
1

Quantifying, Characterizing, and Mitigating
Flakily Covered Program Elements

Shivashree Vysali, Shane McIntosh, Member, IEEE, and Bram Adams, Member, IEEE

Abstract —Code coverage measures the degree to which source code elements (e.g., statements, branches) are invoked during
testing. Despite growing evidence that coverage is a problematic measurement, it is often used to make decisions about where testing
effort should be invested. For example, using coverage as a guide, tests should be written to invoke the non-covered program
elements. At their core, coverage measurements assume that invocation of a program element during any test is equally valuable. Yet
in reality, some tests are more robust than others. As a concrete instance of this, we posit in this paper that program elements that are
only covered by �aky tests, i.e., tests with non-deterministic behaviour, are also worthy of investment of additional testing effort. In this
paper, we set out to quantify, characterize, and mitigate “�akily covered” program elements (i.e., those elements that are only covered
by �aky tests). To that end, we perform an empirical study of three large software systems from the OpenStack community. In terms of
quanti�cation, we �nd that systems are disproportionately impacted by �akily covered statements with 5% and 10% of the covered
statements in Nova and Neutron being �akily covered, respectively, while < 1% of Cinder statements are �akily covered. In terms of
characterization, we �nd that incidences of �akily covered statements could not be well explained by solely using code characteristics,
such as dispersion, ownership, and development activity. In terms of mitigation, we propose GreedyFlake – a test effort prioritization
algorithm to maximize return on investment when tackling the problem of �akily covered program elements. We �nd that GreedyFlake
outperforms baseline approaches by at least eight percentage points of Area Under the Cost Effectiveness Curve.

Index Terms —Code coverage, Software testing, Flaky tests

F

1 INTRODUCTION

Code coverage tools measure how thoroughly tests exercise
programs [1]. By instrumenting a program during test suite
execution, code coverage tools determine which program
elements have been invoked and which ones have not.
Coverage reports provide an overview of the proportion
of all program elements that have been invoked during
testing [1]. Although they may target program elements
at varying granularities (e.g., statements, branches), their
essential mode of operation remains the same.

Since low code coverage indicates that plenty of program
elements have not been tested, it is common practice for
software organizations to use coverage measurements as a
quality gate in their integration pipelines. For example, the
Apache Software Foundation has a quality gate that enforces
a minimum code coverage of 80% by default. 1 Changes
that do not meet this quality criterion are blocked from
integration into the product.

Conversely, it is assumed that high coverage indicates
adequate testing. Goodhart's law (a popular adage) states
that “When a measure becomes a target, it ceases to be a
good measure” [2] – this is indeed true of coverage mea-
surements. Fowler has argued that when coverage improve-

� Shivashree Vysali is with the Department of Electrical and Computer
Engineering, McGill University, Canada.
E-mail: shivashree.vaidhyamsubramanian@mail.mcgill.ca

� Shane McIntosh is with the David R. Cheriton School of Computer
Science, University of Waterloo, Canada.
E-mail: shane.mcintosh@uwaterloo.ca

� Bram Adams is with the School of Computing, Queen's University,
Canada.
E-mail: bram.adams@queensu.ca

1. https://sonarcloud.io/organizations/apache/quality gates

ments are targeted, developers tend to focus on writing
tests that improve coverage, rather than writing tests that
can catch defects.2 This increases the cost of test execution
and maintenance by adding additional tests; however, the
bene�ts in terms of test suite effectiveness are unclear.
Indeed, studies of the relationship between coverage and
test suite effectiveness have produced mixed results [3], [4].

At their core, coverage measurements are based on a
coarse-grained binary classi�cation of program elements.
Elements are either labelled as invoked during testing or
not. It is our position that this classi�cation is limiting the
value of coverage measurements. Expanding the classi�ca-
tion to a broader set of categories may yield more actionable
insights. For example, coverage can be classi�ed based
on the scope of the covering test (e.g., unit, integration).
Coverage by one scope may not imply coverage by another.
Program elements can also be covered by�aky tests, i.e., tests
that exhibit non-deterministic behaviour. Program elements
that are covered by �aky tests are unlikely to be as well-
tested as program elements that are covered by tests with
deterministic behaviour.

In this paper, we set out to study these �akily covered
elements as well as their impact “in the wild.” To do so,
we perform an empirical study of the Nova, Neutron, and
Cinder projects – the three largest and most active projects
in the OpenStack community. We structure our empirical
study along three dimensions:

1) Quanti�cation : To what degree are program
elements �akily covered?
Motivation: While a �ne grained coverage analysis
has bene�ts, the additional costs involved in

2. https://martinfowler.com/bliki/TestCoverage.html

© 2020 IEEE. Author pre-print copy. The �nal publication is available online at: https://dx.doi.org/10.1109/TSE.2020.3010045

https://dx.doi.org/10.1109/TSE.2020.3010045

2

determining �akily covered program elements
needs to be justi�ed. If �akily covered program
elements are rare, their impact on code coverage
measurements could be dismissed as negligible
and the additional cost involved is not justi�ed.
Therefore, it is necessary to quantify �akily covered
program elements to determine if the magnitude of
�akily covered program elements is high enough to
justify further analyses.

Results:We �nd that systems are disproportionately
impacted by �akily covered statements with 5%
and 10% of the covered statements in Nova and
Neutron being �akily covered, respectively, while
< 1% of Cinder statements are �akily covered.

2) Characterization : Which kinds of program elements
are �akily covered?
Motivation: If the occurrence of �akily covered
statements can be explained by basic code
characteristics, such as the location within the
system, ownership, age and churn, then there is no
need to distinguish between �akily covered and
covered program elements.

Results: We take the position of a devil's advocate
and analyze �akily covered statements along three
dimensions of basic code characteristics, namely (A)
Dispersion; (B) Ownership; and (C) Development
activity. From our analyses, we conclude that the
occurrence of �akily covered statements cannot
be well explained solely by using basic code
characteristics.

3) Mitigation : How should repair effort be prioritized?
Motivation: Software teams often operate under
tight time and budget constraints. Thus, it would be
useful to prioritize the mitigation of �akily covered
program elements such that teams receive the
largest return on investment as quickly as possible.

Results: We propose GreedyFlake, a greedy ap-
proach to prioritize the repair of �aky tests such
that the ones that are associated with the largest
number of �akily covered statements are �xed �rst.
To evaluate GreedyFlake, we plot Alberg diagrams
(a.k.a., lift charts) of the cost (in terms of �aky
tests to be repaired) against the effectiveness (�akily
covered program elements that have been repaired).
We observe that GreedyFlake outperforms random
and traditional test case prioritization approaches
by at least eight percentage points. However, we
�nd that there is only marginal bene�t to the greedy
re-ranking step (1-3 percentage points), so “greedi-
ness” is not necessary to achieve most of the bene�t.

2 RELATED WORK

In this section, we discuss the related work with respect to
code coverage, test reliability and test prioritization.

2.1 Code Coverage

Code coverage is a well established concept in software
engineering research and practice. Piwowarski et al. [5] ex-
plained that IBM used code coverage in the late 1960s. Mar-
ick [6] warns that “requiring” very high coverage might lead
to tests being written only to satisfy coverage conditions and
not to reveal bugs. Elbaum et al. [7] studied the impact of
software evolution on code coverage and determined that
even small changes during the evolution of a program can
have a profound impact on coverage information.

As code coverage criteria are often used to evaluate test
suites, many studies focus on the relationship between code
coverage and test suite effectiveness. Some studies have
shown that generating test suites to satisfy code coverage
criteria has a positive effect on �nding faults [4], [8], [9]
while other studies do not [3], [10], [11], [12]. Schwartz et
al. [13] investigated the faults that are missed by test suites
with high coverage scores and found that they often miss
faults that corrupt internal state.

Broadly speaking, most prior work has focused on un-
derstanding code coverage with respect to different granu-
larities of program elements and exploring the risks associ-
ated with using high coverage as a quality gate. We instead
propose to explore code coverage with an awareness of test
characteristics and to categorize covered program elements
based on test characteristics, to obtain more actionable in-
sights from code coverage. Wong et al. [14] proposed an
approach to calculate the risk of a statement based on the
number of successful and failed tests that cover it. Their
approach was successful in a fault localization scenario.
Our approach aims to categorize covered program elements
based on test reliability (�akiness).

2.2 Flaky Tests

Previous studies on �aky tests have focused on understand-
ing the root causes of �aky tests. Luo et al [15] analyzed
201 commits in the Apache ecosystem that �xed �aky tests
and reported that the three main causes of non-determinism
in tests are asynchronous waits, concurrency and test order
dependencies. Thorve et al. [16] performed a similar anal-
ysis for Android applications and reported three other root
causes, namely, Dependency, Program Logic, and UI.

The common practice to determine if a test is �aky is
to repeat the test a number of times and mark the test as
�aky if the result changes. Since repeating tests is expensive,
many studies have focused on automatically detecting �aky
tests. Bell et al. [17] proposed an automated approach called
DeFlaker, which monitors the coverage of code changes and
marks as �aky any newly failing test that did not execute
any of the changed lines of code. Their approach was able
to detect 87 unknown �aky tests in ten active projects. Lam
et al. [18] proposed an automated approach to detect order-
dependent �aky tests. King et al. [19] proposed an approach
that leverages Bayesian networks for classifying �aky tests.

In this paper, we rely on test execution history to build
a corpus of �aky tests, then use this data to identify �akily
covered program elements.

3

Git
Repository

S1:{T1,T2}
S2:{T3}
S3

Classify tests
by scope

Classify tests
by reliability

DE2

DE3

Collect
statement-

level coverage

DE1

 DE4

T1: Non-Flaky
T2: Non-Flaky
T3: Flaky

Data Extraction

S1: Both, Robust
S2: Functional only,
 Flakily covered
S3: Uncovered

Automated
CI test

executions

T1: Unit
T2: Functional
T3: Functional

Data Extraction

Enriched
Coverage

Fig. 1: An overview of data extraction

2.3 Test Case Prioritization

Test case prioritization is a means to achieve target objec-
tives in software testing by reordering the execution se-
quences of test suites. Rothermel et al. [20] formally de�ned
the test case prioritization (TCP) problem, presented several
techniques for prioritizing test cases, and presented the
results of empirical studies in which those techniques were
applied to various programs. In particular, four coverage-
based greedy test prioritization approaches were proposed.
Elbaum et al. [21] extended the empirical study of Rother-
mel et al. by including more programs and prioritization
techniques. Do and Rothermel [22] applied coverage-based
prioritization techniques to the JUnit testing environment
and showed that prioritized execution of JUnit test cases
improved the fault-detection rate.

Greedy algorithms have also been explored. For exam-
ple, Jones and Harrold [23] proposed a greedy variant to the
Modi�ed Condition/Decision Coverage (MC/DC) criterion
for prioritization. Moreover, Li et al. [24] compared random
prioritization and a genetic test case prioritization algorithm
with several greedy algorithms. They observed that greedy
algorithms are often outperformed by optimal algorithms,
but the simplicity and cost effectiveness of greedy algo-
rithms still merits their usage. Given their promising results,
we propose a greedy approach to tackle �akily covered
program elements.

Prioritization approaches may also focus on which areas
of the codebase should be improved �rst. For example,
Shihab et al. [25] leveraged the development history of a
project to generate a prioritized list of functions to focus
unit test writing resources on. In our work, we obtain a
prioritized list of �aky tests to minimize �akily covered
program elements.

3 STUDY DESIGN

In this study, we set out to analyze code coverage with
an awareness of characteristics of the test(s) that cover(s)
each statement in the source code. Speci�cally, we study
test scope and reliability characteristics. In this section, we
outline our approach for collecting the data required to
analyze coverage from different perspectives.

3.1 Studied Systems

In order to analyze code coverage with an awareness of
test characteristics, we need projects with a clearly de�ned
testing process. Therefore, we focus on projects from the
OpenStack community for analysis. The OpenStack commu-
nity has (a) clear testing guidelines for its projects and (b)
a robust continuous integration system with test execution
results available for submitted patches.

We need large and active projects, to maximize our
chances of observing �aky tests. We start by identifying
projects that form the core of OpenStack,3 namely Nova,
Neutron, Cinder, Keystone, Glance, Swift and Horizon.

Next, we need to ensure that we are able to collect
complete coverage information by running the test suites
successfully. Most OpenStack projects use Tox to install the
dependencies needed for testing.4 Using this Tox environ-
ment, we could successfully replicate the testing environ-
ments for Nova, Neutron and Cinder.

3.2 Data Extraction

Figure 1 provides an overview of the steps involved in the
coverage and test characteristics data extraction process.

DE1: Collect statement-level coverage
We �rst need to compute a test-to-statement mapping, i.e.,
a many-to-many relation where each statement may be
covered by zero or more tests and each test may cover
zero or more statements. The main purpose of the test-to-
statement mapping is to enable �ne-grained analysis. Since
we set out to analyze scope- and reliability-aware coverage
perspectives, this mapping is a critical data structure upon
which we will build.

Since our studied projects are implemented in Python,
we use Coverage.py,5 a popular Python coverage tool, to
collect coverage at the statement level. The result is a
Coverage database (CovDB), which contains a list of all the
statements executed during coverage collection and a test-
to-statement mapping.

Recent work by Shi et al. [26] demonstrated that �aky
tests can yield unreliable coverage measurements. To miti-
gate the risks posed by �aky tests, for each project, we repeat
the collection of coverage measurements ten times. In our
coverage collection scenarios, we did not observe any test
failures. In fact, we found that the coverage measurements
are stable and do not change across the ten runs. We do
not believe this is irregular, as Shi et al. found that coverage
instability was project-sensitive.

Another concern is accurate test-to-statement mapping
when tests share setup/teardown code. The studied projects
use the unittest framework for testing, which supports shar-
ing setup/teardown methods both at the test case level and
test class level.6 When code is shared at the test case level
(using setUp/tearDown methods), the unittest framework
executes the shared statements for each test case, which
allows Coverage.py to map shared statements to all the tests

3. https://docs.openstack.org/security-
guide/introduction/introduction-to-openstack.html

4. https://tox.readthedocs.io/en/latest/
5. https://coverage.readthedocs.io/en/coverage-5.1/
6. https://docs.python.org/3/library/unittest.html

4

that execute them. When code is shared at the test class level
(using setUpClass/tearDownClass methods), Coverage.py
does not map the code to individual tests in the class.
However, we do not �nd any instances of shared code at
test class level in the studied projects.

DE2: Classify tests by scope

Tests are written with different intended scopes. For exam-
ple, unit tests focus on isolating the smallest modules for
individual testing, while integration or functional tests tar-
get logical groups of modules or system-level functionality.
Since coverage by one scope may not imply coverage by
another (e.g., integration-level issues cannot be discovered
by unit tests), we set out to study how coverage varies with
respect to scope.

In the studied projects, tests are organized based on
their scope into separate folders (unit and functional). We
determine the scope of each test by analyzing the code base
directory in which the test appears.

DE3: Update Test Flakiness

Flaky tests are tests that exhibit non-deterministic be-
haviour, i.e., the test results may change when the code
under test has not. Flaky tests are an example of unreliable
tests. Since the outcome of �aky tests is unreliable, the
statements covered only by �aky tests should not raise the
con�dence of development teams as much as statements
covered by robust tests.

Previous studies [15], [17] have relied on re-running tests
several times to determine �aky tests. However, the re-
execution of tests is computationally expensive. In order to
avoid re-running tests, we rely on previous test execution
history available through OpenStack's Continuous Integra-
tion (CI) system.

If an OpenStack developer suspects that a test result is
�aky, they can request for tests to be re-executed against
a speci�c patch. If tests are re-run against the same patch
and the test result changes, it indicates the presence of a
�aky test. We �lter patches against which tests were run
more than once and identify patches with inconsistent test
outcomes. We then parse the test suite results to identify the
actual test cases with non-deterministic behavior.

DE4: Categorize statements

To obtain an enriched coverage report, we categorize state-
ments based on the characteristics of the test(s) that cover(s)
the statements.

To do so, we �rst categorize statements based on the
scope of the tests that cover the statement, using a combina-
tion of the test-to-statement mapping (DE1) and the detected
scope of tests (DE2). Since statements may be covered by
multiple tests, it is possible for a statement to be covered by:

� Unit tests only: The statement is covered by one or
more unit tests, but no functional tests.

� Functional tests only: The statement is covered by
one or more functional tests, but no unit tests.

� Both unit and functional tests: The statement is
covered by at least one unit test and at least one
functional test.

For each category, we further classify the statements based
on the reliability of the tests covering the statement. If all
of the tests covering a statement are �aky, the statement
is considered as �akily covered. If there is at least one
non-�aky test covering a statement, then the statement is
considered robustly covered. If a statement is not covered
by any test, it is considered not covered.

4 ENRICHED COVERAGE OBSERVATIONS

Following the procedure to categorize statements (DE4),
we obtain an enriched coverage report. This report shows
the total coverage for each project and splits the coverage
numbers based on test scope and test reliability. We visualize
the coverage split using a Sankey diagram [27]. Sankey
diagrams are variants of �ow diagrams, in which the width
of arrows is proportional to �ow quantity.

Figure 2 shows the three-tiered Sankey diagrams gen-
erated for the studied projects. At the �rst level, all of the
statements are categorized as either covered or uncovered.
At the second level, all of the covered statements are catego-
rized based on test scope (unit only, functional only, both).
At the third level, statements in each test scope category are
further categorized based on test reliability (�akily-covered,
non-�akily covered).

Figure 2 shows that more statements are covered only
by unit tests than only by functional tests. This is not
surprising because unit tests account for a larger proportion
of the test suites of the subject systems (63%-95%). More
interestingly, 60.94% and 63.33% of statements are covered
by both unit and functional tests in Neutron and Nova,
respectively, while only 30% are covered by both types of
tests in Cinder. We suspect this discrepancy is caused by the
lower proportion of functional tests in Cinder (5%).

Figure 2 also shows that Cinder has the lowest coverage
at 75.11%. On the surface, Nova and Neutron appear to be
more thoroughly tested than Cinder. However, Cinder has
the lowest percentage of �akily covered statements at 0.14%.
If we were to remove the �akily covered statements from
the set of covered statements, the coverage of Neutron and
Cinder becomes comparable. This further supports the claim
that higher coverage scores do not always indicate more
thorough testing.

The Sankey diagrams help developers identify possible
weakly covered statements. For example, from the Sankey
diagram for Neutron, it can be seen that a large portion of
statements that are covered by functional tests are �akily
covered. Instead of focusing on improving code coverage
numbers, developers can focus on �xing �akiness in these
functional tests to improve test reliability.

Summary of Key Findings : Our enriched coverage
reports provide insights into test scope and robust-
ness that plain coverage reports may miss. For exam-
ple, Cinder, despite having lower overall coverage
(75%), has the lowest proportion of �akily covered
statements (0.14%). On the other hand, Neutron has
higher coverage (87%) but also has the largest pro-
portion of �akily covered statements (10%).

5

ALL

Covered

Both Unit Only Functional Only

Robustly Covered Flakily Covered NC

88.41%

11.59%

63.33% 17.18% 7.9%

83.31% 5.1%

(a) Nova

ALL

Covered

Both Unit Only Functional Only

Robustly Covered Flakily Covered NC

87.4%

12.6%77.3% 10.1%

60.94% 19.45% 7.01%

NC - Not Covered

(b) Neutron

ALL

Covered

Unit Only Functional Only Both

Robustly Covered NC

75.11%

43.73% 0.91% 30.47%

74.97% 24.89%

Flakily covered
0.14%

(c) Cinder

Fig. 2: Sankey diagrams, visualization of generated enriched
coverage reports. We observe that, for example, in the case
of Neutron, a large (10.1%) proportion of statements that are
only covered by functional tests are �akily covered.

5 ADVOCATUS DIABOLI

In this section, we explore the position of an Advocatus
Diaboli (AD, i.e., a devil�s advocate) to determine if �akily
covered statements could be attributed to basic code, devel-
oper, or maintenance characteristics. We focus on intuitive,
general code characteristics that do not involve program-
or language-speci�c code analyses. The rationale for this
choice being that if �akiness in code coverage can be tackled
through general code characteristics, teams can act upon our
insights without requiring expensive additional analyses.
Broadly speaking, the arguments of a pragmatic AD �t
into (A) Dispersion; (B) Ownership; and (C) Development
Activity dimensions. For each argument, we present its
rationale, our approach to evaluating it, and the results that
we observed.

A. Dispersion

Dispersion properties measure the diffusion of a phe-
nomenon across modules of the codebase. A nä�ve expla-
nation of our results may be that the �akily covered state-
ments: (A.1) are concentrated in one area of the system; (A.2)
appear in poorly tested modules; or (A.3) are introduced by
a small number of contributors. Below, we explore each of
these AD arguments.
Argument A.1: The �akily covered statements are all part
of the same module.

Rationale: The nature of some modules may increase
the likelihood of tests to be �aky. For instance, a module
that focuses on networking may be prone to �akily covered
statements due to tests depending upon responses received
from across a network. If such a na�̈ve explanation were true,
the value of our observation about the frequency of �akily
covered statements may be limited.

Approach: We use treemaps [28] to investigate the con-
centration of �akily covered statements across modules.
Treemaps allow shape nesting, size, and shade properties to
be mapped on to data properties. In our treemaps, each node
(box) corresponds to a source code �le. Thicker lines indicate
module groupings, i.e., �les nested within thick lines appear
within the same module. Each �le in the treemap is shaded
according to the number of �akily covered statements it
contains (darker shaded �les indicate more �akily covered
statements).

Results: Figure 3 shows that �akily covered statements
are often dispersed across modules. In Nova and Neutron,
70% and 79% of modules contain at least one �akily cov-
ered statement. Among those modules that contain �akily
covered statements, the Nova and Neutron modules re-
spectively have: (a) medians of 17 and 7 �akily covered
statements; and (b) standard deviations of 173 and 246
�akily covered statements. Indeed, the results indicate that
�akiness impacts a large proportion of modules.

On the other hand, �akily covered statements in the
Cinder system are more concentrated. Figure 3(c) shows
that only 17% of the modules contain at least one �akily
covered statement. One plausible explanation for the higher
concentration of �akily covered statements in the Cinder
system may be the fact that there are only 155 identi�ed
�akily covered statements. 115 of the 155 �akily covered
statements (73%) are located in the volumes/drivers

6

module – the module that contains 75% of the statements
in the Cinder codebase.

While the module-level dispersion of �akily covered
statements is often quite high, Figure 3 shows that some
�les have a larger amount of �akily covered statements
than others. We observe that most of these “hotspots”
are among the largest �les in the module. For example,
virt/libvirt/driver.py and compute/manager.py
�les are the largest in the virt/libvirt and compute
modules in the Nova system. On further examination of
virt/libvirt/driver.py , it appears that the �le con-
tains code to connect and con�gure multiple external ser-
vices. Luo et al. [15] found that network dependencies were
common causes of non-determinism in tests.

Closer inspection of the �akily covered statements in
these hotspot �les reveals that they may be especially
susceptible to turbulent network conditions or incorrect
platform assumptions. For example, in commit d1f37ff8 ,
lines 6459-6464 of �le virt/libvirt/driver.py are not
robustly covered because there are two separate blocks of
code that raise the sameInvalidNetworkNUMAAffinity
exception with different messages based on the response
from the network. The overly-speci�c �aky test checks for
an exact match of one message.
Argument A.2: The �akily covered statements appear in
areas of code that are poorly covered in general.

Rationale: Flakily covered statements may be more likely
to appear in modules with lax testing practices in general.
Since low coverage may indicate that testing is insuf�-
cient [6], it may also be an indicator of where �akily covered
statements are likely to appear. Such a trivial explanation
would threaten the value of our prior observations.

Approach: For each �le, we compute the number of un-
covered statements and �akily covered statements. Next, we
compute the Spearman correlation coef�cient (�) to measure
the strength of the relationship between poor coverage and
incidences of �akily covered statements. We choose to use
Spearman�s � rather than Pearson�s r because Spearman�s
� can detect non-linear associations. Spearman�s� ranges
from -1 to 1, with 0 indicating no correlation, 1 indicating
a positive correlation (i.e., an increase in the incidences of
uncovered statements is associated with increases in the
incidences of �akily covered statements), and -1 indicating
an inverse correlation (i.e., an increase in the incidences of
uncovered statements is associated with a decrease in the
incidences of �akily covered statements and vice versa).
To control for �le size, we also compute Spearman�s � to
measure the correlation between the density of uncovered
statements and �akily covered statements (i.e., normalized
by �le size).

Results: For Nova and Neutron, we observe weak (� =
0:36) and very weak (� = 0 :189) levels of positive correla-
tion between incidences of uncovered and �akily covered
statements. While statistically signi�cant, the magnitude
of these correlations do not support the AD�s hypothesis.
Furthermore, in Cinder, we observe a weak level of negative
correlation (� = � 0:327), further weakening the argument
of the AD.

When controlling for �le size, for Neutron and Cinder,
we observe very weak levels of correlation (� = 0 :065
for Neutron, � = 0 :085 for Cinder). In Nova, we observe

api

api/ec2api/metadata

api/openstack

api/validation

cells

cells/filters cells/weights

cmd

compute
compute/monitors

conductor

conductor/tasks

conf

console

console/rfb

console/securityproxy

consoleauth

db

db/sqlalchemy

hacking

image

ipv6

keymgr

network

network/neutronv2

network/security_group

notifications

notifications/objects

nova

objects

pci

policiesprivsep
scheduler

scheduler/client

scheduler/filters

scheduler/weights

servicegroup/drivers

virt

virt/disk

virt/hyperv virt/ironic

virt/libvirt

virt/powervm

virt/vmwareapi

virt/xenapi

virt/zvm vnc

volume

exception.py utils.py

test.py

quota.py
service.py

context.py

rpc.py

ec2utils.py

base.py

placement/objects/resource_provider.py compute/servers.py wsgi.py

messaging.py state.py

rpcapi.py

manage.py status.py

manager.py api.py

resource_tracker.py

utils.py

rpcapi.py cells_api.py

claims.py

manager.py

api.py

api.py models.py

checks.py

glance.py

manager.py linux_net.py

model.py

api.py

rpcapi.py

minidns.py

l3.py

api.py instance.py

instance.py

fields.py

request_spec.py

flavor.py

quotas.py

aggregate.py

base.py

ec2.py

stats.py

utils.py

fs.py
utils.py

report.py
hardware.py

block_device.py

fake.py driver.py

firewall.py

netutils.py

api.py

vmops.py

driver.py

driver.py

config.py

imagebackend.py host.py

vif.py guest.py

utils.py

firewall.py

driver.py vm.py

vif.py

vmops.py vm_util.py

volumeops.py

driver.py

images.py

ds_util.py

vif.py

vmops.py

vm_utils.py

fake.py

driver.py host.py

agent.py vif.py

driver.py

cinder.py

0 100 200 300 400
Number of flakily covered statements

(a) Nova

agent

agent/common

agent/dhcp

agent/l2

agent/l3

agent/linux

agent/metadata

agent/ovsdb

agent/windows

api

api/rpc

api/v2

cmd

cmd/eventlet

cmd/sanity

cmd/upgrade_checks

common

conf

conf/agent

conf/db

conf/plugins

conf/policies

conf/services

core_extensions

db

db/availability_zone

db/metering

db/migration

db/models

db/qosdb/quota

debug

extensions

hacking

ipam

ipam/drivers

neutron

notifiers

objects

objects/db

objects/logapi

objects/plugins

objects/port

objects/qos

pecan_wsgi

pecan_wsgi/controllers

pecan_wsgi/hooks

plugins/ml2

privileged/agent quota

scheduler

server

services

services/auto_allocate

services/externaldns

services/l3_router

services/logapi

services/loki

services/metering

services/network_segment_range

services/placement_report

services/portforwarding
services/qos

services/revisions

services/segments

services/tag

services/timestamp

services/trunk
wsgi.py service.py

policy.py opts.py

rpc.py

ovs_lib.py

agent.py

router_info.py

agent.py

dvr_local_router.py

dvr_fip_ns.py

ha_router.py

ha.py

dhcp.py

ip_lib.py

iptables_firewall.py iptables_manager.py keepalived.py pd.py

utils.py

interface.py

tc_lib.py
dibbler.py

ra.py

agent.py

driver.py

utils.py

extensions.py

api_common.py

base.py checks.py
utils.py

l3_db.py

db_base_plugin_v2.py

l3_dvr_db.py securitygroups_db.py l3_hamode_db.py

agents_db.py dns_db.py

cli.py

__init__.py

driver.py

api.py

tagging.py

qos.py

nova.py

base.py

ports.py

network.py

rbac_db.py subnet.py

router.py

api.py

policy.py

rule.py

utils.py

plugin.py managers.py

rpc.py db.py

linux/ip_lib.py
resource.py

__init__.py

db.py

pf_plugin.pyqos_plugin.py

plugin.py

db.py

plugin.py

rules.py

0 100 200 300 400
Number of flakily covered statements

(b) Neutron

api

api/contrib

api/middleware

api/openstack

api/schemas

api/v2

api/v3

api/validation

api/views

backup backup/drivers

brick/local_dev

cinder

cmd

common

compute

db

db/sqlalchemy

group

hacking

image

interface

keymgr

message

objects

policies

privsep

privsep/targets

scheduler

scheduler/evaluator

scheduler/filters

scheduler/flows

scheduler/weights

transfer

volume

volume/drivers volume/flows

volume/targets

wsgi

zonemanager

zonemanager/drivers

exception.py

utils.py

quota.py service.py

test.py

rpc.py

quotas.py

wsgi.py

manager.py

api.py

ceph.py

tsm.py

gcs.py

swift.py

lvm.py

manage.py

api.py

api.py

models.py

api.py

image_utils.py

glance.py

base.py

api.py

manager.py

api.py

driver.py

utils.py

rpcapi.py

ibm/storwize_svc/storwize_svc_common.py hpe/hpe_3par_common.py dell_emc/powermax/common.py

huawei/rest_client.py pure.py solidfire.py qnap.py

huawei/common.py nimble.py rbd.py

vmware/vmdk.py

ibm/gpfs.py

remotefs.py

linstordrv.py tintri.py infinidat.py nec/cli.py

lvm.py

vzstorage.py

sheepdog.py

zadara.py

storpool.py

nfs.py

spdk.py scst.py iscsi.py

tgt.py

iet.py

cxt.py lio.py

0 5 10 15
Number of flakily covered statements

(c) Cinder

Fig. 3: Dispersion of �akily covered statements across mod-
ules. Although there are hotspots, �akily covered statements
are dispersed across modules.

7

0

100

200

300

400

0 1000 2000 3000 4000 5000
Total statements authored

F
la

ki
ly

 c
ov

er
ed

 s
ta

te
m

en
ts

 a
ut

ho
re

d

1 8 64 512
count

(a) Nova (last author)

0

100

200

300

400

0 1000 2000 3000
Total statements authored

F
la

ki
ly

 c
ov

er
ed

 s
ta

te
m

en
ts

 a
ut

ho
re

d

1 4 16 64 256
count

(b) Neutron (last author)

0

5

10

15

20

0 1000 2000 3000 4000
Total statements authored

F
la

ki
ly

 c
ov

er
ed

 s
ta

te
m

en
ts

 a
ut

ho
re

d

1 4 16 64 256
count

(c) Cinder (last author)

0

100

200

300

400

500

0 1000 2000 3000 4000 5000
Total statements authored

F
la

ki
ly

 c
ov

er
ed

 s
ta

te
m

en
ts

 a
ut

ho
re

d

1 8 64 512
count

(d) Nova (all authors)

0

100

200

300

400

500

0 1000 2000 3000
Total statements authored

F
la

ki
ly

 c
ov

er
ed

 s
ta

te
m

en
ts

 a
ut

ho
re

d

1 4 16 64 256
count

(e) Neutron (all authors)

0

5

10

15

20

0 1000 2000 3000 4000
Total statements authored

F
la

ki
ly

 c
ov

er
ed

 s
ta

te
m

en
ts

 a
ut

ho
re

d

1 4 16 64 256
count

(f) Cinder (all authors)

Fig. 4: For each author, we plot the number of total statements contributed against the number of �akily covered statements
contributed. We attribute �akily covered statements to the last author (�rst row) or all authors (second row) who have
modi�ed them.The number of �akily covered statements varies across contributors.

a weak level of negative correlation (� = � 0:089). These
density correlation values also do not support the claim that
uncovered and �akily covered statements are associated.

Argument A.3: The �akily covered statements are most
likely introduced by a small group of developers.

Rationale: Every developer has a characteristic style,
ranging from preferences about identi�er naming to prefer-
ences about object relationships and design patterns. Some
styles may result in statements that are hard to robustly
cover.

Approach: We use the git blame command to �nd out
the last known author of �akily covered statements. The last
known author is a commonly applied heuristic to estimate
ownership in previous studies [29]. We also use the git log
command to extract the list of authors who have modi�ed
�akily covered statements over time. We group the �akily
covered statements by author and study their distributions
using hexbin plots. A hexbin plot is a variant of a scatter
plot where overlapping points are represented by a single
hexagonal bin. The shade of the bin indicates the number of
points in the bin. For our analysis, we plot the total number
of statements authored by a contributor on the X-axis and
the number of �akily covered statements authored on the
Y-axis.

Results:Figure 4 shows the the number of �akily covered
statements varies across contributors. The percentage of
contributors who have authored at least one �akily cov-
ered statement is 41% for Nova, 46% for Neutron and 5%
for Cinder when �akily covered statements are associated
with the last author of the statement. When �akily covered
statements are associated with all authors, the percentages
slightly increase to 43% for Nova and 49% for Neutron,
but there is no change for Cinder. In the case of Nova and
Neutron, contributors with the highest number of �akily
covered statements have also authored more statements in
general. On the other hand, in Cinder, the contributor with
the most number of lines has not contributed any �akily
covered lines.

Dispersion : Flakily covered statements are dis-
persed across modules and contributors.

B. Ownership

Due to a lack of familiarity, new contributors to a project
may not fully comprehend the architecture or design im-
plications of their initial contributions. More experienced
contributors would be less likely to make such mistakes.

8

Project

Statement
Last Author
Experience
(B.1)

Statement
All Authors
Experience
(B.1)

Test
Last Author
Experience
(B.2)

Test
All Authors
Experience
(B.2)

Statement
Age

(C.1)

Statement
Churn

(C.2)
Nova 0.0396*** 0.04*** 0.0535*** 0.061*** 0.0337*** 0.0925***
Neutron 0.1231*** 0.026** NA NA 0.1156*** 0.2590***
Cinder 0.0751*** NA NA NA 0.06221*** 0.0281***

TABLE 1: Comparing �akily covered statements and �aky tests with robustly covered statements and robust tests,
respectively. Numbers indicate the Cliff�s delta effect sizes, which are negligible unless shown in bold. The asterisks
indicate the p-values of the Mann-Whitney U test, where ** indicates p < 0:01, and *** indicates p < 0:001:

Ownership properties, which are contributor-oriented met-
rics such as experience, may explain the incidences of �ak-
ily covered statements. A na�̈ve explanation of our results
may be that �akily covered statements occur because new
contributors tend to: (B.1) write statements that result in
non-deterministic behaviour or (B.2) write tests that are non-
deterministic. Below, we explore these AD arguments.
Argument B.1: New contributors tend to contribute code
that is dif�cult to test robustly.

Rationale: Whenever a block of code is changed, all the
tests that cover the block of code must also be veri�ed and
updated to re�ect changes made to source code. A new
contributor who is unfamiliar with the test suite, may be
unaware of which tests need to be modi�ed. If the code
under test is changed in a way that makes a test �aky, then
it will lead to �akily covered statements.

Approach: For each statement, we estimate its author�s
experience with the project by computing the number of
commits that an author has made prior to changing this
statement. To conserve space, detailed plots of the distribu-
tions have been relegated to the online appendix.7

We use Mann Whitney U tests to check whether differ-
ences in the distributions are statistically signi�cant. The
Mann Whitney U test is a non-parametric test of the null
hypothesis that two distributions come from the same pop-
ulation. We adopt a conservative threshold (� =0.01) for
rejecting the null hypothesis of our test, which is: H0: There
is no signi�cant difference between the distributions of author
experience of �akily covered statements and robustly covered
statements.

Next, to estimate the practical difference between these
distributions, we apply Cliff�s delta, a non-parametric effect-
size measure. Values of Cliff�s delta range between -1 and
1. We adopt the signi�cance levels proposed by prior
work [30]: negligible when 0 � j � j < 0:147, small when
0:147 � j � j < 0:330, medium when 0:330 � j � j < 0:474,
and large when 0:474� j � j � 1. A positive Cliff�s delta indi-
cates that values of the �rst distribution are larger than those
of the second distribution, while a negative Cliff�s delta
indicates the inverse. Similar to Argument A.1, we study
the experience of the last author to modify the statement, as
well as all authors who have modi�ed the statement.

Results:Column 1 of Table 1 shows the Mann-Whitney U
test results of comparing the last-known author experience
values. The test results are signi�cant (p < 0:001 in all three
cases), indicating that we can reject our null hypothesis H0.

7. https://tinyurl.com/�akyprogramelements-appendix

However, the effect size is negligible for all three projects,
indicating that the practical difference is insigni�cant.

Column 2 of Table 1 shows the Mann-Whitney U test
results of comparing the author experience throughout the
history of a statement. For Cinder, the test result is incon-
clusive (p > 0:01). For Nova and Neutron, the test results
are signi�cant (p < 0:001 for Nova and p < 0:01 for
Neutron), indicating that we can reject our null hypothesis
H0. However, the effect size is negligible for both projects,
indicating that the practical difference is insigni�cant.
Argument B.2: The �aky tests that lead to �akily covered
statements are introduced by new contributors, who lack
familiarity with the project.

Rationale: When new contributors write tests, they may
not be completely aware of the system runtime conditions.
Thus, new contributors may be more prone to writing �aky
tests, which in turn will create �akily covered statements.

Approach: We use the same heuristic approach to esti-
mate the experience of authors as we applied in Argument
B.1. In this case, we apply the heuristic to test code. We
again use Mann Whitney U tests and Cliff�s delta effect-size
measures to compare distributions statistically, and relegate
detailed plots of the distributions to the online appendix. 7

Results: Column 3 of Table 1 shows the results of
comparing the last-known author experience values. For
Neutron and Cinder, there is no signi�cant difference in the
experience of authors of �aky and robust tests. For Nova,
we observe a signi�cant difference (p < 0:001); however,
the Cliff�s delta effect size is negligible.

Column 4 of Table 1 shows the result of comparing
author experience values throughout the history of the tests.
For Nova, the test results are signi�cant (p < 0:001), indi-
cating that we can reject our null hypothesis H0. However,
the effect size is negligible, indicating that the practical
difference is insigni�cant. For Neutron and Cinder the test
results are inconclusive (p > 0:01).

We cannot conclude that �aky tests are introduced only
by new contributors who lack familiarity with the project.

Ownership : The experience of authors of �aky tests
and �akily covered statements are often signi�cantly
different than the experience of authors of robust
tests and robustly covered statements, respectively
(p < 0:001 in 13 of 18 cases). However, in no case is
the difference non-negligible (� < 0:147), indicating
that the difference is of no practical consequence.

9

C. Development Activity

In large software systems, different parts of the system
change at different rates. The recency and frequency of
development activity may already explain where �akiness
occurs. Indeed, a nä�ve explanation of our results may
be that the �akily covered statements are: (C.1) are not
under active development; or (C.2) undergo plenty of churn.
Below, we explore each of these AD arguments.

Argument C.1: The �akily covered statements are state-
ments that are not under active development.

Rationale: Source code is continuously evolving and
needs to be actively maintained. However, as software
evolves, some areas of the codebase attract more developer
attention, while other parts do not. The �akily covered
statements that we observe may simply be due to a lack
of maintenance priority on the modules where they appear.

Approach: To investigate C.1, we estimate the age of each
statement using the number of days since the last change
to the statement. We again use Mann Whitney U tests
and Cliff�s delta effect-size measures to statistically compare
the distributions of statement age in robustly and �akily
covered statements. Detailed plots of the distributions are
available in the online appendix. 7

Results: Column 5 of Table 1 shows the results of the
Mann-Whitney U test, which indicate that the null hypothe-
sis can be rejected, and that there is a statistically signi�cant
difference in the age of statements between the two groups.
However, the Cliff�s delta effect sizes are negligible.

Argument C.2: Flakily covered statements are those that
undergo plenty of churn.

Rationale: When statements change, the tests that cover
them may also have to change. If test maintenance is ne-
glected, tests may not accurately assess the code under
test. Flakily covered statements may be a symptom of the
test and production code synchronization problem. In their
study, Elbaum et al. concluded that even minor changes in
production code can signi�cantly affect test coverage [7].

Approach: To investigate C.2, we compute the amount
of churn of each statement, i.e., the number of commits
in which the statement has been modi�ed. We again use
Mann Whitney U tests and Cliff�s delta effect-size measures
to statistically compare the churn of �akily and robustly
covered statements. Detailed plots of the distributions are
available in the online appendix. 7

Results: Column 6 of Table 1 shows that results of
the Mann-Whitney U test, which indicate that there is a
signi�cant difference in the rates of churn that �akily and
robustly covered statements undergo. However, the Cliff�s
effect sizes indicate that the practical difference is negligible
or small. Therefore, in terms of churn, the �akily covered
statements are not considerably different from robustly cov-
ered statements.

Importance : Flakily covered statements are similar
to robustly covered statements in terms of age and
churn.

T1

T2

T3

S1

S2

S3

S4

S5

1

2

3

S6

Rank Flaky
tests

Flakily
covered

Statements

T2

T3

S5

2

1

S6

Repair
T1
&

re-rank

Rank
Flaky
tests

Flakily
covered

Statements

Fig. 5: Illustration of a single iteration of GreedyFlake

6 GREEDYFLAKE : PRIORITIZING THE REPAIR OF

FLAKILY COVERED STATEMENTS

The prior sections have demonstrated that �akily covered
statements are not rare (Section 4) and are not easily ex-
plained by basic code, change and contributor characteris-
tics (Section 5). In this section, we shift our focus to prior-
itizing �akily covered statements for repair, i.e., obtaining
robust test coverage of these statements.

Software teams operate with time and budget con-
straints. Since repairing all of the �akily covered statements
would require a substantial investment of time and budget,
it is likely impractical to assume that a team can repair all of
the �akily covered statements immediately. Software teams
would like to prioritize their repair investments such that
they will receive the largest return on investment as quickly
as possible. Similar to test case prioritization [20], [21], [31],
[32], we would like to order (�aky) tests in such a way that
the optimal returns are achieved.

Below, we present GreedyFlake—our proposed prioriti-
zation approach (6.1), as well as our approach to evaluate
GreedyFlake with respect to baseline approaches (6.2) and
the evaluation results (6.3).

In Section 4, we report the difference in coverage when
test characteristics are taken into consideration. In this sec-
tion, we evaluate the effort that is required to repair �akily
covered statements and address the difference in coverage.

6.1 GreedyFlake

GreedyFlake uses a greedy algorithm to order �aky tests
for repair. The algorithm consists of ranking and selection
steps. In the ranking step, tests are sorted by the number of
�akily covered statements that will be repaired if the test is
made robust. In the selection step, the top-ranked test from
the ranking phase is selected and proposed for repair.

Each repair operation may impact the ranking of which
test should be repaired next. For example, in Figure 5, the
initial ranking of tests is T1, T2, and T3. Repairing T1 also
robustly covers two statements that it shares with T2 (S2 and
S4). Since repairing T2 can robustly cover one statement,
while repairing T3 can robustly cover 2 statements, in the
second step, T3 is ranked above T2.

After each repair recommendation, GreedyFlake per-
forms a re-ranking step. This re-ranking ensures that we

10

0

25

50

75

100

0 1000 2000 3000
Number of flaky tests repaired

%
 o

f f
la

ki
ly

 c
ov

er
ed

 s
ta

te
m

en
ts

 r
ep

ai
re

d

(a) Nova

0

25

50

75

100

0 1000 2000
Number of flaky tests repaired

%
 o

f f
la

ki
ly

 c
ov

er
ed

 s
ta

te
m

en
ts

 r
ep

ai
re

d

Approach
Additional Statement Coverage
GreedyFlake
Random
Total Flaky Statement Coverage
Total Statement Coverage

(b) Neutron

0

25

50

75

100

0 10 20 30 40
Number of flaky tests repaired

%
 o

f f
la

ki
ly

 c
ov

er
ed

 s
ta

te
m

en
ts

 r
ep

ai
re

d

(c) Cinder

Fig. 6: Comparing various approaches to repairing �akily covered statements. GreedyFlake outperforms random and
traditional prioritization approaches.

Project Random
Total

Statement Coverage
Additional

Statement Coverage
Total Flaky

Statement Coverage
GreedyFlake

Nova 0.68 0.74 0.91 0.95 0.96
Neutron 0.88 0.91 0.97 0.96 0.99
Cinder 0.55 0.57 0.66 0.89 0.90

TABLE 2: GreedyFlake Evaluation: AUCEC of various test case prioritization techniques

select the �aky test that provides the most return on invest-
ment at each step. The (re-)ranking and selection processes
are repeated until no �akily covered statements remain or
until all tests have been suggested for repair.

6.2 Evaluation Setup

In order to evaluate GreedyFlake, we compare GreedyFlake
with baseline approaches. The �rst baseline is a random
prioritization approach, where we recommend a randomly
selected �aky test for repair at each stage. The random
baseline is not selected to be a true baseline, but rather as a
sanity check. If our technique underperforms with respect
to random guessing, it is truly not worth adopting. We
estimate the random baseline empirically by selecting the
median performance scores of 100 random orderings.

Previous studies have suggested algorithms for Test
Case Prioritization, such as Total Statement Coverage Pri-
oritization (TSCP) and Additional Statement Coverage Pri-
oritization (ASCP). These baselines have been successfully
applied to other Test Case Prioritization problems [25], and
have been shown to achieve reasonable performance [24].
TSCP sorts tests by the amount of coverage that they
provide in descending order. ASCP performs a re-ranking
step to select the test that offers the most improvement
in coverage. If GreedyFlake underperforms with respect
to these baselines, it would be more prudent to prioritize
tests based on coverage to repair �akily covered statements,
avoiding the costs involved in labelling these statements.

Finally, we compare GreedyFlake with Total Flaky State-
ment Coverage Prioritization (TFSCP). In TFSCP, we skip
the re-ranking step of GreedFlake to determine if re-ranking
actually leads to better performance.

We compare the approaches using Alberg diagrams [33].
The GreedyFlake and baseline approaches are each plotted
on a grid that shows the cumulative percentage of �akily
covered statements that have been repaired (Y axis) against
the number of �aky tests that have been repaired (X axis).
Lines that climb quicker (i.e., are drawn towards the top-left
corner of the grid fastest) are achieving better results.

In addition, for each line, we compute the Area Under
the Cost Effectiveness Curve (AUCEC), i.e., the integral
of a line in the Alberg diagram space. To do so, we �rst
transform the X axis into a proportion scale, so that both
axes of the Alberg diagram range from 0–1. We then com-
pute the AUCEC as

R1
0 f (x)dx, where f(x) is approximated

using the collected points in the Alberg diagram space. This
AUCEC value ranges between 0 and 1, with 0 indicating
the worst performance, 1 indicating the best performance.
Our metric AUCEC is similar to the APFD metric Elbaum et
al. [21] proposed for evaluating test case prioritization (i.e.,
the weighted average of the percentage of faults detected).

6.3 Evaluation Results

Figure 6 shows the Alberg diagrams where different
approaches are compared. In all of the studied cases,
GreedyFlake achieves the top prioritization performance.

Table 2 shows the AUCEC values of each approach. In
Nova, GreedyFlake improves over TSCP by 22 percentage
points, while improving over ASCP by �ve percentage
points. In Neutron, GreedyFlake still improves over TSCP
by eight percentage points. In Neutron, the largest tests tend
to be �aky. In Cinder, GreedyFlake improves vastly over
random guessing, TSCP, and ASCP. This is because there
are only a small number of �akily covered statements, thus

11

the bene�t of an approach that focuses on �akily covered
statements is maximized.

When we turn our attention to the improvement
achieved by the greedy re-ranking step, we see that re-
ranking does not achieve very large improvements. There
is a marginal improvement of 1–3 percentage points in
AUCEC between GreedyFlake and TFSCP. Nonetheless, the
majority of the bene�t is achieved by focusing on �akily
covered statements, and re-ranking, although reasonable,
does not have much of an impact.

GreedyFlake outperforms random and traditional
test case prioritization baseline approaches for prior-
itizing �aky tests to repair by at least eight percent-
age points. On the other hand, there is only marginal
bene�t to the costly re-ranking step (1–3 percentage
points), so “greediness” is not necessary to achieve
most of the bene�t.

7 THREATS TO VALIDITY

We now discuss the threats to the validity of our study.

7.1 Construct Validity

Construct threats to validity concern the link between the-
ory and real observation.

We categorize a statement as robustly covered if there is
at least one robust test covering the statement. In reality, a
statement may be considered robustly covered if and only if
all the tests covering the statements are robust. Hence, the
�aky coverage reported in the study is a lower bound. If
statements are more aggressively marked as �akily covered,
it will lead to an increase in the number of �akily covered
statements and strengthen our claim for the inclusion of
reliability in code coverage.

In the evaluation of GreedyFlake, we assume that the
cost of repairing any �aky test is equal. However, in reality,
some tests are harder to repair than others. The cost of
repairing �aky tests depends on many factors, such as
the reproducibility of the �akiness, the root cause of the
�akiness, the complexity of the test, or the familiarity of the
developer with the source code. If a robust measurement
for each dimension could be formulated, our prioritiza-
tion approaches could be re-evaluated as a multi-objective
optimization problem. Search-Based Software Engineering
(SBSE) approaches could be applied to derive a solution.
Nonetheless, in this work, we focus on the prioritization
aspect of GreedyFlake, which is a necessary �rst step.

7.2 Internal Validity

Internal threats to validity concern our ability to rule out
other plausible explanations for our results.

We rely on developers to examine test failures and re-
run tests to build our corpus of �aky tests. Developers
might not always choose to re-run tests or they might not
always observe �aky failures. Hence, the �akiness detected
through our approach should be interpreted as a lower
bound. However, with our approach, we can focus on �ak-
iness that manifests in the continuous integration pipeline

and actively tackle �akiness that has concretely impacted
development work�ows.

Since we did not �nd strong evidence for the AD argu-
ments, we presume that �akily covered statements are non-
trivially explained and would bene�t from tool support.
It may be that another confounding factor that we have
not considered would explain our results. Nevertheless,
we analyzed the �akily covered statements from different
dimensions of dispersion, ownership and importance. Our
observations withstood all three dimensions of confounding
factor analysis.

The lower proportion of �akily covered statements re-
sults in an imbalanced data set, which can be of concern
for statistical inferences. However, the three non-parametric
statistical inference techniques applied in this study (Spear-
man�s Rank Correlation, Mann-Whitney U test, and Cliff�s
delta) do not make assumptions about the distribution of
data and are not sensitive to imbalanced data.

7.3 External Validity

External validity concerns have to do with the generaliz-
ability of our study. Due to limitations of infrastructure,
we were only able to successfully run coverage for three
OpenStack projects. However, this study is an exploratory
analysis that demonstrates changes in code coverage when
test characteristics are considered. We believe that our study
could motivate further research in test characteristics-aware
code coverage.

8 CONCLUSION

Code coverage is often used as a quality gate and as a
test adequacy metric. Coverage measurements assume that
invocation of a program element during any test is equally
valuable. Our study explored code coverage with an aware-
ness of test reliability, to further quantify and characterize
�akily covered program elements. We also found that �akily
covered program elements are not uncommon and their
incidences cannot be trivially explained in terms of basic
code characteristics.

When prioritizing tests to repair �akily covered
statements, we found that our greedy approach produces
a more optimal ordering, which differs from existing test
effort prioritization approaches. We believe that these
observations suggest that developers can (and should)
bene�t from tool support to manage and mitigate �akily
covered program elements.

Replication
To facilitate future work, we have made the data that

we collected and the scripts that we used to analyze them
available online.8

REFERENCES

[1] P. Ammann and J. Offutt, Introduction to software testing. Cam-
bridge University Press, 2016.

[2] M. Strathern, “`improving ratings': audit in the british university
system,” European review, vol. 5, no. 3, pp. 305–321, 1997.

8. https://github.com/software-rebels/FlakyProgramElements

12

[3] L. Inozemtseva and R. Holmes, “Coverage is not strongly cor-
related with test suite effectiveness,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
435–445.

[4] R. Gopinath, C. Jensen, and A. Groce, “Code coverage for suite
evaluation by developers,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 72–82.

[5] P. Piwowarski, M. Ohba, and J. Caruso, “Coverage measurement
experience during function test,” in Proceedings of 1993 15th Inter-
national Conference on Software Engineering. IEEE, 1993, pp. 287–
301.

[6] B. Marick et al., “How to misuse code coverage,” in Proceedings of
the 16th Interational Conference on Testing Computer Software, 1999,
pp. 16–18.

[7] S. Elbaum, D. Gable, and G. Rothermel, “The impact of software
evolution on code coverage information,” in Proceedings of the IEEE
International Conference on Software Maintenance (ICSM'01). IEEE
Computer Society, 2001, p. 170.

[8] A. S. Namin and J. H. Andrews, “The in�uence of size and
coverage on test suite effectiveness,” inProceedings of the eighteenth
international symposium on Software testing and analysis. ACM, 2009,
pp. 57–68.

[9] G. Gay, “The �tness function for the job: Search-based generation
of test suites that detect real faults,” in 2017 IEEE International
Conference on Software Testing, Veri�cation and Validation (ICST).
IEEE, 2017, pp. 345–355.

[10] G. Gay, M. Staats, M. Whalen, and M. P. Heimdahl, “The risks
of coverage-directed test case generation,” IEEE Transactions on
Software Engineering, vol. 41, no. 8, pp. 803–819, 2015.

[11] P. S. Kochhar, D. Lo, J. Lawall, and N. Nagappan, “Code cover-
age and postrelease defects: A large-scale study on open source
projects,” IEEE Transactions on Reliability, vol. 66, no. 4, pp. 1213–
1228, 2017.

[12] V. Antinyan, J. Derehag, A. Sandberg, and M. Staron, “Mythical
unit test coverage,” IEEE Software, vol. 35, no. 3, pp. 73–79, 2018.

[13] A. Schwartz, D. Puckett, Y. Meng, and G. Gay, “Investigating faults
missed by test suites achieving high code coverage,” Journal of
Systems and Software, vol. 144, pp. 106–120, 2018.

[14] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault
localization using code coverage,” in 31st Annual International
Computer Software and Applications Conference (COMPSAC 2007),
vol. 1. IEEE, 2007, pp. 449–456.

[15] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical
analysis of �aky tests,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering.
ACM, 2014, pp. 643–653.

[16] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of �aky
tests in android apps,” in 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2018, pp. 534–
538.

[17] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Mari-
nov, “D e f laker: automatically detecting �aky tests,” in Pro-
ceedings of the 40th International Conference on Software Engineering.
ACM, 2018, pp. 433–444.

[18] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “id�akies: A
framework for detecting and partially classifying �aky tests,”
in 2019 12th IEEE Conference on Software Testing, Validation and
Veri�cation (ICST). IEEE, 2019, pp. 312–322.

[19] T. M. King, D. Santiago, J. Phillips, and P. J. Clarke, “Towards a
bayesian network model for predicting �aky automated tests,” in
2018 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C). IEEE, 2018, pp. 100–107.

[20] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing
test cases for regression testing,” IEEE Transactions on software
engineering, vol. 27, no. 10, pp. 929–948, 2001.

[21] S. Elbaum, A. G. Malishevsky, and G. Rothermel, Prioritizing test
cases for regression testing. ACM, 2000, vol. 25, no. 5.

[22] H. Do, G. Rothermel, and A. Kinneer, “Empirical studies of test
case prioritization in a junit testing environment,” in 15th interna-
tional symposium on software reliability engineering. IEEE, 2004, pp.
113–124.

[23] J. A. Jones and M. J. Harrold, “Test-suite reduction and prioritiza-
tion for modi�ed condition/decision coverage,” IEEE Transactions
on software Engineering, vol. 29, no. 3, pp. 195–209, 2003.

[24] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for
regression test case prioritization,” IEEE Transactions on software
engineering, vol. 33, no. 4, pp. 225–237, 2007.

[25] E. Shihab, Z. M. Jiang, B. Adams, A. E. Hassan, and R. Bowerman,
“Prioritizing the creation of unit tests in legacy software systems,”
Software: Practice and Experience, vol. 41, no. 10, pp. 1027–1048,
2011.

[26] A. Shi, J. Bell, and D. Marinov, “Mitigating the effects of �aky
tests on mutation testing,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
112–122.

[27] P. Riehmann, M. Han�er, and B. Froehlich, “Interactive sankey
diagrams,” in IEEE Symposium on Information Visualization, 2005.
INFOVIS 2005. IEEE, 2005, pp. 233–240.

[28] B. Shneiderman, “Tree visualization with tree-maps: A 2-d space-
�lling approach,” Tech. Rep., 1998.

[29] F. Rahman and P. Devanbu, “Ownership, experience and defects:
a �ne-grained study of authorship,” in Proceedings of the 33rd
International Conference on Software Engineering, 2011, pp. 491–500.

[30] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appro-
priate statistics for ordinal level data: Should we really be using
t-test and cohen'sd for evaluating group differences on the nsse
and other surveys,” in annual meeting of the Florida Association of
Institutional Research, 2006, pp. 1–33.

[31] J. J. Li, D. Weiss, and H. Yee, “Code-coverage guided prioritized
test generation,” Information and Software Technology, vol. 48, no. 12,
pp. 1187–1198, 2006.

[32] A. Kaur and S. Goyal, “A genetic algorithm for regression test
case prioritization using code coverage,” International journal on
computer science and engineering, vol. 3, no. 5, pp. 1839–1847, 2011.

[33] N. Ohlsson and H. Alberg, “Predicting fault-prone software mod-
ules in telephone switches,” IEEE Transactions on Software Engineer-
ing, vol. 22, no. 12, pp. 886–894, 1996.

Shivashree Vysali is a Masters student at
McGill University, Canada. Her research focuses
on understanding and mitigating the impact of
�akiness in tests. She received her BSc de-
gree in Computer Science and Engineering from
Anna University, India.

Shane McIntosh is an Associate Professor at
the University of Waterloo. Previously, he was an
Assistant Professor at McGill University, where
he held the Canada Research Chair in Soft-
ware Release Engineering. He received his
Ph.D. from Queen�s University, for which he was
awarded the Governor General's Academic Gold
Medal. In his research, Shane uses empirical
methods to study software build systems, re-
lease engineering, and software quality: http:
//shanemcintosh.org/.

Bram Adams is an associate professor at
Queen�s University. He obtained his PhD at
the GH-SEL lab at Ghent University (Belgium).
His research interests include mining software
repositories, software release engineering and
the role of human affect in software engineering.
His work has been published at premier software
engineering venues such as EMSE, TSE, ICSE,
FSE, MSR, ASE and ICSME. In addition to co-
organizing the RELENG International Workshop
on Release Engineering from 2013 to 2015 (and

the 1st IEEE Software Special Issue on Release Engineering), he co-
organized the SEMLA, PLATE, ACP4IS, MUD and MISS workshops,
and the MSR Vision 2020 Summer School. He has been PC co-chair of
SCAM 2013, SANER 2015, ICSME 2016 and MSR 2019.

http://shanemcintosh.org/
http://shanemcintosh.org/

	Introduction
	Related Work
	Code Coverage
	Flaky Tests
	Test Case Prioritization

	Study Design
	Studied Systems
	Data Extraction

	Enriched Coverage Observations
	Advocatus Diaboli
	GreedyFlake: Prioritizing the Repair of Flakily Covered Statements
	GreedyFlake
	Evaluation Setup
	Evaluation Results

	Threats To Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusion
	References

