

●
●

●●●●●●●
●

●●●●

●

●

●

●●●●●●●●● ●●●●
●

●
●

●

●●●●●●●●●●●●

●

●●

●

●●●
●

●
●

●

●●
●

●●●●●●●●
●

●●●

●●

●●●●●●●●●●

●
●●

●

●●●●●

●

●
●

●●●

●

●

●
●

●●●●●●
●●●●
●

●● ●●●●●●
●

●
●●●
●

●●

●

●●●●●●●●

●

●●
●

●
●●

●●

●

●●●●●

●

●●●

●

●●●●●●●●

●

●

●

●●●●●●
●

●●●●●●●●●

●
●●●●●●●●●●●
●●●●●

●

●

●

●
●●●●●●●●●●●●●●●

●
●

●

●

●●●●●
●

●

●●

●

●●●●●●●●● ●●●●●●●●●●●●

●

● ●●●●●●●●●● ●●●

●

●

●

●●
●

●
●

●
●

●●●
●

●●●●●●●

●

●●●●●●●●
●●●●●●

●●●●●●

●●

● ●
●

●●●

●

●

●●
●●

●

●●●
●

●

●
●●●

●

●
●●●●●

●

●

●

●

●●

●

●

●●●
●

●●●

●

●●

●

●●●●●●●●●

●

●

●●
●

●

●●●

●

●●

●
●

●●
●●

●

●

●●
●

●●●● ●

●

●●
●

●

●●

●●●
●

●● ●

●●●●●●●

●●
●

●

●

●●●

●

●

●●●

●

●

●

●

●●●●

●

●

●
●

●

●

●
●

●●●
●

● ●●●
●
●●
●● ●
●

●
● ●

●● ●
●

●●●

●

●

●

●

●●●●●●

●

●●
●

●● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●

●

●
●

●

●

●●●

●

●

●

●●●
●

●

●●
●

●●●●
●●●●●

●

●●●●

●

●●●●●●

●
●

●●
●

●

● ●●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●●
●●

●

●●●

●

●

●●●

●

●

●

● ●

●

● ●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●● ●

●

●
●

●●●
●

●

●●●●●●●

●

●●●

●
●

●

●

●

●●●●

●

●
●●●

●

●

●

●

●●
●●● ●
●

●

●●

●

●

●

●●●

●

●● ●●

●

● ●●●
●

●

●

●

●

●
● ● ● ●●●

●

●

●

●

●

●

●

● ●●

●

●

●

●●
●●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

● ●●●●●

●

●

●

●

●

●●
●●● ●
●●●

●

● ●

●

●●
●●●

●

●●●●●●
●

●●

●

●●

●

●●●●●
●

●●
●

●

●

●●●●

●

●

●

●

●
●●

●●●

●

●●●
●

●

● ●●

●

●
●

●

●●

●

●●
●

●

●
●

●

●●●● ●

●

●

●

●●●●

●

●

●● ●●●

●

●

●●●●●

●

●

●

●

●●●●●●

●

● ●●●
●●●

●

● ●

●

●

●
● ●

●
● ●●

●
●● ●●

●

●●

●

●● ●●
●●●●●●●

●●●

●

●●●●

●

● ●●●

●

●●
●●

●

●

●

●
●

●●

●

●

●

●

●● ●

●

●

●

●●●
●

●

●●●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●
●●

●● ●●

●

●● ●●

●

●

●

●●

●

●
●

●●

●

●●●

●

● ●

●

●

●●●●
●

●●●

●

●●●●

●●

●●●

●

●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●●●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●
●

●● ●●●

●
●

●●
●

●

●

●

●

●
●

●
●●●●●●●

●

●

●

●

●

●●●●●●● ●●
●

●

●

● ●●●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●

●

●

●

●●●●

●

●

●●
●●

●●

●

●

●

●

● ●

●

● ●

●●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●●
●

●
●●

●

●●

●

●●●●●●●●
●

●

●

●●●

●

●

●

●
●●

●

●
●●

●
●

●●●
●

●
●●●

●
●

●

●

●● ●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●
●●

●
●

●

●

●

●
●●●●●

●

●
●

●●
●

●●
●

●●●
●●●●

●

●
●

●

●●●●●●

●
●●●●

●

●●●●

●

●●●●●●

●

● ●●●●●●●●
●

●●●

●●

●●

●

●●●●
● ●●
●

●

●

●●
●●

●

●●
●

●

●

●

●● ●
●

● ●●● ●●●●

●
●●●●●

●

●● ●●●

●

●●
●

●●●●●●

●

●

●

●

●●

●

●
●

●●

●
● ●● ●●

●●

●

● ●●●

●

●

●

●

●

● ●

●

●

●●

●
●

●●

●●●

●
●●

●

●

●

●●

●

●

●
●●

●
●

●

●●●●●●●●●
●●●●●
●

●

●

●●●●●

●

●

●
●

●●●

●

●● ●

●

●●

●
●

●●●●●●●●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●●

●
● ●●●●

●

●
●●

●

●● ●●●
●

●

●

●

●

●

●●●

●

●
●

●●

●

●
●

●

●● ●●

●

●●

●

●

● ●

●

●●
● ●●
●

●

●●

●

●
●

●●●

●

●●

●

●
●

●●
●

●

●
●●

●
●●

●

●

●●
●●●●●

●

●

●●●

●
●

●

●●

●

●

●

●●●
●

● ●

●
●

●
●

●

●●●●●●
●

●

●

●●●

●

●●●●●

●

●

●

●●●

●

●
●

●●●●

●

● ●●●●
●● ●●●●

●

●●●●

●

●

●

●

●

●●●●●●● ●

●●
●

●

●
●●●

●

●●● ●●●●●

●

●●●●●

●

●●
●

●

●● ●●
● ●●
●

● ●●●●●●

●
●●●

● ●
●

●●●

●

●●●
●●●● ●

●

●

●

●●

●

●

●

●

●●

●
●

●● ●●●●●●●●●

●
●

●●●
●●●

●

●●●

●● ●

●
●●●

●
●

●

●

●●

●

●●●
● ●

●●
●

●

●

●●

●

● ●●

●

●

●
●

●●
●

●

●

●

●●

●●●
●

●

●

●●●
● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

● ●●

● ●
●

●●
●

●

●

●

●

●
●●

●●

●

●●●●
●

●●●●

●

●●

●

●●●●●●

●

●

●

● ●

●

●

●

●●●●
●

● ●●● ●
● ●

●●

●

●●
●

●

●●●●●●●●●
●

●

●

●

●●●

●
●

●

●

●●

●

●

●

● ●●

●

●

●
●

●
●

●

●

●● ●● ●●●●

●

●

●

●

●●

● ●

● ●●

●

● ●●●●●

●

● ●

●●

●

●●

●

●

●●

●

● ●
●●●

●

● ●

●

●

●

●

●●● ●
●●●
●

●●

●●

●
●

●●●
●

●

●

●●
● ●

● ●●●

●

●

●

●

● ● ●

●●

● ●
●

●

●

●
●

●

●

●●●
● ●

●
●●

●

●

●

●

●
●

●●
●

●

●
●●●●
●

●

●

●

●

●

●

●
● ●

●●●●

●

●
●

●●●

●

●● ●●●

●

●

●

●
●●

●

●●●●

●

●●

●

● ●

●

●

●

●

●

●

●●●●
●

●

● ●
●

●● ●● ●

●

●

●

●

●

●

●● ●
●●● ●●

●

●●

●
●

●

●

● ●●● ●

●

● ●● ●●

●

●
●

●

●

●● ●

●

● ●●
●

● ●●●●
●●●●

●
● ● ●● ●

●

●●

●

●

●●

●

●●

●

●●●
●

●● ●●● ●●
●●● ●●

●
●●●

●●●
●

●
●

●

●● ●●●

●
●

●●●
●

●

●
●

●

●

●

●
●

●●●● ●●
●●● ●

●

●

●●●
●

●
●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●● ●●●

●

●●●●● ●●●●●

●●

●●
●●

●

●

●

● ●● ●●●

● ●
●

●●●●

●

●● ●●●

●

●
●

●

●●

●

●
●●

● ●● ●

●

●
●

●

●

●

● ●
●●

●

● ●

●

●

●

●

●

●●●

●

●●

●

●
●

●●

●

●●●

●

●●

●

●●●

●

●

●●

●

●

●

●

●●●●●

●

●●●

● ●●
●●● ● ●●●

●

●
●

●

●●●●

●

●●
●

●

●● ●●

●

●

●

●●

●

●●●●● ●

●

● ●●
● ●●●●●●
●

● ●●●
●●

● ●

●

●

●

●

●

●

●

●●● ●●●●●●

●

●●●

●

●

●●●●
●

●

●●

●

●
●●

●●●●

●

●●
●

●
●

●

●

●●●

●
●

●

●●

●●

●

●●●●●

●●

●

●

●
●●●

●

●●

●

●

●
●●●

●●●●
●●

●

●
●

●

●●●● ● ●●●
●

●● ●
●●●●●●●

●
●

●

●
●●

●●● ●●●●
●

●

●

●

● ●

●
● ●

●

●

●● ●

●

●●

●

●

● ●●● ●

●
●

●●

●

●

●
●

●

●

●●
● ●●●●

●
●●●

●

●
●●

●
●●

●

●
●

●

●●

●

●

●●

●

●
●

●

●●●
●

●●
●

●●●●
●
●●

●●● ●●●●

●
●

●

●

●
●

●●●●
●●

●

●●
●●

●

●●

●

●

●

●

●
●

●●

● ●
●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●
●

●

●●●●

●●●

●●●
●●

●

●

●

●

● ●

●

●●●●●●●●
●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●● ●

●●

● ● ●
●

●

●

●

●●

●
●

●

●●

●

●

●
●●●●●

●

●

●
● ●

●

●
●●●
●

●

●

●
●

●

●● ●●
●

●

●

●●●●●●

●
●

●

●●

●

●
●

●●

●●

●●

●

●

●●
●

●

●
●●●●

●●●
●

●

●

●

●

●●
●

●

●
●

●

●

●●●●●

●

●

●

●
●
●

●●
●

●●●

●

●●●

●

●●●●●●

●

● ●

●●

●●●

●

●
●

●●●●●●

●

●

● ●

●●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●

●

●
●

●

●● ●●

●

●
●●●

●
●
● ●

●

●●●

●

●
●

●

●●

●

● ●●●

●
●

●

●
●● ●●

●●

●●
●

●
● ●●

●

●●●●●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●● ●●

●

●

●

●●●
●●●●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●● ●

●

●

● ●

●
●
●

●
●

●

●●
●●

●●

●●

● ●●●●
●

●

●

●●●
●

●

●●●

●

●●●●●●
●

●

●

●●●

●

●
●●●

●

●

●

●

●●●

●

●● ●●

●

●

●

●

●●

●●
●

●

● ●●

●●

●

●●●
●●●

●

●●

●●●●●

●
●

●●

●

●

●

●

● ●●
●

●

●●●
●

●

●

●
●●

●

●●

●

●●●●●

●

●
●

●●●●●● ●

●●

●

●

●●

●

●
●●

●
●

●

●

●
●

●

●●
●

●●●●●

●
●

●●●

●●
●

●

●●●●
●

●

●

●

●●●●

●●

●

●●●●●

●

●●

●

●●

●●
●

●●●
●

●

●●●

●

●

●

●
●●●

●●

●

●
●●

●

● ●●●●
● ●

●●●●●

●

●
●
●●● ●●●

●

●
●

●

●●

●

●●
●

●●
●
●

●

●

●●●

●

●
●

●

●

●

●●●●
●

● ●

●

●●

●●

●●

●●●●
●

●●●

●

●●●●
●●●

●●●●

●

●●●● ●●●●●● ●
●

●

●

●

●●
●

●

●

●●●

●

●

●
●

●
●

●●●●●●

●●

●●●

●
●●●●

●
●●

●
●

●

●●
●

●

●

●● ●●
●●●●●●●●

●
●

●

●
●●

●●●

●

●

●

●●
●●●●●●● ●
●●

●

●
●●

●●●●●●●●●●

●

●●●●●
●●

●

●

●●●●●●
●

●

● ●●
●

●

●●●

●

● ●●
● ● ●

●●●●●●●●●●

●●
●

●●●●●●
●

●
● ●
● ●

●●●
●

●

●

●●● ●●● ●● ●
●

●●

●

●
●●●

●

●
●●●

●●

● ●● ●●●
●●

●
●

●
●

●
●

●

●●● ●

●

●●
●

●●

●

●

●●●
●●●●

●●●

●

●

●●●●
●●

●
●●

●

●

●

●
● ●●●●● ●●●●●

●

● ●

●

●●●●

●

●

●

●●●●
●●●

●

●

●

●

●

●

●

●
●

●● ●

●

●
●● ●

●

●

●●

●
●

●

●

●
●

●
●

●
● ●

●●●●

●

●

●●

●

●
●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●
●

●

●●

●●●●

●

●

●●
●●

●

●

●

●

●

●

●

●●
●

●

●● ●

●

●

●

●

●

●●

●●●
●

●●●

●

●●
●

● ●●●
●●

●●●●●

●

● ●
●●

●●●●●

●

●

●●●
●

●

●●●

●

●

●

●●
●

●

●
● ●●
● ●

●●

●

●●●
●

●●● ●●●●●●

●

●●●●●●
●●●

●

●

●

●

●
●●

●

●

●
●●

●●●●●

●

●●

●

●

●

●●●●●●

●

●●●

●

●●
●●

●

●●
●●●

●●●

●

●●●●●●

●

●●

●

●
●

●●

●

●●●

●
●● ●●

●

●●●●

●

● ●●●

●

●

●

●

●
●●

●

●
●●● ●●●

●●●

●

●

●

●

●

●●●

●
●

●

●● ●

●

●
●●●● ●●

●●
●● ●●

●
●●
●

● ●

●●●●

●

●●●

●

●●●

●

●

●

●●
●

●●● ●●●●

●

●
●

●
●

●●

●
●●

●

●

●

●

●

●
●
●●●●

●

●●●●● ●
●

●●●●●●

●●

●

●● ●

● ●

●

●●

●●●
●●●●

●

●●

●

●

●

●

●
●●●

●●●

●●●●
●● ●
●

●●●

●

●●●●

●

●

●

●

●●●
●

●●●●●

●

●●●
●●
●

●
●

●●●●●●

●●

●

●

●

●●

●

●●

●●● ●●●

●

●●●

●●
●

●

●●●●●●●●

●

●

●

●●●●●●●●

●

●

●●

●
●● ●

●●

●●●●

●

●

●●●●● ●●●

●

●

●
●●●

●

●●●●

●

●●●
●

●

●

●

●●●●

●●
●

●

●

●

●
●●●

●●

●

●● ●
● ●

●●●●●●●

●

●●●
●

●

●

●

●●

●

●●●●

●

●

●●

●●

●●●●●●●●●●●●●
●●

●

●

●●●●● ●●

●

●

● ●

●● ●

●

●●● ●
●

●● ●●●
●

●

●●●

●

●●●●

●

●●
●

●

●

●●●●●●●
●●

●●

●

●●● ●●

●

●
●
●

●
●●

●

●

●

●
●●●

●

●
●

● ●●

●

●

●

●

●

●●
●

● ●●●●●●●●●●●

●●
●●●●●●

●

●

●

●●

●

●●
●

●●●●●

●

●●●●●
●●●●●

●
●●●●●●●

●
●●●●●●●●●●

●●
●

● ●

●

● ●
●

●

●

●
● ●

●
●

●●
● ●

● ●

●

●

●●●●
●

●

●●●●

●

●●●●●●●

●

●

●

● ●●●●● ●
●

●●●●

●

●●●

●
●●

●

●

●

●

●●●● ●●●●●
●●

●●

●

●

●

●

●

●

●●●●●●●●●●●
●

●●

●

●●

●

●●
●●●

●

●● ●●●

●

●●

●

●

●●●●

●

●
●

●

●

●●●●●●

●

●

●●

●●●●●
●●

●●
●

●

●

●

●

●●

●
●

● ●●●

●
●

●

●●

●●●●●

●

●
●
●●

●

●

●●●●●●●●●●●●●●●

●

●
●●

●●

●

●●●●●●

●

●

●

●●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●

●
●●●●

●
●●●●●●●●● ●●●●

●●
●

●

●●

●

●

●
●
●

●
●

●●●
●

●●●●●

●

●●●●

●

●●● ●

●

●●

●

●

●
●●

●
●

●

●

●●

●●
●

●
●●●●●●
●●●

●

●
●

●

●
●●●●●

●

●
●

●

●●●●● ●●

●

●●●●●●●●
●●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●
●

●
●●●●●●●●
●

●
●

●

●

●
●●●

●

●

●●●

●

●●●
●

●●●●

●

●●●●●
●

●●●

●

●●● ●●●●●●●●●●●●●●●●●
●

●●●●●●

●

●●●●●
●●

●●●●

●
●●●●●

● ●

●●●●●

●●●●●
●

●●●●
●

●
●

●●●●●●●

●

●

●

●
●●●●●
●●●

●●

●

●●●●●●●●●●●●●●●●●●●●

QTBASE QT−CREATOR

NOVA NEUTRON

0 20 40 60 80 0 20 40 60 80

0 20 40 60 80 0 20 40 60 80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

Last Revision Number

R
e
v
is

io
n
 n

u
m

b
e
r 

w
it
h
 D

iv
e
rg

e
n
t 
S

c
o
re

s

25

50

75

100

125

lastRevisionNum

Fig. 4. The revision number that divergent scores appear on and revision
number that the final decision is made in.

●

●

●

●
●

●

●

●

1

3

5

7

9

Nova Neutron QtBase Qt−Creator

Studied Systems

R
e
v
is

io
n
 N

u
m

b
e
r

 ● ●When divergent scores appeared When a final devision was made

Fig. 5. The distributions of revision number that divergent scores appear
on and revision number that the final decision is made in.

arise before the final revision. Figure 4 shows that the
majority of divergent review scores occur well before the
final revision where the integration decision is made. More-
over, Figure 5 shows that 75% of patches with divergent
scores occur by the third and fourth revisions in QT and
OPENSTACK, respectively. Intuitively, this may be occurring
because early revisions are rougher drafts of a patch.

Patches with divergent scores tend to require one
to two more reviewers than ones without divergent
scores. Moreover, the most active reviewers tend to
submit negative scores after positive ones more often
than vice versa. Finally, divergent scores tend to arise
in the early revisions of a patch.

4 QUALITATIVE RESULTS

Our quantitative results in Section 3 (RQ1–RQ3) indicate
that patches with divergent scores are not rare (Observation
1), and have a tendency to be integrated (Observations 2–
4). Furthermore, on average, patches with divergent scores
tend to involve one or two more reviewers than patches
without divergent scores, and receive negative scores after
positive ones in 70% of cases (Observations 5, 6).

In this section, we set out to better understand what
concerns are raised in reviews with divergent scores through
qualitative analysis. More specifically, we present the results
of our qualitative analysis with respect to RQ4 and RQ5.
Similar to Section 3, for each research question, we describe
our approach for addressing it followed by the results.

To perform our qualitative analysis, we first analyze
patches that have divergent scores in SP-SN and SN-SP
patterns of NOVA and QTBASE systems. We select SP-
SN and SN-SP patterns for qualitative analysis because
their patches elicit strong and divergent opinions from core
members of the reviewing team. Moreover, to understand
the difference between patches that have divergent scores
and patches that do not, we analyze a sample of patches
without divergent scores that is of equal size to the number
of SP-SN and SN-SP patches. The sample of those patches
is selected randomly, and covers the overall studied period
(i.e., September 2011—January 2018). Moreover, half of the
reviewers who have participated in the SP-SN and SN-
SP patches are also observed in the sample of patches
without divergent scores. Finally, we analyze WP-WN and
WN-WP patterns to understand disagreements that do not
have integration implications (i.e., +1 and -1). Since manual
analysis of all WP-WN and WN-WP patterns is impractical,
similar to prior work [9], we aim to achieve saturation. Like
prior work [22], we continue to label randomly selected WP-
WN and WN-WP patches until no new labels are discovered
for 50 consecutive patches.

(RQ4) What drives patches with divergent scores to be

abandoned?

Approach. In addressing RQ4, we want to know why au-
thors and reviewers eventually agree to abandon patches
that have divergent scores. To do so, we code the review
discussions of sampled patches with and without divergent
scores that are eventually abandoned. Our codes focus on
the key concerns that reviewers with negative scores raise.
Each review may be labelled with multiple codes.

In this qualitative analysis, similar to prior studies [10],
[23], [24], [25], we apply open card sorting to construct a
taxonomy from our coded data. This taxonomy helps us
to extrapolate general themes from our detailed codes. The
card sorting process is comprised of four steps. First, we
perform an initial round of coding. The first three authors
were involved in the coding process such that each review
was coded by at least two authors. Second, if the authors’
codes disagree, the authors discussed the review in question
until a consensus was reached. Third, the coded patches are
merged into cohesive groups, which can be summarized
with a short title. Finally, the related groups are linked
together to form a taxonomy of reasons for abandonment.



7

TABLE 6
The reasons for abandoned patches with and without divergence.

Label NOVA QTBASE

SP-SN SN-SP WP-WN WN-WP Non SP-SN SN-SP WP-WN WN-WP Non

External Concern 56 (54%) 17 (32%) 45 (41%) 14 (61%) 17 (27%) 13 (54%)
Unnecessary Fix 25 - 6 7 27 12 2 2 9 7
Integration Planning 28 2 3 3 12 1 - 2 4 1
Policy Compliance 3 - - - 3 - - 1 - 3
Lack of Interest - - - - 5 - - - - 3

Internal Concern 48 (46%) 36 (68%) 61 (56%) 9 (39%) 47 (73%) 8 (33%)
Design 44 1 10 19 45 6 - 18 17 6
Implementation 2 - 1 2 2 2 - 7 8 -
Testing 2 - 4 1 15 1 - 1 2 2

Works in Progress - - 3 (3%) - - 3 (13%)
Early Feedback - - - - 3 - - - - 3

TABLE 7
The rate of outsider-dominated discussions.

In patches whose scores are NOVA NEUTRON QTBASE QT-CREATOR

Strongly divergent 25% 28% < 1% 8%
Weakly divergent 28% 29% 2% 2%
not divergent 11% 14% 1% < 1%

Results. Table 6 shows an overview of the categories of
key concerns that were raised in the analyzed reviews of
abandoned patches with and without divergent scores. A
more detailed figure is available online.3 In Table 6, the
white cells show the number of occurrences of each label,
while the gray cells show the number of patches with
and without divergent scores that belong to the internal or
external concerns categories.

Observation 7—Patches with weakly divergent scores
have a higher rate of false positives than patches with
strongly divergent scores. We find that patches with weakly
divergent scores are less likely to actually have a divergence
in NOVA and QTBASE. More specifically, we detect 142 and
73 false positive patches among the 192 and 137 potentially
WP-WN and WN-WP patches in the NOVA and QTBASE

systems, respectively. In most WP-WN false positives, re-
viewers with -1 scores raise concerns that reviewers with
+1 scores have not found, which makes reviewers wait
for the next revision due to lazy consensus. In contrast,
we detect only four and one false positive patches among
the 107 and 24 potentially SP-SN and SN-SP patches in the
NOVA and QTBASE systems, respectively.

We designate another six patches as works in progress,
i.e., patches for which the author intends to collect early
feedback. These patches are not intended for integration into
the codebase. For example, in review #336921,6 the commit
message states that the patch is “Internal review purpose
only.” The remaining patches include divergence among
reviewers through divergent scores and contain internal
concerns about the content of the patch and external concerns
about factors that are beyond the scope of the patch content.

Observation 8—External concerns are often raised in
abandoned patches that have strong divergent scores. Sur-
prisingly, Table 6 shows that external concerns in abandoned
SP-SN and SN-SP patches appear more often than internal
concerns in both of NOVA and QTBASE. Moreover, when
compared with abandoned patches with weakly divergent
scores and patches without divergent scores, the rates of
external concerns increase by 13–22 percentage points in
NOVA and 7–34 percentage points in QTBASE. Similar to
prior work [9], we find that reviews within our studied
context are mostly topical and relevant; however, they oc-

6https://review.openstack.org/#/c/336921/

casionally digress into “bike shed” discussions, i.e., strongly
opinionated discussions about (irrelevant) details. For ex-
ample, in review #40317,7 a reviewer explicitly mentioned
that the divergent discussion is “bike-shedding.” To better
understand how often review discussions in our context
show signs of “bike shedding,” we replicate the detection
approach of Rigby and Storey [9], which focuses on re-
view discussions that are dominated by outsiders (non-core
members). Table 7 shows the rate of outsider-dominated
discussions in patches with and without divergent scores.
The results suggest that patches with divergent scores may
be more susceptible to “bike shed” discussions in NOVA,
but less so in QTBASE. Indeed, the OPENSTACK community
is larger (see Table 1) and involves more organizations than
QT, which may explain why more reviews are dominated
by outsiders. A closer look at the relationship between “bike
shedding” and divergence would be an interesting topic for
future work.

External concerns are further decomposed into “Unnec-
essary Fix,” “Integration Planning,” “Policy Compliance,”
and “Lack of Interest” categories, which we describe below.

Unnecessary Fix accounts for the majority of external
concerns. This category consists of patches whose changes
are not necessary or have already been addressed in another
patch. For example, in review #16715,8 a reviewer pointed
out that the issue has been already fixed by review #15726.9

Integration Planning occurs often in the NOVA project.
The category consists of patches where the integration de-
pends on the release schedule or the integration of another
patch. For example, the author of review #26293810 was told
to “resubmit this for Newton” (a future release at the time).

Policy Compliance consists of patches that violate
project change management policies. For example, in review
#33157,11 reviewers argued that the patch has an incorrect
change ID, which would hinder its traceability in the future.

Lack of Interest consists of patches that the author or
reviewers did not pursue until integration. For example,
in review #76783,12 (a patch without divergent scores) the
author did not address the reviewer feedback. The patch
was automatically abandoned after one week of inactivity.

Observation 9—Internal concerns are raised at greater
or equal rates in patches with strong divergent scores
and those without divergent scores. Table 6 shows that
in NOVA, internal concerns are raised in patches without
divergent scores ten percentage points more often than in
SP-SN and SN-SP patches. In QTBASE, internal concerns
are raised in roughly equal proportions in SP-SN and SN-SP
patches and patches without divergent scores. Internal con-
cerns include “Design,” “Implementation,” and “Testing.”

Design accounts for the majority of internal concerns.
This concern consists of patches that suffer from patch
design issues. For example, in review #87595,13 a reviewer
suggests an alternative solution for the underlying issue.

7https://codereview.qt-project.org/#/c/40317/
8https://codereview.qt-project.org/#/c/16715/
9https://codereview.qt-project.org/#/c/15726/

10https://review.openstack.org/#/c/262938/
11https://review.openstack.org/#/c/33157/
12https://review.openstack.org/#/c/76783/
13https://codereview.qt-project.org/#/c/87595/

https://review.openstack.org/#/c/336921/
https://codereview.qt-project.org/#/c/40317/
https://codereview.qt-project.org/#/c/16715/
https://codereview.qt-project.org/#/c/15726/
https://review.openstack.org/#/c/262938/
https://review.openstack.org/#/c/33157/
https://review.openstack.org/#/c/76783/
https://codereview.qt-project.org/#/c/87595/


8

TABLE 8
The resolution of integrated patches with and without divergence.

Label NOVA QTBASE

SP-SN SN-SP WP-WN WN-WP Non SP-SN SN-SP WP-WN WN-WP Non

Indirectly Addressed 82 (61%) 13 (26%) 5 (6%) 17 (36%) 11 (16%) 1 (4%)
Withdrawal of Negative Score 4 6 2 11 - 9 7 3 6 1
Integration Planning 47 30 - 2 5 1 - - 2 -

Directly Addressed 52 (39%) 37 (74%) 74 (94%) 30 (64%) 56 (84%) 25 (96%)
Design 19 1 9 6 39 6 4 14 21 3
Implementation 6 4 2 7 38 11 2 8 8 15
Testing 9 4 2 5 15 2 1 - - 5
Unnecessary Fix 6 1 3 6 11 2 2 4 9 5
Policy Compliance 3 3 - - - - 2 - 1 1

No Discussion - - 61 - - 26

Implementation concerns consist of patches that
break backward compatibility, introduce readability issues,
and/or introduce bugs. For example, in review #83667,14

reviewers pointed out that the removal of an API was not
possible, since it would break backwards compatibility.

Testing concerns consist of patches that suffer from test
design and coverage issues. In situations where a change
required the addition of use cases like review #21250,15

reviewers argue that the patch should not be integrated until
the requisite tests are added.

Abandoned patches that elicit strong divergent scores
tend to suffer more from external concerns than patches
with weak divergent and without divergent scores.

(RQ5) What concerns are resolved in patches with diver-

gent scores that are eventually integrated?

Approach. In addressing RQ5, we want to know what
concerns are resolved in the patches with divergent scores
that are eventually integrated. Similar to RQ4, we code
the review discussions of the patches with and without
divergent scores that are eventually integrated in NOVA and
QTBASE. The codes of RQ5 focus on the key concerns of the
reviewer(s) who provide strongly negative scores in those
patches with divergent scores. Again, each patch may be
labelled with multiple codes. Similar to RQ4, we apply open
card sorting to construct a taxonomy from the codes of the
integrated patches with and without divergent scores.
Results. Table 8 shows the key concerns that were addressed
during the reviews of integrated patches with and without
divergent scores. Again, a more detailed figure is available
online.3 In Table 8, the white cells show the number of
occurrences of each label, while the gray cells show the
number of patches with and without divergent scores in the
indirectly or directly addressed categories.

Observation 10—Integrated patches with weak diver-
gent scores have a higher rate of false positives than
patches with strong divergent scores. Similar to Obser-
vation 7, integrated patches with weakly divergent scores
are less likely to have actual reviewer disagreements, while
most integrated patches with strongly divergent scores do.
We detect 121 and 71 false positive patches among the
168 and 133 WP-WN and WN-WP patches in the NOVA

and QTBASE systems, respectively. Comparatively, we only
detect seven false positives among the 137 and 52 SP-SN
and SN-SP patches in NOVA and QTBASE, respectively.

We exclude 61 and 26 patches where reviewers did
not provide any comments (as No Discussion) in order to

14https://review.openstack.org/#/c/83667/
15https://codereview.qt-project.org/#/c/21250/

clearly show the comparison between indirectly and directly
addressed categories. The concerns in the remaining patches
are either directly addressed through revision to address is-
sues or indirectly addressed without revising the patch.

Observation 11—Integrated patches that have strong
divergent scores indirectly address reviewer concerns
more often than ones without divergent scores. Surpris-
ingly, more than half of the integrated SP-SN and SN-
SP patches do not revise the patch to address reviewer
concerns. These patches fall into “Withdrawal of Negative
Score” and “Integration Planning” categories.

Withdrawal of Negative Score: In these cases, the re-
viewer who submits a negative score is persuaded by the
author or another reviewer to remove their score. For ex-
ample, in review #8724,16 the negative reviewer suspected
that the patch needed to fix additional locations in the
codebase; however, another reviewer persuaded them that
additional fixes were not necessary. The results complement
prior work [9], suggesting that if an author can adequately
explain why the submitted fixes are sufficient, the likelihood
of such a divergence should be mitigated.

Integration planning: In large software projects, integra-
tion efforts follow a schedule. Patch integration may be de-
layed if the schedule does not permit integration when the
patch has been approved. For example, in review #110797,17

while a reviewer approves the patch, a reviewer blocked its
integration, since it is too late in the release schedule. After
the release was cut, the reviewer withdrew the negative
review score. While this category often appears in NOVA,
it is a rare case in QTBASE, which is likely due to differences
in release engineering practices.

Observation 12—In NOVA, integrated patches with
strong divergent scores more often indirectly address
reviewer concerns, whereas the opposite is true in QT-
BASE. In QTBASE, integrated SP-SN and SN-SP patches are
highly likely to directly address design and implementation
concerns through patch revisions. When compared to the
abandoned SP-SN and SN-SP patches in QTBASE, internal
Design, Implementation, and Testing issues account for 39%
of the abandoned SP-SN and SN-SP patches, whereas they
account for 55% of the integrated SP-SN and SN-SP patches.
Moreover, QTBASE patches with weak divergent scores
directly addressed concerns more often than NOVA ones
do. This indicates that while integration-related concerns
tend to appear and be addressed indirectly in the OPEN-
STACK community, those concerns are more often directly
addressed in the QT community.

Integrated patches with strong divergent scores more
often indirectly address reviewer concerns than patches
with weak divergent and without divergent scores.

5 PRACTICAL SUGGESTIONS

In this section, we discuss broader implications of our ob-
servations for organizations, tool developers, and authors.

16https://codereview.qt-project.org/#/c/8724/
17https://review.openstack.org/#/c/110797/

https://review.openstack.org/#/c/83667/
https://codereview.qt-project.org/#/c/21250/
https://codereview.qt-project.org/#/c/8724/
https://review.openstack.org/#/c/110797/


9

5.1 Software Organizations

Software organizations should be aware of the potential
for divergent review scores. This recommendation is espe-
cially pertinent for organizations that, like OPENSTACK, set
integration criteria to require more than one approval (+2
score), since this creates more opportunities for divergent
scores to arise (cf. QT in Table 1). Patches with divergent
scores account for 15%–37% of multi-reviewer patches in
the four subject systems (Observation 1).

Patches with divergent scores tend to require addi-
tional personnel. Patches with positive and negative scores
of equal magnitude have a tendency to be integrated (Obser-
vations 2 and 3). However, those patches that are eventually
integrated tend to involve one to two more reviewers than
patches without divergent scores (Observation 4).

5.2 Tool Developers

Automatic detection of similar changes would reduce
waste in the reviewing process. “Unnecessary Fix” (e.g.,
Already Fixed) accounts for the majority of external con-
cerns in patches with strong divergent scores of NOVA and
QTBASE that are eventually abandoned (Observation 8).
Indeed, Sedano et al. [26] also found that duplicated work is
a frequently occurring type of software development waste.
This duplicated effort is not only a waste of author time,
but given that this is a common pattern in patches with
divergent scores, reviewers are also wasting time to sug-
gest improvements for patches that will not be integrated.
Ideally, patch authors should check for existing solutions or
ones being actively developed before developing a solution
of their own. However, as Zhou et al. [27] point out, in large,
decentralized projects (like OPENSTACK and QT), it is diffi-
cult for developers to keep track of concurrent development
activity. Tool support for detection of similar changes in the
code reviewing interface would likely save this reviewing
effort. Future research may make improvements to team
synchronization tools that notify team members of issues
that have already been addressed by others.

Automation of release scheduling constraints will add
transparency. Patches with strong divergent scores often
indirectly address or are abandoned primarily due to “Inte-
gration Planning” concerns (Observations 8 and 11). In these
cases, a senior member of the reviewing team applies a “pro-
cedural -2” score to prevent unplanned patches from being
integrated during release stabilization. Instead, release plan-
ning could be supported by code review automation, which
would relieve the senior member of the duty of applying
procedural -2 scores. This automation could also increase
review process transparency for patches that are uploaded
at inopportune times (e.g., during release stabilization) by
stating when the project will be integrating new patches.

5.3 Patch Authors

A perfect technical solution may still receive divergent
scores. For a patch to be integrated, concerns that are related
to the broader context of the entire project need to be
satisfied. For example, the majority of abandoned patches
with strong divergent scores in NOVA suffer from non-
technical issues (Observation 8). The results suggest that

raising the author awareness of external concerns would
help to avoid such divergence. Automating the detection
of similar changes and release schedule (see suggestions for
tool developers above) would likely help in this regard.

Patches with strong divergent scores are often salvaged
by careful revision and constructive discussion. Patches
with divergent scores are often redeemed in the end. There
is a skew towards integration for most of the patterns with
divergent review scores (Observations 2 and 3). Further-
more, patches with strong divergent scores are often indi-
rectly addressed through integration planning (Observation
11), while patches with weak divergent scores are mostly
directly addressed by revising design and implementation
concerns (Observation 12), suggesting that many of con-
cerns of reviewers are addressable.

6 THREATS TO VALIDITY

We now discuss the threats to the validity of our analyses.

6.1 Construct Validity

Construct threats to validity are concerned with the de-
gree to which our analyses are measuring what we aim
to study. Our qualitative analyses are focused on review
discussions that are recorded in the Gerrit code review
system. However, there are likely cases where reviewers
discuss submitted patches in-person [28], on IRC [29], or in
mailing list discussions [9], [10]. Unfortunately, there are no
explicit links that connect these communication threads to
patches, and recovering these links is a non-trivial research
problem [30], [31], [32]. On the other hand, virtually every
patch in the studied OPENSTACK and QT systems could be
linked to review discussions on Gerrit.

We focus our detection on patches with opposing re-
viewer scores that appear in the same revision. However,
there may be cases where the discussion on an early revision
is related with divergence that happens in a later revision.
As such, our results should be interpreted as a lower bound
on the rate of patches with divergent scores. Moreover,
some reviewing systems do not provide a mechanism for
reviewers to vote in favour or against integration of a patch.
Note that this does not mean that divergence is not possible
in such systems (i.e., reviewers may still disagree with each
other). However, to analyze patches with divergent scores
in such a setting, our detection model would need to be
updated (e.g., using NLP or sentiment analysis techniques).

6.2 Internal Validity

Internal threats to validity are concerned with our ability
to draw conclusions from the relationship between study
variables. We analyze patches with divergent scores that
solicit at least one positive and one negative review score
from different reviewers. However, there might be cases
where reviewers disagree with other reviewers in the dis-
cussion without submitting opposing review scores. Natural
language processing techniques (e.g., sentiment analysis)
could be used to approximate the opinions of the review-
ers. However, such techniques are based on heuristics and
may introduce noise. Nonetheless, we plan to explore the
applicability of sentiment analysis in future work.



10

The open card sorting approach that we adopt is subject
to opinions of the coders. To mitigate the risk, similar to
prior work [10], [23], [24], [25], two authors discussed and
agreed about all of the labels. Moreover, we make our
coding results available online3 for others to scrutinize.

6.3 External Validity

External threats are concerned with our ability to generalize
our results. We focus our study on the OPENSTACK and QT

communities, since those communities have made a serious
investment in code review for several years (see Section 2.1).
Although we conduct a multiple case study on four subject
systems from those communities, we may not be able to
generalize our conclusions to other systems. Replication
studies are needed to reach more general conclusions.

7 RELATED WORK

Code review is a pillar of modern quality assurance ap-
proaches. Recent work has observed that the rigour of the
code review process shares a measurable link with software
quality. For instance, Kemerer and Paulk [33] showed that
adding design and code reviews to student projects at the
SEI led to software artifacts that were of higher quality. Re-
viewer involvement has also been linked with post-release
defect proneness [6], [18], [34], as well as the incidence of
software design anti-patterns [35], and security vulnerabili-
ties [36]. Our results complement the work, suggesting that
patches with divergent scores tend to involve additional
reviewers in the OPENSTACK and QT communities.

While the identification and repair of defects is impor-
tant, modern code review has a much broader scope [10],
[37]. For example, Bacchelli and Bird [23] found that code
reviews at Microsoft aim to facilitate knowledge transfer
among team members. Tao et al. [38] found that patch
design issues like suboptimal solutions and incomplete fixes
are often linked with patch rejection in the ECLIPSE and
MOZILLA projects. Baysal et al. [39], [40] found that non-
technical issues are a frequent reason for patch rejection,
and are likely to receive slower review responses in the
WEBKIT and BLINK projects. Hellendoorn et al. [41] found
that unconventional code is more likely to attract developer
attention and face disapproval from project maintainers.
Gousios et al. [42] found that only 13% of pull requests are
rejected due to technical reasons. Observation 8 in this paper
complements these results—external concerns are a frequent
motivation for the abandonment of patches with divergent
scores in the OPENSTACK and QT communities.

7.1 Review Process Optimization

The usefulness of code review has been a focus of recent
work. Aurum et al. [43] have argued that reviewers should
have a deep understanding of the related source code. Bosu
et al. [44] found that module-specific expertise shares a link
with the perceived usefulness of a code review. Thongta-
nunam et al. [17] showed that modules with a larger propor-
tion of developers without code authorship or reviewing
expertise are more likely to be defect-prone. Kononenko
et al. [45] reported that Mozilla developers believe that
reviewer experience is associated with review quality.

To identify reviewers with relevant expertise, reviewer
recommender systems have been proposed. For example,
Balachandran [46] proposed ReviewBot, which recommends
reviewers based on past contributions to the lines that were
modified by the patch. Thongtanunam et al. [3] proposed
RevFinder, which recommends reviewers based on past
contributions to the modules that have been modified by
the patch. More recent work has improved reviewer rec-
ommendations by leveraging past review contributions [4],
technological experience and experience with other related
projects [5], and the content of the patch itself [47].

Even if appropriate reviewers are identified, they may
not agree about whether or not a patch should be integrated.
Indeed, we find that patches with divergent review scores
occur often in the OPENSTACK and QT communities.

7.2 Review Discussion Process

Recent work has analyzed the discussion process in modern
code review. Jiang et al. [48] showed that the amount of
discussion is an important indicator of whether patch will
be accepted for integration into the Linux kernel. Tsay et
al. [49] showed that patches that attract many comments
are less likely to be accepted. Kononenko et al. [50] found
that review participation metrics (e.g., the number of par-
ticipants in a review) are associated with the quality of
the code review process. Indeed, McIntosh et al. [6], [18]
and Thongtanunam et al. [34] have argued that the amount
of discussion that was generated during review should be
considered when making integration decisions. Our results
suggest that patches with divergent scores have a tendency
to be integrated in the OPENSTACK and QT communities.

Deeper analysis has found that there are surprisingly few
defects caught during code reviews. Tsay and Dabbish [51]
showed that reviewers are often concerned with the appro-
priateness of a code solution, and often provide alternative
solutions during discussion. Czerwonka et al. [52] found that
only 15% of code reviews at Microsoft discuss and address
defects. Rigby and Storey [9] showed that review discus-
sions often tackle broader technical issues, project scope,
and political issues. Mäntylä and Lassenius [53] found that
75 maintainability issues are raised for every 25 functional
defects raised during code review discussions of student
and industrial projects. Beller et al. [28] found a similar
75:25 ratio in the review comments that are addressed in
industrial and open source projects. Our results comple-
ment these prior studies, indicating that abandoned patches
with divergent scores often suffer from external concerns
and integrated patches with divergent scores often resolve
reviewer concerns without revising the code change.

In code review discussions, reviewers may disagree with
the other reviewers. Hirao et al. showed that the final deci-
sions of patches with divergent scores do not always follow
a simple majority rule [16] and that patches with divergent
scores take a longer time to review [7]. Wang et al. [12] found
that opposing views provides benefits (e.g., knowledge
sharing) to the OSS projects, whereas it also has potential
to lead to negative consequences. Indeed, Huang et al. [13]
showed that disagreements in review increase a developer’s
likelihood of leaving the project. Filippova and Cho [14]
showed that review disagreements negatively affects the



11

performance of the project teams. Moreover, Thongtanunam
et al. [34] showed that review discussions with large re-
viewer score discrepancies share a link with files that are
defective in the future. We contribute to this growing body
of knowledge by quantitatively and qualitatively analyzing
code reviews in two large open source communities with a
focus on how often reviews with divergent scores occur and
how integration decisions are reached.

8 CONCLUSIONS

Code review is a common software quality assurance prac-
tice. During the review process, reviewers critique patches
to provide authors with feedback. In theory, this provides
a simple feedback loop, where reviewers provide criticism
and authors update patches. In practice, this loop is complex
because reviewers may not agree about a patch, with some
voting in favour and others voting against integration.

In this paper, we set out to better understand patches
with divergent scores. To that end, we study patches with
divergent scores in the OPENSTACK and QT communities,
making the following observations:

• Patches with divergent scores are not rare in OPEN-
STACK and QT, with 15%–37% of patches that receive
multiple review scores having divergent scores.

• Patches with divergent scores are integrated more
often than they are abandoned.

• Patches with divergent scores that are eventually
integrated tend to involve one or two more reviewers
than patches without divergent scores. Moreover,
core reviewers provide negative scores after positive
ones 70% of the time on average.

• Divergent discussion tends to arise early, with 75%
of divergencies occurring by the third (QT) or fourth
(OPENSTACK) revision.

• Patches that are eventually abandoned with strong
divergent scores more often suffer from external is-
sues than patches with weak divergent and without
divergent scores. Moreover, internal concerns are
raised at greater or equal rates in patches with strong
divergent scores and those without divergent scores.

• Patches that are eventually integrated with strong
divergent scores indirectly address reviewer con-
cerns more often than patches with weak divergent
and without divergent scores. In NOVA, integrated
patches with strong divergent scores more often
indirectly address reviewer concerns, whereas the
opposite is true in QTBASE.

Based on our results, we suggest that: (a) software or-
ganizations should be aware of the potential for divergent
discussion, since patches with divergent scores are not rare
and tend to require additional personnel to be resolved; (b)
automation could relieve the burden of reviewing external
concerns; and (c) authors should note that even the most
divisive patches are often integrated through constructive
discussion, integration timing, and careful revision.

REFERENCES

[1] K. E. Wiegers, Peer Reviews in Software: A Practical Guide. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[2] M. E. Fagan, “Design and code inspections to reduce errors in
program development,” IBM Systems Journal, vol. 15, no. 3, pp.
182–211, 1976.

[3] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida,
H. Iida, and K. Matsumoto, “Who should review my code? a file
location-based code-reviewer recommendation approach for mod-
ern code review,” in Proceedings of the 22nd International Conference
on Software Analysis, Evolution, and Reengineering, 2015, pp. 141–
150.

[4] M. Zanjani, H. Kagdi, and C. Bird, “Automatically recommending
peer reviewers in modern code review.” Transactions on Software
Engineering, vol. 42, no. 6, pp. 530–543, 2015.

[5] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: Code
reviewer recommendation in github based on cross-project and
technology experience,” in Proceedings of the 38th International
Conference on Software Engineering, 2016, pp. 222–231.

[6] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software
quality: A case study of the qt, vtk, and itk projects,” in Proceedings
of the 11th Working Conference on Mining Software Repositories, 2014,
pp. 192–201.

[7] T. Hirao, A. Ihara, Y. Ueda, P. Phannachitta, and K. Matsumoto,
“The impact of a low level of agreement among reviewers in a
code review process,” in The 12th International Conference on Open
Source Systems, 2016, pp. 97–110.

[8] P. C. Rigby, D. M. German, and M.-A. Storey, “Open source
software peer review practices: a case study of the apache server,”
in Proceedings of the 30th International Conference on Software Engi-
neering, 2008, pp. 541–550.

[9] P. C. Rigby and M.-A. Storey, “Understanding broadcast based
peer review on open source software projects,” in Proceedings of
the 33rd International Conference on Software Engineering, 2011, pp.
541–550.

[10] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. v. Deursen,
“Communication in open source software development mailing
lists,” in Proceedings of the 10th Working Conference on Mining
Software Repositories, 2013, pp. 277–286.

[11] F. J. Ingelfinger, “Peer review in biomedical publication,” The
American Journal of Medicine, vol. 56, no. 5, pp. 686 – 692, 1974.

[12] J. Wang, P. Shih, C, and J. Carroll, M, “Revisiting linus’s law:
Benefits and challenges of open source software peer review,”
International Journal of Human-Computer Studies, pp. 52–65, May
2015.

[13] W. Huang, T. Lu, H. Zhu, G. Li, and N. Gu, “Effectiveness of
conflict management strategies in peer review process of online
collaboration projects,” in Proceedings of the 19th ACM Conference
on Computer-Supported Cooperative Work & Social Computing, 2016,
pp. 717–728.

[14] A. Filippova and H. Cho, “The effects and antecedents of conflict
in free and open source software development,” in Proceedings of
the 19th ACM Conference on Computer-Supported Cooperative Work &
Social Computing, 2016, pp. 705–716.

[15] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bacchelli,
“Modern code review: A case study at google,” in International
Conference on Software Engineering, Software Engineering in Practice
track (ICSE SEIP), 2018.

[16] T. Hirao, A. Ihara, and K. Matsumoto, “Pilot study of collective
decision-making in the code review process,” in Proceedings of the
Center for Advanced Studies on Collaborative Research, 2015, pp. 248–
251.

[17] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Re-
visiting code ownership and its relationship with software quality
in the scope of modern code review,” in Proceedings of the 38th
International Conference on Software Engineering, 2016, pp. 1039–
1050.

[18] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software
quality,” Empirical Software Engineering, vol. 21, no. 5, pp. 2146–
2189, 2016.

[19] R. K. Yin, Case Study Research: Design and Methods, 6th ed. SAGE
Publications, 2017.

[20] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Re-
view Participation in Modern Code Review: An Empirical Study
of the Android, Qt, and OpenStack Projects,” Empirical Software
Engineering, vol. 22, no. 2, pp. 768–817, 2017.

[21] P. C. Rigby and C. Bird, “Convergent contemporary software



12

peer review practices,” in Proceedings of the 9th Joint Meeting on
Foundations of Software Engineering, 2013, pp. 202–212.

[22] F. E. Zanaty, T. Hirao, S. McIntosh, A. Ihara, and K. Matsumoto,
“An empirical study of design discussions in code review,” in Pro-
ceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, 2018, pp. 11:1–11:10.

[23] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in Proceedings of the 35th International
Conference on Software Engineering, 2013, pp. 712–721.

[24] N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds
break? an empirical study,” in Proceedings of the 30th International
Conference on Software Maintenance and Evolution, 2014, pp. 41–50.

[25] M. Shridhar, B. Adams, and F. Khomh, “A qualitative analysis of
software build system changes and build ownership styles,” in
Proceedings of the 8th International Symposium on Empirical Software
Engineering and Measurement, 2014, pp. 29:1–29:10.

[26] T. Sedano, P. Ralph, and C. Péraire, “Software development
waste,” in Proceedings of the 39th International Conference on Software
Engineering, 2017, pp. 130–140.

[27] S. Zhou, Ş. Stănciulescu, O. Leßenich, Y. Xiong, A. Wa̧sowski, and
C. Kästner, “Identifying features in forks,” in Proceedings of the 40th
International Conference on Software Engineering, 2018, p. To appear.

[28] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern
code reviews in open-source projects: Which problems do they
fix?” in Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories, 2014, pp. 202–211.

[29] E. Shihab, Z. M. Jiang, and A. E. Hassan, “Studying the use of
developer irc meetings in open source project,” in Proceedings of
the 25th International Conference on Software Maintenance, 2009, pp.
147–156.

[30] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and
source code artifacts.” in Proceedings of the 32nd International Con-
ference on Software Engineering, 2010, pp. 375–384.

[31] C. Bird, A. Gourley, and P. Devanbu, “Detecting patch submission
and acceptance in oss projects,” in Proceedings of the Fourth Interna-
tional Workshop on Mining Software Repositories, 2007, pp. 26–29.

[32] Y. Jiang, B. Adams, F. Khomh, and D. M. German, “Tracing back
the history of commits in low-tech reviewing environments,” in
Proceedings of the 8th International Symposium on Empirical Software
Engineering and Measurement, 2014, pp. 51:1–50:10.

[33] C. F. Kemerer and M. C. Paulk, “The impact of design and code
reviews on software quality: An empirical study based on psp
data,” IEEE Transactions on Software Engineering, vol. 35, no. 4, pp.
534–550, 2009.

[34] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Investi-
gating code review practices in defective files: An empirical study
of the qt system,” in Proceedings of the 12th Working Conference on
Mining Software Repositories, 2015, pp. 168–179.

[35] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,”
in Proceedings of the 22nd International Conference on Software Analy-
sis, Evolution, and Reengineering, 2015, pp. 171–180.

[36] A. Meneely, A. C. R. Tejeda, B. Spates, S. Trudeau, D. Neuberger,
K. Whitlock, C. Ketant, and K. Davis, “An empirical investigation
of socio-technical code review metrics and security vulnerabil-
ities,” in Proceedings of the 6th International Workshop on Social
Software Engineering, 2014, pp. 37–44.

[37] T. Baum, O. Liskin, K. Nikla, and K. Schneider, “Factors influenc-
ing code review processes in industry,” in Proceedings of the 24th
International Symposium on Foundations of Software Engineering, Nov.
2016, pp. 85–96.

[38] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An
empirical study of open source project patches,” in Proceedings of
the International Conference on Software Maintenance and Evolution,
2014, pp. 271–280.

[39] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The
influence of non-technical factors on code review,” in Proceedings
of the 20th Working Conference on Reverse Engineering, 2013, pp. 122–
131.

[40] ——, “Investigating technical and non-technical factors influenc-
ing modern code review,” Empirical Software Engineering, vol. 21,
no. 3, pp. 932–959, 2016.

[41] V. J. Hellendoorn, P. T. Devanbu, and A. Bacchelli, “Will they
like this? evaluating code contributions with language models,”
in 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, May 2015, pp. 157–167.

[42] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study
of the pull-based software development model,” in Proceedings of
the 36th International Conference on Software Engineering, 2014, pp.
345–355.

[43] A. Aurum, H. Petersson, and C. Wohlin, “State-of-the-art: software
inspections after 25 years,” Software Testing, Verification and Relia-
bility, vol. 12, no. 3, pp. 133–154, 2002.

[44] A. Bosu, M. Greiler, and C. Bird, “Characteristics of useful code
reviews: An empirical study at microsoft,” in Proceedings of the 12th
International Working Conference on Mining Software Repositories,
2015, pp. 146–156.

[45] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code review qual-
ity: How developers see it,” in Proceedings of the 38th International
Conference on Software Engineering, 2016, pp. 1028–1038.

[46] V. Balachandran, “Reducing human effort and improving quality
in peer code reviews using automatic static analysis and reviewer
recommendation,” in Proceedings of the 35th International Conference
on Software Engineering, 2013, pp. 931–940.

[47] X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review this
change? putting text and file location analyses together for more
accurate recommendations.” in Proceedings of the 31st International
Conference on Software Maintenance and Evolution, 2015, pp. 261–270.

[48] Y. Jiang, B. Adams, and D. M. German, “Will my patch make it?
and how fast?: Case study on the linux kernel,” in Proceedings of
the 10th Working Conference on Mining Software Repositories, 2013,
pp. 101–110.

[49] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and tech-
nical factors for evaluating contribution in github,” in Proceedings
of the 36th International Conference on Software Engineering, 2014, pp.
356–366.

[50] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, and M. W. Godfrey,
“Investigating code review quality: Do people and participation
matter?” in Proceedings of the 31st International Conference on Soft-
ware Maintenance and Evolution, 2015, pp. 111–120.

[51] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: Evaluating
contributions through discussion in github.” in Proceedings of the
22nd International Symposium on Foundations of Software Engineering,
2014, pp. 144–154.

[52] J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not
find bugs: How the current code review best practice slows us
down,” in Proceedings of the 37th International Conference on Software
Engineering, 2015, pp. 27–28.

[53] M. V. Mäntylä and C. Lassenius, “What types of defects are
really discovered in code reviews?” IEEE Transactions on Software
Engineering, vol. 35, no. 3, pp. 430–448, 2009.

Toshiki Hirao is a PhD student at Nara Insti-
tute of Science and Technology, Japan. He has
been a doctoral course fellowship student (DC1)
in JSPS from 2017 to present. His PhD thesis
aims to improve the code review efficiency. He
received his Bachelor’s degree in Information
Science from Osaka Kyoiku University, Japan
and his Master’s degree in Information Science
from Nara Institute of Science and Technology,
Japan. More about his work is available online at
http://toshiki-hirao.jpn.org/.

Shane McIntosh is the Canada Research Chair
in Software Release Engineering and an as-
sistant professor at McGill University, where
he leads the Software Repository Excavation
and Build Engineering Labs (Software REBELs).
He received his Ph.D. from Queen’s University,
for which he was awarded the Governor Gen-
eral’s Academic Gold Medal. In his research,
Shane uses empirical methods to study soft-
ware build systems, release engineering, and
software quality: http://rebels.ece.mcgill.ca/.

http://toshiki-hirao.jpn.org/
http://rebels.ece.mcgill.ca/


13

Akinori Ihara is a lecturer at Wakayama Univer-
sity in Japan. His research interests include em-
pirical software engineering, open source soft-
ware engineering, social software engineering
and mining software repositories (MSR). His
work has been published at premier venues like
ICSE, MSR, and ISSRE. He received the M.E.
degree (2009) and Ph.D.degree (2012) from
Nara Institute of Science and Technology. More
about Akinori and his work is available online at
http://www.wakayama-u.ac.jp/∼ihara/.

Kenichi Matsumoto is a professor in the Grad-
uate School of Science and Technology at Nara
Institute of Science and Technology, Japan. He
received the Ph.D. degree in Engineering from
Osaka University. His research interests include
software measurement and software process.
He is a fellow of the IEICE and the IPSJ, a
senior member of the IEEE, and a member of
the JSSST. More about Kenichi and his work is
available online at http://se-naist.jp/

http://www.wakayama-u.ac.jp/~ihara/
http://se-naist.jp/

	Introduction
	Case Study Design
	Studied Projects
	The OpenStack and Qt Code Review Processes
	Data Preparation

	Quantitative Results
	Qualitative Results
	Practical Suggestions
	Software Organizations
	Tool Developers
	Patch Authors

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Review Process Optimization
	Review Discussion Process

	Conclusions
	References
	Biographies
	Toshiki Hirao
	Shane McIntosh
	Akinori Ihara
	Kenichi Matsumoto


