Quantifying, Characterizing, and Mitigating
Flakily Covered Program Elements

Shivashree Vysali, Shane Mcintosh, Member, IEEE, and Bram Adams, Member, IEEE

Abstract—Code coverage measures the degree to which source code elements (e.g., statements, branches) are invoked during
testing. Despite growing evidence that coverage is a problematic measurement, it is often used to make decisions about where testing
effort should be invested. For example, using coverage as a guide, tests should be written to invoke the non-covered program
elements. At their core, coverage measurements assume that invocation of a program element during any test is equally valuable. Yet
in reality, some tests are more robust than others. As a concrete instance of this, we posit in this paper that program elements that are
only covered by flaky tests, i.e., tests with non-deterministic behaviour, are also worthy of investment of additional testing effort. In this
paper, we set out to quantify, characterize, and mitigate “flakily covered” program elements (i.e., those elements that are only covered
by flaky tests). To that end, we perform an empirical study of three large software systems from the OpenStack community. In terms of
quantification, we find that systems are disproportionately impacted by flakily covered statements with 5% and 10% of the covered
statements in Nova and Neutron being flakily covered, respectively, while < 1% of Cinder statements are flakily covered. In terms of
characterization, we find that incidences of flakily covered statements could not be well explained by solely using code characteristics,
such as dispersion, ownership, and development activity. In terms of mitigation, we propose GreedyFlake — a test effort prioritization
algorithm to maximize return on investment when tackling the problem of flakily covered program elements. We find that GreedyFlake
outperforms baseline approaches by at least eight percentage points of Area Under the Cost Effectiveness Curve.

Index Terms—Code coverage, Software testing, Flaky tests

1 INTRODUCTION

Code coverage tools measure how thoroughly tests exercise
programs [1]. By instrumenting a program during test suite
execution, code coverage tools determine which program
elements have been invoked and which ones have not.
Coverage reports provide an overview of the proportion
of all program elements that have been invoked during
testing [1]. Although they may target program elements
at varying granularities (e.g., statements, branches), their
essential mode of operation remains the same.

Since low code coverage indicates that plenty of program
elements have not been tested, it is common practice for
software organizations to use coverage measurements as a
quality gate in their integration pipelines. For example, the
Apache Software Foundation has a quality gate that enforces
a minimum code coverage of 80% by defaultE] Changes
that do not meet this quality criterion are blocked from
integration into the product.

Conversely, it is assumed that high coverage indicates
adequate testing. Goodhart’s law (a popular adage) states
that “When a measure becomes a target, it ceases to be a
good measure” [2] — this is indeed true of coverage mea-
surements. Fowler has argued that when coverage improve-

o Shivashree Vysali is with the Department of Electrical and Computer
Engineering, McGill University, Canada.

E-mail: shivashree.vaidhyamsubramanian@mail.mcgill.ca

Shane Mclntosh is with the David R. Cheriton School of Computer
Science, University of Waterloo, Canada.

E-mail: shane.mcintosh@uwaterloo.ca

Bram Adams is with the School of Computing, Queen’s University,
Canada.

E-mail: bram.adams@queensu.ca

1. https:/ /sonarcloud.io/organizations/apache/quality_gates

<+

ments are targeted, developers tend to focus on writing
tests that improve coverage, rather than writing tests that
can catch defectsP] This increases the cost of test execution
and maintenance by adding additional tests; however, the
benefits in terms of test suite effectiveness are unclear.
Indeed, studies of the relationship between coverage and
test suite effectiveness have produced mixed results [3]], [4].

At their core, coverage measurements are based on a
coarse-grained binary classification of program elements.
Elements are either labelled as invoked during testing or
not. It is our position that this classification is limiting the
value of coverage measurements. Expanding the classifica-
tion to a broader set of categories may yield more actionable
insights. For example, coverage can be classified based
on the scope of the covering test (e.g., unit, integration).
Coverage by one scope may not imply coverage by another.
Program elements can also be covered by flaky tests, i.e., tests
that exhibit non-deterministic behaviour. Program elements
that are covered by flaky tests are unlikely to be as well-
tested as program elements that are covered by tests with
deterministic behaviour.

In this paper, we set out to study these flakily covered
elements as well as their impact “in the wild.” To do so,
we perform an empirical study of the Nova, Neutron, and
Cinder projects — the three largest and most active projects
in the OpenStack community. We structure our empirical
study along three dimensions:

1) Quantification: To what degree are program
elements flakily covered?
Motivation: While a fine grained coverage analysis

has benefits, the additional costs involved in

2. https:/ /martinfowler.com/bliki/ TestCoverage.html

© 2020 IEEE. Author pre-print copy. The final publication is available online at: https://dx.doi.org/10.1109/TSE.2020.3010045

https://dx.doi.org/10.1109/TSE.2020.3010045

determining flakily covered program elements
needs to be justified. If flakily covered program
elements are rare, their impact on code coverage
measurements could be dismissed as negligible
and the additional cost involved is not justified.
Therefore, it is necessary to quantify flakily covered
program elements to determine if the magnitude of
flakily covered program elements is high enough to
justify further analyses.

Results: We find that systems are disproportionately
impacted by flakily covered statements with 5%
and 10% of the covered statements in Nova and
Neutron being flakily covered, respectively, while
<1% of Cinder statements are flakily covered.

2) Characterization: Which kinds of program elements
are flakily covered?
Motivation: If the occurrence of flakily covered
statements can be explained by basic code
characteristics, such as the location within the
system, ownership, age and churn, then there is no
need to distinguish between flakily covered and
covered program elements.

Results: We take the position of a devil’s advocate
and analyze flakily covered statements along three
dimensions of basic code characteristics, namely (A)
Dispersion; (B) Ownership; and (C) Development
activity. From our analyses, we conclude that the
occurrence of flakily covered statements cannot
be well explained solely by using basic code
characteristics.

3) Mitigation: How should repair effort be prioritized?
Motivation: Software teams often operate under
tight time and budget constraints. Thus, it would be
useful to prioritize the mitigation of flakily covered
program elements such that teams receive the
largest return on investment as quickly as possible.

Results: We propose GreedyFlake, a greedy ap-
proach to prioritize the repair of flaky tests such
that the ones that are associated with the largest
number of flakily covered statements are fixed first.
To evaluate GreedyFlake, we plot Alberg diagrams
(ak.a., lift charts) of the cost (in terms of flaky
tests to be repaired) against the effectiveness (flakily
covered program elements that have been repaired).
We observe that GreedyFlake outperforms random
and traditional test case prioritization approaches
by at least eight percentage points. However, we
find that there is only marginal benefit to the greedy
re-ranking step (1-3 percentage points), so “greedi-
ness” is not necessary to achieve most of the benefit.

2 RELATED WORK

In this section, we discuss the related work with respect to
code coverage, test reliability and test prioritization.

2.1 Code Coverage

Code coverage is a well established concept in software
engineering research and practice. Piwowarski et al. [5] ex-
plained that IBM used code coverage in the late 1960s. Mar-
ick [6] warns that “requiring” very high coverage might lead
to tests being written only to satisfy coverage conditions and
not to reveal bugs. Elbaum et al. [7] studied the impact of
software evolution on code coverage and determined that
even small changes during the evolution of a program can
have a profound impact on coverage information.

As code coverage criteria are often used to evaluate test
suites, many studies focus on the relationship between code
coverage and test suite effectiveness. Some studies have
shown that generating test suites to satisfy code coverage
criteria has a positive effect on finding faults [4], [8], [9]
while other studies do not [3], [10]], [11f], [12]. Schwartz et
al. [13] investigated the faults that are missed by test suites
with high coverage scores and found that they often miss
faults that corrupt internal state.

Broadly speaking, most prior work has focused on un-
derstanding code coverage with respect to different granu-
larities of program elements and exploring the risks associ-
ated with using high coverage as a quality gate. We instead
propose to explore code coverage with an awareness of test
characteristics and to categorize covered program elements
based on test characteristics, to obtain more actionable in-
sights from code coverage. Wong et al. [14] proposed an
approach to calculate the risk of a statement based on the
number of successful and failed tests that cover it. Their
approach was successful in a fault localization scenario.
Our approach aims to categorize covered program elements
based on test reliability (flakiness).

2.2 Flaky Tests

Previous studies on flaky tests have focused on understand-
ing the root causes of flaky tests. Luo et al [15] analyzed
201 commits in the Apache ecosystem that fixed flaky tests
and reported that the three main causes of non-determinism
in tests are asynchronous waits, concurrency and test order
dependencies. Thorve et al. [16] performed a similar anal-
ysis for Android applications and reported three other root
causes, namely, Dependency, Program Logic, and UL

The common practice to determine if a test is flaky is
to repeat the test a number of times and mark the test as
flaky if the result changes. Since repeating tests is expensive,
many studies have focused on automatically detecting flaky
tests. Bell et al. [17] proposed an automated approach called
DeFlaker, which monitors the coverage of code changes and
marks as flaky any newly failing test that did not execute
any of the changed lines of code. Their approach was able
to detect 87 unknown flaky tests in ten active projects. Lam
et al. [18] proposed an automated approach to detect order-
dependent flaky tests. King et al. [19] proposed an approach
that leverages Bayesian networks for classifying flaky tests.

In this paper, we rely on test execution history to build
a corpus of flaky tests, then use this data to identify flakily
covered program elements.

Data Extraction

DE1 ——
Collect .
S1:{T1,T2
™ statement- [52:§T3} }
level coverage s3
DE2 — [DpEa
Classify tests T1: Unit S1: Both, Robust |
by scope T2: Functional S2: Functional only, —<>| | |
T3: Functional Flakily covered | |
~—__— I |S3:Uncovered
—— Enriched
DE3 - 1 Coverage
Automated Classify tests | | T1: Non-Flaky
Cltest [T™| by reliability T2: Non-Flaky
executions T3: Flaky
\/\

Fig. 1: An overview of data extraction

2.3 Test Case Prioritization

Test case prioritization is a means to achieve target objec-
tives in software testing by reordering the execution se-
quences of test suites. Rothermel et al. [20] formally defined
the test case prioritization (TCP) problem, presented several
techniques for prioritizing test cases, and presented the
results of empirical studies in which those techniques were
applied to various programs. In particular, four coverage-
based greedy test prioritization approaches were proposed.
Elbaum et al. [21] extended the empirical study of Rother-
mel et al. by including more programs and prioritization
techniques. Do and Rothermel [22] applied coverage-based
prioritization techniques to the JUnit testing environment
and showed that prioritized execution of JUnit test cases
improved the fault-detection rate.

Greedy algorithms have also been explored. For exam-
ple, Jones and Harrold [23] proposed a greedy variant to the
Modified Condition/Decision Coverage (MC/DC) criterion
for prioritization. Moreover, Li et al. [24] compared random
prioritization and a genetic test case prioritization algorithm
with several greedy algorithms. They observed that greedy
algorithms are often outperformed by optimal algorithms,
but the simplicity and cost effectiveness of greedy algo-
rithms still merits their usage. Given their promising results,
we propose a greedy approach to tackle flakily covered
program elements.

Prioritization approaches may also focus on which areas
of the codebase should be improved first. For example,
Shihab et al. [25] leveraged the development history of a
project to generate a prioritized list of functions to focus
unit test writing resources on. In our work, we obtain a
prioritized list of flaky tests to minimize flakily covered
program elements.

3 STtuDY DESIGN

In this study, we set out to analyze code coverage with
an awareness of characteristics of the test(s) that cover(s)
each statement in the source code. Specifically, we study
test scope and reliability characteristics. In this section, we
outline our approach for collecting the data required to
analyze coverage from different perspectives.

3.1 Studied Systems

In order to analyze code coverage with an awareness of
test characteristics, we need projects with a clearly defined
testing process. Therefore, we focus on projects from the
OpenStack community for analysis. The OpenStack commu-
nity has (a) clear testing guidelines for its projects and (b)
a robust continuous integration system with test execution
results available for submitted patches.

We need large and active projects, to maximize our
chances of observing flaky tests. We start by identifying
projects that form the core of OpenStackE] namely Nova,
Neutron, Cinder, Keystone, Glance, Swift and Horizon.

Next, we need to ensure that we are able to collect
complete coverage information by running the test suites
successfully. Most OpenStack projects use Tox to install the
dependencies needed for testing[!| Using this Tox environ-
ment, we could successfully replicate the testing environ-
ments for Nova, Neutron and Cinder.

3.2 Data Extraction

Figure |1 provides an overview of the steps involved in the
coverage and test characteristics data extraction process.

DE1: Collect statement-level coverage

We first need to compute a test-to-statement mapping, i.e.,
a many-to-many relation where each statement may be
covered by zero or more tests and each test may cover
zero or more statements. The main purpose of the test-to-
statement mapping is to enable fine-grained analysis. Since
we set out to analyze scope- and reliability-aware coverage
perspectives, this mapping is a critical data structure upon
which we will build.

Since our studied projects are implemented in Python,
we use Coverage.pyf’| a popular Python coverage tool, to
collect coverage at the statement level. The result is a
Coverage database (CovDB), which contains a list of all the
statements executed during coverage collection and a test-
to-statement mapping.

Recent work by Shi et al. [26] demonstrated that flaky
tests can yield unreliable coverage measurements. To miti-
gate the risks posed by flaky tests, for each project, we repeat
the collection of coverage measurements ten times. In our
coverage collection scenarios, we did not observe any test
failures. In fact, we found that the coverage measurements
are stable and do not change across the ten runs. We do
not believe this is irregular, as Shi et al. found that coverage
instability was project-sensitive.

Another concern is accurate test-to-statement mapping
when tests share setup/teardown code. The studied projects
use the unittest framework for testing, which supports shar-
ing setup/teardown methods both at the test case level and
test class level] When code is shared at the test case level
(using setUp/tearDown methods), the unittest framework
executes the shared statements for each test case, which
allows Coverage.py to map shared statements to all the tests

3. https:/ /docs.openstack.org/security-
guide/introduction/introduction-to-openstack.html

4. https:/ /tox.readthedocs.io/en/latest/

5. https://coverage.readthedocs.io/en/coverage-5.1/

6. https://docs.python.org/3/library /unittest.html

that execute them. When code is shared at the test class level
(using setUpClass/tearDownClass methods), Coverage.py
does not map the code to individual tests in the class.
However, we do not find any instances of shared code at
test class level in the studied projects.

DE2: Classify tests by scope

Tests are written with different intended scopes. For exam-
ple, unit tests focus on isolating the smallest modules for
individual testing, while integration or functional tests tar-
get logical groups of modules or system-level functionality.
Since coverage by one scope may not imply coverage by
another (e.g., integration-level issues cannot be discovered
by unit tests), we set out to study how coverage varies with
respect to scope.

In the studied projects, tests are organized based on
their scope into separate folders (unit and functional). We
determine the scope of each test by analyzing the code base
directory in which the test appears.

DE3: Update Test Flakiness

Flaky tests are tests that exhibit non-deterministic be-
haviour, i.e., the test results may change when the code
under test has not. Flaky tests are an example of unreliable
tests. Since the outcome of flaky tests is unreliable, the
statements covered only by flaky tests should not raise the
confidence of development teams as much as statements
covered by robust tests.

Previous studies [15], [17] have relied on re-running tests
several times to determine flaky tests. However, the re-
execution of tests is computationally expensive. In order to
avoid re-running tests, we rely on previous test execution
history available through OpenStack’s Continuous Integra-
tion (CI) system.

If an OpenStack developer suspects that a test result is
flaky, they can request for tests to be re-executed against
a specific patch. If tests are re-run against the same patch
and the test result changes, it indicates the presence of a
flaky test. We filter patches against which tests were run
more than once and identify patches with inconsistent test
outcomes. We then parse the test suite results to identify the
actual test cases with non-deterministic behavior.

DE4: Categorize statements

To obtain an enriched coverage report, we categorize state-
ments based on the characteristics of the test(s) that cover(s)
the statements.

To do so, we first categorize statements based on the
scope of the tests that cover the statement, using a combina-
tion of the test-to-statement mapping (DE1) and the detected
scope of tests (DE2). Since statements may be covered by
multiple tests, it is possible for a statement to be covered by:

e Unit tests only: The statement is covered by one or
more unit tests, but no functional tests.

e Functional tests only: The statement is covered by
one or more functional tests, but no unit tests.

e Both unit and functional tests: The statement is
covered by at least one unit test and at least one
functional test.

4

For each category, we further classify the statements based
on the reliability of the tests covering the statement. If all
of the tests covering a statement are flaky, the statement
is considered as flakily covered. If there is at least one
non-flaky test covering a statement, then the statement is
considered robustly covered. If a statement is not covered
by any test, it is considered not covered.

4 ENRICHED COVERAGE OBSERVATIONS

Following the procedure to categorize statements (DE4),
we obtain an enriched coverage report. This report shows
the total coverage for each project and splits the coverage
numbers based on test scope and test reliability. We visualize
the coverage split using a Sankey diagram [27]. Sankey
diagrams are variants of flow diagrams, in which the width
of arrows is proportional to flow quantity.

Figure [2| shows the three-tiered Sankey diagrams gen-
erated for the studied projects. At the first level, all of the
statements are categorized as either covered or uncovered.
At the second level, all of the covered statements are catego-
rized based on test scope (unit only, functional only, both).
At the third level, statements in each test scope category are
further categorized based on test reliability (flakily-covered,
non-flakily covered).

Figure [2| shows that more statements are covered only
by unit tests than only by functional tests. This is not
surprising because unit tests account for a larger proportion
of the test suites of the subject systems (63%-95%). More
interestingly, 60.94% and 63.33% of statements are covered
by both unit and functional tests in Neutron and Nova,
respectively, while only 30% are covered by both types of
tests in Cinder. We suspect this discrepancy is caused by the
lower proportion of functional tests in Cinder (5%).

Figure [2|also shows that Cinder has the lowest coverage
at 75.11%. On the surface, Nova and Neutron appear to be
more thoroughly tested than Cinder. However, Cinder has
the lowest percentage of flakily covered statements at 0.14%.
If we were to remove the flakily covered statements from
the set of covered statements, the coverage of Neutron and
Cinder becomes comparable. This further supports the claim
that higher coverage scores do not always indicate more
thorough testing.

The Sankey diagrams help developers identify possible
weakly covered statements. For example, from the Sankey
diagram for Neutron, it can be seen that a large portion of
statements that are covered by functional tests are flakily
covered. Instead of focusing on improving code coverage
numbers, developers can focus on fixing flakiness in these
functional tests to improve test reliability.

Summary of Key Findings: Our enriched coverage
reports provide insights into test scope and robust-
ness that plain coverage reports may miss. For exam-
ple, Cinder, despite having lower overall coverage
(75%), has the lowest proportion of flakily covered
statements (0.14%). On the other hand, Neutron has
higher coverage (87%) but also has the largest pro-
portion of flakily covered statements (10%).

ALL
88.41%
63.33% 17.18% 7.9%
Functional Onl
83.31% 5.1% 11.59%
Robustly Covered ING
(a) Nova
ALL
87.4%
60.94% 19.45% 7.01%
Functional Onl
77.3% 10.1% 12.6%
Robustly Covered Flakily Covered NC]
NC - Not Covered
(b) Neutron
ALL
75.11%
43.73% 0.91% 30.47%
Functional Only
74.97% 24.89%
Robustly Covered fl
Flakily covered
0.14%
(c) Cinder

Fig. 2: Sankey diagrams, visualization of generated enriched
coverage reports. We observe that, for example, in the case
of Neutron, a large (10.1%) proportion of statements that are
only covered by functional tests are flakily covered.

5 ADVOCATUS DIABOLI

In this section, we explore the position of an Advocatus
Diaboli (AD, i.e., a devil's advocate) to determine if flakily
covered statements could be attributed to basic code, devel-
oper, or maintenance characteristics. We focus on intuitive,
general code characteristics that do not involve program-
or language-specific code analyses. The rationale for this
choice being that if flakiness in code coverage can be tackled
through general code characteristics, teams can act upon our
insights without requiring expensive additional analyses.
Broadly speaking, the arguments of a pragmatic AD fit
into (A) Dispersion; (B) Ownership; and (C) Development
Activity dimensions. For each argument, we present its
rationale, our approach to evaluating it, and the results that
we observed.

A. Dispersion

Dispersion properties measure the diffusion of a phe-
nomenon across modules of the codebase. A naive expla-
nation of our results may be that the flakily covered state-
ments: (A.1) are concentrated in one area of the system; (A.2)
appear in poorly tested modules; or (A.3) are introduced by
a small number of contributors. Below, we explore each of
these AD arguments.

Argument A.1: The flakily covered statements are all part
of the same module.

Rationale: The nature of some modules may increase
the likelihood of tests to be flaky. For instance, a module
that focuses on networking may be prone to flakily covered
statements due to tests depending upon responses received
from across a network. If such a naive explanation were true,
the value of our observation about the frequency of flakily
covered statements may be limited.

Approach: We use treemaps [28] to investigate the con-
centration of flakily covered statements across modules.
Treemaps allow shape nesting, size, and shade properties to
be mapped on to data properties. In our treemaps, each node
(box) corresponds to a source code file. Thicker lines indicate
module groupings, i.e., files nested within thick lines appear
within the same module. Each file in the treemap is shaded
according to the number of flakily covered statements it
contains (darker shaded files indicate more flakily covered
statements).

Results: Figure 3| shows that flakily covered statements
are often dispersed across modules. In Nova and Neutron,
70% and 79% of modules contain at least one flakily cov-
ered statement. Among those modules that contain flakily
covered statements, the Nova and Neutron modules re-
spectively have: (a) medians of 17 and 7 flakily covered
statements; and (b) standard deviations of 173 and 246
flakily covered statements. Indeed, the results indicate that
flakiness impacts a large proportion of modules.

On the other hand, flakily covered statements in the
Cinder system are more concentrated. Figure [3(c) shows
that only 17% of the modules contain at least one flakily
covered statement. One plausible explanation for the higher
concentration of flakily covered statements in the Cinder
system may be the fact that there are only 155 identified
flakily covered statements. 115 of the 155 flakily covered
statements (73%) are located in the volumes/drivers

module — the module that contains 75% of the statements
in the Cinder codebase.

While the module-level dispersion of flakily covered
statements is often quite high, Figure [3| shows that some
files have a larger amount of flakily covered statements
than others. We observe that most of these “hotspots”
are among the largest files in the module. For example,
virt/libvirt/driver.py and compute/manager.py
files are the largest in the virt/libvirt and compute
modules in the Nova system. On further examination of
virt/libvirt/driver.py, it appears that the file con-
tains code to connect and configure multiple external ser-
vices. Luo et al. [15] found that network dependencies were
common causes of non-determinism in tests.

Closer inspection of the flakily covered statements in
these hotspot files reveals that they may be especially
susceptible to turbulent network conditions or incorrect
platform assumptions. For example, in commit d1£37££8,
lines 6459-6464 of file virt/libvirt/driver.py are not
robustly covered because there are two separate blocks of
code that raise the same InvalidNetworkNUMAAffinity
exception with different messages based on the response
from the network. The overly-specific flaky test checks for
an exact match of one message.

Argument A.2: The flakily covered statements appear in
areas of code that are poorly covered in general.

Rationale: Flakily covered statements may be more likely
to appear in modules with lax testing practices in general.
Since low coverage may indicate that testing is insuffi-
cient [6], it may also be an indicator of where flakily covered
statements are likely to appear. Such a trivial explanation
would threaten the value of our prior observations.

Approach: For each file, we compute the number of un-
covered statements and flakily covered statements. Next, we
compute the Spearman correlation coefficient (p) to measure
the strength of the relationship between poor coverage and
incidences of flakily covered statements. We choose to use
Spearman's p rather than Pearson's r because Spearman's
p can detect non-linear associations. Spearman's p ranges
from -1 to 1, with 0 indicating no correlation, 1 indicating
a positive correlation (i.e., an increase in the incidences of
uncovered statements is associated with increases in the
incidences of flakily covered statements), and -1 indicating
an inverse correlation (i.e., an increase in the incidences of
uncovered statements is associated with a decrease in the
incidences of flakily covered statements and vice versa).
To control for file size, we also compute Spearman's p to
measure the correlation between the density of uncovered
statements and flakily covered statements (i.e., normalized
by file size).

Results: For Nova and Neutron, we observe weak (p =
0.36) and very weak (p = 0.189) levels of positive correla-
tion between incidences of uncovered and flakily covered
statements. While statistically significant, the magnitude
of these correlations do not support the AD's hypothesis.
Furthermore, in Cinder, we observe a weak level of negative
correlation (p = —0.327), further weakening the argument
of the AD.

When controlling for file size, for Neutron and Cinder,
we observe very weak levels of correlation (p = 0.065
for Neutron, p = 0.085 for Cinder). In Nova, we observe

console | vitzvm

virt/hypery|virtironic| nci..,
driver.py soor

oy fimops 2y

volume|

virt, base.py | PVSeP [paiicies hacking
fs. i eneots.
s | CONFSEE | imege
- » e on report. (! 1.pY | glance:oy
—=eu el ardwarepy ake.py aiversy —L
virt/libvirt vig/ymwareapi viryidisk
config. ‘ mecpapy | maosser | wor api.py | api.py manager py | instanco oy
Ut Py} ce"S Cmd vipt/powervm

vif.py quest.py VMOops.py vm_util.py| messagingoy _statepy
virt/xenapi

vm_utilS.py agentpy vif.py

manage.py status.py Juiverps vmpy

network®

ey | opy

sgobsctanay hostpy| L PO e

api/openstack

VmOops.

abjects...

fields.py

api.py models.py

0 100 200 300 400

provdersy | conpassaranss | WSQLDY instance.py | favorpy

Number of flakily covered statements

(a) Nova
Fi rivileged/agent| ¢ dbapigta |~
agent/linux iy . |""lipam i
ip_lib.py interfacepy ey | finuxfip_lib.py
utils.py agent —
e wrameots | gigrsaos | D.py | 1 ':,
rpepy. agent/I2 fova,
ANCD.DY | o coty s sy DY [0 e | policy.py| " [[detug =~
db N ap|/v2 ISRy L- ~~~~~~~~~ l:ma»,m e
L.ls.gy_ base.py Jaos pluginpy Iagem.py _plugin.py fchecks.py
ko b i 20 AR oy [GBIy cmd
extensions.py .py [agent.py
“““““ ~**|neutron |api/rpc e
13_db.py 13_dvr_db.py sccuiyorouss sy 15 ramoce_soey
plugins/mli2 wsgi.py. ,,,,, ol ovs lib.py] _
db/migration |extensions [servicesitrunk
cli.py qospy plugin.py
ey db.py agent/I3 sy " lobjects
agent.py ports.py
outecpy
managers.py router_info.py | v iocal routerpy | ha_router.py base.py rac_dbpy subnetpy
Number of flakily covered statements -

0 100200 300 400

(b) Neutron

volume/driVers s

ibm/gpfs.py

volume/flows grou “api/views] -+
_&EQ" policies|

] AP =

api/ve —

ooy sostpy | P d&pw

2oy Jim

cmd (image
e manage.py | image uispy | WSGi.py

api/v3 - |bavkup|owite

tsm.py | switey

]

apiopenstock|

oy ceph.py
objects

wmpy b o o

linstordrv.py | tintri.py infinidatpy | necicli.py

— remotefs.py ﬁﬁpgér api/contrib

rbd.py Jexception.py quota.py semvicesy
velume
pure.py qnap.py -

api.py utils.py

nnnnnnnnnnnn @ Nimble.py

huaweilrest_client.py

Py _hpelpe 3par commonpy |

10 15

Number of flakily covered statements .
(c) Cinder

Fig. 3: Dispersion of flakily covered statements across mod-
ules. Although there are hotspots, flakily covered statements
are dispersed across modules.

Fe) ® Ee) ® - 20 ®
® 400+ D 400+ o °
£ £ £
3 3 3
15 °
% 3001 % 3001 %
°

£ £ £ ®
% Y % b4 % 10 »
4 200+ ® 4 200+ %
° ° ® °
o 1 L] 1
® olale | [° . g 4
<) J <] J o 54 ®
Gl o 24% S0 aaead 8% e .
> oo > . e o >
S S z z s °
© © . © e
ST . L o - 0{ cececcceces ceses o ° .

0 1000 2000 3000 4000 5000 0 1000 2000 3000 0 1000 2000 3000 4000

Total statements authored Total statements authored Total statements authored
count 1 8 64 512 count 1 4 16 64 256 count 1 4 16 64 256
(a) Nova (last author) (b) Neutron (last author) (c) Cinder (last author)
500
° . . °
B B 500+ B 201
o o o
o o o
= 400+ = = e
B @ 400+ B
2 2 215 L
& & &
300+

: . £ - g .
© L] © [] T L4
3 p 3 % 107
5 2001 Y B 200- . ‘o . 3 .
o * o ’ 2 [_J
[. . Q e e g e e
8 100- . 8 ®e & . 8 57
- ® >, 100+ N . Y
3 & g | 22 *
Loy e Lo Lo ceses © . .

0 1000 2000 3000 4000 5000 0 1000 2000 3000 0 1000 2000 3000 4000

Total statements authored

count1 s 64 512 count1

(d) Nova (all authors)

Total statements authored

(e) Neutron (all authors)

Total statements authored

|
count

4 16 64 256 1 4 16 64 256

(f) Cinder (all authors)

Fig. 4: For each author, we plot the number of total statements contributed against the number of flakily covered statements
contributed. We attribute flakily covered statements to the last author (first row) or all authors (second row) who have
modified them.The number of flakily covered statements varies across contributors.

a weak level of negative correlation (p = —0.089). These
density correlation values also do not support the claim that
uncovered and flakily covered statements are associated.

Argument A.3: The flakily covered statements are most
likely introduced by a small group of developers.

Rationale: Every developer has a characteristic style,
ranging from preferences about identifier naming to prefer-
ences about object relationships and design patterns. Some
styles may result in statements that are hard to robustly
cover.

Approach: We use the git blame command to find out
the last known author of flakily covered statements. The last
known author is a commonly applied heuristic to estimate
ownership in previous studies [29]. We also use the git log
command to extract the list of authors who have modified
flakily covered statements over time. We group the flakily
covered statements by author and study their distributions
using hexbin plots. A hexbin plot is a variant of a scatter
plot where overlapping points are represented by a single
hexagonal bin. The shade of the bin indicates the number of
points in the bin. For our analysis, we plot the total number
of statements authored by a contributor on the X-axis and
the number of flakily covered statements authored on the
Y-axis.

Results: Figure[dshows the the number of flakily covered
statements varies across contributors. The percentage of
contributors who have authored at least one flakily cov-
ered statement is 41% for Nova, 46% for Neutron and 5%
for Cinder when flakily covered statements are associated
with the last author of the statement. When flakily covered
statements are associated with all authors, the percentages
slightly increase to 43% for Nova and 49% for Neutron,
but there is no change for Cinder. In the case of Nova and
Neutron, contributors with the highest number of flakily
covered statements have also authored more statements in
general. On the other hand, in Cinder, the contributor with
the most number of lines has not contributed any flakily
covered lines.

Dispersion: Flakily covered statements are dis-
persed across modules and contributors.

B. Ownership

Due to a lack of familiarity, new contributors to a project
may not fully comprehend the architecture or design im-
plications of their initial contributions. More experienced
contributors would be less likely to make such mistakes.

Statement Statement Test Test Statement Statement
. Last Author All Authors Last Author All Authors Age Churn
Project E
Xperience Experience Experience Experience

(B.1) (B.1) (B.2) (B.2) (C1) (C2)
Nova 0.0396*** 0.04*** 0.0535%** 0.061*** 0.0337*** 0.0925%**
Neutron 0.1231*** 0.026** NA NA 0.1156*** 0.2590***
Cinder 0.0751*** NA NA NA 0.06221*** (0.0281***

TABLE 1: Comparing flakily covered statements and flaky tests with robustly covered statements and robust tests,
respectively. Numbers indicate the Cliff's delta effect sizes, which are negligible unless shown in bold. The asterisks
indicate the p-values of the Mann-Whitney U test, where ** indicates p < 0.01, and *** indicates p < 0.001.

Ownership properties, which are contributor-oriented met-
rics such as experience, may explain the incidences of flak-
ily covered statements. A naive explanation of our results
may be that flakily covered statements occur because new
contributors tend to: (B.1) write statements that result in
non-deterministic behaviour or (B.2) write tests that are non-
deterministic. Below, we explore these AD arguments.
Argument B.1: New contributors tend to contribute code
that is difficult to test robustly.

Rationale: Whenever a block of code is changed, all the
tests that cover the block of code must also be verified and
updated to reflect changes made to source code. A new
contributor who is unfamiliar with the test suite, may be
unaware of which tests need to be modified. If the code
under test is changed in a way that makes a test flaky, then
it will lead to flakily covered statements.

Approach: For each statement, we estimate its author's
experience with the project by computing the number of
commits that an author has made prior to changing this
statement. To conserve space, detailed plots of the distribu-
tions have been relegated to the online appendix[]

We use Mann Whitney U tests to check whether differ-
ences in the distributions are statistically significant. The
Mann Whitney U test is a non-parametric test of the null
hypothesis that two distributions come from the same pop-
ulation. We adopt a conservative threshold (x=0.01) for
rejecting the null hypothesis of our test, which is: Hy: There
is no significant difference between the distributions of author
experience of flakily covered statements and robustly covered
statements.

Next, to estimate the practical difference between these
distributions, we apply Cliff's delta, a non-parametric effect-
size measure. Values of Cliff's delta range between -1 and
1. We adopt the significance levels proposed by prior
work [30]: negligible when 0 < [§] < 0.147, small when
0.147 < |§] < 0.330, medium when 0.330 < |§] < 0.474,
and large when 0.474 < |§| < 1. A positive Cliff's delta indi-
cates that values of the first distribution are larger than those
of the second distribution, while a negative Cliff's delta
indicates the inverse. Similar to Argument A.1, we study
the experience of the last author to modify the statement, as
well as all authors who have modified the statement.

Results: Column 1 of Table[T|shows the Mann-Whitney U
test results of comparing the last-known author experience
values. The test results are significant (p < 0.001 in all three
cases), indicating that we can reject our null hypothesis Hy.

7. https:/ /tinyurl.com/ flakyprogramelements-appendix

However, the effect size is negligible for all three projects,
indicating that the practical difference is insignificant.

Column 2 of Table [I| shows the Mann-Whitney U test
results of comparing the author experience throughout the
history of a statement. For Cinder, the test result is incon-
clusive (p > 0.01). For Nova and Neutron, the test results
are significant (p < 0.001 for Nova and p < 0.01 for
Neutron), indicating that we can reject our null hypothesis
Hy. However, the effect size is negligible for both projects,
indicating that the practical difference is insignificant.
Argument B.2: The flaky tests that lead to flakily covered
statements are introduced by new contributors, who lack
familiarity with the project.

Rationale: When new contributors write tests, they may
not be completely aware of the system runtime conditions.
Thus, new contributors may be more prone to writing flaky
tests, which in turn will create flakily covered statements.

Approach: We use the same heuristic approach to esti-
mate the experience of authors as we applied in Argument
B.1. In this case, we apply the heuristic to test code. We
again use Mann Whitney U tests and Cliff's delta effect-size
measures to compare distributions statistically, and relegate
detailed plots of the distributions to the online appendixZ

Results: Column 3 of Table [l] shows the results of
comparing the last-known author experience values. For
Neutron and Cinder, there is no significant difference in the
experience of authors of flaky and robust tests. For Nova,
we observe a significant difference (p < 0.001); however,
the Cliff's delta effect size is negligible.

Column 4 of Table [1| shows the result of comparing
author experience values throughout the history of the tests.
For Nova, the test results are significant (p < 0.001), indi-
cating that we can reject our null hypothesis Hy. However,
the effect size is negligible, indicating that the practical
difference is insignificant. For Neutron and Cinder the test
results are inconclusive (p > 0.01).

We cannot conclude that flaky tests are introduced only
by new contributors who lack familiarity with the project.

Ownership: The experience of authors of flaky tests
and flakily covered statements are often significantly
different than the experience of authors of robust
tests and robustly covered statements, respectively
(p < 0.001 in 13 of 18 cases). However, in no case is
the difference non-negligible (6 < 0.147), indicating
that the difference is of no practical consequence.

C. Development Activity

In large software systems, different parts of the system
change at different rates. The recency and frequency of
development activity may already explain where flakiness
occurs. Indeed, a naive explanation of our results may
be that the flakily covered statements are: (C.1) are not
under active development; or (C.2) undergo plenty of churn.
Below, we explore each of these AD arguments.

Argument C.1: The flakily covered statements are state-
ments that are not under active development.

Rationale: Source code is continuously evolving and
needs to be actively maintained. However, as software
evolves, some areas of the codebase attract more developer
attention, while other parts do not. The flakily covered
statements that we observe may simply be due to a lack
of maintenance priority on the modules where they appear.

Approach: To investigate C.1, we estimate the age of each
statement using the number of days since the last change
to the statement. We again use Mann Whitney U tests
and Cliff's delta effect-size measures to statistically compare
the distributions of statement age in robustly and flakily
covered statements. Detailed plots of the distributions are
available in the online appendix?

Results: Column 5 of Table [1] shows the results of the
Mann-Whitney U test, which indicate that the null hypothe-
sis can be rejected, and that there is a statistically significant
difference in the age of statements between the two groups.
However, the Cliff's delta effect sizes are negligible.

Argument C.2: Flakily covered statements are those that
undergo plenty of churn.

Rationale: When statements change, the tests that cover
them may also have to change. If test maintenance is ne-
glected, tests may not accurately assess the code under
test. Flakily covered statements may be a symptom of the
test and production code synchronization problem. In their
study, Elbaum et al. concluded that even minor changes in
production code can significantly affect test coverage [7].

Approach: To investigate C.2, we compute the amount
of churn of each statement, i.e., the number of commits
in which the statement has been modified. We again use
Mann Whitney U tests and Cliff's delta effect-size measures
to statistically compare the churn of flakily and robustly
covered statements. Detailed plots of the distributions are
available in the online appendix?

Results: Column 6 of Table |1 shows that results of
the Mann-Whitney U test, which indicate that there is a
significant difference in the rates of churn that flakily and
robustly covered statements undergo. However, the Cliff's
effect sizes indicate that the practical difference is negligible
or small. Therefore, in terms of churn, the flakily covered
statements are not considerably different from robustly cov-
ered statements.

Importance: Flakily covered statements are similar
to robustly covered statements in terms of age and
churn.

Flakily lak Flakily
Rank Flaky covered Rank 8Ky covered
tests Statements ests siatements

Repair
T1

&
re-rank @

O

Fig. 5: llustration of a single iteration of GreedyFlake

6 GREEDYFLAKE: PRIORITIZING THE REPAIR OF
FLAKILY COVERED STATEMENTS

The prior sections have demonstrated that flakily covered
statements are not rare (Section [4) and are not easily ex-
plained by basic code, change and contributor characteris-
tics (Section [B). In this section, we shift our focus to prior-
itizing flakily covered statements for repair, i.e., obtaining
robust test coverage of these statements.

Software teams operate with time and budget con-
straints. Since repairing all of the flakily covered statements
would require a substantial investment of time and budget,
it is likely impractical to assume that a team can repair all of
the flakily covered statements immediately. Software teams
would like to prioritize their repair investments such that
they will receive the largest return on investment as quickly
as possible. Similar to test case prioritization [20], [21], [31],
[32], we would like to order (flaky) tests in such a way that
the optimal returns are achieved.

Below, we present GreedyFlake—our proposed prioriti-
zation approach (6.1), as well as our approach to evaluate
GreedyFlake with respect to baseline approaches and
the evaluation results (6.3).

In Section |4} we report the difference in coverage when
test characteristics are taken into consideration. In this sec-
tion, we evaluate the effort that is required to repair flakily
covered statements and address the difference in coverage.

6.1 GreedyFlake

GreedyFlake uses a greedy algorithm to order flaky tests
for repair. The algorithm consists of ranking and selection
steps. In the ranking step, tests are sorted by the number of
flakily covered statements that will be repaired if the test is
made robust. In the selection step, the top-ranked test from
the ranking phase is selected and proposed for repair.

Each repair operation may impact the ranking of which
test should be repaired next. For example, in Figure |5, the
initial ranking of tests is T1, T2, and T3. Repairing T1 also
robustly covers two statements that it shares with T2 (52 and
S4). Since repairing T2 can robustly cover one statement,
while repairing T3 can robustly cover 2 statements, in the
second step, T3 is ranked above T2.

After each repair recommendation, GreedyFlake per-
forms a re-ranking step. This re-ranking ensures that we

10

100 100+

75+

75

50 1 50+

100+

75+

50

25 25+

% of flakily covered statements repaired
% of flakily covered statements repaired

Approach

Additional Statement Coverage
GreedyFlake

= Random

= Total Flaky Statement Coverage
Total Statement Coverage

25+

% of flakily covered statements repaired

1000 2000 3000 1000

Number of flaky tests repaired

(a) Nova

Number of flaky tests repaired

(b) Neutron

10 20 30 40

Number of flaky tests repaired

(c) Cinder

2000

Fig. 6: Comparing various approaches to repairing flakily covered statements. GreedyFlake outperforms random and

traditional prioritization approaches.

. Total Additional Total Flak
Project Random Statement Coverage Statement Coverage Statement Cov};rage GreedyFlake
Nova 0.68 0.74 0.91 0.95 0.96
Neutron 0.88 0.91 0.97 0.96 0.99
Cinder 0.55 0.57 0.66 0.89 0.90

TABLE 2: GreedyFlake Evaluation: AUCEC of various test case prioritization techniques

select the flaky test that provides the most return on invest-
ment at each step. The (re-)ranking and selection processes
are repeated until no flakily covered statements remain or
until all tests have been suggested for repair.

6.2 Evaluation Setup

In order to evaluate GreedyFlake, we compare GreedyFlake
with baseline approaches. The first baseline is a random
prioritization approach, where we recommend a randomly
selected flaky test for repair at each stage. The random
baseline is not selected to be a true baseline, but rather as a
sanity check. If our technique underperforms with respect
to random guessing, it is truly not worth adopting. We
estimate the random baseline empirically by selecting the
median performance scores of 100 random orderings.

Previous studies have suggested algorithms for Test
Case Prioritization, such as Total Statement Coverage Pri-
oritization (TSCP) and Additional Statement Coverage Pri-
oritization (ASCP). These baselines have been successfully
applied to other Test Case Prioritization problems [25], and
have been shown to achieve reasonable performance [24].
TSCP sorts tests by the amount of coverage that they
provide in descending order. ASCP performs a re-ranking
step to select the test that offers the most improvement
in coverage. If GreedyFlake underperforms with respect
to these baselines, it would be more prudent to prioritize
tests based on coverage to repair flakily covered statements,
avoiding the costs involved in labelling these statements.

Finally, we compare GreedyFlake with Total Flaky State-
ment Coverage Prioritization (TFSCP). In TFSCP, we skip
the re-ranking step of GreedFlake to determine if re-ranking
actually leads to better performance.

We compare the approaches using Alberg diagrams [33].
The GreedyFlake and baseline approaches are each plotted
on a grid that shows the cumulative percentage of flakily
covered statements that have been repaired (Y axis) against
the number of flaky tests that have been repaired (X axis).
Lines that climb quicker (i.e., are drawn towards the top-left
corner of the grid fastest) are achieving better results.

In addition, for each line, we compute the Area Under
the Cost Effectiveness Curve (AUCEC), i.e., the integral
of a line in the Alberg diagram space. To do so, we first
transform the X axis into a proportion scale, so that both
axes of the Alberg diagram range from 0-1. We then com-
pute the AUCEC as fol f(x)dz, where f(x) is approximated
using the collected points in the Alberg diagram space. This
AUCEC value ranges between 0 and 1, with 0 indicating
the worst performance, 1 indicating the best performance.
Our metric AUCEC is similar to the APFD metric Elbaum et
al. [21] proposed for evaluating test case prioritization (i.e.,
the weighted average of the percentage of faults detected).

6.3 Evaluation Results

Figure [6| shows the Alberg diagrams where different
approaches are compared. In all of the studied cases,
GreedyFlake achieves the top prioritization performance.
Table [2| shows the AUCEC values of each approach. In
Nova, GreedyFlake improves over TSCP by 22 percentage
points, while improving over ASCP by five percentage
points. In Neutron, GreedyFlake still improves over TSCP
by eight percentage points. In Neutron, the largest tests tend
to be flaky. In Cinder, GreedyFlake improves vastly over
random guessing, TSCP, and ASCP. This is because there
are only a small number of flakily covered statements, thus

the benefit of an approach that focuses on flakily covered
statements is maximized.

When we turn our attention to the improvement
achieved by the greedy re-ranking step, we see that re-
ranking does not achieve very large improvements. There
is a marginal improvement of 1-3 percentage points in
AUCEC between GreedyFlake and TFSCP. Nonetheless, the
majority of the benefit is achieved by focusing on flakily
covered statements, and re-ranking, although reasonable,
does not have much of an impact.

GreedyFlake outperforms random and traditional
test case prioritization baseline approaches for prior-
itizing flaky tests to repair by at least eight percent-
age points. On the other hand, there is only marginal
benefit to the costly re-ranking step (1-3 percentage
points), so “greediness” is not necessary to achieve
most of the benefit.

7 THREATS TO VALIDITY
We now discuss the threats to the validity of our study.

7.1 Construct Validity

Construct threats to validity concern the link between the-
ory and real observation.

We categorize a statement as robustly covered if there is
at least one robust test covering the statement. In reality, a
statement may be considered robustly covered if and only if
all the tests covering the statements are robust. Hence, the
flaky coverage reported in the study is a lower bound. If
statements are more aggressively marked as flakily covered,
it will lead to an increase in the number of flakily covered
statements and strengthen our claim for the inclusion of
reliability in code coverage.

In the evaluation of GreedyFlake, we assume that the
cost of repairing any flaky test is equal. However, in reality,
some tests are harder to repair than others. The cost of
repairing flaky tests depends on many factors, such as
the reproducibility of the flakiness, the root cause of the
flakiness, the complexity of the test, or the familiarity of the
developer with the source code. If a robust measurement
for each dimension could be formulated, our prioritiza-
tion approaches could be re-evaluated as a multi-objective
optimization problem. Search-Based Software Engineering
(SBSE) approaches could be applied to derive a solution.
Nonetheless, in this work, we focus on the prioritization
aspect of GreedyFlake, which is a necessary first step.

7.2

Internal threats to validity concern our ability to rule out
other plausible explanations for our results.

We rely on developers to examine test failures and re-
run tests to build our corpus of flaky tests. Developers
might not always choose to re-run tests or they might not
always observe flaky failures. Hence, the flakiness detected
through our approach should be interpreted as a lower
bound. However, with our approach, we can focus on flak-
iness that manifests in the continuous integration pipeline

Internal Validity

11

and actively tackle flakiness that has concretely impacted
development workflows.

Since we did not find strong evidence for the AD argu-
ments, we presume that flakily covered statements are non-
trivially explained and would benefit from tool support.
It may be that another confounding factor that we have
not considered would explain our results. Nevertheless,
we analyzed the flakily covered statements from different
dimensions of dispersion, ownership and importance. Our
observations withstood all three dimensions of confounding
factor analysis.

The lower proportion of flakily covered statements re-
sults in an imbalanced data set, which can be of concern
for statistical inferences. However, the three non-parametric
statistical inference techniques applied in this study (Spear-
man's Rank Correlation, Mann-Whitney U test, and Cliff's
delta) do not make assumptions about the distribution of
data and are not sensitive to imbalanced data.

7.3 External Validity

External validity concerns have to do with the generaliz-
ability of our study. Due to limitations of infrastructure,
we were only able to successfully run coverage for three
OpenStack projects. However, this study is an exploratory
analysis that demonstrates changes in code coverage when
test characteristics are considered. We believe that our study
could motivate further research in test characteristics-aware
code coverage.

8 CONCLUSION

Code coverage is often used as a quality gate and as a
test adequacy metric. Coverage measurements assume that
invocation of a program element during any test is equally
valuable. Our study explored code coverage with an aware-
ness of test reliability, to further quantify and characterize
flakily covered program elements. We also found that flakily
covered program elements are not uncommon and their
incidences cannot be trivially explained in terms of basic
code characteristics.

When prioritizing tests to repair flakily covered
statements, we found that our greedy approach produces
a more optimal ordering, which differs from existing test
effort prioritization approaches. We believe that these
observations suggest that developers can (and should)
benefit from tool support to manage and mitigate flakily
covered program elements.

Replication

To facilitate future work, we have made the data that
we collected and the scripts that we used to analyze them
available onlinef]

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to software testing. ~Cam-
bridge University Press, 2016.

[2] M. Strathern, “‘improving ratings’: audit in the british university
system,” European review, vol. 5, no. 3, pp. 305-321, 1997.

8. https:// github.com/software-rebels /FlakyProgramElements

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

L. Inozemtseva and R. Holmes, “Coverage is not strongly cor-
related with test suite effectiveness,” in Proceedings of the 36th
International Conference on Software Engineering. ~ACM, 2014, pp.
435-445.

R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite
evaluation by developers,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 72-82.

P. Piwowarski, M. Ohba, and J. Caruso, “Coverage measurement
experience during function test,” in Proceedings of 1993 15th Inter-
national Conference on Software Engineering. IEEE, 1993, pp. 287-
301.

B. Marick ef al., “How to misuse code coverage,” in Proceedings of
the 16th Interational Conference on Testing Computer Software, 1999,
pp- 16-18.

S. Elbaum, D. Gable, and G. Rothermel, “The impact of software
evolution on code coverage information,” in Proceedings of the IEEE
International Conference on Software Maintenance (ICSM'01). IEEE
Computer Society, 2001, p. 170.

A. S. Namin and J. H. Andrews, “The influence of size and
coverage on test suite effectiveness,” in Proceedings of the eighteenth
international symposium on Software testing and analysis. ACM, 2009,
pp- 57-68.

G. Gay, “The fitness function for the job: Search-based generation
of test suites that detect real faults,” in 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST).
IEEE, 2017, pp. 345-355.

G. Gay, M. Staats, M. Whalen, and M. P. Heimdahl, “The risks
of coverage-directed test case generation,” IEEE Transactions on
Software Engineering, vol. 41, no. 8, pp. 803-819, 2015.

P. S. Kochhar, D. Lo, J. Lawall, and N. Nagappan, “Code cover-
age and postrelease defects: A large-scale study on open source
projects,” IEEE Transactions on Reliability, vol. 66, no. 4, pp. 1213-
1228, 2017.

V. Antinyan, J. Derehag, A. Sandberg, and M. Staron, “Mythical
unit test coverage,” IEEE Software, vol. 35, no. 3, pp. 73-79, 2018.
A. Schwartz, D. Puckett, Y. Meng, and G. Gay, “Investigating faults
missed by test suites achieving high code coverage,” Journal of
Systems and Software, vol. 144, pp. 106-120, 2018.

W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault
localization using code coverage,” in 31st Annual International
Computer Software and Applications Conference (COMPSAC 2007),
vol. 1. IEEE, 2007, pp. 449-456.

Q. Luo, E Hariri, L. Eloussi, and D. Marinov, “An empirical
analysis of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering.
ACM, 2014, pp. 643-653.

S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky
tests in android apps,” in 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 1EEE, 2018, pp. 534—
538.

J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Mari-
nov, “D e f laker: automatically detecting flaky tests,” in Pro-
ceedings of the 40th International Conference on Software Engineering.
ACM, 2018, pp. 433-444.

W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “idflakies: A
framework for detecting and partially classifying flaky tests,”
in 2019 12th IEEE Conference on Software Testing, Validation and
Verification (ICST). 1EEE, 2019, pp. 312-322.

T. M. King, D. Santiago, J. Phillips, and P. J. Clarke, “Towards a
bayesian network model for predicting flaky automated tests,” in
2018 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C). 1EEE, 2018, pp. 100-107.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing
test cases for regression testing,” IEEE Transactions on software
engineering, vol. 27, no. 10, pp. 929-948, 2001.

S. Elbaum, A. G. Malishevsky, and G. Rothermel, Prioritizing test
cases for regression testing. ACM, 2000, vol. 25, no. 5.

H. Do, G. Rothermel, and A. Kinneer, “Empirical studies of test
case prioritization in a junit testing environment,” in 15th interna-
tional symposium on software reliability engineering. IEEE, 2004, pp.
113-124.

J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritiza-
tion for modified condition/decision coverage,” IEEE Transactions
on software Engineering, vol. 29, no. 3, pp. 195-209, 2003.

Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for
regression test case prioritization,” IEEE Transactions on software
engineering, vol. 33, no. 4, pp. 225-237, 2007.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

12

E. Shihab, Z. M. Jiang, B. Adams, A. E. Hassan, and R. Bowerman,
“Prioritizing the creation of unit tests in legacy software systems,”
Software: Practice and Experience, vol. 41, no. 10, pp. 1027-1048,
2011.

A. Shi, J. Bell, and D. Marinov, “Mitigating the effects of flaky
tests on mutation testing,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
112-122.

P. Riehmann, M. Hanfler, and B. Froehlich, “Interactive sankey
diagrams,” in IEEE Symposium on Information Visualization, 2005.
INFOVIS 2005. 1EEE, 2005, pp. 233-240.

B. Shneiderman, “Tree visualization with tree-maps: A 2-d space-
filling approach,” Tech. Rep., 1998.

F. Rahman and P. Devanbu, “Ownership, experience and defects:
a fine-grained study of authorship,” in Proceedings of the 33rd
International Conference on Software Engineering, 2011, pp. 491-500.
J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appro-
priate statistics for ordinal level data: Should we really be using
t-test and cohen’sd for evaluating group differences on the nsse
and other surveys,” in annual meeting of the Florida Association of
Institutional Research, 2006, pp. 1-33.

J. J. Li, D. Weiss, and H. Yee, “Code-coverage guided prioritized
test generation,” Information and Software Technology, vol. 48, no. 12,
pp. 1187-1198, 2006.

A. Kaur and S. Goyal, “A genetic algorithm for regression test
case prioritization using code coverage,” International journal on
computer science and engineering, vol. 3, no. 5, pp. 1839-1847, 2011.
N. Ohlsson and H. Alberg, “Predicting fault-prone software mod-
ules in telephone switches,” IEEE Transactions on Software Engineer-
ing, vol. 22, no. 12, pp. 886-894, 1996.

Shivashree Vysali is a Masters student at
McGill University, Canada. Her research focuses
on understanding and mitigating the impact of
flakiness in tests. She received her BSc de-
gree in Computer Science and Engineering from
Anna University, India.

"

Shane Mcintosh is an Associate Professor at
the University of Waterloo. Previously, he was an
Assistant Professor at McGill University, where
he held the Canada Research Chair in Soft-
ware Release Engineering. He received his
Ph.D. from Queen's University, for which he was
awarded the Governor General’s Academic Gold
Medal. In his research, Shane uses empirical
methods to study software build systems, re-
lease engineering, and software quality: http:
/Ishanemcintosh.org/.

Bram Adams is an associate professor at
Queen's University. He obtained his PhD at
the GH-SEL lab at Ghent University (Belgium).
His research interests include mining software
repositories, software release engineering and
the role of human affect in software engineering.
His work has been published at premier software
engineering venues such as EMSE, TSE, ICSE,
FSE, MSR, ASE and ICSME. In addition to co-
organizing the RELENG International Workshop
on Release Engineering from 2013 to 2015 (and

the 1st IEEE Software Special Issue on Release Engineering), he co-
organized the SEMLA, PLATE, ACP4IS, MUD and MISS workshops,
and the MSR Vision 2020 Summer School. He has been PC co-chair of
SCAM 2013, SANER 2015, ICSME 2016 and MSR 2019.

http://shanemcintosh.org/
http://shanemcintosh.org/

	Introduction
	Related Work
	Code Coverage
	Flaky Tests
	Test Case Prioritization

	Study Design
	Studied Systems
	Data Extraction

	Enriched Coverage Observations
	Advocatus Diaboli
	GreedyFlake: Prioritizing the Repair of Flakily Covered Statements
	GreedyFlake
	Evaluation Setup
	Evaluation Results

	Threats To Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion
	References
	Biographies
	Shivashree Vysali
	Shane McIntosh
	Bram Adams

